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Introduction

% Previous presentations dealt with time-domain analysis
through the use of mathematical induction or on the basis of
the state-space representation.
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serious difficulties when the system order is increased to two
or higher.
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% Although the induction method is rather intuitive, it runs into
serious difficulties when the system order is increased to two
or higher.

% The state-space approach, on the other hand, yields solutions
in the form of infinite summations rather than in terms of
closed-form solutions.
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Introduction

% Previous presentations dealt with time-domain analysis
through the use of mathematical induction or on the basis of
the state-space representation.

% Although the induction method is rather intuitive, it runs into
serious difficulties when the system order is increased to two
or higher.

% The state-space approach, on the other hand, yields solutions
in the form of infinite summations rather than in terms of
closed-form solutions.

% The z transform approach overcomes these difficulties and it
is, therefore, the preferred approach.
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Time-Domain Analysis

% As is shown earlier, a discrete-time system with excitation
x(nT), response y(nT), and impulse response h(nT) is
characterized by the equation

Y(z) = H(z)X(z2)
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Time-Domain Analysis

% As is shown earlier, a discrete-time system with excitation
x(nT), response y(nT), and impulse response h(nT) is
characterized by the equation

Y(z) = H(z)X(z2)

% Therefore, the response produced by an arbitrary excitation
can be readily obtained as

y(nT) = Z7[H(2)X(2)]
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Time-Domain Analysis

% As is shown earlier, a discrete-time system with excitation
x(nT), response y(nT), and impulse response h(nT) is
characterized by the equation

Y(z) = H(z)X(z2)

% Therefore, the response produced by an arbitrary excitation
can be readily obtained as

y(nT) = Z7[H(2)X(2)]

% The inverse z transform can be obtained by using any one of
the standard inversion techniques described in Chap. 3.
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A discrete-time system is characterized by the transfer function

where

Find the unit-step response.
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The response of the system is given by
y(nT) = Z7[H(2)X(2)]

The z transform of the input is given by
z

-1

Expanding H(z)X(z)/z into partial fractions gives

R()Z Rlz R2Z
- +

1 ) T e-m)

where Ry =2, Ry = %e—ﬁﬂ/{ and R, =R} = \%eﬁnm_

X(z) = Zu(nT) = .

H(z)X(z) =
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The response of the system is given by
y(nT) = Z7[H(2)X(2)]

The z transform of the input is given by

z
X(z) =Zu(nT) =
(2) = 2u(nT) = 2
Expanding H(z)X(z)/z into partial fractions gives
R()Z Rlz R2Z

H(z)X(z) =

+ +
P Py R sy
where Ry =2, Ry = %e—ﬁﬂ/{ and R, =R} = \%eﬁnm_

From the table of standard z transforms, we have

nT) = 2u(n u(n 2 gimsa n~ie_j57r/4
v T)z(T)+(T)<ﬁeJ ) -
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1

V2
1

Bample s
y(nT) = 2u(nT) + u(nT) (\%ef'ﬂ/“)n
+u(nT) <%e‘j”/4>

—j57/4
e[57r/4
V2
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y(nT) =2u(nT)+ u(nT) <%eiﬂ'/4) B

e 5m/4
V2
+U(nT) <ie_f7r/4>" . iej57r/4
V2 2z
= 2u(nT) +

L u(nT) (el =9/ 4 iS5}/
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y(nT) = 2u(nT) + u(nT) (1ej”/4> L gssna

V2 V2
u(n Le_'”/ n.i 577/
+(T)<ﬁ 14) 79
= 2u(nT) + (\[21)r1+1u(n7-)(ej(n—5)7r/4 + e—j(n_5)7r/4)
=2u(nT)+ (\[21)n_1u(nT) cos [(n - 5)%} n
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y(nT) = 2u(nT) + %u(nr) cos [(n . 5)3}

4
1.8 -
12 +
0

nT

Unit-step response
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A discrete-time system is characterized by the transfer function

where

Find the response of the system to a sinusoidal excitation

x(nT)=u(nT)sinwnT
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The response of the system is given by
y(nT) = 27 H(2)X(2)]
The z transform of the input is given by

zsinwT
z2 —2zcoswT +1

X(z) = Z[u(nT)sinwnT] =

_ zsinwT
- (z—eT)(z— e wT)

and hence
2 .
—z+1 zsinwT
H X n—1 — z z . i ‘ . n—1
@X@ = e ) e e
22—z41 sinwT

n

T e-p)z-m) - N)z—erT) "
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22— z4+1 sinwT
. , _ -z
(z=p1)(z=p2) (z—e&T)(z—edwT)

n

H(z)X(2)z" ! =

Since the system is causal y(nT) = 0 for n < 0 and hence the
general inversion formula gives

y(nT) = u(nT)[R1 + Ry + R3 + R4]

where Ry, Ry, R, and Ry are the residues of H(z)X(z)z"! at
poles p1, p2, p3 = /T and pg = T, respectively.

The residues can be evaluated as shown in the next three slides.
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z22—z+1 sinwT

n—1 __ . .
H(z)X(z)z"" = T ) (e )T

R, — lim [22—24—1' 'sian ' -z"}
e o)
_ p?—p1+1 sinwT n
- { (pr—p2)  (p1—eT)(pr—ed*7) -pl}

= p(w)e*®) (\%)”e,‘nw/zx — p(w) (%)”e,-[nw/z;w(w)]

pw) = p?—p1+1 sinwT
where (p1 —p2) (p1— &%T)(py — e=dT)
2 .
pi—p1+1 sinwT
P(w) = arg { . : :
) Pi-p2) (i) e T

Frame # 11 Slide # 19 A. Antoniou Digital Signal Processing — Sec. 5.4



HX (D)o = 2 =2 +] sinwT .

z-p)z—p) (z—e*T)(z—eT) *

Ry = lim [H(z)X(2)z""]
z=el¥

sinwT

— jwT jnw T
= H(e™) o — ey &
1 . .
_ e/wT e;an
2 H(T)
” 1 . .
R4 _ R3 =_2_jH(e ij)e Jjnw T
o = - = E 9Dar
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Ri = o) (Z5) s, R, = ) () erdim/assto)
Ry = %H(ejWT)ej””T, Ry = —%J,H(e*j“’T)e*j"‘“T
If we now let
H(e*T) = M(w)e?™)  then H(e“T) = M(w)e /)
and so
y(nT) = u(nT)[p(w) (&) &+ 4 plu) (&) et/ el

+lM(w)ej9(w)ejan o

1 M(w)efﬁ(w)efjan]
2j

2

Frame # 13 Slide # 21 A. Antoniou Digital Signal Processing — Sec. 5.4



y(nT) = u(nT)|p(w (%) el["”/4+¢(w)]+p(w)(\[) e Jlnm/4+ ()

1 , ]
+ /\/I(w) ejan ZM(w)efﬂ(w)efjan}

p(w (L) [e/[mr/4+w( >1+e—j[mr/4+w<w)1}

{

(w) [ Sl T+6(w)] _ e—j[nwmw)}”
nT){n(
)

o) (&) cosl + v(w)]
M(w)sin[nw T + O(w )]} [

The cosine term is a transient component that tends to zero as n — oo
whereas the sine term represents the steady-state response of the system.

Frame # 14 Slide # 22 A. Antoniou Digital Signal Processing — Sec. 5.4



This slide concludes the presentation.
Thank you for your attention.

Frame # 15 Slide # 23 A. Antoniou Digital Signal Processing — Sec. 5.4



