Chapter 3 THE Z TRANSFORM 3.8 Z-Transform Inversion Techniques

Copyright (C) 2005 Andreas Antoniou
Victoria, BC, Canada
Email: aantoniou@ieee.org

July 14, 2018

Z-Transform Inversion Techniques

- The most fundamental method for the inversion of a z transform is the general inversion method which is based on the Laurent theorem.

Z-Transform Inversion Techniques

- The most fundamental method for the inversion of a z transform is the general inversion method which is based on the Laurent theorem.
- In this method, the inverse of a z transform $X(z)$ is given by

$$
x(n T)=\frac{1}{2 \pi j} \oint_{\Gamma} X(z) z^{n-1} d z
$$

where Γ is a closed contour in the counterclockwise sense enclosing all the singularities of function $X(z) z^{n-1}$.

Z-Transform Inversion Techniques Cont'd

$$
x(n T)=\frac{1}{2 \pi j} \oint_{\Gamma} X(z) z^{n-1} d z
$$

- At first sight, the above contour integration may appear to be a formidable task.

Z-Transform Inversion Techniques Cont'd

$$
x(n T)=\frac{1}{2 \pi j} \oint_{\Gamma} X(z) z^{n-1} d z
$$

- At first sight, the above contour integration may appear to be a formidable task.

■ However, for most DSP applications, the z transform turns out to be a rational function and for such functions the contour integral can be easily evaluated by using the residue theorem.

Z-Transform Inversion Techniques Cont'd

- According to the residue theorem,

$$
x(n T)=\frac{1}{2 \pi j} \oint_{\Gamma} X(z) z^{n-1} d z=\sum_{i=1}^{P} \operatorname{res}_{z \rightarrow p_{i}}\left[X(z) z^{n-1}\right]
$$

where res $z_{z \rightarrow p_{i}}\left[X(z) z^{n-1}\right]$ and P are the residue of pole p_{i} and the number of poles of $X(z) z^{n-1}$, respectively.

Z-Transform Inversion Techniques Cont'd

- According to the residue theorem,

$$
x(n T)=\frac{1}{2 \pi j} \oint_{\Gamma} X(z) z^{n-1} d z=\sum_{i=1}^{P} \operatorname{res}_{z \rightarrow p_{i}}\left[X(z) z^{n-1}\right]
$$

where res $z_{\rightarrow \rightarrow p_{i}}\left[X(z) z^{n-1}\right]$ and P are the residue of pole p_{i} and the number of poles of $X(z) z^{n-1}$, respectively.

- For a pole of order m_{i},

$$
\operatorname{res}_{z=p_{i}}\left[X(z) z^{n-1}\right]=\frac{1}{\left(m_{i}-1\right)!} \lim _{z \rightarrow p_{i}} \frac{d^{m_{i}-1}}{d z^{m_{i}-1}}\left[\left(z-p_{i}\right)^{m_{i}} X(z) z^{n-1}\right]
$$

Z-Transform Inversion Techniques Cont'd

- According to the residue theorem,

$$
x(n T)=\frac{1}{2 \pi j} \oint_{\Gamma} X(z) z^{n-1} d z=\sum_{i=1}^{P} \operatorname{res}_{z \rightarrow p_{i}}\left[X(z) z^{n-1}\right]
$$

where res $z_{z \rightarrow p_{i}}\left[X(z) z^{n-1}\right]$ and P are the residue of pole p_{i} and the number of poles of $X(z) z^{n-1}$, respectively.

- For a pole of order m_{i},

$$
\operatorname{res}_{z=p_{i}}\left[X(z) z^{n-1}\right]=\frac{1}{\left(m_{i}-1\right)!} \lim _{z \rightarrow p_{i}} \frac{d^{m_{i}-1}}{d z^{m_{i}-1}}\left[\left(z-p_{i}\right)^{m_{i}} X(z) z^{n-1}\right]
$$

- For a simple pole,

$$
\operatorname{res}_{z=p_{i}}\left[X(z) z^{n-1}\right]=\lim _{z \rightarrow p_{i}}\left[\left(z-p_{i}\right) X(z) z^{n-1}\right]
$$

Example - General Inversion Method

Using the general inversion method, find the inverse z transform of

$$
X(z)=\frac{1}{2(z-1)\left(z+\frac{1}{2}\right)}
$$

Solution We note that the factor z^{n-1} introduces a pole in $X(z) z^{n-1}$ at the origin for the case $n=0$, which must be taken into account in the evaluation of $x(0)$.

Note: For $n>0$, the pole at the origin disappears.

Example Cont'd

Thus for $n=0$, we have

$$
\left.X(z) z^{n-1}\right|_{n=0}=\left.\frac{z^{n-1}}{2(z-1)\left(z+\frac{1}{2}\right)}\right|_{n=0}=\frac{1}{2 z(z-1)\left(z+\frac{1}{2}\right)}
$$

Hence

$$
\begin{aligned}
x(0)= & \left.\frac{1}{2(z-1)\left(z+\frac{1}{2}\right)}\right|_{z=0}+\left.\frac{1}{2 z\left(z+\frac{1}{2}\right)}\right|_{z=1} \\
& +\left.\frac{1}{2 z(z-1)}\right|_{z=-\frac{1}{2}}=-1+\frac{1}{3}+\frac{2}{3}=0
\end{aligned}
$$

Actually, this follows from the initial-value theorem (Theorem 3.8) without any calculations.

Example Cont'd

For $n>0$

$$
\begin{aligned}
x(n T) & =\left.\frac{z^{n-1}}{2\left(z+\frac{1}{2}\right)}\right|_{z=1}+\left.\frac{z^{n-1}}{2(z-1)}\right|_{z=-\frac{1}{2}} \\
& =\frac{1}{3}-\frac{1}{3}\left(-\frac{1}{2}\right)^{n-1}
\end{aligned}
$$

and from the initial-value theorem, $x(n T)=0$ for $n<0$.
Therefore, for any value of n, we have

$$
x(n T)=u(n T-T)\left[\frac{1}{3}-\frac{1}{3}\left(-\frac{1}{2}\right)^{n-1}\right]
$$

Example - General Inversion Method

Using the general inversion method, find the inverse z transform of

$$
X(z)=\frac{(2 z-1) z}{2(z-1)\left(z+\frac{1}{2}\right)}
$$

Solution We can write

$$
X(z) z^{n-1}=\frac{(2 z-1) z \cdot z^{n-1}}{2(z-1)\left(z+\frac{1}{2}\right)}=\frac{(2 z-1) z^{n}}{2(z-1)\left(z+\frac{1}{2}\right)}
$$

We note that $X(z) z^{n-1}$ has simple poles at $z=1$ and $-\frac{1}{2}$.
Furthermore, the zero in $X(z)$ at the origin cancels the pole at the origin introduced by z^{n-1} for the case $n=0$.

Example Cont'd

$$
X(z) z^{n-1}=\frac{(2 z-1) z^{n}}{2(z-1)\left(z+\frac{1}{2}\right)}
$$

Hence for any $n \geq 0$, the general inversion formula gives

$$
\begin{aligned}
x(n T) & =\operatorname{res}_{z=1}\left[X(z) z^{n-1}\right]+\text { res }_{z=-\frac{1}{2}}\left[X(z) z^{n-1}\right] \\
& =\left.\frac{(2 z-1) z^{n}}{2\left(z+\frac{1}{2}\right)}\right|_{z=1}+\left.\frac{(2 z-1) z^{n}}{2(z-1)}\right|_{z=-\frac{1}{2}} \\
& =\frac{1}{3}+\frac{2}{3}\left(-\frac{1}{2}\right)^{n}
\end{aligned}
$$

Example Cont'd

Since the numerator degree in $X(z)$ does not exceed the denominator degree, it follows that $x(n T)$ is a right-sided signal, i.e., $x(n T)=0$ for $n<0$, according to the Corollary of Theorem 3.8.

Therefore, for any value of n, we have

$$
x(n T)=u(n T)\left[\frac{1}{3}+\frac{2}{3}\left(-\frac{1}{2}\right)^{n}\right]
$$

where $u(n T)$ is the unit-step function.

Z-Transform Inversion Techniques Cont'd

Since

- the z transform is a particular type of Laurent series, and
- the Laurent series in a given annulus of convergence is unique it follows that any technique that can be used to generate a power series for $X(z)$ that converges in the outermost annulus of convergence can be used to obtain the inverse z transform.

Z-Transform Inversion Techniques Cont'd

Consequently, several inversion techniques are available, as follows:

- using the binomial theorem,
- using the convolution theorem,
- performing long division,
- using the initial-value theorem, or
- expanding $X(z)$ into partial fractions.

Some of these techniques are illustrated by examples in the next few slides.

Example - Binomial Theorem

Using the binomial method, find the inverse z transform of

$$
X(z)=\frac{K z^{m}}{(z-w)^{k}}
$$

where m and k are integers, and K and w are constants, possibly complex.

Solution The inverse z transform can be obtained by obtaining a binomial series for $X(z)$ that converges in the outside annulus of $X(z)$.

Example Cont'd

Such a binomial series can be obtained by expressing $X(z)$ as

$$
\begin{aligned}
\qquad X(z)= & K z^{m-k}\left[1+\left(-w z^{-1}\right)\right]^{-k} \\
= & K z^{m-k}\left[\binom{-k}{0}+\binom{-k}{1}\left(-w z^{-1}\right)+\binom{-k}{2}\left(-w z^{-1}\right)^{2}\right. \\
& \left.+\cdots+\binom{-k}{n}\left(-w z^{-1}\right)^{n}+\cdots\right] \\
\text { where } \quad & \binom{-k}{n}=\frac{(-k)(-k-1) \ldots(-k-n+1)}{n!}
\end{aligned}
$$

Hence
$X(z)=\sum_{n=-\infty}^{\infty} K u(n T) \frac{(-k)(-k-1) \cdots(-k-n+1)(-w)^{n} z^{-n+m-k}}{n!}$

Example Cont'd

$$
X(z)=\sum_{n=-\infty}^{\infty} K u(n T) \frac{(-k)(-k-1) \cdots(-k-n+1)(-w)^{n} z^{-n+m-k}}{n!}
$$

Now if we let $n=n^{\prime}+m-k$ and then replace n^{\prime} by n, we have

$$
\begin{aligned}
X(z)= & \sum_{n=-\infty}^{\infty}\{K u[(n+m-k) T] \\
& \left.\times \frac{(-k)(-k-1) \cdots(-n-m+1)(-w)^{n+m-k}}{(n+m-k)!}\right\} z^{-n}
\end{aligned}
$$

Example Cont'd

$$
\begin{aligned}
X(z)= & \sum_{n=-\infty}^{\infty}\{K u[(n+m-k) T] \\
& \left.\times \frac{(-k)(-k-1) \cdots(-n-m+1)(-w)^{n+m-k}}{(n+m-k)!}\right\} z^{-n}
\end{aligned}
$$

Hence the coefficient of z^{-n} is obtained as

$$
\begin{aligned}
x(n T) & =\mathcal{Z}^{-1}\left[\frac{K z^{m}}{(z-w)^{k}}\right] \\
& =K u[(n+m-k) T] \frac{(-k)(-k-1) \cdots(-n-m+1)(-w)^{n+m-k}}{(n+m-k)!}
\end{aligned}
$$

By assigning different values to constants k, K, and m a variety of z-transform pairs can be deduced as shown in the next slide.

Example Cont'd

$\times(\mathrm{nT})$	$\mathrm{X}(\mathrm{z})$
$u(n T)$	$\frac{z}{z-1}$
$u(n T-k T) K$	$\frac{K z^{-(k-1)}}{z-1}$
$u(n T) K w^{n}$	$\frac{K z}{z-w}$
$u(n T-k T) K w^{n-1}$	$\frac{K(z / w)^{-(k-1)}}{z-w}$
$u(n T) e^{-\alpha n T}$	$\frac{z}{z-e^{-\alpha T}}$
$r(n T)$	$\frac{T z}{(z-1)^{2}}$
$r(n T) e^{-\alpha n T}$	$\frac{T e^{-\alpha T} z}{\left(z-e^{-\alpha T}\right)^{2}}$

Use of Real Convolution

- From the real-convolution theorem

$$
\mathcal{Z} \sum_{k=-\infty}^{\infty} x_{1}(k T) x_{2}(n T-k T)=X_{1}(z) X_{2}(z)
$$

Use of Real Convolution

- From the real-convolution theorem

$$
\mathcal{Z} \sum_{k=-\infty}^{\infty} x_{1}(k T) x_{2}(n T-k T)=X_{1}(z) X_{2}(z)
$$

- If we take the inverse z transform of both sides, we get

$$
\sum_{k=-\infty}^{\infty} x_{1}(k T)_{2}(n T-k T)=\mathcal{Z}^{-1}\left[X_{1}(z) X_{2}(z)\right]
$$

or

$$
\mathcal{Z}^{-1}\left[X_{1}(z) X_{2}(z)\right]=\sum_{k=-\infty}^{\infty} x_{1}(k T) x_{2}(n T-k T)
$$

Thus, if a z transform can be expressed as a product of two z transforms whose inverses are available, then performing the convolution summation will yield the desired inverse.

Example - Real Convolution

Find the inverse z transform of

$$
X_{3}(z)=\frac{z}{(z-1)^{2}}
$$

Solution We note that

$$
X_{3}(z)=X_{1}(z) X_{2}(z)
$$

where

$$
X_{1}(z)=\frac{z}{z-1} \quad \text { and } \quad X_{2}(z)=\frac{1}{z-1}
$$

Example Cont'd

$$
X_{1}(z)=\frac{z}{z-1} \quad \text { and } \quad X_{2}(z)=\frac{1}{z-1}
$$

From the table of standard z transforms, we can write

$$
x_{1}(n T)=u(n T) \quad \text { and } \quad x_{2}(n T)=u(n T-T)
$$

Hence for $n \geq 0$, the real convolution yields

$$
\begin{aligned}
x_{3}(n T)= & \sum_{k=-\infty}^{\infty} x_{1}(k T) x_{2}(n T-k T)=\sum_{k=-\infty}^{\infty} u(k T) u(n T-T-k T) \\
= & \cdots+\overbrace{u(-T) u(n T)}^{k=-1}+\overbrace{u(0) u(n T-T)}^{k=0}+\overbrace{u(T) u(n T-2 T)}^{k=1}+\cdots \\
& +\overbrace{u(n T-T) u(0)}^{k=n-1}+\overbrace{u(n T) u(-T)}^{k=n}+\cdots \\
= & 0+1+1+\cdots+1+0=n
\end{aligned}
$$

Example Cont'd

For $n<0$, we have

$$
\begin{aligned}
x_{3}(n T)= & \sum_{k=-\infty}^{\infty} u(k T) u(n T-T-k T) \\
= & \cdots+\overbrace{u(-T) u(n T)}^{k=-1}+\overbrace{\substack{u(0) u(n T-T) \\
k=n}}^{k=0}+\overbrace{u(T) u(n T-2 T)}^{k=n-1}+\cdots \\
& +\overbrace{u(n T-T) u(0)}^{k=1}+\overbrace{u(n T) u(-T)}^{k=n}+\cdots
\end{aligned}
$$

and since all the terms are zero, we get

$$
x_{3}(n T)=0
$$

(This result also follows from the initial value theorem.)

Example Cont'd

Summarizing, for $n \geq 0$,

$$
x_{3}(n T)=n
$$

and for $n<0$,

$$
x_{3}(n T)=0
$$

Therefore, for any value of n, we have

$$
x_{3}(n T)=u(n T) n
$$

Example - Real Convolution

Using the real-convolution theorem, find the inverse z transforms of

$$
X_{3}(z)=\frac{z}{(z-1)^{3}}
$$

Solution For this example, we can write

$$
X_{1}(z)=\frac{z}{(z-1)^{2}} \quad \text { and } \quad X_{2}(z)=\frac{1}{z-1}
$$

and from the previous example, we have

$$
x_{1}(n T)=u(n T) n \quad \text { and } \quad x_{2}(n T)=u(n T-T)
$$

Example Cont'd

From the initial value theorem, for $n<0$, we have

$$
x_{3}(n)=0
$$

For $n \geq 0$, the convolution summation gives

$$
\begin{aligned}
x_{3}(n T)= & \sum_{k=-\infty}^{\infty} k u(k T) u(n T-T-k T) \\
= & +\overbrace{0 \cdot[u(n T-T)]}^{k=0}+\overbrace{1 \cdot[u(n T-2 T)]}^{k=1}+\cdots \\
& +\overbrace{(n-1) u(0)}^{k=n-1}+\overbrace{n u(-T)}^{k=n} \\
= & +0+1+2+\cdots+n-1+0 \\
= & \sum_{k=1}^{n-1} k
\end{aligned}
$$

Example Cont'd

■ A closed-form solution can be obtained by using an old trick of algebra.

Example Cont'd

■ A closed-form solution can be obtained by using an old trick of algebra.

- The story goes that Gauss' mathematics teacher had something to attend to and wanted to keep his class busy. So he asked the class to find the sum:

$$
1+2+3+\cdots 99
$$

Example Cont'd

■ A closed-form solution can be obtained by using an old trick of algebra.

- The story goes that Gauss' mathematics teacher had something to attend to and wanted to keep his class busy. So he asked the class to find the sum:

$$
1+2+3+\cdots 99
$$

- As the teacher was getting ready to leave, Gauss shouted out "Sir, the answer is 4950!"

Example Cont'd

■ A closed-form solution can be obtained by using an old trick of algebra.

- The story goes that Gauss' mathematics teacher had something to attend to and wanted to keep his class busy. So he asked the class to find the sum:

$$
1+2+3+\cdots 99
$$

- As the teacher was getting ready to leave, Gauss shouted out "Sir, the answer is 4950!"

■ "It's very simple, Sir, twice the sum is 100×99 ".

Example Cont'd

Gauss' reasoning was as follows:

1	2	3	\cdots	$n-1$
$n-1$	$n-2$	$n-3$	\cdots	1
---	---	---		---
n	n	n	\cdots	n

That is,

$$
\sum_{k=1}^{n-1} k=\frac{1}{2} n(n-1)
$$

Using this result, $x_{3}(n T)$ can be obtained as

$$
x_{3}(n T)=\sum_{k=1}^{n-1} k=\frac{1}{2} u(n T) n(n-1)
$$

Use of Long Division

- Given a z transform $X(z)=N(z) / D(z)$, a series that converges in the outermost annulus of $X(z)$ can be readily obtained by arranging the numerator and denominator polynomials in descending powers of z and then performing polynomial division also known as long division.

Example - Long Division

Using long division, find the inverse z transform of

$$
X(z)=\frac{-\frac{1}{4}+\frac{1}{2} z-\frac{1}{2} z^{2}-\frac{7}{4} z^{3}+2 z^{4}+z^{5}}{-\frac{1}{4}+\frac{1}{4} z-z^{2}+z^{3}}
$$

Solution The numerator and denominator polynomials can be arranged in descending powers of z as

$$
X(z)=\frac{z^{5}+2 z^{4}-\frac{7}{4} z^{3}-\frac{1}{2} z^{2}+\frac{1}{2} z-\frac{1}{4}}{z^{3}-z^{2}+\frac{1}{4} z-\frac{1}{4}}
$$

Example Cont'd

$$
\begin{aligned}
& z^{2}+3 z+1+z^{-2}+z^{-3}+\frac{3}{4} z^{-4}+\cdots \\
& z^{3}-z^{2}+\frac{1}{4} z-\frac{1}{4} \\
& z^{5}+2 z^{4}-\frac{7}{4} z^{3}-\frac{1}{2} z^{2}+\frac{1}{2} z-\frac{1}{4} \\
& \frac{\mp z^{5} \pm z^{4} \mp \frac{1}{4} z^{3} \pm \frac{1}{4} z^{2}}{3 z^{4}-\frac{8}{4} z^{3}-\frac{1}{4} z^{2}+\frac{1}{2} z-\frac{1}{4}} \\
& \mp 3 z^{4} \pm 3 z^{3} \mp \frac{3}{4} z^{2} \pm \frac{3}{4} z \\
& z^{3}-z^{2}+\frac{5}{4} z-\frac{1}{4} \\
& \mp z^{3} \pm z^{2} \mp \frac{1}{4} z \pm \frac{4}{4} \\
& \mp \quad z \pm 1 \mp \frac{1}{4} z^{-1} \pm \frac{1}{4} z^{-2} \\
& 1-\frac{1}{4} z^{-1}+\frac{1}{4} z^{-2} \\
& \mp 1 \pm z^{-1} \mp \frac{1}{4} z^{-2} \pm \frac{1}{4} z^{-3} \\
& \frac{3}{4} z^{-1}+\frac{1}{4} z^{-3}
\end{aligned}
$$

Example Cont'd

Therefore,

$$
X(z)=z^{2}+3 z+1+z^{-2}+z^{-3}+\frac{3}{4} z^{-4}+\cdots
$$

i.e.,

$$
\begin{gathered}
x(-2 T)=1, \quad x(-T)=3, \quad x(0)=1, \quad x(T)=0 \\
x(2 T)=1, \quad x(3 T)=1, \quad x(4 T)=\frac{3}{4}, \ldots
\end{gathered}
$$

Use of Long Division Cont'd

- As illustrated by the previous example, the long-division approach readily yields any nonzero values of the signal for $n \leq 0$ but does not yield a closed-form solution.

Use of Long Division Cont'd

- As illustrated by the previous example, the long-division approach readily yields any nonzero values of the signal for $n \leq 0$ but does not yield a closed-form solution.
- On the other hand, the general-inversion method yields a closed-form solution but presents certain difficulties in z transforms of two-sided signals because such z transforms have a higher-order pole at the origin whose residue is difficult to obtain.

Use of Long Division Cont'd

- As illustrated by the previous example, the long-division approach readily yields any nonzero values of the signal for $n \leq 0$ but does not yield a closed-form solution.
- On the other hand, the general-inversion method yields a closed-form solution but presents certain difficulties in z transforms of two-sided signals because such z transforms have a higher-order pole at the origin whose residue is difficult to obtain.
- The inverses of such z transforms can be easily obtained in closed form by finding the values of the signal for $n \leq 0$ using long division and then applying the general inversion method to the remainder of the long division.

Use of Long Division Cont'd

- Consider a z transform whose numerator degree exceeds the denominator degree of the form

$$
X(z)=\frac{N(z)}{D(z)}=\frac{\sum_{i=0}^{M} a_{i} z^{M-i}}{\sum_{i=0}^{N} b_{i} z^{N-i}}
$$

Use of Long Division Cont'd

- Consider a z transform whose numerator degree exceeds the denominator degree of the form

$$
X(z)=\frac{N(z)}{D(z)}=\frac{\sum_{i=0}^{M} a_{i} z^{M-i}}{\sum_{i=0}^{N} b_{i} z^{N-i}}
$$

- The first nonzero value of $x(n T)$ occurs at $n=(N-M) T$ according to the initial value theorem.

Use of Long Division Cont'd

- Performing long division until the signal values $x[(N-M) T]$, $x[(N-M+1) T], \ldots, x(0)$ are obtained, $X(z)$ can be expressed as

$$
X(z)=\frac{N(z)}{D(z)}=Q(z)+R(z)
$$

where

$$
Q(z)=x[(N-M) T] z^{(M-N)}+x[(N-M+1) T] z^{(M-N-1)}+\cdots+x(0)
$$

is the quotient polynomial and

$$
R(z)=\frac{N^{\prime}(z)}{D(z)}
$$

is the remainder whose numerator degree is less than the denominator degree.

Use of Long Division Cont'd

$$
X(z)=\frac{N(z)}{D(z)}=Q(z)+R(z) \quad \text { where } R(z)=\frac{N^{\prime}(z)}{D(z)}
$$

- Hence

$$
\begin{aligned}
x(n T)= & \mathcal{Z}^{-1} Q(z)+\mathcal{Z}^{-1} \frac{N^{\prime}(z)}{D(z)} \\
= & x[(N-M) T] z^{(M-N)}+x[(N-M+1) T] z^{(M-N-1)}+\cdots \\
& +x(0)+\mathcal{Z}^{-1} \frac{N^{\prime}(z)}{D(z)}
\end{aligned}
$$

Since $\mathcal{Z}^{-1} \frac{N^{\prime}(z)}{D(z)}$ represents a right-sided signal, it can be easily evaluated in closed-form by using the general inversion method.

Example - Long Division with General Inversion Method

Using long division along with the general inversion method, obtain a closed-form solution for the inverse z transform of

$$
X(z)=\frac{-\frac{1}{4}+\frac{1}{2} z-\frac{1}{2} z^{2}-\frac{7}{4} z^{3}+2 z^{4}+z^{5}}{-\frac{1}{4}+\frac{1}{4} z-z^{2}+z^{3}}
$$

Example Cont'd

Solution

$$
z^{3}-z^{2}+\frac{1}{4} z-\frac{1}{4} \begin{aligned}
& z^{2}+3 z+1 \\
& \begin{array}{l}
z^{5}+2 z^{4}-\frac{7}{4} z^{3}-\frac{1}{2} z^{2}+\frac{1}{2} z-\frac{1}{4} \\
\mp z^{5} \pm z^{4} \mp \frac{1}{4} z^{3} \pm \frac{1}{4} z^{2}
\end{array} \\
& \begin{array}{l}
\text { 3z } z^{4}-\frac{8}{4} z^{3}-\frac{1}{4} z^{2}+\frac{1}{2} z-\frac{1}{4} \\
\mp 3 z^{4} \pm 3 z^{3} \mp \frac{3}{4} z^{2} \pm \frac{3}{4} z
\end{array} \\
& z^{3}-z^{2}+\frac{5}{4} z-\frac{1}{4} \\
& \mp z^{3} \pm z^{2} \mp \frac{1}{4} z \pm \frac{1}{4}
\end{aligned}
$$

Hence

$$
X(z)=Q(z)+R(z)=z^{2}+3 z+1+\frac{z}{z^{3}-z^{2}+\frac{1}{4} z-\frac{1}{4}}
$$

Example Cont'd

Applying the inverse z transform, we have

$$
\begin{aligned}
x(n T) & =\mathcal{Z}^{-1}\left(z^{2}+3 z+1+\frac{z}{z^{3}-z^{2}+\frac{1}{4} z-\frac{1}{4}}\right) \\
& =x(-2 T) z^{2}+x(-T) z+x(0)+\mathcal{Z}^{-1} R(z)
\end{aligned}
$$

where $x(-2 T)=1, x(-T)=3, x(0)=1$, and

$$
R(z)=\frac{z}{z^{3}-z^{2}+\frac{1}{4} z-\frac{1}{4}}=\frac{z}{(z-1)\left(z+j \frac{1}{2}\right)\left(z-j \frac{1}{2}\right)}
$$

The inverse z transform of $R(z)$ can now be obtained by using the general inversion method.

Example Cont'd

$$
R(z)=\frac{z}{z^{3}-z^{2}+\frac{1}{4} z-\frac{1}{4}}=\frac{z}{(z-1)\left(z+j \frac{1}{2}\right)\left(z-j \frac{1}{2}\right)}
$$

Since $-j \frac{1}{2}=\frac{1}{2} e^{-j \pi / 2}$, the residues of $R(z) z^{n-1}$ can be obtained as

$$
\begin{aligned}
R_{1} & =\lim _{z \rightarrow 1} \frac{z^{n}}{\left(z^{2}+\frac{1}{4}\right)}=\frac{1}{1+\frac{1}{4}}=\frac{4}{5} \\
R_{2} & =\lim _{z \rightarrow-j \frac{1}{2}} \frac{z^{n}}{(z-1)\left(z-j \frac{1}{2}\right)}=\frac{\left(\frac{1}{2}\right)^{n} e^{-j n \pi / 2}}{\left(-\frac{1}{2}+j\right)} \\
& =\frac{2}{\sqrt{5}} \frac{\left(\frac{1}{2}\right)^{n} e^{-j n \pi / 2}}{e^{j\left(\pi-\tan ^{-1} 2\right)}}=\frac{2}{\sqrt{5}}\left(\frac{1}{2}\right)^{n} e^{-j\left(n \pi / 2+\pi-\tan ^{-1} 2\right)} \\
R_{3} & =R_{2}^{*}=\frac{2}{\sqrt{5}}\left(\frac{1}{2}\right)^{n} e^{j\left(n \pi / 2+\pi-\tan ^{-1} 2\right)}
\end{aligned}
$$

Example Cont'd

Thus for $n \geq 1$, we have

$$
\begin{aligned}
R(z) & =R_{1}+R_{2}+R_{3} \\
= & \frac{4}{5}+\frac{4}{\sqrt{5}}\left(\frac{1}{2}\right)^{n} \frac{1}{2}\left[e^{j\left(n \pi / 2+\pi-\tan ^{-1} 2\right)}+e^{-j\left(n \pi / 2+\pi-\tan ^{-1} 2\right)}\right]
\end{aligned}
$$

Hence

$$
r(n T)=\frac{4}{5} u(n T)+\frac{4}{\sqrt{5}}\left(\frac{1}{2}\right)^{n} \cos \left(n \pi / 2+\pi-\tan ^{-1} 2\right)
$$

Since $x(-2 T)=1, x(-T)=3$, and $x(0)=1$, the value of $x(n T)$ for any value of n is given by

$$
\begin{aligned}
x(n T)= & \delta(n T+2 T)+3 \delta(n T+T)+\delta(n T) \\
& +u(n T-T)\left[\frac{4}{5}+\frac{4}{\sqrt{5}}\left(\frac{1}{2}\right)^{n} \cos \left(n \pi / 2+\pi-\tan ^{-1} 2\right)\right]
\end{aligned}
$$

Use of Partial Fractions

- If the degree of the numerator polynomial in $X(z)$ is equal to or less than the degree of the denominator polynomial and the poles are simple, the inverse of $X(z)$ can very quickly be obtained through the use of partial fractions.

Use of Partial Fractions

- If the degree of the numerator polynomial in $X(z)$ is equal to or less than the degree of the denominator polynomial and the poles are simple, the inverse of $X(z)$ can very quickly be obtained through the use of partial fractions.
- Two techniques are available, as detailed next.

Use of Partial Fractions, Technique I

- The function $X(z) / z$ can be expanded into partial fractions as

$$
\frac{X(z)}{z}=\frac{R_{0}}{z}+\sum_{i=1}^{P} \frac{R_{i}}{z-p_{i}}
$$

where P is the number of poles in $X(z)$ and

$$
R_{0}=\lim _{z \rightarrow 0} X(z) \quad R_{i}=\operatorname{res}_{z=p_{i}}\left[\frac{X(z)}{z}\right]
$$

Use of Partial Fractions, Technique I

- The function $X(z) / z$ can be expanded into partial fractions as

$$
\frac{X(z)}{z}=\frac{R_{0}}{z}+\sum_{i=1}^{P} \frac{R_{i}}{z-p_{i}}
$$

where P is the number of poles in $X(z)$ and

$$
R_{0}=\lim _{z \rightarrow 0} X(z) \quad R_{i}=\operatorname{res}_{z=p_{i}}\left[\frac{X(z)}{z}\right]
$$

■ Hence

$$
X(z)=R_{0}+\sum_{i=1}^{P} \frac{R_{i} z}{z-p_{i}}
$$

Use of Partial Fractions, Technique I Cont'd

$$
X(z)=R_{0}+\sum_{i=1}^{P} \frac{R_{i} z}{z-p_{i}}
$$

■ Therefore,

$$
x(n T)=\mathcal{Z}^{-1}\left(R_{0}+\sum_{i=1}^{P} \frac{R_{i} z}{z-p_{i}}\right)=\mathcal{Z}^{-1} R_{0}+\sum_{i=1}^{P} \mathcal{Z}^{-1} \frac{R_{i} z}{z-p_{i}}
$$

and from the table of standard z transforms, we get

$$
x(n T)=R_{0} \delta(n T)+\sum_{i=1}^{P} u(n T) R_{i} p_{i}^{n}
$$

Example - Partial Fractions Method

Using Technique I, find the inverse z transform of

$$
X(z)=\frac{z}{z^{2}+z+\frac{1}{2}}
$$

Solution On expanding $X(z) / z$ into partial fractions, we get
where

$$
\begin{gathered}
\frac{X(z)}{z}=\frac{1}{z^{2}+z+\frac{1}{2}}=\frac{1}{\left(z-p_{1}\right)\left(z-p_{2}\right)}=\frac{R_{1}}{z-p_{1}}+\frac{R_{2}}{z-p_{2}} \\
p_{1}=\frac{e^{j 3 \pi / 4}}{\sqrt{2}} \text { and } p_{2}=\frac{e^{-j 3 \pi / 4}}{\sqrt{2}}
\end{gathered}
$$

Thus we obtain

$$
R_{1}=\operatorname{res}_{z=p_{1}}\left[\frac{X(z)}{z}\right]=-j \quad \text { and } \quad R_{2}=\operatorname{res}_{z=p_{2}}\left[\frac{X(z)}{z}\right]=j
$$

Note: Complex conjugate poles give complex conjugate residues.

Example Cont'd

From the table of z transforms, we can now obtain

$$
\begin{aligned}
x(n T) & =u(n T)\left(-j p_{1}^{n}+j p_{2}^{n}\right) \\
& =\left(\frac{1}{2}\right)^{n / 2} u(n T) \frac{1}{j}\left(e^{j 3 \pi n / 4}-e^{-j 3 \pi n / 4}\right) \\
& =2\left(\frac{1}{2}\right)^{n / 2} u(n T) \sin \frac{3 \pi n}{4}
\end{aligned}
$$

Use of Partial Fractions, Technique II

- An alternative approach is to expand ${ }_{P} X(z)$ into partial fractions
as

$$
X(z)=R_{0}+\sum_{i=1}^{P} \frac{R_{i}}{z-p_{i}}
$$

where

$$
R_{0}=\lim _{z \rightarrow \infty} X(z) \quad R_{i}=\operatorname{res}_{z=p_{i}} X(z)
$$

and P is the number of poles in $X(z)$.

Use of Partial Fractions, Technique II

- An alternative approach is to expand ${ }_{P} X(z)$ into partial fractions as

$$
X(z)=R_{0}+\sum_{i=1} \frac{R_{i}}{z-p_{i}}
$$

where

$$
R_{0}=\lim _{z \rightarrow \infty} X(z) \quad R_{i}=\operatorname{res}_{z=p_{i}} X(z)
$$

and P is the number of poles in $X(z)$.
■ Thus

$$
\begin{aligned}
x(n T) & =\mathcal{Z}^{-1}\left[R_{0}+\sum_{i=1}^{P} \frac{R_{i}}{z-p_{i}}\right] \\
& =\mathcal{Z}^{-1} R_{0}+\sum_{i=1}^{P} \mathcal{Z}^{-1} \frac{R_{i}}{z-p_{i}}
\end{aligned}
$$

Use of Partial Fractions, Technique II Cont'd

$$
x(n T)=\mathcal{Z}^{-1} R_{0}+\sum_{i=1}^{P} \mathcal{Z}^{-1} \frac{R_{i}}{z-p_{i}}
$$

- Therefore, from Table 3.2, we obtain

$$
X(n T)=R_{0} \delta(n T)+\sum_{i=1}^{P} u(n T-T) R_{i} p_{i}^{n-1}
$$

Example - Partial Fractions Method

Using Technique II, find the inverse z transform of

$$
X(z)=\frac{z}{\left(z-\frac{1}{2}\right)\left(z-\frac{1}{4}\right)}
$$

Solution $X(z)$ can be expressed as

$$
X(z)=\frac{z}{\left(z-\frac{1}{2}\right)\left(z-\frac{1}{4}\right)}=R_{0}+\frac{R_{1}}{z-\frac{1}{2}}+\frac{R_{2}}{z-\frac{1}{4}}
$$

where

$$
\begin{aligned}
& R_{0}=\lim _{z \rightarrow \infty} X(z)=\lim _{z \rightarrow \infty} \frac{z}{\left(z-\frac{1}{2}\right)\left(z-\frac{1}{4}\right)}=\lim _{z \rightarrow \infty} \frac{1}{z}=0 \\
& R_{1}=\text { res }_{z=\frac{1}{2}} X(z)=\left.\frac{z}{\left(z-\frac{1}{4}\right)}\right|_{z=\frac{1}{2}}=2
\end{aligned}
$$

Example Cont'd

$$
\begin{aligned}
& R_{0}=\lim _{z \rightarrow \infty} X(z)=\lim _{z \rightarrow \infty} \frac{z}{\left(z-\frac{1}{2}\right)\left(z-\frac{1}{4}\right)}=\lim _{z \rightarrow \infty} \frac{1}{z}=0 \\
& R_{1}=\operatorname{res}_{z=\frac{1}{2}} X(z)=\left.\frac{z}{\left(z-\frac{1}{4}\right)}\right|_{z=\frac{1}{2}}=2
\end{aligned}
$$

and

Hence

$$
\begin{gathered}
R_{2}=\text { res }{ }_{z=\frac{1}{4}} X(z)=\left.\frac{z}{\left(z-\frac{1}{2}\right)}\right|_{z=\frac{1}{4}}=-1 \\
X(z)=\frac{2}{z-\frac{1}{2}}+\frac{-1}{z-\frac{1}{4}}
\end{gathered}
$$

and from Table 3.2

$$
x(n T)=4 u(n T-T)\left[\left(\frac{1}{2}\right)^{n}-\left(\frac{1}{4}\right)^{n}\right]
$$

Use of Partial Fractions Cont'd

- The partial fraction method is based on the assumption that the denominator degree of the z transform is equal to or greater than the numerator degree.

Use of Partial Fractions Cont'd

- The partial fraction method is based on the assumption that the denominator degree of the z transform is equal to or greater than the numerator degree.
- If this is not the case, then through long division the z transform can be expressed as

$$
X(z)=\frac{N(z)}{D(z)}=Q(z)+R(z)
$$

where
$Q(z)=x[(N-M) T] z^{(M-N)}+x[(N-M+1) T] z^{(M-N-1)}+\cdots+x(0)$
is the quotient polynomial and

$$
R(z)=\frac{N^{\prime}(z)}{D(z)}
$$

is the remainder polynomial whose denominator degree is greater than the numerator degree.

Important Notes

- Given a z transform $X(z)$, a partial fraction expansion can be obtained through the following steps:
- represent the residues by variables,
- generate a system of simultaneous equations, and then
- solve the system of equations for the residues.

Important Notes Cont'd

- For example, if

$$
\begin{equation*}
X(z)=\frac{z^{2}-2}{(z-1)(z-2)} \tag{A}
\end{equation*}
$$

we can write

$$
\begin{align*}
X(z) & =R_{0}+\frac{R_{1}}{z-1}+\frac{R_{2}}{z-2} \\
& =\frac{R_{0}(z-1)(z-2)+R_{1} z-2 R_{1}+R_{2} z-R_{2}}{(z-1)(z-2)} \\
& =\frac{R_{0}\left(z^{2}-3 z+2\right)+R_{1} z-2 R_{1}+R_{2} z-R_{2}}{(z-1)(z-2)} \\
& =\frac{R_{0} z^{2}-3 R_{0} z+2 R_{0}+R_{1} z-2 R_{1}+R_{2} z-R_{2}}{(z-1)(z-2)} \\
& =\frac{R_{0} z^{2}+\left(R_{1}+R_{2}-3 R_{0}\right) z+2 R_{0}-2 R_{1}-R_{2}}{(z-1)(z-2)} \tag{B}
\end{align*}
$$

Important Notes Cont'd

- By equating equal powers of z in Eqs. (A) and (B), we get

$$
\begin{array}{cc}
z^{2}: & R_{0}=1 \\
z^{1}: & R_{1}+R_{2}-3 R_{0}=0 \\
z^{0}: & 2 R_{0}-2 R_{1}-R_{2}=-2
\end{array}
$$

Important Notes Cont'd

■ By equating equal powers of z in Eqs. (A) and (B), we get

$$
\begin{array}{cc}
z^{2}: & R_{0}=1 \\
z^{1}: & R_{1}+R_{2}-3 R_{0}=0 \\
z^{0}: & 2 R_{0}-2 R_{1}-R_{2}=-2
\end{array}
$$

■ Solving this system of equations would give the correct solution as

$$
R_{0}=1, \quad R_{1}=1, \quad R_{2}=2
$$

Important Notes Cont'd

- For a z transform with six poles, a set of 6 simultaneous equations with 6 unknowns would need to be solved.

Important Notes Cont'd

- For a z transform with six poles, a set of 6 simultaneous equations with 6 unknowns would need to be solved.

■ Obviously, this is a very inefficient method and it should definitely be avoided.

Important Notes Cont'd

- The quick solution for this example is easily obtained by evaluating the residues individually, as follows:

$$
\begin{gathered}
R_{0}=\left.\frac{z^{2}-2}{(z-1)(z-2)}\right|_{z=\infty}=1, \quad R_{1}=\left.\frac{z^{2}-2}{(z-2)}\right|_{z=1}=1 \\
R_{2}=\left.\frac{z^{2}-2}{(z-1)}\right|_{z=2}=2
\end{gathered}
$$

Important Notes Cont'd

- The quick solution for this example is easily obtained by evaluating the residues individually, as follows:

$$
\begin{gathered}
R_{0}=\left.\frac{z^{2}-2}{(z-1)(z-2)}\right|_{z=\infty}=1, \quad R_{1}=\left.\frac{z^{2}-2}{(z-2)}\right|_{z=1}=1 \\
R_{2}=\left.\frac{z^{2}-2}{(z-1)}\right|_{z=2}=2
\end{gathered}
$$

■ Hence

$$
\begin{aligned}
X(z) & =\frac{z^{2}-2}{(z-1)(z-2)}=R_{0}+\frac{R_{1}}{z-1}+\frac{R_{2}}{z-2} \\
& =1+\frac{1}{z-1}+\frac{2}{z-2}
\end{aligned}
$$

Important Notes Cont'd

- In the partial-fraction method, constant R_{0} must always be included although it may sometimes be found to be zero.

Important Notes Cont'd

- In the partial-fraction method, constant R_{0} must always be included although it may sometimes be found to be zero.
■ For example, if R_{0} were omitted in the partial-fraction expansion

$$
X(z)=\frac{z^{2}-2}{(z-1)(z-2)}=R_{0}+\frac{R_{1}}{z-1}+\frac{R_{2}}{z-2}
$$

then the right-hand side would assume the form

$$
\frac{R_{1}}{z-1}+\frac{R_{2}}{z-2}=\frac{\left(R_{1}+R_{2}\right) z-\left(2 R_{1}+R_{2}\right)}{(z-1)(z-2)}
$$

which cannot represent the given function whatever the values of R_{1} and R_{2} !

Important Notes Cont'd

- By the way, you can always check your work by combining the partial fractions back into a function, as you can check a division by multiplying.

This slide concludes the presentation. Thank you for your attention.

