Chapter 5
 THE APPLICATION OF THE Z TRANSFORM
 5.6 Transfer Functions for Digital Filters
 5.7 Amplitude and Delay Distortion

Copyright © 2005 Andreas Antoniou
Victoria, BC, Canada
Email: aantoniou@ieee.org

July 14, 2018

Introduction

\Rightarrow Previous presentations dealt with the frequency response of discrete-time systems, which is obtained by using the transfer function.

Introduction

\Rightarrow Previous presentations dealt with the frequency response of discrete-time systems, which is obtained by using the transfer function.
\Rightarrow In this presentation, we examine some of the basic types of transfer functions that characterize some typical first- and second-order filter types known as biquads.

Introduction

\Rightarrow Previous presentations dealt with the frequency response of discrete-time systems, which is obtained by using the transfer function.
\Rightarrow In this presentation, we examine some of the basic types of transfer functions that characterize some typical first- and second-order filter types known as biquads.
\Rightarrow Biquads are often used as basic digital-filter blocks to construct high-order filters.

First-Order Transfer Functions

\Rightarrow A first-order transfer function can have only a real zero and a real pole, i.e.,

$$
H(z)=\frac{z-z_{0}}{z-p_{0}}
$$

First-Order Transfer Functions

\Rightarrow A first-order transfer function can have only a real zero and a real pole, i.e.,

$$
H(z)=\frac{z-z_{0}}{z-p_{0}}
$$

\Rightarrow To ensure that the system is stable, the pole must satisfy the condition $-1<p_{0}<1$.

First-Order Transfer Functions

\Rightarrow A first-order transfer function can have only a real zero and a real pole, i.e.,

$$
H(z)=\frac{z-z_{0}}{z-p_{0}}
$$

\Rightarrow To ensure that the system is stable, the pole must satisfy the condition $-1<p_{0}<1$.
\Rightarrow The zero can be anywhere on the real axis of the z plane.

First-Order Transfer Functions Cont'd

\Rightarrow If the pole is close to point $(1,0)$ and the zero is close to or at point $(-1,0)$, then we have a lowpass filter.

First-Order Transfer Functions Cont'd

\Rightarrow If the pole is close to point $(1,0)$ and the zero is close to or at point $(-1,0)$, then we have a lowpass filter.
\Rightarrow If the zero and pole positions are interchanged, then we get a highpass filter.

First-Order Transfer Functions Cont'd

\Rightarrow Certain applications require discrete-time systems that have a constant amplitude response and a varying phase response.
Such systems can be constructed by using allpass transfer functions.

First-Order Transfer Functions Cont'd

\Rightarrow Certain applications require discrete-time systems that have a constant amplitude response and a varying phase response.
Such systems can be constructed by using allpass transfer functions.
\Rightarrow A first-order allpass transfer function is of the form

$$
H(z)=\frac{p_{0} z-1}{z-p_{0}}=p_{0} \frac{z-1 / p_{0}}{z-p_{0}}
$$

where the zero is the reciprocal of the pole.

First-Order Transfer Functions Cont'd

\Rightarrow Certain applications require discrete-time systems that have a constant amplitude response and a varying phase response.
Such systems can be constructed by using allpass transfer functions.
\Rightarrow A first-order allpass transfer function is of the form

$$
H(z)=\frac{p_{0} z-1}{z-p_{0}}=p_{0} \frac{z-1 / p_{0}}{z-p_{0}}
$$

where the zero is the reciprocal of the pole.
\Rightarrow The frequency response of a system characterized by $H(z)$ is given by

$$
H\left(e^{j \omega T}\right)=\frac{p_{0} e^{j \omega T}-1}{e^{j \omega T}-p_{0}}=\frac{p_{0} \cos \omega T+j p_{0} \sin \omega T-1}{\cos \omega T+j \sin \omega T-p_{0}}
$$

First-Order Transfer Functions Cont'd

$$
H\left(e^{j \omega T}\right)=\frac{p_{0} e^{j \omega T}-1}{e^{j \omega T}-p_{0}}=\frac{p_{0} \cos \omega T+j p_{0} \sin \omega T-1}{\cos \omega T+j \sin \omega T-p_{0}}
$$

\Rightarrow The amplitude and phase responses are given by

$$
\begin{aligned}
M(\omega) & =\left|\frac{p_{0} \cos \omega T-1+j p_{0} \sin \omega T}{\cos \omega T-p_{0}+j \sin \omega T}\right| \\
& =\left[\frac{\left(p_{0} \cos \omega T-1\right)^{2}+\left(p_{0} \sin \omega T\right)^{2}}{\left(\cos \omega T-p_{0}\right)^{2}+(\sin \omega T)^{2}}\right]^{\frac{1}{2}}=1
\end{aligned}
$$

and

$$
\theta(\omega)=\tan ^{-1} \frac{p_{0} \sin \omega T}{p_{0} \cos \omega T-1}-\tan ^{-1} \frac{\sin \omega T}{\cos \omega T-p_{0}}
$$

respectively.

Second-Order Lowpass Biquad

\Rightarrow A lowpass second-order transfer function can be constructed by placing a complex-conjugate pair of poles anywhere inside the unit circle and a pair of zeros at the Nyquist point:

Second-Order Lowpass Biquad Cont'd

\Rightarrow The transfer function of the lowpass biquad assumes the form:

$$
H_{L P}(z)=\frac{(z+1)^{2}}{\left(z-r e^{j \phi}\right)\left(z-r e^{-j \phi}\right)}=\frac{z^{2}+2 z+1}{z^{2}-2 r(\cos \phi) z+r^{2}}
$$

where $0<r<1$.

Second-Order Lowpass Biquad Cont'd

\Rightarrow As the poles move closer to the unit circle, the amplitude response develops a peak at frequency $\omega=\phi / T$ while the slope of the phase response tends to become steeper and steeper at that frequency.

Second-Order Highpass Biquad

\Rightarrow A highpass second-order transfer function can be constructed by placing a complex-conjugate pair of poles anywhere inside the unit circle and a pair of zeros at point $(1,0)$:

Second-Order Highpass Biquad Cont'd

\Rightarrow The transfer function of the highpass biquad assumes the form:

$$
H_{H P}(z)=\frac{(z-1)^{2}}{z^{2}-2 r(\cos \phi) z+r^{2}}=\frac{\left(z^{2}-2 z+1\right)}{z^{2}-2 r(\cos \phi) z+r^{2}}
$$

where $0<r<1$.

Second-Order Highpass Biquad Cont'd

\Rightarrow As the poles move closer to the unit circle, the amplitude response develops a peak at frequency $\omega=\phi / T$ while the slope of the phase response tends to become steeper and steeper at that frequency.

Second-Order Bandpass Biquad

\Rightarrow A bandpass second-order transfer function can be constructed by placing a complex-conjugate pair of poles anywhere inside the unit circle, zeros at points $(-1,0)$ and $(1,0)$:

Second-Order Bandpass Biquad Cont'd

\Rightarrow The transfer function of the bandpass biquad assumes the form:

$$
H_{B P}(z)=\frac{(z+1)(z-1)}{z^{2}-2 r(\cos \phi) z+r^{2}}
$$

where $0<r<1$.

Second-Order Bandpass Biquad Cont'd

\Rightarrow As the poles move closer to the unit circle, the amplitude response develops a peak at frequency $\omega=\phi / T$ while the slope of the phase response tends to become steeper and steeper at that frequency.

Second-Order Notch Biquad

\Rightarrow A notch second-order transfer function can be constructed by placing a complex-conjugate pair of poles anywhere inside the unit circle, and a complex-conjugate pair of zeros on the unit circle.

There are three possibilities:

Second-Order Notch Biquad Cont'd

\Rightarrow The transfer function of the bandpass biquad assumes the form:

$$
H_{N}(z)=\frac{z^{2}-2(\cos \psi) z+1}{z^{2}-2 r(\cos \phi) z+r^{2}}
$$

where $0<r<1$.

Second-Order Notch Biquad Cont'd

\Rightarrow If $\psi=\pi / 4, \psi=\pi / 2$, or $\psi=3 \pi / 4$, the notch filter behaves as a highpass, bandstop, or lowpass filter.

Second-Order Allpass Biquad

\Rightarrow An allpass second-order transfer function can be constructed by placing a complex-conjugate pair of poles anywhere inside the unit circle and a complex-conjugate pair of zeros that are the reciprocals of the poles outside the unit circle.

Second-Order Allpass Biquad Cont'd

\Rightarrow The transfer function of the bandpass biquad assumes the form:

$$
H_{A P}(z)=\frac{r^{2} z^{2}-2 r(\cos \phi) z+1}{z^{2}-2 r(\cos \phi) z+r^{2}}
$$

where $0<r<1$.

Second-Order Allpass Biquad Cont'd

\Rightarrow The transfer function of the bandpass biquad assumes the form:

$$
H_{A P}(z)=\frac{r^{2} z^{2}-2 r(\cos \phi) z+1}{z^{2}-2 r(\cos \phi) z+r^{2}}
$$

where $0<r<1$.
\Rightarrow We note that the numerator coefficients are the same as the denominator coefficients but in the reverse order.

Second-Order Allpass Biquad Cont'd

\Rightarrow The transfer function of the bandpass biquad assumes the form:

$$
H_{A P}(z)=\frac{r^{2} z^{2}-2 r(\cos \phi) z+1}{z^{2}-2 r(\cos \phi) z+r^{2}}
$$

where $0<r<1$.
\Rightarrow We note that the numerator coefficients are the same as the denominator coefficients but in the reverse order.
\Rightarrow The above is a general property, that is, an arbitrary transfer function with the above coefficient symmetry is an allpass transfer function independently of the order.

Second-Order Allpass Biquad Cont'd

$$
\begin{aligned}
& M_{A P}(\omega) \\
& =\left|H_{A P}\left(e^{j \omega T}\right)\right|=\left[H_{A P}\left(e^{j \omega T}\right) \cdot H_{A P}^{*}\left(e^{j \omega T}\right)\right]^{\frac{1}{2}} \\
& =\left[H_{A P}\left(e^{j \omega T}\right) \cdot H_{A P}\left(e^{-j \omega T}\right)\right]^{\frac{1}{2}} \\
& =\left\{\left[H_{A P}(z) \cdot H_{A P}\left(z^{-1}\right)\right]_{z=e^{j \omega T}}\right\}^{\frac{1}{2}} \\
& =\left\{\left[\frac{r^{2} z^{2}+2 r(\cos \phi) z+1}{z^{2}+2 r(\cos \phi) z+r^{2}} \cdot \frac{r^{2} z^{-2}+2 r(\cos \phi) z^{-1}+1}{z^{-2}+2 r(\cos \phi) z^{-1}+r^{2}}\right]_{z=e^{j \omega T}}\right\}^{\frac{1}{2}} \\
& =\left\{\left[\frac{r^{2} z^{2}+2 r(\cos \phi) z+1}{z^{2}+2 r(\cos \phi) z+r^{2}} \cdot \frac{r^{2}+2 r(\cos \phi) z+z^{2}}{1+2 r(\cos \phi) z+z^{2} r^{2}}\right]_{z=e^{j \omega T}}\right\}^{\frac{1}{2}}=1
\end{aligned}
$$

High-Order Filters

\Rightarrow Higher-order transfer functions can be obtained by forming products or sums of first- and/or second-order transfer functions.

High-Order Filters

\Rightarrow Higher-order transfer functions can be obtained by forming products or sums of first- and/or second-order transfer functions.
\Rightarrow Corresponding high-order filters can be constructed by connecting several biquads in cascade or in parallel.

High-Order Filters

\Rightarrow Higher-order transfer functions can be obtained by forming products or sums of first- and/or second-order transfer functions.
\Rightarrow Corresponding high-order filters can be constructed by connecting several biquads in cascade or in parallel.
\Rightarrow Methods for obtaining transfer functions that will yield specified frequency responses will be explored in later chapters.

Amplitude and Delay Distortion

\Rightarrow In practice, a discrete-time system can distort the information content of a signal to be processed.

Amplitude and Delay Distortion

\Rightarrow In practice, a discrete-time system can distort the information content of a signal to be processed.
\Rightarrow Two types of distortion can be introduced as follows:

Amplitude and Delay Distortion

\Rightarrow In practice, a discrete-time system can distort the information content of a signal to be processed.
\Rightarrow Two types of distortion can be introduced as follows:

- Amplitude distortion

Amplitude and Delay Distortion

\Rightarrow In practice, a discrete-time system can distort the information content of a signal to be processed.
\Rightarrow Two types of distortion can be introduced as follows:

- Amplitude distortion
- Delay (or phase) distortion

Amplitude and Delay Distortion Cont'd

\Rightarrow Consider an application where a digital filter characterized by a transfer function $H(z)$ is to be used to select a specific signal $x_{k}(n T)$ from a sum of signals

$$
x(n T)=\sum_{i=1}^{m} x_{i}(n T)
$$

Amplitude and Delay Distortion Cont'd

\Rightarrow Consider an application where a digital filter characterized by a transfer function $H(z)$ is to be used to select a specific signal $x_{k}(n T)$ from a sum of signals

$$
x(n T)=\sum_{i=1}^{m} x_{i}(n T)
$$

\Rightarrow Let the amplitude and phase responses of the filter be $M(\omega)$ and $\theta(\omega)$, respectively.

Amplitude and Delay Distortion Cont'd

\Rightarrow Consider an application where a digital filter characterized by a transfer function $H(z)$ is to be used to select a specific signal $x_{k}(n T)$ from a sum of signals

$$
x(n T)=\sum_{i=1}^{m} x_{i}(n T)
$$

\Rightarrow Let the amplitude and phase responses of the filter be $M(\omega)$ and $\theta(\omega)$, respectively.
\Rightarrow Two parameters associated with the phase response are the absolute delay $\tau_{a}(\omega)$ and the group delay $\tau_{g}(\omega)$ which are defined as

$$
\tau_{a}(\omega)=-\frac{\theta(\omega)}{\omega} \quad \text { and } \quad \tau_{g}(\omega)=-\frac{d \theta(\omega)}{d \omega}
$$

Amplitude and Delay Distortion Cont'd

\Rightarrow Consider an application where a digital filter characterized by a transfer function $H(z)$ is to be used to select a specific signal $x_{k}(n T)$ from a sum of signals

$$
x(n T)=\sum_{i=1}^{m} x_{i}(n T)
$$

\Rightarrow Let the amplitude and phase responses of the filter be $M(\omega)$ and $\theta(\omega)$, respectively.
\Rightarrow Two parameters associated with the phase response are the absolute delay $\tau_{a}(\omega)$ and the group delay $\tau_{g}(\omega)$ which are defined as

$$
\tau_{a}(\omega)=-\frac{\theta(\omega)}{\omega} \quad \text { and } \quad \tau_{g}(\omega)=-\frac{d \theta(\omega)}{d \omega}
$$

\Rightarrow As functions of frequency, $\tau_{a}(\omega)$ and $\tau_{g}(\omega)$ are known as the absolute-delay and group-delay characteristics.

Amplitude and Delay Distortion Cont'd

\Rightarrow Now assume that the amplitude spectrum of signal $x_{k}(n T)$ is concentrated in frequency band B given by

$$
B=\left\{\omega: \omega_{L} \leq \omega \leq \omega_{H}\right\}
$$

as shown.

Amplitude and Delay Distortion Cont'd

\Rightarrow Now assume that the amplitude spectrum of signal $x_{k}(n T)$ is concentrated in frequency band B given by

$$
B=\left\{\omega: \omega_{L} \leq \omega \leq \omega_{H}\right\}
$$

as shown.
\Rightarrow Also assume that the filter has amplitude and phase responses

$$
M(\omega)=\left\{\begin{array}{ll}
G_{0} & \text { for } \omega \in B \\
0 & \text { otherwise }
\end{array} \quad \text { and } \quad \theta(\omega)=-\tau_{g} \omega+\theta_{0} \quad \text { for } \omega \in B\right.
$$

respectively, where G_{0} and τ_{g} are constants.

Amplitude and Delay Distortion Cont'd

\Rightarrow The z transform of the output of the filter is given by

$$
Y(z)=H(z) X(z)=H(z) \sum_{i=1}^{m} X_{i}(z)=\sum_{i=1}^{m} H(z) X_{i}(z)
$$

Amplitude and Delay Distortion Cont'd

\Rightarrow The z transform of the output of the filter is given by

$$
Y(z)=H(z) X(z)=H(z) \sum_{i=1}^{m} X_{i}(z)=\sum_{i=1}^{m} H(z) X_{i}(z)
$$

\Rightarrow Thus the frequency spectrum of the output signal is obtained as

$$
\begin{aligned}
Y\left(e^{j \omega T}\right) & =\sum_{i=1}^{m} H\left(e^{j \omega T}\right) X_{i}\left(e^{j \omega T}\right) \\
& =\sum_{i=1}^{m} M(\omega) e^{j \theta(\omega)} X_{i}\left(e^{j \omega T}\right)
\end{aligned}
$$

Amplitude and Delay Distortion Cont'd

$$
Y\left(e^{j \omega T}\right)=\sum_{i=1}^{m} M(\omega) e^{j \theta(\omega)} X_{i}\left(e^{j \omega T}\right)
$$

\Rightarrow We have assumed that
$M(\omega)=\left\{\begin{array}{ll}G_{0} & \text { for } \omega \in B \\ 0 & \text { otherwise }\end{array} \quad\right.$ and $\quad \theta(\omega)=-\tau_{g} \omega+\theta_{0} \quad$ for $\omega \in B$ and hence we get

$$
Y\left(e^{j \omega T}\right)=G_{0} e^{-j \omega \tau_{g}+j \theta_{0}} X_{k}\left(e^{j \omega T}\right)
$$

since all signal spectrums except $X_{k}\left(e^{j \omega T}\right)$ will be multiplied by zero.

Amplitude and Delay Distortion Cont'd

$$
Y\left(e^{j \omega T}\right)=G_{0} e^{-j \omega \tau_{g}+j \theta_{0}} X_{k}\left(e^{j \omega T}\right)
$$

\Rightarrow If we now let $\tau_{g}=m T$ where m is a constant, we can write

$$
Y(z)=G_{0} e^{j \theta_{0}} z^{-m} X_{k}(z)
$$

Amplitude and Delay Distortion Cont'd

$$
Y\left(e^{j \omega T}\right)=G_{0} e^{-j \omega \tau_{g}+j \theta_{0}} X_{k}\left(e^{j \omega T}\right)
$$

\Rightarrow If we now let $\tau_{g}=m T$ where m is a constant, we can write

$$
Y(z)=G_{0} e^{j \theta_{0}} z^{-m} X_{k}(z)
$$

\Rightarrow Therefore, from the time-shifting theorem of the z transform, we deduce the output of the filter as

$$
y(n T)=G_{0} e^{j \theta_{0}} x_{k}(n T-m T)
$$

Amplitude and Delay Distortion Cont'd

$$
Y\left(e^{j \omega T}\right)=G_{0} e^{-j \omega \tau_{g}+j \theta_{0}} X_{k}\left(e^{j \omega T}\right)
$$

\Rightarrow If we now let $\tau_{g}=m T$ where m is a constant, we can write

$$
Y(z)=G_{0} e^{j \theta_{0}} z^{-m} X_{k}(z)
$$

\Rightarrow Therefore, from the time-shifting theorem of the z transform, we deduce the output of the filter as

$$
y(n T)=G_{0} e^{j \theta_{0}} x_{k}(n T-m T)
$$

\Rightarrow In effect, if the amplitude response of the filter is constant with respect to frequency band B and zero elsewhere and its phase response is a linear function of ω, that is, the group delay is constant in frequency band B, then the output signal is a delayed replica of signal $x_{k}(n T)$ except that a constant multiplier $G_{0} e^{j \theta_{0}}$ is introduced.

Amplitude and Delay Distortion Cont'd

\Rightarrow If the amplitude response of the system is not constant in frequency band B, then so-called amplitude distortion will be introduced since different frequency components of the signal will be amplified by different amounts.

Amplitude and Delay Distortion Cont'd

\Rightarrow If the amplitude response of the system is not constant in frequency band B, then so-called amplitude distortion will be introduced since different frequency components of the signal will be amplified by different amounts.
\Rightarrow If the group delay is not constant in band B, different frequency components will be delayed by different amounts, and delay (or phase) distortion will be introduced.

Amplitude and Delay Distortion Cont'd

\Rightarrow Amplitude distortion can be quite objectionable in practice.
Consequently, the amplitude response is required to be flat to within a prescribed tolerance in each frequency band that carries information.
\Rightarrow If the ultimate receiver of the signal is the human ear, e.g., when a speech or music signal is to be processed, delay distortion turns out to be quite tolerable.
\Rightarrow In other applications where images are involved, e.g., transmission of video signals, delay distortion can be as objectionable as amplitude distortion, and the delay characteristic is required to be fairly flat.

This slide concludes the presentation. Thank you for your attention.

