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e The Fourier series and Fourier transform can be used to
obtain spectral representations for periodic and nonperiodic
continuous-time signals, respectively (see Chap. 2).

Analogous spectral representations can be obtained for
discrete-time signals by using the z transform.



e The Fourier series and Fourier transform can be used to
obtain spectral representations for periodic and nonperiodic
continuous-time signals, respectively (see Chap. 2).

Analogous spectral representations can be obtained for
discrete-time signals by using the z transform.

e The Fourier transform will convert a real continuous-time
signal into a function of complex variable jw.

Similarly, the z transform will convert a real discrete-time
signal into a function of complex variable z.



Introduction Cont'd

e The z transform, like the Fourier transform, comes along with
an inverse transform, namely, the inverse z transform.

Consequently, a discrete-time signal can be readily recovered
from its z transform.
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e The z transform, like the Fourier transform, comes along with
an inverse transform, namely, the inverse z transform.

Consequently, a discrete-time signal can be readily recovered
from its z transform.

e The availability of an inverse makes the z transform very
useful for the representation of digital filters and discrete-time
systems in general.



e The most basic representation of discrete-time systems is in
terms of difference equations (see Chap. 4) but through the
use of the z transform, difference equations can be reduced to
algebraic equations which are much easier to handle.



Objectives

Definition of Z Transform
Convergence Properties

The Z Transform as a Laurent series
Inverse Z Transform

Theorems and Properties

Elementary Functions

Examples
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e Consider a bounded discrete-time signal x(nT) that satisfies
the conditions

(i) x(nT) =0 for n<—N;
(II) ’X(HT)‘ <Ky for —Ni<n<N
(iii) Ix(nT)| < Kor™ for n> N,

where Nj and N, are positive integers and r is a positive
constant.



- (i) T =0 for e
i Ix(nT)| < Ky for
(i) |x(nT)| < Kaor"

_N1§n<N2
for nZNz
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The Z Transform cont'd

e The z transform of a discrete-time signal x(nT) is defined as

(e 9]

X(z)= > x(nT)z™"

n—=—oo

for all z for which X(z) converges.
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e Although the z transform of a signal x(nT) is an infinite
series, in practice it can be represented in terms of a rational

function as

X(z) = Z x(nT)z™"
M@ SMadt L (- 2)
D(z) N4+ 3L bizV1 I (z - p)

where z; and p; are the zeros and poles of the z transform and
Hg is a multiplier constant.



e Although the z transform of a signal x(nT) is an infinite
series, in practice it can be represented in terms of a rational

function as
X(z) = Z x(nT)z™"
NE) _ SMoa LTI 2)
p— p— - pr— 0
D(z) 2N+ bizV Lz - pi)

where z; and p; are the zeros and poles of the z transform and
Hg is a multiplier constant.

e In effect, z transforms can be represented by zero-pole plots.



Example

The following z transform has the zero-pole plot shown.
(22 —4) B (z—-2)(z+2)

X = =
B = D@+ 8) T D D2
Jjimz
z plane
2
X
-2 -1 1 2 MNez
-2
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Theorem 3.1 Absolute Convergence

If
(i) x(nT) =0 for n<—N;
(i) Ix(nT)| < Ky for — Ny <n<N,
(i) Ix(nT)| < Kor™ for n> N,

where N; and N, are positive constants and r is the smallest positive
constant that will satisfy condition (iii), then the z transform of x(nT),

ie.,
o0

X(z)= > x(nT)z™"

n=—o0

exists and converges absolutely if and only if

r<|z] < R with Ry — 00
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Region of
convergence
z plane /
Reo
7
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Absolute Convergence cont'd

The proofs of the Absolute Convergence Theorem and the
theorems that follow can be found in the textbook.
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The Z Transform as a Laurent Series

e The Laurent series of a function X(z) about point z = a
assumes the form

(See Appendix A.)
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The Z Transform as a Laurent Series

e The Laurent series of a function X(z) about point z = a
assumes the form

(See Appendix A.)

e The z transform is given by
o0
X(z)= > x(nT)z™"
n=—00
If we compare the above two series for X(z), we conclude that
the z transform is a Laurent series of X(z) about the origin,
i.e., a=0, with
ap=x(nT)
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The Z Transform as a Laurent Series Cont'd

e Since the z transform is a specific Laurent series, it follows
that it inherits all the properties of the Laurent series, which
are stated in the Laurent theorem as detailed in the slides that
follow.
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(a) If F(z) is an analytic and single-valued function on two
concentric circles C; and G with center a and in the annulus
between them, then it can be represented by the Laurent series

F(Z) = Z an(Z — 3)7"
where )
_ = o n—1
ap = 7 F(z)(z—a)" " dz

The contour of integration I is a closed contour in the
counterclockwise sense lying in the annulus between circles G
and G, and encircling the inner circle.



Laurent Theorem cont'd

z plane

N
<~

(@)
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Laurent Theorem cont'd

(b) The Laurent series converges and represents F(z) in the open
annulus obtained by continuously increasing the radius of G,
and decreasing the radius of C; until each of C; and G
reaches a point where F(z) is singular.

z plane

G

N
~_—

(®)
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Laurent Theorem cont'd

(c) A function F(z) can have several, possibly many, annuli of
convergence about a given point z = a and for each one a
Laurent series can be obtained.

z plane

(©)
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Laurent Theorem Cont'd

(d) The Laurent series for a given annulus of convergence is
unique.

z plane

()
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Example

unique Laurent series as shown at the right.

Jmz

The function represented by the zero-pole plot at the left has three

z plane

z plane

(a)
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e The absolute-convergence theorem states that the z
transform, X(z), of a discrete-time signal x(nT) satisfying the
conditions

(i) x(nT) =0 for n<—N;
(ii) |X(I7T)‘ <Ky for —Ni1<n<N,
(iii) |x(nT)| < Kor" for n> N

exists and converges absolutely if and only if

r<lzl<R with R— o0



Inverse Z Transform cont'd

e The Laurent theorem states that a function X(z) has as many
distinct Laurent series about the origin as there are annuli of
convergence.
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e The Laurent theorem states that a function X(z) has as many
distinct Laurent series about the origin as there are annuli of
convergence.

e One of these series converges in the outer annulus (i.e., the
largest one) which is defined as

Ro < |z| <R with R— o

where Ry is the radius of a circle passing through the most
distant pole of X(z) from the origin.



Inverse Z Transform cont'd

Summarizing:

e From the absolute convergence theorem, the z transform
converges in the annulus

r<lzl<R with R— o0
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Inverse Z Transform cont'd

Summarizing:

e From the absolute convergence theorem, the z transform
converges in the annulus

r<lzl<R with R— o0

e From the Laurent theorem, there is a unique Laurent series of
X(z) that converges in the outer annulus of convergence

Ro < |z| <R with R— 0
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Inverse Z Transform cont'd

Summarizing:

e From the absolute convergence theorem, the z transform
converges in the annulus

r<lzl<R with R— o0

e From the Laurent theorem, there is a unique Laurent series of
X(z) that converges in the outer annulus of convergence

Ro < |z| <R with R— 0

e Therefore, the z transform of x(nT) is the unique Laurent
series that converges in the outer annulus and, furthermore,
r = Ro.
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Inverse Z Transform cont'd

e We conclude that signal x(nT) can be obtained from its z
transform X(z) by finding the coefficients of the Laurent
series of X(z) that converges in the outer annulus.
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e We conclude that signal x(nT) can be obtained from its z
transform X(z) by finding the coefficients of the Laurent
series of X(z) that converges in the outer annulus.

e From the Laurent theorem, we have
(nT) L j[X( )z2" 1 d
X = —
2 I z)z z

where contour I encloses all the poles of X(z)z" 1.



e We conclude that signal x(nT) can be obtained from its z
transform X(z) by finding the coefficients of the Laurent
series of X(z) that converges in the outer annulus.

e From the Laurent theorem, we have
(nT)—lj[X( )21
X = 2 A z)z z

where contour I encloses all the poles of X(z)z" 1.

e In DSP, this contour integral is said to be the inverse z
transform of X(z).



Notation

e Like the Fourier transform and its inverse, the z transform and
its inverse are often represented in terms of operator notation
as

X(z) = Zx(nT) and x(nT)=Z"1X(z)
respectively.
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Z Transform Theorems

e The general properties of the z transform can be described in
terms of a small number of theorems, as detailed in the slides
that follow.
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Z Transform Theorems

e The general properties of the z transform can be described in
terms of a small number of theorems, as detailed in the slides
that follow.

e In these theorems
Zx(nT)=X(z) Zx1(nT)=X1(z) Zx(nT) = Xz(2)

and a, b, w, and K represent constants which may be
complex.
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Theorem 3.3 Linearity
e The z transform of a linear combination of discrete-time
signals is given by

Z[axl(nT) + bx2(nT)] = aXl(z) + bX2(Z)
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Theorem 3.3 Linearity
e The z transform of a linear combination of discrete-time
signals is given by
Z[axl(nT) + bXQ(I’IT)] = aXl(z) + sz(Z)

e Similarly, the inverse z transform of a linear combination of z
transforms is given by

Zﬁl[aXl(z) + bXQ(Z)] = axl(nT) + bXQ(nT)
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Theorem 3.4 Time Shifting

e For any positive or negative integer m,
Zx(nT 4+ mT) =2z"X(z)

In effect, multiplying the z transform of a signal by a negative
or positive power of z will cause the signal to be delayed or
advanced by mT s.

Frame # 29 Slide # 40 A. Antoniou Digital Signal Processing — Secs. 3.1-3.7



Theorem 3.5 Complex Scale Change

e For an arbitrary real or complex constant w
Zlw "x(nT)] = X(wz)

Evidently, multiplying a discrete-time signal by w=" is
equivalent to replacing z by wz in its z transform.

Similarly, multiplying a discrete-time signal by v" is equivalent
to replacing z by z/v in its z transform.
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Theorem 3.6 Complex Differentiation

e The z transform of an arbitrary signal nTyx(nT) is given by

dX(z)
dz

Z[nTlx(nT)] = —le
Complex differentiation provides a simple way of obtaining the

z transform of a discrete-time signal that can be expressed as
a product nTyix(nT).
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Theorem 3.7 Real Convolution

e The z transform of the real convolution summation of two
signals x1(kT) and xo(nT) is given by

Z io: x1(kT)xo(nT — kT) = Z i x1(nT — kT)x(kT)
k=—o00 k=—o00
= X1(2)X(2)

The real convolution summation is used frequently for the
representation of digital filters and discrete-time systems (see
Chap. 4).
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Theorem 3.8 Initial-Value Theorem

e The initial value of a signal x(nT) represented by a z
transform of the form

N(z)  SMoazM
D(z) g bizN-

X(z) =
occurs at
KT = (N — M)T

and its value at nT = KT is given by

x(KT) = lim [z X(2)]

Z—00
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Theorem 3.8 Initial-Value Theorem cont'd

CN(z) M aizM
X(Z) - D(Z) - Z,N:Z b,‘ZN_i

e Corollary: If the degree of the numerator polynomial, N(z), in
a z transform is equal to or less than the degree of the
denominator polynomial D(z), then we have

x(nT)=0 for n<0

i.e., the signal is right-sided.
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Theorem 3.9 Final-Value Theorem

e The value of x(nT) as n — oo is given by
x(00) = lim [(z — 1) X(z2)]
z—1

The final-value theorem can be used to determine the
steady-state response of a discrete-time system.
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e |If the z transforms of two discrete-time signals x;(nT) and
x2(nT) are available, then the z transform of their product,
X3(z), can be obtained as

1

Xs(2) = Zba(nT)e(nT)] = 5 xl( )X (é) v=1dv
= 27171 X1 (é) Xo(v)v~tdv

where I'; (orl2) is a contour in the common region of
convergence of Xi(v) and Xa(z/v) (or Xi(z/v) and Xa(v)).



Theorem 3.10 Complex Convolution Cont'd

e The complex convolution theorem can be used to obtain the z
transform of a product of discrete-time signals whose z
transforms are available.
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Theorem 3.10 Complex Convolution cCont'd

e The complex convolution theorem can be used to obtain the z
transform of a product of discrete-time signals whose z
transforms are available.

e It is also the basis of the window method for the design of
nonrecursive digital filters (see Chap. 9).
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Theorem 3.11 Parseval’'s Discrete-Time Formula

e If X(z) is the z transform of a discrete-time signal x(nT),
then

[e.9]

> (T = - [T xR d

n—=—oo s

where ws =27/ T.

Frame # 38 Slide # 50 A. Antoniou Digital Signal Processing — Secs. 3.1-3.7



Theorem 3.11 Parseval's Discrete-Time Formula

e If X(z) is the z transform of a discrete-time signal x(nT),
then

[e.9]

1 [“ :
> X = - [ IX(E TP d

where ws =27/ T.

e Parseval's formula is often used to solve a problem known as
scaling which is associated with the design of recursive digital
filters in hardware form (see Chap. 14).
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Theorem 3.11 Parseval's Discrete-Time Formula cont'd

e If T is normalized to 1 s, Parseval's formula simplifies to:

o0

2w
> TP = 5 [ x(E TP a

n=—oo
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Function

Definition

Unit impulse

Unit step

Unit ramp

Exponential
Exponential

Sinusoid

o(nT) = {;
u(nT) = {(1)
r(nT) = {gT

forn=20
forn#0
forn>0
forn<0
forn>0
forn<0

u(nT)e® T, (a > 0)

u(nT)e* T, (a <0)

u(nT)sinwnT




Elementary Discrete-Time Signals Cont'd

| I‘OJ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 T 0 nr
(a) (b)
87—
i ‘ ‘ ‘ ‘ ‘ ‘ ‘
1 L0
|||| 1I||||,,,
I 0 T
(© ()
104
‘ ‘ 104 ‘
0o nT 0 ) | ‘ | nT
(e) )

(a) Unit impulse, (b) unit step, (c) unit ramp, (d) increasing
exponential (e) decreasing exponential, (c) sinusoid.
Frame # 41 Slide # 54 A. Antoniou Digital Signal Processing — Secs. 3.1-3.7



Examples

Find the z transforms of the following signals:
(a) unit-impulse §(nT)

(b) unit-step u(nT)

(c) delayed unit-step u(nT — kT)K
(d) signal u(nT)Kw"
(e) exponential signal u(nT)e
(f)
(g)

—anT

f
g

unit-ramp r(nT)
sinusoidal signal u(nT)sinwnT
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Examples cont'd

Solutions

(a) From the definitions of the z transform and 6(nT), we have

Z6(nT) = 8(0) +8(T)z L +6(2T)z 2 +---=1 =
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Examples cont'd

Solutions

(a) From the definitions of the z transform and 6(nT), we have

Z6(nT) = 8(0) +8(T)z L +6(2T)z 2 +---=1 =
(b) As in part (a)

Zu(nT) = u(0) + u( T)z_1 + u(2 T)z_2 + ...

=14z 4z724...=(1-2z1H1
z
= [
z—1
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Examples cont'd

Solutions

(a) From the definitions of the z transform and 6(nT), we have
Z8(nT) =06(0)+6(T)z ' +0(2T)z %+ =1 m
(b) As in part (a)

Zu(nT) = u(0) + u( T)z_1 + u(2 T)z_2 + .-

=14z 4z724...=(1-2z1H1
Cz—1
(c) From the time-shifting theorem (Theorem 3.4) and part (b),
we have
) KZ—(k—l)
Zlu(nT — kT)K] = Kz "Zu(nT) = —-71 "
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Examples cont'd

(d) From the complex-scale-change theorem (Theorem 3.5) and

part (b), we get
(Vlv) B u(nT)]

= KZu(nT)|

Zlu(nT)Kw"] = KZ

Kz

z—z/w 7 —w
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Examples cont'd

(d) From the complex-scale-change theorem (Theorem 3.5) and

part (b), we get
(Vlv) - u(nT)]

Kz

zZ—Ww

Zlu(nT)Kw"] = KZ

= KZu(nT)| ]

z—z/w T

(e) By letting K =1 and w = e=*T in part (d), we obtain

Zlu(nT)e = —>— =
zZ— €
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Examples cont'd

(f) From the complex-differentiation theorem (Theorem 3.6) and
part (b), we have

Zr(nT) = Z[nTu(nT)] = —Tz%[Zu(nT)]

=Ty, [(zfl)] 1
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Examples cont'd

(g) From part (e), we deduce

Zlu(nT)sinwnT] = Z [”(;_T)(ejwnr B e—jwnT)]

1 iwon 1 —jwn
= 5 Zlu(nT)eT] = 22 u(nT)e 0T

_ 1 v4 z
S 2j \z—eT  z— e T

zsinwT
z2 —2zcoswT +1
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x(nT) X(z)
d(nT) 1
z
u(nT) P
Kzf(kfl)
u(nT)Kw" Kz
z—w
—(k-1)
u(nT — kT)Kw"! K(z/w)
z—w
—an z
u(nT)e—onT Pa—
Tz




x(nT) X(z)
Te Tz
—anT
r(nT)e m
zsinwT

u(nT)sinwnT
u(nT)coswnT
u(nT)e T sinwnT

u(nT)e ®"T coswnT

z2 —2zcoswT +1
z(z —coswT)

72 —2zcoswT +1
efaT

z sinwT

72 —2ze=aT cosw T + e2aT

aT

z(z—e " coswT)

72 —2ze= T cosw T + e—2aT




This slide concludes the presentation.
Thank you for your attention.
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