Chapter 3 THE Z TRANSFORM 3.9 Spectral Representation of Discrete-Time Signals

Copyright © 2005 Andreas Antoniou Victoria, BC, Canada
Email: aantoniou@ieee.org

July 14, 2018

Spectral Representation of Discrete-Time Signals

- The frequency spectrum of a discrete-time signal is given by

$$
\left.X(z)\right|_{z=e^{j \omega T}}=X\left(e^{j \omega T}\right)
$$

and it is a complex quantity in general.

Spectral Representation of Discrete-Time Signals

- The frequency spectrum of a discrete-time signal is given by

$$
\left.X(z)\right|_{z=e^{j \omega T}}=X\left(e^{j \omega T}\right)
$$

and it is a complex quantity in general.

- The magnitude and angle of $X\left(e^{j \omega T}\right)$, i.e.,

$$
A(\omega)=\left|X\left(e^{j \omega T}\right)\right| \quad \text { and } \quad \phi(\omega)=\arg X\left(e^{j \omega T}\right)
$$

define the amplitude spectrum and phase spectrum of the discrete-time signal $x(n T)$, respectively.

Spectral Representation Cont'd

- The exponential function $e^{j \omega T}$ is a complex number of magnitude 1 and angle ωT and as ω is increased from zero to $2 \pi / T$, $e^{j \omega T}$ will trace a circle of radius 1 in the z plane, which is referred to as the unit circle.

Spectral Representation Cont'd

- The exponential function $e^{j \omega T}$ is a complex number of magnitude 1 and angle ωT and as ω is increased from zero to $2 \pi / T$, $e^{j \omega T}$ will trace a circle of radius 1 in the z plane, which is referred to as the unit circle.
- In effect, the frequency spectrum of a discrete-time signal, $x(n T)$, can be deduced by evaluating its z transform, $X(z)$, on the unit circle.

Geometrical Features of Z Plane

- If $\omega=0$, then $e^{j \omega T}=e^{0}=1$, i.e., point A corresponds to zero frequency.

Geometrical Features of Z Plane Cont'd

- At half the sampling frequency, $\omega=\omega_{s} / 2=\pi / T$ and hence $e^{j \omega T}=e^{j \pi}=-1$, i.e., point C corresponds to the Nyquist frequency.

Geometrical Features of Z Plane Cont'd

- At the sampling frequency, $\omega=\omega_{s}=2 \pi / T$ and hence $e^{j \omega T}=e^{j 2 \pi}=1$, i.e., point A also corresponds to the sampling frequency.

Geometrical Features of Z Plane Cont'd

- If vector $e^{j \omega T}$ is rotated k complete revolution starting from some arbitrary point B, it will return to point B.

Geometrical Features of Z Plane Cont'd

Hence

$$
e^{j(\omega T+2 \pi k)}=e^{(j \omega+2 \pi k / T) T}=e^{\left(j \omega+k \omega_{s}\right) T}=e^{j \omega T}
$$

and, therefore,

$$
X\left(e^{j\left(\omega+k \omega_{s}\right) T}\right)=X\left(e^{j \omega T}\right)
$$

In effect, the frequency spectrum of a discrete-time signal is a periodic function of frequency with period ω_{s}.

Example

Obtain expressions for the frequency, amplitude, and phase spectrums of the signal

$$
x(n T)=u(n T) e^{-\alpha n T} \sin \omega_{0} n T
$$

Solution The z transform of the signal can be obtained from Table 3.2 as

$$
X(z)=\frac{z e^{-\alpha T} \sin \omega_{0} T}{z^{2}-2 z e^{-\alpha T} \cos \omega_{0} T+e^{-2 \alpha T}}
$$

$X(z)$ can be expressed as

$$
X(z)=\frac{a_{1} z}{z^{2}+b_{1} z+b_{0}}
$$

where

$$
a_{1}=e^{-\alpha T} \sin \omega_{0} T \quad b_{0}=e^{-2 \alpha T} \quad b_{1}=-2 e^{-\alpha T} \cos \omega_{0} T
$$

Example Cont'd

$$
X(z)=\frac{a_{1} z}{z^{2}+b_{1} z+b_{0}}
$$

Hence the frequency spectrum of the signal is given by

$$
\begin{aligned}
X\left(e^{j \omega T}\right) & =\frac{a_{1} e^{j \omega T}}{e^{j 2 \omega T}+b_{1} e^{j \omega T}+b_{0}} \\
& =\frac{a_{1} e^{j \omega T}}{\cos 2 \omega T+j \sin 2 \omega T+b_{1} \cos \omega T+j b_{1} \sin \omega T+b_{0}} \\
& =\frac{a_{1} e^{j \omega T}}{b_{0}+b_{1} \cos \omega T+\cos 2 \omega T+j\left(b_{1} \sin \omega T+\sin 2 \omega T\right)}
\end{aligned}
$$

Example Cont'd

The amplitude and phase spectrums can be deduced by letting

$$
\begin{aligned}
X\left(e^{j \omega T}\right) & =\frac{a_{1} \mathrm{e}^{j \omega T}}{b_{0}+b_{1} \cos \omega T+\cos 2 \omega T+j\left(b_{1} \sin \omega T+\sin 2 \omega T\right)} \\
& =A(\omega) e^{j \phi(\omega)}
\end{aligned}
$$

Hence

$$
\begin{aligned}
A(\omega) & =\frac{\left|a_{1}\right| \cdot\left|e^{j \omega T}\right|}{\left|\left(b_{0}+b_{1} \cos \omega T+\cos 2 \omega T\right)+j\left(b_{1} \sin \omega T+\sin 2 \omega T\right)\right|} \\
& =\frac{\left|a_{1}\right|}{\sqrt{\left(b_{0}+b_{1} \cos \omega T+\cos 2 \omega T\right)^{2}+\left(b_{1} \sin \omega T+\sin 2 \omega T\right)^{2}}} \\
& =\frac{\left|a_{1}\right|}{\sqrt{1+b_{0}^{2}+b_{1}^{2}+2 b_{1}\left(1+b_{0}\right) \cos \omega T+2 b_{0} \cos 2 \omega T}}
\end{aligned}
$$

Example Cont'd

$$
\begin{aligned}
\phi(\omega)= & \arg \left(a_{1}\right)+\arg e^{j \omega T}-\arg \left[b_{0}+b_{1} \cos \omega T+\cos 2 \omega T\right. \\
& \left.+j\left(b_{1} \sin \omega T+\sin 2 \omega T\right)\right] \\
= & \arg a_{1}+\omega T-\tan ^{-1} \frac{b_{1} \sin \omega T+\sin 2 \omega T}{b_{0}+b_{1} \cos \omega T+\cos 2 \omega T}
\end{aligned}
$$

where

$$
\arg a_{1}=\left\{\begin{aligned}
0 & \text { if } a_{1} \geq 0 \\
-\pi & \text { otherwise }
\end{aligned}\right.
$$

Example Cont'd

Amplitude and phase spectrums.

Example Cont'd

Amplitude spectrum

(a)

Periodicity of amplitude spectrum.

This slide concludes the presentation. Thank you for your attention.

