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Introduction

t Digital filters are often used to process discrete-time signals
that have been generated by sampling continuous-time signals.

t Frequently digital filters are designed indirectly through the
use of analog filters.t In order to understand the basis of these techniques, the
spectral relationships among continuous-time,
impulse-modulated, and discrete-time signals must be
understood.t These relationships are derived by using the Fourier transform,
the Fourier series, the z transform, and Poisson’s summation
formula.
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Introduction Cont’d

t Impulse-modulated signals comprise sequences of
continuous-time impulse functions and to understand their
significance, the properties of impulse functions must be
understood.

On the other hand, Poisson’s summation formula is based on
a relationship between the Fourier series and the Fourier
transform of periodic signals.

t This presentation begins with a review of the Fourier
transform.t Then impulse functions are defined and their properties are
examined.t Subsequently, the application of the Fourier transform to
impulse functions and periodic signals is investigated.
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Review of Fourier Transform

t The Fourier transform of a continuous-time signal x(t) is defined as

X (jω) =

∫ ∞
−∞

x(t)e−jωt dt (A)

t In general, X (jω) is complex and can be written as

X (jω) = A(ω)e jφ(ω)

where
A(ω) = |X (jω)| and φ(ω) = argX (jω)t Functions A(ω) and φ(ω) are the amplitude spectrum and phase

spectrum of the signal, respectively.t Together, the amplitude and phase spectrums constitute the
frequency spectrum.
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Review of Fourier Transform Cont’d

· · ·
X (jω) =

∫ ∞
−∞

x(t)e−jωt dt (A)

t Function x(t) is the inverse Fourier transform of X (jω) and is given
by

x(t) =
1

2π

∫ ∞
−∞

X (jω)e jωt dω (B)

t Eqs. (A) and (B) can be written in operator format as

X (jω) = Fx(t) and x(t) = F−1X (jω)

respectively.t An alternative shorthand notation is

x(t)↔X (jω)

Frame # 5 Slide # 14 A. Antoniou Digital Signal Processing – Secs. 6.1, 6.2



Review of Fourier Transform Cont’d

· · ·
X (jω) =

∫ ∞
−∞

x(t)e−jωt dt (A)

t Function x(t) is the inverse Fourier transform of X (jω) and is given
by

x(t) =
1

2π

∫ ∞
−∞

X (jω)e jωt dω (B)

t Eqs. (A) and (B) can be written in operator format as

X (jω) = Fx(t) and x(t) = F−1X (jω)

respectively.

t An alternative shorthand notation is

x(t)↔X (jω)

Frame # 5 Slide # 15 A. Antoniou Digital Signal Processing – Secs. 6.1, 6.2



Review of Fourier Transform Cont’d

· · ·
X (jω) =

∫ ∞
−∞

x(t)e−jωt dt (A)

t Function x(t) is the inverse Fourier transform of X (jω) and is given
by

x(t) =
1

2π

∫ ∞
−∞

X (jω)e jωt dω (B)

t Eqs. (A) and (B) can be written in operator format as

X (jω) = Fx(t) and x(t) = F−1X (jω)

respectively.t An alternative shorthand notation is

x(t)↔X (jω)

Frame # 5 Slide # 16 A. Antoniou Digital Signal Processing – Secs. 6.1, 6.2



Convergence Theorem

t The convergence theorem of the Fourier transform states that if

lim
T→∞

∫ T

−T
|x(t)| dt <∞

then the Fourier transform of x(t), X (jω), exists and its inverse can
be obtained by using the equation

x(t) =
1

2π

∫ ∞
−∞

X (jω)e jωt dω

t Many signals that are of considerable interest in practice violate the
above condition, for example, impulse functions, impulse-modulated
signals, and periodic signals.t However, convergence problems can be circumvented by paying
particular attention to the definition of impulse functions.
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Impulse Functions

t The unit impulse function has been defined in the past as

δ(t) = lim
τ→0

p̄τ (t) = lim
τ→0

{
1
τ for |t| ≤ τ/2

0 otherwise

t Obviously, this is an infinitesimally thin, infinitely tall pulse
whose area is equal to unity for any finite value of τ .
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Impulse Functions Cont’d

Pulse function p̄τ (t) for three values of τ :
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Mathematical Problem

t The Fourier transform of the unit impulse function as defined
in the past should be given by the integral

X (jω) =

∫ ∞
−∞

x(t)e−jωt dt

=

∫ ∞
−∞

lim
τ→0

[p̄τ (t)]e−jωt dt

where

p̄τ (t) =

{
1
τ for |t| ≤ τ/2

0 otherwise

t If we now attempt to evaluate the function p̄τ (t)e−jωt at
τ = 0, we find that it becomes infinite and, therefore, the
above integral cannot be evaluated.
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Mathematical Problem Cont’d

t We can write

F lim
τ→0

p̄τ (t) =

∫ ∞
−∞

lim
τ→0

[p̄τ (t)]e−jωt dt

≈
∫ τ/2

−τ/2
lim
τ→0

[
1

τ

]
dt

t Since the area of the pulse function p̄τ (t) is unity for any
finite value of τ , we might be tempted to assume that the
area is equal to unity even for τ = 0, i.e.,

F lim
τ→0

p̄τ (t) = 1
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Mathematical Problem Cont’d

t The Fourier transform of p̄τ (t) for a finite τ is given by

F p̄τ (t) =
1

τ
Fpτ (t) =

2 sinωτ/2

ωτ

t Obviously, this is well defined and, interestingly, it has the
limit

lim
τ→0
F p̄τ (t) = 1

t So far so good!

Frame # 11 Slide # 27 A. Antoniou Digital Signal Processing – Secs. 6.1, 6.2



Mathematical Problem Cont’d

t The Fourier transform of p̄τ (t) for a finite τ is given by

F p̄τ (t) =
1

τ
Fpτ (t) =

2 sinωτ/2

ωτt Obviously, this is well defined and, interestingly, it has the
limit

lim
τ→0
F p̄τ (t) = 1

t So far so good!

Frame # 11 Slide # 28 A. Antoniou Digital Signal Processing – Secs. 6.1, 6.2



Mathematical Problem Cont’d

t The Fourier transform of p̄τ (t) for a finite τ is given by

F p̄τ (t) =
1

τ
Fpτ (t) =

2 sinωτ/2

ωτt Obviously, this is well defined and, interestingly, it has the
limit

lim
τ→0
F p̄τ (t) = 1

t So far so good!

Frame # 11 Slide # 29 A. Antoniou Digital Signal Processing – Secs. 6.1, 6.2



Mathematical Problem Cont’d

t If we now attempt to find the inverse Fourier transform of 1,
we run into certain mathematical difficulties.

t From the definition of the inverse Fourier transform, we have

F−11 =
1

2π

∫ ∞
−∞

e jωt dω

=
1

2π

[∫ ∞
−∞

cosωt dω + j

∫ ∞
−∞

sinωt dω

]
t However, mathematicians will tell us that these integrals do

not converge or do not exist!
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Mathematical Problem Cont’d

t Summarizing, by cheating a little bit we can get a more or less
meaningful Fourier transform for the unit impulse function.

t Unfortunately, it is impossible to recover the impulse function
from its Fourier transform by applying the inverse Fourier
transform.
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Mathematical Problem Cont’d

t The impulse-function problem can be circumvented in two
ways, a practical and a theoretical one:

– The practical approach is easy to understand and apply but it
lacks rigor.

– The theoretical approach is rigorous but it is rather abstract
and more difficult to understand or apply in practical
situations.
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Practical Approach to Impulse Functions

t In the practical approach to impulse functions, a function γ(t) is
said to be a unit impulse function if, for any continuous function
x(t) over the range −ε < t < ε, the following relation is satisfied:∫ ∞

−∞
γ(t)x(t) dt l x(0) (C)

t The special symbol l is used to signify that the two sides can be
made to approach one another to any desired degree of precision
but cannot be made exactly equal.t Now consider the pulse function

lim
τ→ε

p̄τ (t) = p̄ε(t) =

{
1
ε for |t| ≤ ε/2

0 otherwise

where ε is a small but finite constant.
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Practical Approach · · · Cont’d

· · · ∫ ∞
−∞

γ(t)x(t) dt l x(0) (C)

t If we let
γ(t) = lim

τ→ε
p̄τ (t)

in the left-hand side of Eq. (C), we obtain∫ ∞
−∞

lim
τ→ε

[p̄τ (t)]x(t) dt =

∫ ε/2

−ε/2

1

ε
x(t) dt

l
1

ε
x(0)

∫ ε/2

−ε/2
dt l x(0)

t Thus we conclude that the very thin pulse function limτ→ε p̄τ (t)
behaves as an impulse function and, therefore, we can write

δ(t) = lim
τ→ε

p̄τ (t)
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Practical Approach · · · Cont’d

· · ·
δ(t) = lim

τ→ε
p̄τ (t)

t Now if we apply the Fourier transform to the impulse function
as defined, we get

lim
τ→ε

p̄τ (t)↔ lim
τ→ε

2 sinωτ/2

ωτ
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Practical Approach · · · Cont’d

· · ·
lim
τ→ε

p̄τ (t)↔ lim
τ→ε

2 sinωτ/2

ωτt As τ is reduced, the pulse function at the left tends to
become thinner and taller whereas the sinc function at the
right tends to be flattened out.
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Practical Approach · · · Cont’d

t For some small but finite ε, the sinc function will be equal to
unity to within an error δω∞ over some frequency range
−ω∞/2 < ω < ω∞/2.
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Practical Approach · · · Cont’d

t Therefore, we can write

δ(t) = lim
τ→ε

p̄τ (t)↔ lim
τ→ε

2 sinωτ/2

ωτ
= i(ω)

where i(ω) may be referred to as a frequency-domain unity
function.
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Practical Approach · · · Cont’d

t Summarizing,

– the Fourier transform of a time-domain impulse function is a
frequency-domain unity function, and

– the inverse Fourier transform of a frequency-domain unity
function is a time-domain impulse function,

i.e., δ(t)↔ i(ω)

t Since i(ω) l 1 for the frequency range of interest, we can write

δ(t) ! 1

where the wavy double arrow ! signifies that the relation is
approximate with the understanding that it can be made as exact as
desired by making ε sufficiently small.
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i.e., δ(t)↔ i(ω)

t Since i(ω) l 1 for the frequency range of interest, we can write

δ(t) ! 1

where the wavy double arrow ! signifies that the relation is
approximate with the understanding that it can be made as exact as
desired by making ε sufficiently small.
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Practical Approach · · · Cont’d

The impulse and unity functions can be represented by the
idealized graphs:

δ(t)

t ω

1
i(ω)

(a)

1
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Properties of Impulse Functions

t Assuming that x(t) is a continuous function of t over the
range −ε < t < ε, the following relations apply:

(a)
∫ ∞
−∞

δ(t − τ)x(t) dt =

∫ ∞
−∞

δ(−t + τ)x(t) dt l x(τ)

(b) δ(t − τ)x(t) = δ(−t + τ)x(t) l δ(t − τ)x(τ)

(c) δ(t)x(t) = δ(−t)x(t) l δ(t)x(0)

(See textbook for proofs.)
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Frequency-Domain Impulse Functions

t Given a transform pair
δ(t)↔ i(ω)

where δ(t) = lim
τ→ε

p̄τ (t)

i(ω) = lim
τ→ε

2 sinωτ/2

ωτ
l 1 for |ω| < ω∞

the corresponding transform pair

i(t)↔ 2πδ(ω)

where i(t) =
2 sin tε/2

tε
l 1 for |t| < t∞

δ(ω) = p̄ε(ω)

can be generated by applying the symmetry theorem of the Fourier
transform.
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Frequency-Domain Impulse Functions Cont’d

· · ·
i(t)↔ 2πδ(ω)

t Function i(t) is a time-domain unity function whereas δ(ω) is a
frequency-domain unit impulse function.

t Since i(t) l 1, we have

1 ! 2πδ(ω)
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Frequency-Domain Impulse Functions Cont’d

· · ·
i(t)↔ 2πδ(ω)

t Function i(t) is a time-domain unity function whereas δ(ω) is a
frequency-domain unit impulse function.

t Since i(t) l 1, we have

1 ! 2πδ(ω)
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Frequency-Domain Impulse Functions Cont’d

· · ·
i(t)↔ 2πδ(ω) or 1 ! 2πδ(ω)

This transform pair can be represented by the idealized graphs
shown.

i(t)
1

t ω

δ(ω)

(b)

2π
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Properties of Frequency-Domain Impulse Functions

t Assuming that X (jω) is a continuous function of ω over the range
−ε < ω < ε, the following relations apply:

(a)
∫ ∞
−∞

δ(ω −$)X (jω) dt

=

∫ ∞
−∞

δ(−ω +$)X (jω) dt l X (j$)

(b) δ(ω −$)X (jω) = δ(−ω +$)X (jω) l δ(t −$)X (j$)

(c) δ(ω)X (jω) = δ(−ω)X (jω) l δ(t)X (0)

(See textbook for details.)
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Fourier Transforms of Exponentials

t Since
δ(t)↔ i(ω)

the application of the time-shifting theorem gives

δ(t − t0)↔ i(ω)e−jωt0

and since i(ω) l 1, we get

δ(t − t0) ! e−jωt0

t Now applying the frequency-shifting theorem to the
frequency-domain impulse function, we obtain

i(t)e jω0t ↔ 2πδ(ω − ω0)

and since i(t) l 1, we get

e jω0t ! 2πδ(ω − ω0)
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Fourier Transforms of Exponentials
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Fourier Transforms of Sinusoidal Signals

t We know that
i(t)e jω0t ↔ 2πδ(ω − ω0)

and
i(t)e−jω0t ↔ 2πδ(ω + ω0)

t If we add the two equations, we get

i(t)(e jω0t + e−jω0t) = 2i(t) · cosω0t ↔ 2π[δ(ω + ω0) + δ(ω − ω0)]

and since i(t) l 1, we have

cosω0t ! π[δ(ω + ω0) + δ(ω − ω0)]
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Fourier Transforms of Sinusoidal Signals
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Fourier Transforms of Sinusoidal Signals Cont’d

· · ·
cosω0t ! π[δ(ω + ω0) + δ(ω − ω0)]

x(t)

t

X( jω)

−ω0 ω0 ω

π
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Fourier Transforms of Sinusoidal Signals Cont’d

t As before,
i(t)e jω0t ↔ 2πδ(ω − ω0)

and
i(t)e−jω0t ↔ 2πδ(ω + ω0)

t If we subtract the top equation from the bottom one, we have

i(t)(e−jω0t − e jω0t) = −2ji(t) · sinω0t ↔ 2π[δ(ω+ω0)− δ(ω−ω0)]

and since i(t) l 1, we can write

sinω0t ! jπ[δ(ω + ω0)− δ(ω − ω0)]
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Fourier Transforms of Sinusoidal Signals Cont’d

t As before,
i(t)e jω0t ↔ 2πδ(ω − ω0)

and
i(t)e−jω0t ↔ 2πδ(ω + ω0)

t If we subtract the top equation from the bottom one, we have

i(t)(e−jω0t − e jω0t) = −2ji(t) · sinω0t ↔ 2π[δ(ω+ω0)− δ(ω−ω0)]

and since i(t) l 1, we can write

sinω0t ! jπ[δ(ω + ω0)− δ(ω − ω0)]
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Fourier Transforms of Periodic Signals

t An arbitrary periodic signal can be represented by the Fourier series

x̃(t) =
∞∑

k=−∞
Xke

−jkω0t

t Hence

F x̃(t) =
∞∑

k=−∞
2πXkFe−jkω0t l

∞∑
k=−∞

2πXkδ(ω − kω0)

or
x̃(t) ! 2π

∞∑
k=−∞

Xkδ(ω − kω0)
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Fourier Transforms of Periodic Signals Cont’d

· · ·
x̃(t) ! 2π

∞∑
k=−∞

Xkδ(ω − kω0)

t Summarizing, the frequency spectrum of a periodic signal can be
represented by an infinite sequence of numbers Xk for
−∞ < k <∞, i.e., the Fourier-series coefficients as shown in
Chap. 2

ort by an infinite sequence of frequency-domain impulse functions of
strength 2πXk for −∞ < k <∞ as shown in the previous slide.
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Fourier Transforms of Periodic Signals Cont’d
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Fourier Transforms of Periodic Signals Cont’d

· · ·
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Xkδ(ω − kω0)

t Summarizing, the frequency spectrum of a periodic signal can be
represented by an infinite sequence of numbers Xk for
−∞ < k <∞, i.e., the Fourier-series coefficients as shown in
Chap. 2

ort by an infinite sequence of frequency-domain impulse functions of
strength 2πXk for −∞ < k <∞ as shown in the previous slide.
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Theoretical Approach to Impulse Functions

t The Fourier transform pairs generated through the practical
approach are approximate since the pulse width ε cannot be
reduced to absolute zero.

t However, by defining impulse functions in terms of generalized
functions, analogous, but exact, Fourier transform pairs can be
generated.t Unfortunately, impulse functions so defined are rather impractical
and difficult to implement in a laboratory.t See textbook for more details and references on generalized
functions.
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Theoretical Approach to Impulse Functions

t The Fourier transform pairs generated through the practical
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Theoretical Approach to Impulse Functions

t The Fourier transform pairs generated through the practical
approach are approximate since the pulse width ε cannot be
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generated.t Unfortunately, impulse functions so defined are rather impractical
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functions.
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Summary of Fourier Transforms Derived

x(t) X (jω)

δ(t) 1

1 2πδ(ω)

δ(t − t0) e−jωt0

e jω0t 2πδ(ω − ω0)

cosω0t π[δ(ω + ω0) + δ(ω − ω0)]

sinω0t jπ[δ(ω + ω0)− δ(ω − ω0)]
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This slide concludes the presentation.

Thank you for your attention.
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