Chapter 4 DISCRETE-TIME SYSTEMS 4.6 Convolution Summation 4.7 Stability

Copyright © 2005 Andreas Antoniou

Victoria, BC, Canada
Email: aantoniou@ieee.org

July 14, 2018

Introduction

Δ The convolution summation is of considerable importance for the characterization, representation, analysis, and design of discrete-time systems.
Δ This presentation will deal with the derivation, properties, and applications of the convolution summation.

Derivation

Δ An arbitrary excitation $x(n T)$ can be considered to be made up of a series of impulses as shown:

Derivation Cont'd

Δ What has been done graphically can now be done in terms of algebra.

Derivation Cont'd

Δ What has been done graphically can now be done in terms of algebra.
Δ An arbitrary signal can be written as

$$
\begin{aligned}
& x(n T)=\sum_{k=-\infty}^{\infty} x_{k}(n T) \\
& \text { where } \quad x_{k}(n T)
\end{aligned}=\left\{\begin{array}{ll}
x(k T) & \text { for } n=k \\
0 & \text { otherwise }
\end{array}\right\}
$$

Derivation Cont'd

Δ What has been done graphically can now be done in terms of algebra.
Δ An arbitrary signal can be written as

$$
\begin{gathered}
x(n T)=\sum_{k=-\infty}^{\infty} x_{k}(n T) \\
x_{k}(n T)= \begin{cases}x(k T) & \text { for } n=k \\
0 & \text { otherwise }\end{cases} \\
=x(k T) \delta(n T-k T)
\end{gathered}
$$

where
\triangle Hence

$$
\begin{equation*}
x(n T)=\sum_{k=-\infty}^{\infty} x(k T) \delta(n T-k T) \tag{A}
\end{equation*}
$$

Derivation Cont'd

$$
\begin{equation*}
x(n T)=\sum_{k=-\infty}^{\infty} x(k T) \delta(n T-k T) \tag{A}
\end{equation*}
$$

Δ Consider a linear time-invariant system and assume that its impulse response is given by

$$
h(n T)=\mathcal{R} \delta(n T)
$$

Derivation Cont'd

$$
\begin{equation*}
x(n T)=\sum_{k=-\infty}^{\infty} x(k T) \delta(n T-k T) \tag{A}
\end{equation*}
$$

Δ Consider a linear time-invariant system and assume that its impulse response is given by

$$
h(n T)=\mathcal{R} \delta(n T)
$$

\triangle From Eq. (A), we have

$$
y(n T)=\mathcal{R} x(n T)=\mathcal{R} \sum_{k=-\infty}^{\infty} x(k T) \delta(n T-k T)
$$

Derivation Cont'd

$$
\begin{equation*}
x(n T)=\sum_{k=-\infty}^{\infty} x(k T) \delta(n T-k T) \tag{A}
\end{equation*}
$$

Δ Consider a linear time-invariant system and assume that its impulse response is given by

$$
h(n T)=\mathcal{R} \delta(n T)
$$

\triangle From Eq. (A), we have

$$
y(n T)=\mathcal{R} x(n T)=\mathcal{R} \sum_{k=-\infty}^{\infty} x(k T) \delta(n T-k T)
$$

Δ Since the system is linear,

$$
y(n T)=\sum_{k=-\infty}^{\infty} x(k T) \mathcal{R} \delta(n T-k T)
$$

$$
y(n T)=\sum_{k=-\infty}^{\infty} x(k T) \mathcal{R} \delta(n T-k T)
$$

Δ The system is also time-invariant and hence we get

$$
y(n T)=\sum_{k=-\infty}^{\infty} x(k T) h(n T-k T)
$$

$$
y(n T)=\sum_{k=-\infty}^{\infty} x(k T) \mathcal{R} \delta(n T-k T)
$$

\triangle The system is also time-invariant and hence we get

$$
y(n T)=\sum_{k=-\infty}^{\infty} x(k T) h(n T-k T)
$$

Δ This relation is known as the convolution summation.

Alternative Form

Δ If we let $k=n-k^{\prime}$ in the convolution summation

$$
y(n T)=\sum_{k=-\infty}^{\infty} x(k T) h(n T-k T)
$$

then $k^{\prime}=n-k$.

Alternative Form

Δ If we let $k=n-k^{\prime}$ in the convolution summation

$$
y(n T)=\sum_{k=-\infty}^{\infty} x(k T) h(n T-k T)
$$

then $k^{\prime}=n-k$.
\triangle If

$$
k \rightarrow \infty \quad \text { then } \quad k^{\prime} \rightarrow-\infty
$$

and if

$$
k \rightarrow-\infty \quad \text { then } \quad k^{\prime} \rightarrow \infty
$$

Alternative Form

Δ If we let $k=n-k^{\prime}$ in the convolution summation

$$
y(n T)=\sum_{k=-\infty}^{\infty} x(k T) h(n T-k T)
$$

then $k^{\prime}=n-k$.
\triangle If

$$
k \rightarrow \infty \quad \text { then } \quad k^{\prime} \rightarrow-\infty
$$

and if

$$
k \rightarrow-\infty \quad \text { then } \quad k^{\prime} \rightarrow \infty
$$

Δ Hence the convolution summation can also be expressed as

$$
y(n T)=\sum_{k^{\prime}=\infty}^{-\infty} x\left(n T-k^{\prime} T\right) h\left(k^{\prime} T\right)
$$

Alternative Form Cont'd

$$
y(n T)=\sum_{k^{\prime}=\infty}^{-\infty} x\left(n T-k^{\prime} T\right) h\left(k^{\prime} T\right)
$$

Δ Dropping the primes and reversing the order of summation, we obtain the identity

$$
y(n T)=\sum_{k=-\infty}^{\infty} x(k T) h(n T-k T)=\sum_{k=-\infty}^{\infty} h(k T) x(n T-k T)
$$

Special Cases

Δ Two special cases of the convolution summation are of particular interest.

Special Cases

Δ Two special cases of the convolution summation are of particular interest.
Δ If the system is causal, we have $h(n T)=0$ for $n<0$, and so

$$
y(n T)=\sum_{k=-\infty}^{n} x(k T) h(n T-k T)=\sum_{k=0}^{\infty} h(k T) x(n T-k T)
$$

Special Cases

Δ Two special cases of the convolution summation are of particular interest.
Δ If the system is causal, we have $h(n T)=0$ for $n<0$, and so

$$
y(n T)=\sum_{k=-\infty}^{n} x(k T) h(n T-k T)=\sum_{k=0}^{\infty} h(k T) x(n T-k T)
$$

Δ If, in addition, $x(n T)=0$ for $n<0$, we have

$$
y(n T)=\sum_{k=0}^{n} x(k T) h(n T-k T)=\sum_{k=0}^{n} h(k T) x(n T-k T)
$$

Important Property

$$
y(n T)=\sum_{k=0}^{n} x(k T) h(n T-k T)=\sum_{k=0}^{n} h(k T) x(n T-k T)
$$

Evidently, if the impulse response $h(n T)$ of a discrete-time system is known, its response to an arbitrary excitation can be readily determined by using the convolution summation.

Graphical Representation

Using the convolution summation, find the unit-step response of a discrete-time system characterized by the equation

$$
y(n T)=x(n T)+p y(n T-T)
$$

The system has an impulse response

$$
h(n T)=u(n T) p^{n}
$$

and is initially relaxed (i.e., $y(n T)=0$ for $n<0$).

Solution The convolution summation gives

$$
\begin{aligned}
y(n T)= & \mathcal{R} u(n T)=\sum_{k=-\infty}^{\infty} u(k T) p^{k} u(n T-k T) \\
= & \cdots+\overbrace{u(-T) p^{-1} u(n T+T)}^{k=-1}+\overbrace{u(0) p^{0} u(n T)}^{k=0}+\overbrace{u(T) p^{1} u(n T-T)}^{k=1} \\
& +\cdots+\overbrace{u(n T) p^{n} u(0)}^{k=n}+\overbrace{u(n T+T) p^{n+1} u(-T)}^{k=n+1}+\cdots
\end{aligned}
$$

For $n<0$, the unit step assumes a value of zero and hence we get $y(n T)=0$ since all the terms are zero.

$$
\begin{aligned}
y(n T)= & \mathcal{R} u(n T)=\sum_{k=-\infty}^{\infty} u(k T) p^{k} u(n T-k T) \\
= & \cdots+\overbrace{u(-T) p^{-1} u(n T+T)}^{k=-1}+\overbrace{u(0) p^{0} u(n T)}^{k=0}+\overbrace{u(T) p^{1} u(n T-T)}^{k=1} \\
& +\cdots+\overbrace{u(n T) p^{n} u(0)}^{k=n}+\overbrace{u(n T+T) p^{n+1} u(-T)}^{k=n+1}+\cdots
\end{aligned}
$$

For $n \geq 0$, we obtain

$$
y(n T)=1+p^{1}+p^{2}+\cdots+p^{n}=1+\sum_{n=1}^{n} p^{n}=\frac{1-p^{(n+1)}}{1-p}
$$

since this is a geometric series with a common ratio p.

For $n<0, y(n T)=0$.
For $n \geq 0$,

$$
y(n T)=\frac{1-p^{(n+1)}}{1-p}
$$

Therefore, the response can be expressed in closed form as

$$
y(n T)=u(n T) \frac{1-p^{(n+1)}}{1-p}
$$

$$
y(n T)=\mathcal{R} u(n T)=u(n T) \frac{1-p^{(n+1)}}{1-p}
$$

and is initially relaxed (i.e., $y(n T)=0$ for $n<0$).
Find the response produced by the excitation

$$
x(n T)= \begin{cases}1 & \text { for } 0 \leq n \leq 4 \\ 0 & \text { otherwise }\end{cases}
$$

Solution We observe that

$$
x(n T)=\left\{\begin{array}{ll}
1 & \text { for } 0 \leq n \leq 4 \\
0 & \text { otherwise }
\end{array}=u(n T)-u(n T-5 T)\right.
$$

and so

$$
y(n T)=\mathcal{R} x(n T)=\mathcal{R} u(n T)-\mathcal{R} u(n T-5 T)
$$

Since

$$
y(n T)=\mathcal{R} u(n T)=u(n T) \frac{1-p^{(n+1)}}{1-p}
$$

we get

$$
y(n T)=u(n T) \frac{1-p^{(n+1)}}{1-p}-u(n T-5 T) \frac{1-p^{(n-4)}}{1-p}
$$

An initially relaxed causal nonrecursive system was tested with an input

$$
x(n T)= \begin{cases}0 & \text { for } n<0 \\ n & \text { for } n \geq 0\end{cases}
$$

and found to have the response given by the following table:

n	0	1	2	3	4	5	6	7
$y(n T)$	0	1	4	10	20	30	40	50

(a) Find the impulse response of the system for values of n over the range $0 \leq n \leq 5$.
(b) Using the result in part (a), find the unit-step response for $0 \leq n \leq 5$.

Solution (a) Since the system is causal and $x(n T)=0$ for $n<0$, the convolution summation assumes the form

$$
\begin{aligned}
y(n T)=\mathcal{R} x(n T) & =\sum_{k=0}^{n} x(k T) h(n T-k T) \\
& =x(0) h(n T)+x(T) h(n T-T)+\cdots+h(0) x(n T)
\end{aligned}
$$

Solution (a) Since the system is causal and $x(n T)=0$ for $n<0$, the convolution summation assumes the form

$$
\begin{aligned}
y(n T)=\mathcal{R} x(n T) & =\sum_{k=0}^{n} x(k T) h(n T-k T) \\
& =x(0) h(n T)+x(T) h(n T-T)+\cdots+h(0) x(n T)
\end{aligned}
$$

Evaluating $y(n T)$ for $n=1,2, \ldots$, we get

$$
\begin{aligned}
y(T) & =x(0) h(T)+x(T) h(0)=0 \cdot h(T)+1 \cdot h(0)=1 \quad \text { or } \quad h(0)=1 \\
y(2 T) & =x(0) h(2 T)+x(T) h(T)+x(2 T) h(0) \\
& =0 \cdot h(2 T)+1 \cdot h(T)+2 \cdot h(0) \\
& =0+h(T)+2=4 \quad \text { or } \quad h(T)=2 \\
y(3 T) & =x(0) h(3 T)+x(T) h(2 T)+x(2 T) h(T)+x(3 T) h(0) \\
& =0 \cdot h(3 T)+1 \cdot h(2 T)+2 \cdot h(T)+3 \cdot h(0) \\
& =h(2 T)+2 \cdot 2+3 \cdot 1=10 \quad \text { or } \quad h(2 T)=3
\end{aligned}
$$

$$
\begin{aligned}
y(4 T)= & x(0) h(4 T)+x(T) h(3 T)+x(2 T) h(2 T)+x(3 T) h(T) \\
& +x(4 T) h(0) \\
= & 0 \cdot h(4 T)+1 \cdot h(3 T)+2 \cdot h(2 T)+3 \cdot h(T)+4 \cdot h(0) \\
= & h(3 T)+2 \cdot 3+3 \cdot 2+4 \cdot 1=20 \text { or } \quad h(3 T)=4 \\
y(5 T)= & x(0) h(5 T)+x(T) h(4 T)+x(2 T) h(3 T)+x(3 T) h(2 T) \\
& +x(4 T) h(T)+x(5 T) h(0) \\
= & 0 \cdot h(5 T)+1 \cdot h(4 T)+2 \cdot h(3 T)+3 \cdot h(2 T)+4 \cdot h(T)+5 \cdot h(0) \\
= & 0+h(4 T)+2 \cdot 4+3 \cdot 3+4 \cdot 2+5 \cdot 1=30 \text { or } \quad h(4 T)=0 \\
y(6 T)= & x(0) h(6 T)+x(T) h(5 T)+x(2 T) h(4 T)+x(3 T) h(3 T) \\
& +x(4 T) h(2 T)+x(5 T) h(T)+x(6 T) h(0) \\
= & 0 \cdot h(6 T)+1 \cdot h(5 T)+2 \cdot h(4 T)+3 \cdot h(3 T)+4 \cdot h(2 T) \\
& +5 \cdot h(T)+6 \cdot h(0) \\
= & h(5 T)+2 \cdot 0+3 \cdot 4+4 \cdot 3+5 \cdot 2+6 \cdot 1 \\
= & 40 \quad \text { or } \quad h(5 T)=0
\end{aligned}
$$

Summarizing the results so far, we have

$$
\begin{aligned}
h(0) & =1 \quad h(T)=2 \quad h(2 T)=3 \\
h(3 T) & =4 \quad h(4 T)=0 \quad h(5 T)=0
\end{aligned}
$$

(b) Using the convolution summation again, we obtain the unit-step response as follows:

$$
y(n T)=\mathcal{R} x(n T)=\sum_{k=0}^{n} u(k T) h(n T-k T)=\sum_{k=0}^{n} h(n T-k T)
$$

Hence

$$
\begin{aligned}
y(0) & =h(0)=1 \\
y(T) & =h(T)+h(0)=2+1=3 \\
y(2 T) & =h(2 T)+h(T)+h(0)=3+2+1=6 \\
y(3 T) & =h(3 T)+h(2 T)+h(T)+h(0)=10 \\
y(4 T) & =h(4 T)+h(3 T)+h(2 T)+h(T)+h(0)=15 \\
y(5 T) & =h(5 T)+h(4 T)+h(3 T)+h(2 T)+h(T)+h(0)=21
\end{aligned}
$$

Alternative Classification of Discrete-Time Systems

Discrete-time systems can also be classified on the basis of the duration of the impulse response as

- finite-duration impulse response (FIR) systems
- infinite-duration impulse response (IIR) systems

Alternative Classification Cont'd

Δ If the impulse response of a discrete-time system is of finite duration such that $h(n T)=0$ for $n>N$, then the convolution summation gives

$$
y(n T)=\sum_{k=0}^{N} h(k T) x(n T-k T)
$$

Alternative Classification Cont'd

Δ If the impulse response of a discrete-time system is of finite duration such that $h(n T)=0$ for $n>N$, then the convolution summation gives

$$
y(n T)=\sum_{k=0}^{N} h(k T) x(n T-k T)
$$

Δ This equation is of the same form as the difference equation of a nonrecursive system, i.e.,

$$
y(n T)=\sum_{i=0}^{N} a_{i} x(n T-i T)
$$

with

$$
h(0)=a_{0}, h(T)=a_{1}, \ldots, h(N T)=a_{N}
$$

Alternative Classification Cont'd

Thus we conclude that
Δ the impulse response of a nonrecursive system is always of finite duration, and

Alternative Classification Cont'd

Thus we conclude that
Δ the impulse response of a nonrecursive system is always of finite duration, and
Δ given an impulse response of finite duration, a nonrecursive system can be obtained.

Alternative Classification Cont'd

Δ An impulse response of infinite duration could be achieved with a nonrecursive system of infinite order or with a recursive system.

Alternative Classification Cont'd

Δ An impulse response of infinite duration could be achieved with a nonrecursive system of infinite order or with a recursive system.
Δ Since infinite-order systems are not feasible, an infinite-duration impulse response can only be achieved with a recursive system.

Alternative Classification Cont'd

Δ An impulse response of infinite duration could be achieved with a nonrecursive system of infinite order or with a recursive system.
Δ Since infinite-order systems are not feasible, an infinite-duration impulse response can only be achieved with a recursive system.
Δ To confuse the issue somewhat, it is possible to construct a recursive system that has a finite-duration impulse response!

An FIR Recursive System

Δ To illustrate that an FIR system can be represented by a recursive equation, or by a network with feedback, consider an FIR system represented by the equation

$$
y(n T)=x(n T)+3 x(n T-T)
$$

An FIR Recursive System

Δ To illustrate that an FIR system can be represented by a recursive equation, or by a network with feedback, consider an FIR system represented by the equation

$$
y(n T)=x(n T)+3 x(n T-T)
$$

Δ If we premultiply both sides of the equation by the operator $\left(1+4 \mathcal{E}^{-1}\right)$, we get

$$
\left(1+4 \mathcal{E}^{-1}\right) y(n T)=\left(1+4 \mathcal{E}^{-1}\right)[x(n T)+3 x(n T-T)]
$$

An FIR Recursive System

Δ To illustrate that an FIR system can be represented by a recursive equation, or by a network with feedback, consider an FIR system represented by the equation

$$
y(n T)=x(n T)+3 x(n T-T)
$$

Δ If we premultiply both sides of the equation by the operator $\left(1+4 \mathcal{E}^{-1}\right)$, we get

$$
\left(1+4 \mathcal{E}^{-1}\right) y(n T)=\left(1+4 \mathcal{E}^{-1}\right)[x(n T)+3 x(n T-T)]
$$

- After simplification, we have

$$
\begin{aligned}
y(n T)+4 y(n T-T)= & x(n T)+3 x(n T-T) \\
& +4 x(n T-T)+12 x(n T-2 T)
\end{aligned}
$$

An FIR Recursive System Cont'd

$$
\begin{aligned}
y(n T)+4 y(n T-T)= & x(n T)+3 x(n T-T) \\
& +4 x(n T-T)+12 x(n T-2 T)
\end{aligned}
$$

Δ Thus the FIR system can be represented by the recursive equation

$$
y(n T)=x(n T)+7 x(n T-T)+12 x(n T-2 T)-4 y(n T-T)
$$

An FIR Recursive System Cont'd

$$
\begin{aligned}
y(n T)+4 y(n T-T)= & x(n T)+3 x(n T-T) \\
& +4 x(n T-T)+12 x(n T-2 T)
\end{aligned}
$$

Δ Thus the FIR system can be represented by the recursive equation

$$
y(n T)=x(n T)+7 x(n T-T)+12 x(n T-2 T)-4 y(n T-T)
$$

Δ Evidently, the manipulation has actually increased the order of the difference equation and, therefore, no obvious advantage is gained by converting an FIR system into a recursive one.

An FIR Recursive System Cont'd

$$
\begin{aligned}
y(n T)+4 y(n T-T)= & x(n T)+3 x(n T-T) \\
& +4 x(n T-T)+12 x(n T-2 T)
\end{aligned}
$$

Δ Thus the FIR system can be represented by the recursive equation

$$
y(n T)=x(n T)+7 x(n T-T)+12 x(n T-2 T)-4 y(n T-T)
$$

Δ Evidently, the manipulation has actually increased the order of the difference equation and, therefore, no obvious advantage is gained by converting an FIR system into a recursive one.
Δ For most practical purposes nonrecursive systems are FIR systems and recursive systems are IIR systems.

Alternative Classification Cont'd

Note: An IIR system cannot be a nonrecursive system and vice-versa. However, a recursive system can be constructed that is also an FIR system but such a system would serve no useful purpose.

Stability

Δ A discrete-time system is said to be stable if and only if any bounded excitation results in a bounded response, i.e.,

$$
\text { if }|x(n T)|<\infty \text { then }|y(n T)|<\infty
$$

Stability

Δ A discrete-time system is said to be stable if and only if any bounded excitation results in a bounded response, i.e.,

$$
\text { if }|x(n T)|<\infty \text { then }|y(n T)|<\infty
$$

Δ For a linear and time-invariant system, the convolution summation gives

$$
y(n T)=\sum_{k=-\infty}^{\infty} h(k T) x(n T-k T)
$$

Stability

Δ A discrete-time system is said to be stable if and only if any bounded excitation results in a bounded response, i.e.,

$$
\text { if }|x(n T)|<\infty \text { then }|y(n T)|<\infty
$$

A For a linear and time-invariant system, the convolution summation gives

$$
y(n T)=\sum_{k=-\infty}^{\infty} h(k T) x(n T-k T)
$$

\triangle Hence

$$
|y(n T)|=\left|\sum_{k=-\infty}^{\infty} h(k T) x(n T-k T)\right| \leq \sum_{k=-\infty}^{\infty}|h(k T) \cdot x(n T-k T)|
$$

Stability Cont'd

$$
|y(n T)|=\left|\sum_{k=-\infty}^{\infty} h(k T) \times(n T-k T)\right| \leq \sum_{k=-\infty}^{\infty}|h(k T) \cdot x(n T-k T)|
$$

\triangle For example,

$$
\begin{aligned}
\mid \sum 2 \cdot 3 & +(-1) \cdot 4+2 \cdot(-2)+(-3) \cdot(-3) \mid=7 \\
& \leq \sum|2 \cdot 3|+|(-1) \cdot 4|+|2 \cdot(-2)|+|(-3) \cdot(-3)|=23
\end{aligned}
$$

Stability Cont'd

$$
|y(n T)|=\left|\sum_{k=-\infty}^{\infty} h(k T) x(n T-k T)\right| \leq \sum_{k=-\infty}^{\infty}|h(k T) \cdot x(n T-k T)|
$$

\triangle For example,

$$
\begin{aligned}
\mid \sum 2 \cdot 3 & +(-1) \cdot 4+2 \cdot(-2)+(-3) \cdot(-3) \mid=7 \\
& \leq \sum|2 \cdot 3|+|(-1) \cdot 4|+|2 \cdot(-2)|+|(-3) \cdot(-3)|=23
\end{aligned}
$$

If

$$
|x(n T)| \leq P<\infty \quad \text { for all } n
$$

we have

$$
|y(n T)| \leq P \sum_{k=-\infty}^{\infty}|h(k T)|
$$

Stability Cont'd

$$
|y(n T)| \leq P \sum_{k=-\infty}^{\infty}|h(k T)|
$$

Δ Clearly, if

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty}|h(k T)|<\infty \tag{B}
\end{equation*}
$$

then

$$
|y(n T)|<\infty \quad \text { for all } n
$$

Stability Cont'd

$$
|y(n T)| \leq P \sum_{k=-\infty}^{\infty}|h(k T)|
$$

\triangle Clearly, if

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty}|h(k T)|<\infty \tag{B}
\end{equation*}
$$

then

$$
|y(n T)|<\infty \quad \text { for all } n
$$

Δ Therefore, Eq. (B) constitutes a sufficient condition for stability.

Stability Cont'd

Δ A discrete-time system can be classified as stable if and only if its response is bounded for all possible bounded excitations.

Stability Cont'd

Δ A discrete-time system can be classified as stable if and only if its response is bounded for all possible bounded excitations.
Δ Let us consider a bounded excitation of the form

$$
x(n T-k T)=\left\{\begin{aligned}
P & \text { if } h(k T) \geq 0 \\
-P & \text { if } h(k T)<0
\end{aligned}\right.
$$

where P is a positive constant.

Stability Cont'd

Δ A discrete-time system can be classified as stable if and only if its response is bounded for all possible bounded excitations.
Δ Let us consider a bounded excitation of the form

$$
x(n T-k T)=\left\{\begin{aligned}
P & \text { if } h(k T) \geq 0 \\
-P & \text { if } h(k T)<0
\end{aligned}\right.
$$

where P is a positive constant.
Δ From the convolution summation, we get

$$
|y(n T)|=\left|\sum_{k=-\infty}^{\infty} x(n T-k T) h(k T)\right|
$$

Stability Cont'd

A A discrete-time system can be classified as stable if and only if its response is bounded for all possible bounded excitations.
Δ Let us consider a bounded excitation of the form

$$
x(n T-k T)=\left\{\begin{aligned}
P & \text { if } h(k T) \geq 0 \\
-P & \text { if } h(k T)<0
\end{aligned}\right.
$$

where P is a positive constant.
Δ From the convolution summation, we get

$$
|y(n T)|=\left|\sum_{k=-\infty}^{\infty} x(n T-k T) h(k T)\right|
$$

\triangle Hence

$$
|y(n T)|=\sum_{k=-\infty}^{\infty} P \cdot|h(k T)|=P \sum_{k=-\infty}^{\infty}|h(k T)|
$$

Stability Cont'd

$$
|y(n T)|=P \sum_{k=-\infty}^{\infty}|h(k T)|
$$

Δ Evidently, at least for the type of signal under consideration, the response will be bounded if and only if

$$
\sum_{k=-\infty}^{\infty}|h(k T)|<\infty
$$

which implies that this condition is also a necessary condition for stability.

Stability Cont'd

\triangle Summarizing, the condition

$$
\sum_{k=-\infty}^{\infty}|h(k T)|<\infty
$$

is both a necessary and sufficient condition for stability.

Stability Cont'd

\triangle Summarizing, the condition

$$
\sum_{k=-\infty}^{\infty}|h(k T)|<\infty
$$

is both a necessary and sufficient condition for stability.

- Note: In nonrecursive systems, the impulse response is both finite in value and also of finite duration and hence the above condition is always satisfied, i.e., nonrecursive systems are always stable.

A first-order system is characterized by the equation

$$
y(n T)=x(n T)+p y(n T-T)
$$

has an impulse response

$$
h(n T)=u(n T) p^{n}
$$

Check the stability of the system.

A first-order system is characterized by the equation

$$
y(n T)=x(n T)+p y(n T-T)
$$

has an impulse response

$$
h(n T)=u(n T) p^{n}
$$

Check the stability of the system.
Solution We can write

$$
\sum_{k=-\infty}^{\infty}|h(k T)|=1+|p|+\cdots+\left|p^{k}\right|+\cdots
$$

A first-order system is characterized by the equation

$$
y(n T)=x(n T)+p y(n T-T)
$$

has an impulse response

$$
h(n T)=u(n T) p^{n}
$$

Check the stability of the system.
Solution We can write

$$
\sum_{k=-\infty}^{\infty}|h(k T)|=1+|p|+\cdots+\left|p^{k}\right|+\cdots
$$

This is a geometric series and has a sum

$$
\sum_{k=-\infty}^{\infty}|h(k T)|=\lim _{n \rightarrow \infty} \frac{1-|p|^{(n+1)}}{1-|p|}
$$

If $p>1$,

$$
\sum_{k=-\infty}^{\infty}|h(k T)|=\lim _{n \rightarrow \infty} \frac{1-|p|^{(n+1)}}{1-|p|} \rightarrow \infty
$$

If $p>1$,

$$
\sum_{k=-\infty}^{\infty}|h(k T)|=\lim _{n \rightarrow \infty} \frac{1-|p|^{(n+1)}}{1-|p|} \rightarrow \infty
$$

and if $p=1$,

$$
\sum_{k=-\infty}^{\infty}|h(k T)|=1+1+1+\cdots=\infty
$$

If $p>1$,

$$
\sum_{k=-\infty}^{\infty}|h(k T)|=\lim _{n \rightarrow \infty} \frac{1-|p|^{(n+1)}}{1-|p|} \rightarrow \infty
$$

and if $p=1$,

$$
\sum_{k=-\infty}^{\infty}|h(k T)|=1+1+1+\cdots=\infty
$$

On the other hand, if $p<1$,

$$
\sum_{k=-\infty}^{\infty}|h(k T)|=\lim _{n \rightarrow \infty} \frac{1-|p|^{(n+1)}}{1-|p|} \rightarrow \frac{1}{1-|p|}=K<\infty
$$

where K is a positive constant. Therefore, the system is stable if and only if

$$
|p|<1
$$

A discrete-time system has an impulse response

$$
h(n T)=u(n T) e^{0.1 n T} \sin \frac{n \pi}{6}
$$

Check the stability of the system.

A discrete-time system has an impulse response

$$
h(n T)=u(n T) e^{0.1 n T} \sin \frac{n \pi}{6}
$$

Check the stability of the system.
Solution We can write

$$
\begin{aligned}
\sum_{k=0}^{\infty}|h(n T)| & =\sum_{k=0}^{\infty}\left|u(k T) e^{0.1 k T} \sin \frac{k \pi}{6}\right| \\
& =\sum_{k=3,9,15, \ldots}^{\infty}\left|e^{0.1 k T}\right|+\sum_{k \neq 3,9,15, \ldots}^{\infty}\left|e^{0.1 k T} \sin \frac{k \pi}{6}\right| \rightarrow \infty
\end{aligned}
$$

Therefore, the system is unstable.

This slide concludes the presentation. Thank you for your attention.

