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Introduction

I In signal processing, a continuous-time signal often needs to
be interpolated, extrapolated, differentiated at some instant
t = t1 or integrated between two distinct instants t1 and t2.

I Such mathematical operations can be performed by using
many classical numerical-analysis formulas.

I Formulas of this type can be readily derived from the Taylor
series.

I This presentation will show that numerical-analysis formulas
can be used to design nonrecursive filters that can be used to
perform interpolation, differentiation, and integration.
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Interpolation Formulas

I The most fundamental numerical analysis formulas are the
formulas for interpolation.

I The value of x(t) at t = nT + pT , where 0 ≤ p < 1, is given
by the forward Gregory-Newton interpolation formula as

x(nT + pT ) = (1 + ∆)px(nT )

=

[
1 + p∆ +

p(p − 1)

2!
∆2 + · · ·

]
x(nT )

where
∆x(nT ) = x(nT + T )− x(nT )

is commonly referred to as the forward difference.
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Interpolation Formulas Cont’d

I Similarly, the backward Gregory-Newton interpolation formula
gives

x(nT + pT ) = (1−∇)−px(nT )

=

[
1 + p∇+

p(p + 1)

2!
∇2 + · · ·

]
x(nT )

where
∇x(nT ) = x(nT )− x(nT − T )

is known as the backward difference.
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Interpolation Formulas Cont’d

I Another interpolation formula known as the Stirling formula assumes
the form

x(nT + pT ) =

[
1 +

p2

2!
δ2 +

p2(p2 − 1)

4!
δ4 + · · ·

]
x(nT )

+
p

2

[
δx
(
nT − 1

2T
)

+ δx
(
nT + 1

2T
)]

+
p(p2 − 1)

2(3!)

[
δ3x
(
nT − 1

2T
)

+ δ3x
(
nT + 1

2T
)]

+
p(p2 − 1)(p2 − 22)

2(5!)

[
δ5x
(
nT − 1

2T
)

+ δ5x
(
nT + 1

2T
)]

+ · · ·

where δx
(
nT + 1

2T
)

= x(nT + T )− x(nT )

is known as the central difference.
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Interpolation Formulas Cont’d

I The forward, backward, and central differences are linear operators.

Hence higher-order differences can be readily obtained, e.g.,

δ3x
(
nT + 1

2T
)

= δ2
[
δx
(
nT + 1

2T
)]

= δ2[x(nT + T )− x(nT )]

= δ[δx(nT + T )− δx(nT )]

= δ
{
x
(
nT + 3

2T
)
− x
(
nT + 1

2T
)

−
[
x
(
nT + 1

2T
)
− x
(
nT − 1

2T
)]}

= δx
(
nT + 3

2T
)
− 2δx

(
nT + 1

2T
)

+ δx
(
nT − 1

2T
)

= [x(nT + 2T )− x(nT + T )]− 2[x(nT + T )− x(nT )]

+[x(nT )− x(nT − T )]

= x(nT + 2T )− 3x(nT + T ) + 3x(nT )− x(nT − T )
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Differentiation Formulas

I The first derivative of x(t) with respect to time at instant
t = nT + pT can be expressed as

dx(t)

dt

∣∣∣∣
t=nT+pT

=
dx(nT + pT )

dp
× dp

dt

=
1

T

dx(nT + pT )

dp

I By differentiating each of the interpolation formulas
considered with respect to p, corresponding differentiation
formulas can be obtained.
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Integration Formulas

I Integration formulas can be derived by writing∫ t2

nT
x(t) dt = T

∫ p2

0
x(nT + pT ) dp

where
nT < t2 ≤ nT + T

and

t2 = nT + Tp2 or p2 =
t2 − nT

T

with 0 < p2 ≤ 1.
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Digital Interpolators, Differentiators, Integrators

I Nonrecursive filters that can perform interpolation,
differentiation, or integration can be obtained by expressing
one of the available numerical formulas for these operations in
the form of a difference equation.

I Let x(nT ) and y(nT ) be the input and output of a
nonrecursive filter and assume that y(nT ) is equal to the
required function of x(t), i.e.,

y(nT ) = f [x(t)]
∣∣∣
t=nT+pT
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Digital Interpolators, Differentiators, Integrators Cont’d

I For interpolation, differentiation, or integration, we would
have

y(nT ) = x(t)
∣∣∣
t=nT+pT

y(nT ) =
dx(t)

dt

∣∣∣
t=nT+pT

or

y(nT ) =

∫ nT+pT

nT
x(t) dt

as appropriate.
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Digital Interpolators, Differentiators, Integrators Cont’d

I By choosing an appropriate numerical formula for the
operation of interest and then eliminating all the difference
operators using their definitions, we can obtain a difference
equation of the form

y(nT ) =
M∑

i=−K

aix(nT − iT )

I Now by applying the z transform, a transfer function

H(z) =
M∑

n=−K

h(nT )z−n

can be deduced.
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Digital Interpolators, Differentiators, Integrators Cont’d

· · ·
H(z) =

M∑
n=−K

h(nT )z−n

x(nT) y(nT)H(z)
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Digital Interpolators, Differentiators, Integrators Cont’d

Interpolation:

x(nT)

x(t)

y(nT)

nT

nT1 20 3

x(t)

1 20 3
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Digital Interpolators, Differentiators, Integrators Cont’d

I For the case of a forward- or central-difference formula, the
digital filter obtained turns out to be noncausal.

I For real-time applications it is necessary to convert a
noncausal into a causal design.

I This is done by multiplying the transfer function by an
appropriate negative power of z , which corresponds to
delaying the impulse response of the filter to ensure that
h(nT ) = 0 for n < 0.
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Example

I A signal x(t) is sampled at a rate of 1/T Hz.

Design a sixth-order differentiator with a time-domain
response

y(nT ) =
dx(t)

dt

∣∣∣
t=nT

Use the Stirling formula.
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Example Cont’d

I Solution From Stirling’s formula for interpolation

y(nT ) =
dx(t)

dt

∣∣∣∣∣
t=nT+pT

=
1

T

dx(nT + pT )

dp

∣∣∣∣∣
p=0

=
1

2T

[
δx
(
nT − 1

2T
)

+ δx
(
nT + 1

2T
)]

− 1

12T

[
δ3x
(
nT − 1

2T
)

+ δ3x
(
nT + 1

2T
)]

+
1

60T

[
δ5x
(
nT − 1

2T
)

+ δ5x
(
nT + 1

2T
)]

+ · · ·
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Example Cont’d

I From the definition of the central difference, we get

δx
(
nT − 1

2T
)

+ δx
(
nT + 1

2T
)

= x(nT + T )− x(nT − T )

δ3x
(
nT − 1

2T
)

+ δ3x
(
nT + 1

2T
)

= x(nT + 2T )− 2x(nT + T )

+ 2x(nT − T )− x(nT − 2T )

δ5x
(
nT − 1

2T
)

+ δ5x
(
nT + 1

2T
)

= x(nT + 3T )− 4x(nT + 2T )

+ 5x(nT + T )− 5x(nT − T )

+ 4x(nT − 2T )− x(nT − 3T )
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Example Cont’d

I Hence

y(nT ) =
1

60T
[x(nT + 3T )− 9x(nT + 2T ) + 45x(nT + T )

−45x(nT − T ) + 9x(nT − 2T )− x(nT − 3T )]

and, therefore

H(z) =
1

60T
(z3 − 9z2 + 45z − 45z−1 + 9z−2 − z−3)

I Note that the differentiator has an antisymmetrical impulse
response, i.e., it has a constant group delay, and it is also
noncausal.

I A causal filter can be obtained by multiplying H(z) by z−3.
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Example Cont’d
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Differentiators Using the Fourier Series Method

I Differentiators can also be designed by employing the Fourier series
method.

I An analog differentiator is characterized by the continuous-time
transfer function

H(s) = s

I Hence a corresponding digital differentiator can be designed by
assigning

H(e jωT ) = jω for 0 ≤ |ω| < ωs/2

I Then on assuming a periodic frequency response, the appropriate
impulse response can be determined.

I Gibbs’ oscillations due to the transition in H(e jωT ) at ω = ωs/2 can
be reduced, as before, by using the window technique.
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Example

I Design a sixth-order differentiator by employing the
Fourier-series method.

Use (a) a rectangular window and (b) the Kaiser window with
α = 3.0.
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Example Cont’d

I Solution Using the Fourier-series method, the impulse
response of the differentiator can be obtained as

h(nT ) =
1

ωs

∫ ωs/2

−ωs/2
jωe jωnT dω = − 1

ωs

∫ ωs/2

0
2ω sin(ωnT ) dω

I On integrating by parts, we get

h(nT ) =
1

nT
cosπn − 1

n2πT
sinπn

or

h(nT ) =

 0 for n = 0

1

nT
cosπn otherwise
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Example Cont’d

I If we now use the rectangular window with N = 7, we deduce

Hw (z) =
1

6T
(2z3 − 3z2 + 6z − 6z−1 + 3z−2 − 2z−3)

I Similarly, if we multiply the impulse response by the Kaiser
window function wK (nT ) we get

Hw (z) =
3∑

n=−3

wK (nT )h(nT )z−n

I The parameter α in the Kaiser window can be increased to
increase the in-band accuracy or decreased to increase the
bandwidth.

I The design of digital differentiators that would satisfy
prescribed specifications is considered in Chap. 15.
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Example Cont’d
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Example Cont’d
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This slide concludes the presentation.

Thank you for your attention.
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