# Chapter 4 DISCRETE-TIME SYSTEMS <br> 4.3 Characterization of Discrete-Time Systems 4.4 Discrete-Time System Networks 

Copyright (c) 2005 Andreas Antoniou Victoria, BC, Canada<br>Email: aantoniou@ieee.org

July 14, 2018

■ Discrete-time systems can be characterized by means of mathematical equations or in terms of networks.

- The mathematical characterization can be deduced by analyzing a network representation of the discrete-time system.
- On the other hand, a network representation can be deduced from the mathematical characterization by a process called realization.
- This presentation deals with the characterization, the network representation, and the analysis of discrete-time systems.


## Types of Discrete-Time Systems

Two types of discrete-time systems can be identified:

- nonrecursive
- recursive


## Characterization of Nonrecursive Systems

■ Discrete-time systems are characterized in terms of difference equations.

## Characterization of Nonrecursive Systems

- Discrete-time systems are characterized in terms of difference equations.
- In a nonrecursive discrete-time system, the response at instant $n T$ can be a function of a number of values of the excitation before $n T$, the value at $n T$, and a number of values of the excitation after $n T$.


## Characterization of Nonrecursive Systems

- Discrete-time systems are characterized in terms of difference equations.
- In a nonrecursive discrete-time system, the response at instant $n T$ can be a function of a number of values of the excitation before $n T$, the value at $n T$, and a number of values of the excitation after $n T$.
- If instant $n T$ is taken to be the present and the present response depends on the past $N$ values, the present value, and the future $K$ values of the excitation, then

$$
\begin{aligned}
y(n T)= & f[x(n T-N T), \ldots, x(n T-T), x(n T), \\
& x(n T+T), \ldots, x(n T+K T)]
\end{aligned}
$$

## Nonrecursive Systems

- If we assume that the system is linear, then

$$
\begin{aligned}
y(n T)= & a_{N} x(n T-N T)+\cdots+a_{1} x(n T-T)+a_{0} x(n T) \\
& +a_{-1} x(n T+T)+\cdots+a_{-K} x(n T+K T) \\
= & a_{-K} x(n T+K T)+\cdots+a_{-1} x(n T+T) \\
& +a_{0} x(n T)+a_{1} x(n T-T)+\cdots+a_{N} x(n T-N T) \\
= & \sum_{i=-K}^{N} a_{i} x(n T-i T)
\end{aligned}
$$

## Nonrecursive Systems

- If we assume that the system is linear, then

$$
\begin{aligned}
y(n T)= & a_{N} x(n T-N T)+\cdots+a_{1} x(n T-T)+a_{0} x(n T) \\
& +a_{-1} x(n T+T)+\cdots+a_{-K} x(n T+K T) \\
= & a_{-K} x(n T+K T)+\cdots+a_{-1} x(n T+T) \\
& +a_{0} x(n T)+a_{1} x(n T-T)+\cdots+a_{N} x(n T-N T) \\
= & \sum_{i=-K}^{N} a_{i} x(n T-i T)
\end{aligned}
$$

- If the system is time-invariant, then the parameters $a_{i}$ are constants and independent of time.


## Nonrecursive Systems

- If we assume that the system is linear, then

$$
\begin{aligned}
y(n T)= & a_{N} x(n T-N T)+\cdots+a_{1} x(n T-T)+a_{0} x(n T) \\
& +a_{-1} x(n T+T)+\cdots+a_{-K} x(n T+K T) \\
= & a_{-K} x(n T+K T)+\cdots+a_{-1} x(n T+T) \\
& +a_{0} x(n T)+a_{1} x(n T-T)+\cdots+a_{N} x(n T-N T) \\
= & \sum_{i=-K}^{N} a_{i} x(n T-i T)
\end{aligned}
$$

- If the system is time-invariant, then the parameters $a_{i}$ are constants and independent of time.
- The above equation is a difference equation of order $N+K$ and it represents a noncausal nonrecursive system of the same order.


## Nonrecursive Systems Cont'd

$$
\begin{aligned}
y(n T)= & a_{-K} x(n T+K T)+\cdots+a_{-1} x(n T+T)+a_{0} x(n T) \\
& +a_{1} x(n T-T)+\cdots+a_{N} x(n T-N T) \\
= & \sum_{i=-K}^{N} a_{i} x(n T-i T)
\end{aligned}
$$

If the system is causal, the response at instant $n T$ is independent of $x(n T+T), x(n T+2 T), \ldots, x(n T+K T)$ since these are future values of the input with respect to instant $n T$.

For a causal nonrecursive discrete-time system, we have

$$
a_{i}=0 \quad \text { for } \quad i \leq-1
$$

## Nonrecursive Systems Cont'd

Therefore, the difference equation becomes

$$
\begin{aligned}
y(n T) & =a_{0} x(n T)+a_{1} x(n T-T)+\cdots+a_{N} x(n T-N T) \\
& =\sum_{i=0}^{N} a_{i} x(n T-i T)
\end{aligned}
$$

We now have an Nth-order difference equation that represents a linear, time-invariant, and causal digital system of the same order.

$$
\begin{aligned}
y(n T)= & a_{2} \times(n T-2 T)+a_{1} \times(n T-T)+a_{0} \times(n T) \\
& +a_{-1} \times(n T+T)+a_{-2} \times(n T+2 T)
\end{aligned}
$$



Fourth-order noncausal nonrecursive system

## Characterization of Recursive Systems

- In recursive discrete-time systems, the response is a function of elements in the excitation as well as elements in the response sequence.


## Characterization of Recursive Systems

- In recursive discrete-time systems, the response is a function of elements in the excitation as well as elements in the response sequence.
- An $(M+N)$ th-order, linear, time-invariant, noncausal recursive discrete-time system can be represented by the difference equation

$$
y(n T)=\sum_{i=-M}^{N} a_{i} x(n T-i T)-\sum_{i=1}^{N} b_{i} y(n T-i T)
$$

where the coefficients $a_{i}$ and $b_{i}$ are constants independent of time.

## Characterization of Recursive Systems

- In recursive discrete-time systems, the response is a function of elements in the excitation as well as elements in the response sequence.
- An $(M+N)$ th-order, linear, time-invariant, noncausal recursive discrete-time system can be represented by the difference equation

$$
y(n T)=\sum_{i=-M}^{N} a_{i} x(n T-i T)-\sum_{i=1}^{N} b_{i} y(n T-i T)
$$

where the coefficients $a_{i}$ and $b_{i}$ are constants independent of time.

- If $n T$ is taken to be the present, the present response is a function of the present value, the past $N$ values, and the future $M$ values of the excitation and the past $N$ values of the response.


## Recursive Systems Cont'd

$$
y(n T)=\sum_{i=-M}^{N} a_{i} x(n T-i T)-\sum_{i=1}^{N} b_{i} y(n T-i T)
$$

- Some of the coefficients $a_{i}$ and $b_{i}$ can be zero.


## Recursive Systems Cont'd

$$
y(n T)=\sum_{i=-M}^{N} a_{i} x(n T-i T)-\sum_{i=1}^{N} b_{i} y(n T-i T)
$$

- Some of the coefficients $a_{i}$ and $b_{i}$ can be zero.
- If all coefficients $b_{i}$ are zero, then the above equation reduces to the equation of a nonrecursive system.

In effect, a nonrecursive can be regarded as a special case of a recursive system.

A fourth-order linear, time-invariant, noncausal, recursive discrete-time system can be represented by the difference equation

$$
\begin{aligned}
y(n T)= & a_{-2} x(n T+2 T)+a_{-1} x(n T+T)+a_{0} x(n T)+a_{1} \times(n T-T) \\
& a_{2} x(n T-2 T)-b_{1} y(n T-T)-b_{2} y(n T-2 T)
\end{aligned}
$$

$$
\begin{aligned}
y(n T)= & a_{-2} x(n T+2 T)+a_{-1} x(n T+T)+a_{0} x(n T)+a_{1} x(n T-T) \\
& a_{2} x(n T-2 T)-b_{1} y(n T-T)-b_{2} y(n T-2 T)
\end{aligned}
$$



Fourth-order noncausal recursive system

## Basic Elements

The basic elements of discrete-time systems are

- The unit delay
- The adder
- The multiplier


## Basic Elements Cont'd

- The unit delay is a memory device that can store a number. When a clock pulse is received, it outputs the number stored and records the number appearing at the input.


## Basic Elements Cont'd

- The unit delay is a memory device that can store a number.

When a clock pulse is received, it outputs the number stored and records the number appearing at the input.

- The adder may have several inputs and its operation is to produce an output that is equal to the sum of the inputs when a clock pulse is received.

In theory, the adder is assumed to operate instantaneously although in practice a small delay will occur.

- The unit delay is a memory device that can store a number.

When a clock pulse is received, it outputs the number stored and records the number appearing at the input.

- The adder may have several inputs and its operation is to produce an output that is equal to the sum of the inputs when a clock pulse is received.

In theory, the adder is assumed to operate instantaneously although in practice a small delay will occur.

- The multiplier has one input and one output and its operation is to multiply the input by a constant when a clock pulse is received.

Like the adder, it is assumed to operate instantaneously although a small delay will occur in practice.

## Basic Elements Cont'd

Table 4.1 Elements of discrete-time systems


## Implementation of Basic Elements

The implementation of the basic elements of discrete-time systems can assume many forms depending on the

- type of arithmetic (e.g., fixed-point, floating-point)
- type of number representation (e.g., signed-magnitude, two's complement)


## Implementation of Basic Elements

The implementation of the basic elements of discrete-time systems can assume many forms depending on the

- type of arithmetic (e.g., fixed-point, floating-point)

■ type of number representation (e.g., signed-magnitude, two's complement)

- type of number quantization (e.g., truncation, rounding)
- mode of operation (serial or parallel), etc.


## Networks for Discrete-Time Systems

Like analog filters, discrete-time systems can be represented by networks which are collections of interconnected unit delays, adders, and multipliers:

(a)

(c)

## Representation by Networks



## Network Analysis

- Network analysis is the process of obtaining some mathematical characterization of a given network.

For example, we analyze a resonant circuit by finding its differential equation (or the Laplace transform of the differential equation).

Similarly, we analyze a discrete-time system by obtaining its difference equation (or the $z$ transform of the difference equation).

- Network analysis is the process of obtaining some mathematical characterization of a given network.

For example, we analyze a resonant circuit by finding its differential equation (or the Laplace transform of the differential equation).

Similarly, we analyze a discrete-time system by obtaining its difference equation (or the $z$ transform of the difference equation).

- Analysis can be simplified by using the shift operator $\mathcal{E}$ of numerical analysis, which is defined as

$$
\mathcal{E}^{r} f(n T)=f(n T+r T)
$$

A negative $r$ delays the signal by a period $|r| T$ whereas a positive $r$ advances the signal into the future by a period $r T$ !

- Network analysis is the process of obtaining some mathematical characterization of a given network.

For example, we analyze a resonant circuit by finding its differential equation (or the Laplace transform of the differential equation).

Similarly, we analyze a discrete-time system by obtaining its difference equation (or the $z$ transform of the difference equation).

- Analysis can be simplified by using the shift operator $\mathcal{E}$ of numerical analysis, which is defined as

$$
\mathcal{E}^{r} f(n T)=f(n T+r T)
$$

A negative $r$ delays the signal by a period $|r| T$ whereas a positive $r$ advances the signal into the future by a period $r T$ !

- The shift operator is a linear operator that obeys the usual laws of algebra (law of exponents, distributive law, etc.).


## Properties of the Shift Operator

1. Since

$$
\begin{aligned}
\mathcal{E}^{r}\left[a_{1} f_{1}(n T)+a_{2} f_{2}(n T)\right] & =a_{1} f_{1}(n T+r T)+a_{2} f_{2}(n T+r T) \\
& =a_{1} \mathcal{E}^{r} f_{1}(n T)+a_{2} \mathcal{E}^{r} f_{2}(n T)
\end{aligned}
$$

we conclude that $\mathcal{E}$ is a linear operator which distributes with respect to a sum of functions of $n T$.

## Properties of the Shift Operator

1. Since

$$
\begin{aligned}
\mathcal{E}^{r}\left[a_{1} f_{1}(n T)+a_{2} f_{2}(n T)\right] & =a_{1} f_{1}(n T+r T)+a_{2} f_{2}(n T+r T) \\
& =a_{1} \mathcal{E}^{r} f_{1}(n T)+a_{2} \mathcal{E}^{r} f_{2}(n T)
\end{aligned}
$$

we conclude that $\mathcal{E}$ is a linear operator which distributes with respect to a sum of functions of $n T$.
2. Since

$$
\begin{aligned}
\mathcal{E}^{r} \mathcal{E}^{p} f(n T) & =\mathcal{E}^{r} f(n T+p T)=f(n T+r T+p T) \\
& =f[n T+(r+p) T] \\
& =\mathcal{E}^{r+p} f(n T)
\end{aligned}
$$

the shift operator obeys the law of exponents.

## Properties of the Shift Operator Cont'd

3. If

$$
g(n T)=\mathcal{E}^{r} f(n T)
$$

then

$$
\mathcal{E}^{-r} g(n T)=\mathcal{E}^{-r} \mathcal{E}^{r} f(n T)=\mathcal{E}^{-r} f(n T+r T)=f(n T)
$$

for all $f(n T)$, and if

$$
f(n T)=\mathcal{E}^{-r} g(n T)
$$

then

$$
\mathcal{E}^{r} f(n T)=\mathcal{E}^{r} \mathcal{E}^{-r} g(n T)=\mathcal{E}^{r} g(n T-r T)=g(n T)
$$

for all $g(n T)$.

## Properties of the Shift Operator Cont'd

3. If

$$
g(n T)=\mathcal{E}^{r} f(n T)
$$

then

$$
\mathcal{E}^{-r} g(n T)=\mathcal{E}^{-r} \mathcal{E}^{r} f(n T)=\mathcal{E}^{-r} f(n T+r T)=f(n T)
$$

for all $f(n T)$, and if

$$
f(n T)=\mathcal{E}^{-r} g(n T)
$$

then

$$
\mathcal{E}^{r} f(n T)=\mathcal{E}^{r} \mathcal{E}^{-r} g(n T)=\mathcal{E}^{r} g(n T-r T)=g(n T)
$$

for all $g(n T)$.
Therefore, $\mathcal{E}^{-r}$ is the inverse of $\mathcal{E}^{r}$ and vice versa, i.e.,

$$
\mathcal{E}^{-r} \mathcal{E}^{r}=\mathcal{E}^{r} \mathcal{E}^{-r}=1
$$

## Properties of the Shift Operator Cont'd

4. A linear combination of powers of $\mathcal{E}$ defines a meaningful operator, e.g., if

$$
f(\mathcal{E})=1+a_{1} \mathcal{E}+a_{2} \mathcal{E}^{2}
$$

then

$$
\begin{aligned}
f(\mathcal{E}) f(n T) & =\left(1+a_{1} \mathcal{E}+a_{2} \mathcal{E}^{2}\right) f(n T) \\
& =f(n T)+a_{1} \mathcal{E} f(n T)+a_{2} \mathcal{E}^{2} f(n T) \\
& =f(n T)+a_{1} f(n T+T)+a_{2} f(n T+2 T)
\end{aligned}
$$

## Properties of the Shift Operator Cont'd

4. A linear combination of powers of $\mathcal{E}$ defines a meaningful operator, e.g., if

$$
f(\mathcal{E})=1+a_{1} \mathcal{E}+a_{2} \mathcal{E}^{2}
$$

then

$$
\begin{aligned}
f(\mathcal{E}) f(n T) & =\left(1+a_{1} \mathcal{E}+a_{2} \mathcal{E}^{2}\right) f(n T) \\
& =f(n T)+a_{1} \mathcal{E} f(n T)+a_{2} \mathcal{E}^{2} f(n T) \\
& =f(n T)+a_{1} f(n T+T)+a_{2} f(n T+2 T)
\end{aligned}
$$

Furthermore, given an operator $f(\mathcal{E})$ of the above type, an inverse operator $f(\mathcal{E})^{-1}$ can be defined such that

$$
f(\mathcal{E})^{-1} f(\mathcal{E})=f(\mathcal{E}) f(\mathcal{E})^{-1}=1
$$

## Properties of the Shift Operator Cont'd

5. If $f_{1}(\mathcal{E}), f_{2}(\mathcal{E})$, and $f_{3}(\mathcal{E})$ are operators that comprise linear combinations of powers of $\mathcal{E}$, they satisfy the distributive, commutative, and associative laws of algebra, i.e.,

$$
\begin{aligned}
& f_{1}(\mathcal{E})\left[f_{2}(\mathcal{E})+f_{3}(\mathcal{E})\right]= f_{1}(\mathcal{E}) f_{2}(\mathcal{E})+f_{1}(\mathcal{E}) f_{3}(\mathcal{E}) \\
& f_{1}(\mathcal{E}) f_{2}(\mathcal{E})=f_{2}(\mathcal{E}) f_{1}(\mathcal{E}) \\
& f_{1}(\mathcal{E})\left[f_{2}(\mathcal{E}) f_{3}(\mathcal{E})\right]=\left[f_{1}(\mathcal{E}) f_{2}(\mathcal{E})\right] f_{3}(\mathcal{E})
\end{aligned}
$$

5. If $f_{1}(\mathcal{E}), f_{2}(\mathcal{E})$, and $f_{3}(\mathcal{E})$ are operators that comprise linear combinations of powers of $\mathcal{E}$, they satisfy the distributive, commutative, and associative laws of algebra, i.e.,

$$
\begin{aligned}
f_{1}(\mathcal{E})\left[f_{2}(\mathcal{E})+f_{3}(\mathcal{E})\right] & =f_{1}(\mathcal{E}) f_{2}(\mathcal{E})+f_{1}(\mathcal{E}) f_{3}(\mathcal{E}) \\
f_{1}(\mathcal{E}) f_{2}(\mathcal{E}) & =f_{2}(\mathcal{E}) f_{1}(\mathcal{E}) \\
f_{1}(\mathcal{E})\left[f_{2}(\mathcal{E}) f_{3}(\mathcal{E})\right] & =\left[f_{1}(\mathcal{E}) f_{2}(\mathcal{E})\right] f_{3}(\mathcal{E})
\end{aligned}
$$

Operators such as these can be used to construct more complicated operators of the form

$$
F(\mathcal{E})=f_{1}(\mathcal{E}) f_{2}(\mathcal{E})^{-1}=f_{2}(\mathcal{E})^{-1} f_{1}(\mathcal{E})
$$

which may also be expressed as $F(\mathcal{E})=\frac{f_{1}(\mathcal{E})}{f_{2}(\mathcal{E})} \quad$ without danger of ambiguity.

## Properties of the Shift Operator Cont'd

- From the properties just discussed, it follows that the shift operator can be treated like an algebraic quantity and linear combinations of $\mathcal{E}$ can be treated like polynomials.


## Properties of the Shift Operator Cont'd

- From the properties just discussed, it follows that the shift operator can be treated like an algebraic quantity and linear combinations of $\mathcal{E}$ can be treated like polynomials.
- Note: An operator needs something to operate upon! Therefore, all the following are meaningless:

$$
\begin{gathered}
y=\left(2+4 x+9 x^{2}\right) \frac{d}{d x} \\
Y(s)=[2+4 u(t)] \mathcal{L} \\
y(n T)=x(n T)\left(\mathcal{E}+\mathcal{E}^{2}\right) \\
y(n T)=x(n T) \mathcal{R}
\end{gathered}
$$

An Nth-order recursive discrete-time system can be represented by the difference equation

$$
y(n T)=\sum_{i=0}^{N} a_{i} x(n T-i T)-\sum_{i=1}^{N} b_{i} y(n T-i T)
$$

Obtain an expression for the response in terms of the shift operator.

Solution From the definition of the shift operator, we can write

$$
\begin{aligned}
y(n T) & =\sum_{i=0}^{N} a_{i} \mathcal{E}^{-i} \times(n T)-\sum_{i=1}^{N} b_{i} \mathcal{E}^{-i} y(n T) \\
y(n T)+\sum_{i=1}^{N} b_{i} \mathcal{E}^{-i} y(n T) & =\sum_{i=0}^{N} a_{i} \mathcal{E}^{-i} \times(n T) \\
\left(1+\sum_{i=1}^{N} b_{i} \mathcal{E}^{-i}\right) y(n T) & =\sum_{i=0}^{N} a_{i} \mathcal{E}^{-i} \times(n T)
\end{aligned}
$$

Solution From the definition of the shift operator, we can write

$$
\begin{aligned}
& \qquad y(n T)=\sum_{i=0}^{N} a_{i} \mathcal{E}^{-i} x(n T)-\sum_{i=1}^{N} b_{i} \mathcal{E}^{-i} y(n T) \\
& y(n T)+\sum_{i=1}^{N} b_{i} \mathcal{E}^{-i} y(n T)=\sum_{i=0}^{N} a_{i} \mathcal{E}^{-i} x(n T) \\
& \left(1+\sum_{i=1}^{N} b_{i} \mathcal{E}^{-i}\right) y(n T)=\sum_{i=0}^{N} a_{i} \mathcal{E}^{-i} \times(n T) \\
& \text { or } \quad y(n T)=\left(\frac{\sum_{i=0}^{N} a_{i} \mathcal{E}^{-i}}{1+\sum_{i=1}^{N} b_{i} \mathcal{E}^{-i}}\right) \times(n T)=F(\mathcal{E}) \times(n T) \\
& \text { where } \quad F(\mathcal{E})=\left(\frac{\sum_{i=0}^{N} a_{i} \mathcal{E}^{-i}}{1+\sum_{i=1}^{N} b_{i} \mathcal{E}^{-i}}\right)
\end{aligned}
$$

## Methods of Analysis

- By inspection


## Methods of Analysis

- By inspection
- By writing the network equations and then solving them


## Methods of Analysis

- By inspection
- By writing the network equations and then solving them
- By applying signal flow graphs
- using node elimination techniques
- using Mason's gain formula


## Methods of Analysis Cont'd

Note: The analysis of discrete-time systems is much simpler than that of continuous-time systems:

- In discrete-time systems the signals can assume only one form, namely, they are sequences of numbers.


## Methods of Analysis Cont'd

Note: The analysis of discrete-time systems is much simpler than that of continuous-time systems:

- In discrete-time systems the signals can assume only one form, namely, they are sequences of numbers.
- In continuous-time systems signals can assume two forms, namely, voltages and currents, which are strictly interrelated through Kirchhoff's laws.

Analyze the network:

(a)

Solution Signal at node A: $\quad y(n T-T)$
Signal at node B: $\quad p y(n T-T)$
Output signal: $\quad y(n T)=x(n T)+p y(n T-T)$

Analyze the network:


## Solution



Define signals $v_{1}(n T)$ and $v_{2}(n T)$ as shown.
From the figure: $\quad v_{1}(n T)=m_{1} \times(n T)+m_{3} v_{2}(n T)+m_{5} v_{3}(n T)$ and

$$
\begin{equation*}
y(n T)=m_{2} v_{2}(n T)+m_{4} v_{3}(n T) \tag{B}
\end{equation*}
$$

where $\quad v_{2}(n T)=\mathcal{E}^{-1} v_{1}(n T) \quad v_{3}(n T)=\mathcal{E}^{-1} y(n T)$

From the figure:

$$
\begin{align*}
v_{1}(n T) & =m_{1} x(n T)+m_{3} v_{2}(n T)+m_{5} v_{3}(n T)  \tag{A}\\
y(n T) & =m_{2} v_{2}(n T)+m_{4} v_{3}(n T) \tag{B}
\end{align*}
$$

where $\quad v_{2}(n T)=\mathcal{E}^{-1} v_{1}(n T) \quad v_{3}(n T)=\mathcal{E}^{-1} y(n T)$
If we eliminate $v_{2}(n T)$ and $v_{3}(n T)$ in Eqs. (A) and (B), we have

$$
\begin{equation*}
\left(1-m_{3} \mathcal{E}^{-1}\right) v_{1}(n T)=m_{1} x(n T)+m_{5} \mathcal{E}^{-1} y(n T) \tag{C}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(1-m_{4} \mathcal{E}^{-1}\right) y(n T)=m_{2} \mathcal{E}^{-1} v_{1}(n T) \tag{D}
\end{equation*}
$$

$$
\begin{equation*}
\left(1-m_{3} \mathcal{E}^{-1}\right) v_{1}(n T)=m_{1} \times(n T)+m_{5} \mathcal{E}^{-1} y(n T) \tag{C}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(1-m_{4} \mathcal{E}^{-1}\right) y(n T)=m_{2} \mathcal{E}^{-1} v_{1}(n T) \tag{D}
\end{equation*}
$$

Eq. (D) can be expressed as

$$
\left(1-m_{3} \mathcal{E}^{-1}\right)\left(1-m_{4} \mathcal{E}^{-1}\right) y(n T)=m_{2} \mathcal{E}^{-1}\left(1-m_{3} \mathcal{E}^{-1}\right) v_{1}(n T)
$$

and on eliminating $\left(1-m_{3} \mathcal{E}^{-1}\right) v_{1}(n T)$ using Eq. (C), we obtain

$$
\begin{aligned}
{\left[1-\left(m_{3}+m_{4}\right) \mathcal{E}^{-1}+m_{3} m_{4} \mathcal{E}^{-2}\right] y(n T)=} & m_{1} m_{2} \mathcal{E}^{-1} x(n T) \\
& +m_{2} m_{5} \mathcal{E}^{-2} y(n T)
\end{aligned}
$$

or $\quad\left[1-\left(m_{3}+m_{4}\right) \mathcal{E}^{-1}+\left(m_{3} m_{4}-m_{2} m_{5}\right) \mathcal{E}^{-2}\right] y(n T)=m_{1} m_{2} \mathcal{E}^{-1} \times(n T)$
or

$$
\left[1-\left(m_{3}+m_{4}\right) \mathcal{E}^{-1}+\left(m_{3} m_{4}-m_{2} m_{5}\right) \mathcal{E}^{-2}\right] y(n T)=m_{1} m_{2} \mathcal{E}^{-1} x(n T)
$$

Therefore, on eliminating the shift operator, we get

$$
y(n T)=a_{1} x(n T-T)+b_{1} y(n T-T)+b_{2} y(n T-2 T)
$$

where

$$
a_{1}=m_{1} m_{2}, \quad b_{1}=m_{3}+m_{4}, \quad b_{2}=m_{2} m_{5}-m_{3} m_{4}
$$

## Signal Flow-Graph Analysis

- A discrete-time network can be represented by an equivalent signal flow graph which is made up of a collection of interconnected directed branches and nodes.


## Signal Flow-Graph Analysis

- A discrete-time network can be represented by an equivalent signal flow graph which is made up of a collection of interconnected directed branches and nodes.
- Such a signal flow graph is, on the one hand, a compact representation of the system and, on the other, it can be used to analyze the system.


## Signal Flow-Graph Analysis Cont'd

Given a discrete-time network, a corresponding signal flow graph can be readily deduced by replacing

- each adder by a node with one outgoing branch and as many incoming branches as there are inputs to the adder,


## Signal Flow-Graph Analysis Cont'd

Given a discrete-time network, a corresponding signal flow graph can be readily deduced by replacing

- each adder by a node with one outgoing branch and as many incoming branches as there are inputs to the adder,
- each distribution node remains a distribution node,


## Signal Flow-Graph Analysis Cont'd

Given a discrete-time network, a corresponding signal flow graph can be readily deduced by replacing

- each adder by a node with one outgoing branch and as many incoming branches as there are inputs to the adder,
- each distribution node remains a distribution node,
- each multiplier by a directed branch with transmittance equal to the constant of the multiplier,


## Signal Flow-Graph Analysis Cont'd

Given a discrete-time network, a corresponding signal flow graph can be readily deduced by replacing

- each adder by a node with one outgoing branch and as many incoming branches as there are inputs to the adder,
- each distribution node remains a distribution node,
- each multiplier by a directed branch with transmittance equal to the constant of the multiplier,
- each direct transmission path by a directed branch with transmittance equal to unity, and


## Signal Flow-Graph Analysis Cont'd

Given a discrete-time network, a corresponding signal flow graph can be readily deduced by replacing

- each adder by a node with one outgoing branch and as many incoming branches as there are inputs to the adder,
- each distribution node remains a distribution node,
- each multiplier by a directed branch with transmittance equal to the constant of the multiplier,
- each direct transmission path by a directed branch with transmittance equal to unity, and
- each unit delay by a directed branch with transmittance equal to the shift operator $\mathcal{E}^{-1}$.



Fig. $6 b$

## Node Elimination

- A discrete-time network can be analyzed by reducing its signal flow graph into a single transmittance between input node $x(n T)$ and output node $y(n T)$ using node elimination techniques.
- A discrete-time network can be analyzed by reducing its signal flow graph into a single transmittance between input node $x(n T)$ and output node $y(n T)$ using node elimination techniques.
- This approach tends to be time consuming, particularly for complicated signal flow graphs, but has certain merits (for example, one can interrupt the analysis and go for a coffee without destroying his or her train of thought).


## Node Elimination Rules

- Rule 1: $K$ branches in series with transmittances $T_{1}, T_{2}, \ldots, T_{K}$ can be replaced by a single branch with transmittance $T_{1} T_{2} \ldots T_{K}$, as shown:

(a)

From the first signal flow graph, we have

$$
B=T_{1} A, \quad C=T_{2} B
$$

Now if we eliminate $B$ in the second equation using the first equation, we get

$$
C=T_{1} T_{2} A
$$

## Node Elimination Rules Cont'd


(a)

$$
C=T_{1} T_{2} A
$$

Similarly,

$$
D=T_{3} C
$$

and if we eliminate $C$ we get

$$
D=T_{1} T_{2} T_{3} A
$$

and so on.

## Node Elimination Rules Cont'd

- Rule 2: $K$ branches in parallel with transmittances $T_{1}, T_{2}, \ldots, T_{K}$ can be replaced by a single branch with transmittance $T_{1}+T_{2}+\cdots+T_{K}$, as shown:


$$
\mathrm{A} \bullet \xrightarrow[T_{1}+T_{2}+\cdots+T_{K}]{ } \cdot \mathrm{Z}
$$

(b)

From the first signal flow graph, we have

$$
Z=T_{1} A+T_{2} A+T_{3} A+\cdots=\left(T_{1}+T_{2}+T_{3}+\cdots\right) A
$$

- Rule 3: A node with $N$ incoming branches with transmittances $T_{I 1}, T_{I 2}, \ldots, T_{I N}$ and $M$ outgoing branches with transmittances $T_{O 1}, T_{O 2}, \ldots, T_{O M}$ can be replaced by $N \times M$ branches with transmittances

$$
T_{I 1} T_{O 1}, T_{I 1} T_{O 2}, \ldots, T_{I N} T_{O M}
$$

as shown:

(c)

## Node Elimination Rules Cont'd



From the signal flow graph, we have

$$
P=T_{11} I_{1}+T_{I 2} I_{2}+\cdots+T_{I N} I_{N}
$$

and

$$
O_{1}=T_{O 1} P, O_{2}=T_{O 2} P, \ldots, O_{M}=T_{O M} P
$$

## Node Elimination Rules Cont'd

$$
P=T_{11} I_{1}+T_{12} I_{2}+\cdots+T_{I N} I_{N}
$$

and

$$
O_{1}=T_{O 1} P, O_{2}=T_{O 2} P, \ldots, O_{M}=T_{O M} P
$$

On eliminating variable $P$, we get

$$
\begin{aligned}
O_{1} & =T_{I 1} T_{O 1} I_{1}+T_{I 2} T_{O 1} I_{2}+\cdots+T_{I N} T_{O 1} I_{N} \\
O_{2} & =T_{I 1} T_{O 2} I_{1}+T_{I 2} T_{O 2} I_{2}+\cdots+T_{I N} T_{O 2} I_{N} \\
& \vdots \\
O_{M} & =T_{I 1} T_{O M} I_{1}+T_{I 2} T_{O M} I_{2}+\cdots+T_{I N} T_{O M} I_{N}
\end{aligned}
$$

## Node Elimination Rules Cont'd

$$
\begin{aligned}
O_{1} & =T_{I 1} T_{O 1} I_{1}+T_{I 2} T_{O 1} I_{2}+\cdots+T_{I N} T_{O 1} I_{N} \\
O_{2} & =T_{I 1} T_{O 2} I_{1}+T_{I 2} T_{O 2} I_{2}+\cdots+T_{I N} T_{O 2} I_{N} \\
\vdots & =\vdots \\
O_{M} & =T_{I 1} T_{O M} I_{1}+T_{I 2} T_{O M} I_{2}+\cdots+T_{I N} T_{O M} I_{N}
\end{aligned}
$$

## Node Elimination Rules Cont'd

- Rule 4a: $K$ self-loops at a given node with transmittances $T_{1}, T_{2}, \ldots, T_{K}$ can be replaced by a single self-loop with transmittance $T_{1}+T_{2}+\cdots+T_{K}$, as shown:


Note: This is to be expected since self-loops are, after all, parallel branches.

## Node Elimination Rules Cont'd

- Rule 4b: A self-loop at a given node with transmittance $T_{S L}$ can be eliminated by dividing the transmittance of each and every incoming branch by $1-T_{S L}$ as shown:

(e)


## Node Elimination Rules Cont'd


(e)

From the signal flow graph at the left, we have

$$
M=T_{11} I_{1}+T_{I 2} I_{2}+T_{S L} M
$$

Solving for variable $M$, we get

$$
M=\frac{T_{I 1}}{1-T_{S L}} l_{1}+\frac{T_{I 2}}{1-T_{S L}} l_{2}
$$

which is represented by the signal flow graph at the right.

- At each step of the procedure, eliminate the node or nodes that would result in the smallest number of new paths.

Note: The number of new paths for a given node is equal to the number incoming branches times the number of outgoing nodes, i.e., $N \times M$.

- At each step of the procedure, eliminate the node or nodes that would result in the smallest number of new paths.

Note: The number of new paths for a given node is equal to the number incoming branches times the number of outgoing nodes, i.e., $N \times M$.

- When branches are eliminated draw strokes on them for reckoning purposes.
- At each step of the procedure, eliminate the node or nodes that would result in the smallest number of new paths.

Note: The number of new paths for a given node is equal to the number incoming branches times the number of outgoing nodes, i.e., $N \times M$.

- When branches are eliminated draw strokes on them for reckoning purposes.
- At the end of the elimination process, each incoming branch should have as many strokes as there are outgoing branches and each outgoing branch should have as many strokes as there are incoming branches.


## Strategy Cont'd




Analyze the discrete-time system shown in the figure using the node elimination method.


Fig. $6 a$


Fig. $6 b$

## Solution

- Eliminate node H in Fig. 6a, combine parallel branches in Fig. 8a, and eliminate node G in Fig. 8b:


Fig. $8 c$

- Combine parallel branches in Fig. 8c, eliminate node F in Fig. 8d and node C in Fig. 8e:


Fig. $8 c$


Fig. $8 e$


Fig. $8 d$


Fig. $8 f$

- Eliminate self-loop and node D in Fig. 8f and node B in Fig. 8g:


Fig. $8 f$


Fig. $8 g$


Fig. $8 h$

Hence
or

$$
\begin{aligned}
& y(n T)=\left(\frac{T_{1}}{1-T_{2}}\right) \times(n T) \\
& \left(1-T_{2}\right) y(n T)=T_{1} \times(n T)
\end{aligned}
$$

and, therefore,

$$
y(n T)=T_{1} x(n T)+T_{2} y(n T)
$$

Since

$$
T_{1}=a_{0}+\mathcal{E}^{-1} a_{1}+\mathcal{E}^{-2} a_{2}+\mathcal{E}^{-3} a_{3}
$$

and

$$
T_{2}=-\left[\mathcal{E}^{-1} b_{1}+\mathcal{E}^{-2} b_{2}+\mathcal{E}^{-3} b_{3}\right]
$$

we obtain

$$
\begin{aligned}
y(n T)= & a_{0} x(n T)+a_{1} x(n T-T)+a_{2} x(n T-2 T)+a_{3} x(n T-3 T) \\
& -b_{1} y(n T-T)-b_{2} y(n T-2 T)-b_{3} y(n T-3 T)
\end{aligned}
$$

## Mason's Gain Formula

An alternative approach to network analysis involves the use of Mason's gain formula

$$
y_{j}(n T)=\frac{1}{\Delta}\left(\sum_{k} T_{k} \Delta_{k}\right) x_{i}(n T)
$$

where

- $x_{i}(n T)$ and $y_{j}(n T)$ are the excitation applied at node $i$ and the response of the system at node $j$, respectively.


## Mason's Gain Formula

An alternative approach to network analysis involves the use of Mason's gain formula

$$
y_{j}(n T)=\frac{1}{\Delta}\left(\sum_{k} T_{k} \Delta_{k}\right) x_{i}(n T)
$$

where

- $x_{i}(n T)$ and $y_{j}(n T)$ are the excitation applied at node $i$ and the response of the system at node $j$, respectively.
- $T_{k}$ is the transmittance of the $k$ th direct path between nodes $i$ and $j$,


## Mason's Gain Formula

An alternative approach to network analysis involves the use of Mason's gain formula

$$
y_{j}(n T)=\frac{1}{\Delta}\left(\sum_{k} T_{k} \Delta_{k}\right) x_{i}(n T)
$$

where

- $x_{i}(n T)$ and $y_{j}(n T)$ are the excitation applied at node $i$ and the response of the system at node $j$, respectively.
- $T_{k}$ is the transmittance of the $k$ th direct path between nodes $i$ and $j$,
- $\Delta$ is the determinant of the flow graph, and


## Mason's Gain Formula

An alternative approach to network analysis involves the use of Mason's gain formula

$$
y_{j}(n T)=\frac{1}{\Delta}\left(\sum_{k} T_{k} \Delta_{k}\right) x_{i}(n T)
$$

where

- $x_{i}(n T)$ and $y_{j}(n T)$ are the excitation applied at node $i$ and the response of the system at node $j$, respectively.
- $T_{k}$ is the transmittance of the $k$ th direct path between nodes $i$ and $j$,
- $\Delta$ is the determinant of the flow graph, and
- $\Delta_{k}$ is the determinant of the subgraph that does not touch (has no nodes or branches in common with) the $k$ th direct path between nodes $i$ and $j$.


## Mason's Gain Formula Cont'd

The graph determinant $\Delta$ is given by

$$
\Delta=1-\sum_{u} L_{u 1}+\sum_{v} P_{v 2}-\sum_{w} P_{w 3}+\cdots
$$

where

- $L_{u 1}$ is the loop transmittance of the $u$ th loop,


## Mason's Gain Formula Cont'd

The graph determinant $\Delta$ is given by

$$
\Delta=1-\sum_{u} L_{u 1}+\sum_{v} P_{v 2}-\sum_{w} P_{w 3}+\cdots
$$

where

- $L_{u 1}$ is the loop transmittance of the $u$ th loop,
- $P_{v 2}$ is the product of the loop transmittances of the $v$ th pair of nontouching loops (loops that have neither nodes nor branches in common),


## Mason's Gain Formula Cont'd

The graph determinant $\Delta$ is given by

$$
\Delta=1-\sum_{u} L_{u 1}+\sum_{v} P_{v 2}-\sum_{w} P_{w 3}+\cdots
$$

where

- $L_{u 1}$ is the loop transmittance of the $u$ th loop,
- $P_{\mathrm{v} 2}$ is the product of the loop transmittances of the $v$ th pair of nontouching loops (loops that have neither nodes nor branches in common),
- $P_{w 3}$ is the product of loop transmittances of the $w$ th triplet of nontouching loops, etc.


## Mason's Gain Formula Cont'd

The graph determinant $\Delta$ is given by

$$
\Delta=1-\sum_{u} L_{u 1}+\sum_{v} P_{v 2}-\sum_{w} P_{w 3}+\cdots
$$

where

- $L_{u 1}$ is the loop transmittance of the $u$ th loop,
- $P_{v 2}$ is the product of the loop transmittances of the $v$ th pair of nontouching loops (loops that have neither nodes nor branches in common),
- $P_{w 3}$ is the product of loop transmittances of the $w$ th triplet of nontouching loops, etc.
- The subgraph determinant $\Delta_{k}$ can be determined by applying the formula for $\Delta$ to the subgraph that does not touch the $k$ th direct path between nodes $i$ and $j$.

Analyze the discrete-time system shown in the figure using Mason's gain formula:


Fig. $6 a$


Fig. $6 b$

## Solution



Direct Paths:
ABCDE, ABCFDE
ABCFGDE, ABCFGHDE
Loops:
BCFB, BCFGB, BCFGHB
NOTE: CDFC is not a loop!
Transmittances of direct paths:

$$
T_{1}=a_{0}, \quad T_{2}=a_{1} \mathcal{E}^{-1}, \quad T_{3}=a_{2} \mathcal{E}^{-2}, \quad T_{4}=a_{3} \mathcal{E}^{-3}
$$

Transmittances of loops:

$$
L_{11}=-b_{1} \mathcal{E}^{-1}, \quad L_{21}=-b_{2} \mathcal{E}^{-2}, \quad L_{31}=-b_{3} \mathcal{E}^{-3}
$$



Direct Paths:
ABCDE, ABCFDE
ABCFGDE, ABCFGHDE
Loops:
BCFB, BCFGB, BCFGHB
NOTE: CDFC is not a loop!
All loops are touching, since branch BC is common to all of them, and so

$$
P_{\mathrm{v} 2}=P_{w 3}=\cdots=0
$$

Thus, Mason's gain formula gives

$$
\Delta=1+b_{1} \mathcal{E}^{-1}+b_{2} \mathcal{E}^{-2}+b_{3} \mathcal{E}^{-3}
$$



Direct Paths:
ABCDE, ABCFDE
ABCFGDE, ABCFGHDE
Loops:
BCFB, BCFGB, BCFGHB
NOTE: CDFC is not a loop!
Branch BC is common to all direct paths between input and output. Hence it does not appear in any one of the subgraphs.
Thus, no loops are present in the $k$ subgraphs and so

$$
\Delta_{1}=\Delta_{2}=\Delta_{3}=\Delta_{4}=1
$$

Therefore, Mason's gain formula gives

$$
\begin{aligned}
y_{j}(n T) & =\frac{1}{\Delta}\left(\sum_{k} T_{k} \Delta_{k}\right) x_{i}(n T) \\
& =\left(\frac{\sum_{i=0}^{3} a_{i} \mathcal{E}^{-i}}{1+\sum_{i=1}^{3} b_{i} \mathcal{E}^{-i}}\right) \times(n T)
\end{aligned}
$$

or

$$
y(n T)=\sum_{i=0}^{3} a_{i} \mathcal{E}^{-i} x(n T)-\sum_{i=1}^{3} b_{i} \mathcal{E}^{-i} y(n T)
$$

This slide concludes the presentation. Thank you for your attention.

