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State-Space Representation

F Given a discrete-time network or signal flow graph, a
corresponding state-space representation can be deduced.

F A state-space representation provides another way of finding
the time-domain response of a discrete-time system.
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Derivation

Let us consider an arbitrary discrete-time system with the following
properties:

– It contains N unit delays.

– Each and every loop in the network includes at least one unit
delay.

The second condition will ensure that the signal flow graph of the
system is computable and, therefore, realizable in terms of unit
delays, adders, and multipliers.

See Sec. 2.8.1 for details about computability.
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Derivation Cont’d
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(a)

F Let us assign variables

qi (nT ) for i = 1, 2, . . . , N

at the outputs of the N unit delays.

F These variables represent stored quantities and can be referred to as
state variables.

F The signals at the inputs of the unit delays can, obviously, be
represented by corresponding variables qi (nT + T ).
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(a)

F Let us apply a signal x(nT ) at the input of the system assuming
that all the state variables are zero.

F The response produced at the input of the ith unit delay can be
determined by applying Mason’s gain formula, i.e.,

qi (nT + T ) =
1

∆

(∑
k

Tk∆k

)
x(nT )

to the signal flow graph of subnetwork A.
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Derivation Cont’d

· · ·
qi (nT + T ) =

1

∆

(∑
k

Tk∆k

)
x(nT )

Recall that

– Tk is the transmittance of the kth direct path between the
system input and the input of the ith unit delay,

– ∆ is the determinant of the signal flow graph, and

– ∆k is the determinant of the subgraph that does not touch
the kth direct path between the system input and the input of
the ith unit delay.
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Derivation Cont’d
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(a)

We note the following:

F Since each and every loop includes at least one unit delay, the
total number of loops cannot be larger than N.

F Hence all the loops will be broken if the unit delays are
removed, i.e., there are no loops inside subnetwork A.
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Derivation Cont’d

The determinants in Mason’s gain formula are given by

∆ = 1−
∑
u

Lu1 +
∑
v

Pv2 −
∑
w

Pw3 + · · ·

∆k = 1−
∑
u

L′u1 +
∑
v

P ′v2 −
∑
w

P ′w3 + · · ·

where Lu1 and L′u1are loop transmittances, Pv2 and P ′v2 are products of
pairs of loop transmittances, Pw3 and P ′w3are products of triplets of loop
transmittances, etc.

F Since there are no loops inside subnetwork A, we have

∆ = ∆k = 1

F Also all transmittances Tk are independent of the shift operator
E−1, i.e., they must be constants that depend on the multiplier
constants inside subnetwork A.
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Derivation Cont’d

F Therefore, the response produced at the input of the ith unit
delay by a nonzero input x(nT ), i.e.,

qi (nT + T ) =
1

∆

(∑
k

Tk∆k

)
x(nT )

can be expressed as

qi (nT + T ) = bix(nT ) for i = 1, 2, . . . , N (A)

where b1, b2, . . . , bN are constants which are independent of
nT for a time-invariant discrete-time system.
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Derivation Cont’d

F Similarly, if input x(nT ) and all the state variables except the
jth one are zero, we have

qi (nT + T ) = aijqj(nT ) for i = 1, 2, . . . , N (B)

where a1, a2, . . . , aN are constants which are independent of
nT for a time-invariant digital system.
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Derivation Cont’d

F Now if the system is linear, the response at the input of the
ith unit delay is obtained from Eqs. (A) and (B) as

qi (nT + T ) =
N∑
j=1

aijqj(nT ) + bix(nT ) for i = 1, 2, . . . , N

(C)
by applying the principle of superposition.

F Similarly, the response at the output of the system, y(nT ),
due to input excitation x(nT ) and state variables qj(nT )
for j = 1, 2, . . . , N can be expressed as

y(nT ) =
N∑
j=1

cjqj(nT ) + d0x(nT ) (D)
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Derivation Cont’d

F Summarizing the results obtained so far, the N-delay network we
started with can be represented by the state-space equations

qi (nT + T ) =
N∑
j=1

aijqj(nT ) + bix(nT ) for i = 1, 2, . . . , N (C)

y(nT ) =
N∑
j=1

cjqj(nT ) + d0x(nT ) (D)

F These equations can now be expressed in matrix form as

q(nT + T ) = Aq(nT ) + bx(nT )

y(nT ) = cTq(nT ) + dx(nT )
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Derivation Cont’d

· · ·
q(nT + T ) = Aq(nT ) + bx(nT )

y(nT ) = cTq(nT ) + dx(nT )

where

A =


a11 a12 · · · a1N
a21 a22 · · · a2N

...
...

...
aN1 aN2 · · · aNN

 , b =


b1
b2
...
bN


cT =

[
c1 c2 · · · cN

]
, d = d0

and
q(nT ) =

[
q1(nT ) q2(nT ) · · · qN(nT )

]T
is a column vector whose elements are the state variables of the
discrete-time system network.
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Derivation Cont’d

F Note that the choice of state variables is not unique.

For example, one can assign state variables
q1(nT ), q2(nT ), . . . , qN(nT ) to nodes in any order, and each
choice will give a valid state-space representation.

F In fact, given a set of state variables

q1(nT ), q2(nT ), . . . , qN(nT )

which can be represented by column vector q, another valid
set of state variables can be readily obtained by applying a
transformation of the form

q̃(nT ) = Mq(nT )

where M is an N × N matrix.
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Example

Obtain a state-space representation for the system represented by
the signal flow chart shown.
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Example Cont’d

Solution One possible assignment of state variables is shown in
the figure.
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We have

q1(nT + T ) = q2(nT )

q2(nT + T ) = q3(nT )

q3(nT + T ) = −b3q1(nT )− b2q2(nT )− b1q3(nT ) + x(nT )

Frame # 16 Slide # 27 A. Antoniou Digital Signal Processing – Sec. 4.8



Example Cont’d
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q1(nT + T ) = q2(nT )

q2(nT + T ) = q3(nT )

q3(nT + T ) = −b3q1(nT )− b2q2(nT )− b1q3(nT ) + x(nT )

The output of the system can be expressed as

y(nT ) = a3q1(nT ) + a2q2(nT ) + a1q3(nT ) + a0q3(nT + T )
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Example Cont’d

· · ·
q1(nT + T ) = q2(nT )

q2(nT + T ) = q3(nT )

q3(nT + T ) = −b3q1(nT )− b2q2(nT )− b1q3(nT ) + x(nT )

The output of the system can be expressed as

y(nT ) = a3q1(nT ) + a2q2(nT ) + a1q3(nT ) + a0q3(nT + T )

Now if we eliminate q3(nT + T ) in y(nT ), we get

y(nT ) = (a3 − a0b3)q1(nT ) + (a2 − a0b2)q2(nT )

+(a1 − a0b1)q3(nT ) + a0x(nT )
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Example Cont’d

The results obtained can now be expressed is matrix form as
follows:

q(nT + T ) = Aq(nT ) + bx(nT )

y(nT ) = cTq(nT ) + dx(nT )

where

A =

 0 1 0
0 0 1
−b3 −b2 −b1

 , b =

 0
0
1


cT =

[
(a3 − a0b3) (a2 − a0b2) (a1 − a0b1)

]
, d = a0

and
q(nT ) =

[
q1(nT ) q2(nT ) q3(nT )

]T
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Pitfall

Note: The state variables must always be defined at the outputs of
the unit delays!

Nodes 2 and 3 in the signal flow graph of the figure below represent
the outputs of the adders, not the outputs of the unit delays.
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Pitfall Cont’d

The pitfall can be avoided by adding new nodes at the outputs of
the unit delays as shown below.
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Pitfall Cont’d

Another way to avoid the problem is to use the network of the
system instead of the signal flow graph.
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Time-Domain Analysis

F The state-space characterization leads to a relatively simple
alternative time-domain analysis.

F Evaluating q(nT + T ) for n = 0, 1, 2, . . ., using the first
state-space equation, i.e.,

q(nT + T ) = Aq(nT ) + bx(nT )

we obtain

q(T ) = Aq(0) + bx(0)

q(2T ) = Aq(T ) + bx(T )

q(3T ) = Aq(2T ) + bx(2T )
...
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Time-Domain Analysis Cont’d

· · ·
q(T ) = Aq(0) + bx(0)

q(2T ) = Aq(T ) + bx(T )

q(3T ) = Aq(2T ) + bx(2T )

...

Hence
q(2T ) = A2q(0) + Abx(0) + bx(T )

q(3T ) = A3q(0) + A2bx(0) + Abx(T ) + bx(2T )

In general,

q(nT ) = Anq(0) +
n−1∑
k=0

A(n−1−k)bx(kT )

where A0 is the N × N identity matrix.
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Time-Domain Analysis Cont’d

· · ·
q(nT ) = Anq(0) +

n−1∑
k=0

A(n−1−k)bx(kT )

If we now use the second state-space equation, i.e.,

y(nT ) = cTq(nT ) + dx(nT )

we obtain the response of the system as

y(nT ) = cTAnq(0) + cT
n−1∑
k=0

A(n−1−k)bx(kT ) + dx(nT )
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Time-Domain Analysis Cont’d

· · ·
y(nT ) = cTAnq(0) + cT

n−1∑
k=0

A(n−1−k)bx(kT ) + dx(nT )

If the system is initially relaxed then the state variables are all zero
at time zero, i.e.,

q(0) = 0

Thus for an initially relaxed system, we have

y(nT ) = cT
n−1∑
k=0

A(n−1−k)bx(kT ) + dx(nT )
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Impulse Response

F By letting x(nT ) = δ(nT ) in the general formula for the
time-domain response, the impulse response h(nT ) of the
system can be expressed as

h(nT ) = Rδ(t) = cT
n−1∑
k=0

A(n−1−k)bδ(kT ) + dδ(nT )

which simplifies to

h(nT ) =

{
d0 for n = 0

cTA(n−1)b for n > 0
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Unit-Step Response

F Similarly, by letting x(nT ) = u(nT ) in the general formula of
the time-domain response, the unit-step response of the
system can be expressed as

y(nT ) = Ru(t) = cT
n−1∑
k=0

A(n−1−k)bu(kT ) + du(nT )

Hence, for n ≥ 0, we have

y(nT ) = cT
n−1∑
k=0

A(n−1−k)b + d
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Example

An initially relaxed system can be represented by the matrices

A =

[
0 1
1
4 −1

2

]
, b =

[
0
1

]
, cT =

[
7
8

5
4

]
, d = 3

2

Find h(17T ).
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Example Cont’d

Solution The impulse response is given by

h(nT ) =

{
d0 for n = 0

cTA(n−1)b for n > 0

and hence we have
h(17T ) = cTA16b

By forming A2, A4, and then A16, we get

h(17T ) =
[

7
8

5
4

] [ 610
65,536 - 987

32,768

- 987
131,072 - 1597

65,536

] [
0
1

]
= 1076

262,144
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Advantages

F Discrete-time systems can be analyzed very efficiently through
the manipulation of matrices, e.g., by using MATLAB.

F The state-space representation can be used to characterize
and analyze time-dependent systems, (i.e., the elements of
A, b, and cT could depend on nT ).

F The state-space representation offers a way for realizing
digital filters with increased signal-to-noise ratios.
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This slide concludes the presentation.

Thank you for your attention.
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