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Introduction

t Various types of discrete-time systems have emerged since the
invention of the digital computer such as the systems used for
digital control, robotics, data compression, and
image-processing.

t This presentation will deal with the basic properties associated
with discrete-time systems in general:

– Linearity

– Time invariance

– Causality
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Basic System Properties

The response (or output) y(nT ) of a discrete-time system is
related to the excitation (or input) x(nT ) by some rule of
correspondence, i.e.,

y(nT ) = Rx(nT )

where R is an operator.

x(nT )

nTnT

x(nT )

y(nT )

y(nT )Discrete-time system
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Basic System Properties Cont’d

t For a discrete-time system that can be used for the processing
of signals, such as a digital filter, the rule of correspondence
must of necessity involve some operation that changes the
frequency spectrum of the input signal.

t For example, the operator R might transform an input signal
x(nT ) into an output signal y(nT ) such that the
high-frequency components in x(nT ) are removed.
In such a case, the system would operate as a lowpass digital
filter.
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Basic System Properties Cont’d

Depending on the rule of correspondence, a discrete-time system
can be classified as:t Linear or nonlineart Time-invariant or time-dependentt Causal or noncausal
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Linearity

t A discrete-time system is linear if and only if it satisfies the
conditions

Rαx(nT ) = αRx(nT ) (A)

R[x1(nT ) + x2(nT )] = Rx1(nT ) +Rx2(nT ) (B)

for all possible values of α and all possible excitations x1(nT )
and x2(nT ).

– The condition in Eq. (A) is referred to as the proportionality
or homogeneity condition.

– The condition in Eq. (B) is referred to as the superposition or
additivity condition.
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Linearity Cont’d

· · ·
Rαx(nT ) = αRx(nT ) (A)

R [x1(nT ) + x2(nT )] = Rx1(nT ) +Rx2(nT ) (B)

t From the superposition condition, i.e., Eq. (B), we get

y(nT ) = R [αx1(nT ) + βx2(nT )] = R [αx1(nT )] +R [βx2(nT )]

t Now from the proportionality condition, i.e., Eq. (A), we have

y(nT ) = R [αx1(nT ) + βx2(nT )] = αRx1(nT ) + βRx2(nT )

Thus, Eqs. (A) and (B) can be combined into one equation.t If this condition is violated for any pair of excitations or any
constant α or β, then the system is nonlinear .
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Linearity Cont’d

t Linearity is a simple system property which is very familiar to
the typical shopper.

t If the price of apples were $4.00 per kg and that of pears
$5.00 per kg, then 3 kgs of apples would cost $12.00 and 5
kgs of pears would cost $25.00 if the proportionality condition
were satisfied.t On the other hand, 1 kg of apples and 1 kg of pears would
cost $9.00 if the superposition condition were satisfied.t Now if both conditions were satisfied, the situation at hand
would be linear and 5 kgs of apples plus 3 kgs of pears would
cost $35.00.
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Linearity Cont’d

t Supposing now that we were to buy our apples and pears at
the corner store and the storekeeper reduces the price of
apples to $3.00 per kg if we buy more than 3 kgs of apples,
then the proportionality condition would be violated.

If he throws in an extra pear if we buy both apples and pears,
then the superposition condition would be violated.

In either case the situation would have become nonlinear.
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Linearity Cont’d

t If the rule of correspondence of a discrete-time signal is
known, then the system can be tested for linearity by checking
whether the combined condition

R [αx1(nT ) + βx2(nT )] = αRx1(nT ) + βRx2(nT )

is satisfied. This tends to involve quite a bit of writing.

t A simpler approach that works well in the case where the
system is nonlinear is to attempt to find a situation that
would violate either the proportionality condition

Rαx(nT ) = αRx(nT ) (A)

or the superposition condition

R [x1(nT ) + x2(nT )] = Rx1(nT ) +Rx2(nT ) (B)
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Linearity Cont’d

t For example, if the rule of correspondence includes terms like
|x(nT )| or xk(nT ) where k 6= 1, then the proportionality
condition would most likely be violated and one would need to
check only Eq. (A).

If it is violated, then the work is done and the system is
classified as nonlinear.

If it is not violated, then one must also check the
superposition condition and if it is violated, the system is
nonlinear.

Otherwise, the system is linear.
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Example

The response of a discrete-time system is given by

y(nT ) = Rx(nT ) = 7x2(nT − T )

Check the system for linearity.

Solution A delayed version of the input signal appears squared in
the characterization of the system and the proportionality
condition is most likely violated.
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Example Cont’d

For an arbitrary constant α, we have

R [αx(nT )] = 7α2x2(nT − T )

On the other hand,

αRx(nT ) = 7αx2(nT − T )

Clearly if α 6= 1, then

R [αx(nT )] 6= αRx(nT )

i.e., the proportionality condition is violated and, therefore, the
system is nonlinear .
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Example

The response of a discrete-time system is given by

y(nT ) = Rx(nT ) = (nT )2x(nT + 2T )

Check the system for linearity.

Solution For this case, the proportionality condition is not
violated, as can be easily verified, and so we should check the
combined equation

R [αx1(nT ) + βx2(nT )] = αRx1(nT ) + βRx2(nT )
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Example Cont’d

We can write

R [αx1(nT ) + βx2(nT )] = (nT )2 [αx1(nT + 2T ) + βx2(nT + 2T )]

= α(nT )2x1(nT + 2T ) + β(nT )2x2(nT + 2T )

= αRx1(nT ) + βRx2(nT )

i.e., the system is linear .

Note: The squared term (nT )2 may trick a few but it does not
affect the linearity of the system since it is a time-dependent system
parameter which is independent of the input signal.
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Time Invariance

t To deal with time invariance, the concept of an initially
relaxed system is required.

t A system is said to be initially relaxed if its excitation and
response have been zero prior to instant nT = 0.t In mathematical terms, a discrete-time system is initially
relaxed if

x(nT ) = y(nT ) = 0 for n < 0t In practice, discrete-time systems utilize a certain type of
digital element known as the unit delay .

Unit delays are actually memory devices and their contents
must be zero for the discrete-time system to be initially
relaxed.
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Time Invariance Cont’d

t A discrete-time system is said to be time-invariant if its
response to an arbitrary excitation does not depend on the
time of application of the excitation, i.e., its internal
parameters do not change with time.

t Formally, an initially relaxed discrete-time system is
time-invariant if and only if

Rx(nT − kT ) = y(nT − kT )

for all possible excitations x(nT ) and all integers k .t A discrete-time system that does not satisfy the above test for
at least one signal and any value of k other than 0 is
time-dependent.
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Time Invariance Cont’d

nT
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nT
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kT
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Example

A discrete-time system is characterized by the equation

y(nT ) = Rx(nT ) = 2nTx(nT )

Is the system time-invariant or time-dependent?

Solution The response to a delayed excitation is

Rx(nT − kT ) = 2nTx(nT − kT )

The delayed response is: y(nT − kT ) = 2(nT − kT )x(nT − kT )

For any k 6= 0, we have: Rx(nT − kT ) 6= y(nT − kT )

Therefore, the system is time-dependent.
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Example

A discrete-time system is characterized by the equation

y(nT ) = Rx(nT ) = 12x(nT − T ) + 11x(nT − 2T )

Is the system time-invariant or time-dependent?
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Example Cont’d

Solution The response to a delayed excitation is

Rx(nT − kT ) = 12x(nT − T − kT ) + 11x(nT − 2T − kT )

The delayed response is

y(nT − kT ) = 12x(nT − T − kT ) + 11x(nT − 2T − kT )

For any k , we have

Rx(nT − kT ) = y(nT − kT )

Therefore, the system is time-invariant.
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Causality

t A discrete-time system is said to be causal if its response at a
specific instant is independent of future values of the
excitation.

t A more precise way of saying very much the same thing is as
follows:

An initially relaxed discrete-time system is causal if and only if

Rx1(nT ) = Rx2(nT ) for n ≤ k (C)

for all possible distinct excitations x1(nT ) and x2(nT ) such
that

x1(nT ) = x2(nT ) for n ≤ k (D)t If Eq. (C) is not satisfied for at least one distinct pair of
excitations that satisfy Eq. (D) and at least one value of k,
then the system is noncausal .
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Causality Cont’d
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Example

A discrete-time system is represented by the equation

y(nT ) = Rx(nT ) = 3x(nT − 2T ) + 3x(nT + 2T )

Is the system causal or noncausal?

Solution Let x1(nT ) and x2(nT ) be distinct excitations such that

x1(nT ) = x2(nT ) for n ≤ k and x1(nT ) 6= x2(nT ) for n > k
(E)

For n = k we have
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Example Cont’d

· · ·
x1(nT ) = x2(nT ) for n ≤ k and x1(nT ) 6= x2(nT ) for n > k

(E)
For n = k we have

Rx1(nT )|n=k = 3x1(kT − 2T ) + 3x1(kT + 2T )

Rx2(nT )|n=k = 3x2(kT − 2T ) + 3x2(kT + 2T )

but since
3x1(kT + 2T ) 6= 3x2(kT + 2T )

from our assumption in Eq. (E), we conclude that

Rx1(nT ) 6= Rx2(nT ) for n = k

Therefore, the system is noncausal .
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Example
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Solution Let x1(nT ) and x2(nT ) be distinct excitations such that

x1(nT ) = x2(nT ) for n ≤ k and x1(nT ) 6= x2(nT ) for n > k
(F)
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Example Cont’d

· · ·
x1(nT ) = x2(nT ) for n ≤ k and x1(nT ) 6= x2(nT ) for n > k

(F)
In this example, we have

Rx1(nT ) = 3x1(nT − T ) + 3x1(nT − 2T )

Rx2(nT ) = 3x2(nT − T ) + 3x2(nT − 2T )

If n ≤ k , then n − 1, n − 2 < k and so on the basis of our
assumption in Eq. (F), we have

x1(nT−T ) = x2(nT−T ) and x1(nT−2T ) = x2(nT−2T ) for n ≤ k

Hence we conclude that

Rx1(nT ) = Rx2(nT ) for n ≤ k

Therefore, the system is causal .
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System Properties Cont’d

t Analog systems such as analog filters are almost always linear
and time invariant, and because they are real-time devices
they have to be causal .

Any nonlinearity or time-dependence is usually an
imperfection.

t Discrete-time systems such as digital filters can be nonlinear,
time-dependent, or noncausal , e.g., so-called median filters
are nonlinear, adaptive filters are time-dependent, and
nonrecursive filters are often noncausal.
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System Properties Cont’d

t Analog systems such as analog filters are almost always linear
and time invariant, and because they are real-time devices
they have to be causal .

Any nonlinearity or time-dependence is usually an
imperfection.t Discrete-time systems such as digital filters can be nonlinear,
time-dependent, or noncausal , e.g., so-called median filters
are nonlinear, adaptive filters are time-dependent, and
nonrecursive filters are often noncausal.
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This slide concludes the presentation.

Thank you for your attention.
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