Chapter 8
 REALIZATION

 8.2.3 State-Space Realization

 8.2.3 State-Space Realization
 8.2.4 Lattice Realization
 8.2.5 Cascade Realization
 8.2.6 Parallel Realization
 8.2.7 Transposition

Copyright © 2005 Andreas Antoniou
Victoria, BC, Canada
Email: aantoniou@ieee.org

July 14, 2018

State-Space Realization

- Another approach to the realization of digital filters is to start with the state-space characterization:

$$
\begin{aligned}
\mathbf{q}(n T+T) & =\mathbf{A q}(n T)+\mathbf{b} x(n T) \\
y(n T) & =\mathbf{c}^{T} \mathbf{q}(n T)+d x(n T)
\end{aligned}
$$

- Another approach to the realization of digital filters is to start with the state-space characterization:

$$
\begin{aligned}
\mathbf{q}(n T+T) & =\mathbf{A q}(n T)+\mathbf{b} x(n T) \\
y(n T) & =\mathbf{c}^{T} \mathbf{q}(n T)+d x(n T)
\end{aligned}
$$

- The state-space equations can be written as

$$
\begin{aligned}
q_{i}(n T+T) & =\sum_{j=1}^{N} a_{i j} q_{j}(n T)+b_{i} \times(n T) \quad \text { for } i=1,2, \ldots, N \\
y(n T) & =\sum_{j=1}^{N} c_{j} q_{j}(n T)+d_{0} x(n T)
\end{aligned}
$$

- Another approach to the realization of digital filters is to start with the state-space characterization:

$$
\begin{aligned}
\mathbf{q}(n T+T) & =\mathbf{A q}(n T)+\mathbf{b} x(n T) \\
y(n T) & =\mathbf{c}^{T} \mathbf{q}(n T)+d x(n T)
\end{aligned}
$$

- The state-space equations can be written as

$$
\begin{aligned}
q_{i}(n T+T) & =\sum_{j=1}^{N} a_{i j} q_{j}(n T)+b_{i} \times(n T) \quad \text { for } i=1,2, \ldots, N \\
y(n T) & =\sum_{j=1}^{N} c_{j} q_{j}(n T)+d_{0} x(n T)
\end{aligned}
$$

- A realization can now be obtained by converting the signal flow graph for the state-space equations into a network.

State-Space Realization Cont'd

Example

A discrete-time system can be represented by the state-space equations

$$
\begin{aligned}
\mathbf{q}(n T+T) & =\mathbf{A q}(n T)+\mathbf{b} x(n T) \\
y(n T) & =\mathbf{c}^{T} \mathbf{q}(n T)+d x(n T)
\end{aligned}
$$

where

$$
\mathbf{A}=\left[\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \mathbf{c}=\left[\begin{array}{l}
m_{1} \\
m_{2}
\end{array}\right], d=2
$$

Obtain a state-space realization.

Example Cont'd

Solution For a general second-order system, we have

$$
\mathbf{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right], \mathbf{c}=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right], d=d_{0}
$$

Hence the state-space equations can be expressed as

$$
\begin{aligned}
q_{1}(n T+T) & =a_{11} q_{1}(n T)+a_{12} q_{2}(n T)+b_{1} x(n T) \\
q_{2}(n T+T) & =a_{21} q_{1}(n T)+a_{22} q_{2}(n T)+b_{2} x(n T) \\
y(n T) & =c_{1} q_{1}(n T)+c_{2}(n T) q_{2}(n T)+d x(n T)
\end{aligned}
$$

Example Cont'd

Signal flow graph:

Example Cont'd

For the problem at hand, we have

$$
\begin{aligned}
a_{11} & =m_{1}, \quad a_{12}=0, \quad a_{21}=0, \quad a_{22}=m_{2} \\
b_{1} & =1, \quad b_{2}=1, \quad c_{1}=m_{1}, \quad c_{2}=m_{2}, \quad d_{0}=2
\end{aligned}
$$

The required network can be obtained by replacing summing nodes by adders, distribution nodes by distribution nodes, and transmittances by multipliers and unit delays as appropriate.

State-Space Realization Cont'd

- State-space structures tend to require more elements.

State-Space Realization Cont'd

- State-space structures tend to require more elements.
- However, they also offer certain advantages, as follows:

State-Space Realization Cont'd

- State-space structures tend to require more elements.
- However, they also offer certain advantages, as follows:
- Reduced signal-to-noise ratios can be achieved.

State-Space Realization Cont'd

- State-space structures tend to require more elements.
- However, they also offer certain advantages, as follows:
- Reduced signal-to-noise ratios can be achieved.
- A certain type of oscillations due to nonlinearities, known as parasitic oscillations can be eliminated in these structures (see Chap. 14).

Lattice Realization

- The lattice method was proposed by Gray and Markel and it is based on the configuration shown.

(a)

(b)

Lattice Realization Cont'd

- A transfer function of the form

$$
H(z)=\frac{N(z)}{D(z)}=\frac{\sum_{i=0}^{N} a_{i} z^{-i}}{1+\sum_{i=1}^{N} b_{i} z^{-i}}
$$

can be realized by applying a step-by-step recursive algorithm comprising N iterations to obtain a series of polynomials of the form

$$
N_{j}(z)=\sum_{i=0}^{j} \alpha_{j i} z^{-i} \quad \text { and } \quad D_{j}(z)=\sum_{i=0}^{j} \beta_{j i} z^{-i}
$$

for $j=N, N-1, \ldots, 0$.

- A transfer function of the form

$$
H(z)=\frac{N(z)}{D(z)}=\frac{\sum_{i=0}^{N} a_{i} z^{-i}}{1+\sum_{i=1}^{N} b_{i} z^{-i}}
$$

can be realized by applying a step-by-step recursive algorithm comprising N iterations to obtain a series of polynomials of the form

$$
N_{j}(z)=\sum_{i=0}^{j} \alpha_{j i} z^{-i} \quad \text { and } \quad D_{j}(z)=\sum_{i=0}^{j} \beta_{j i} z^{-i}
$$

for $j=N, N-1, \ldots, 0$.

- Then for each value of j the multiplier constants ν_{j} and μ_{j} are evaluated using coefficients $\alpha_{j j}$ and $\beta_{j j}$ in the above polynomials.

Lattice Realization Cont'd

1. Let $N_{j}(z)=N(z)$ and $D_{j}(z)=D(z)$ and assume that $j=N$, that is

$$
\begin{aligned}
& N_{N}(z)=\sum_{i=0}^{j} \alpha_{j i} z^{-i}=\sum_{i=0}^{N} a_{i} z^{-i} \\
& D_{N}(z)=\sum_{i=0}^{j} \beta_{j i} z^{-i}=\sum_{i=0}^{N} b_{i} z^{-i} \quad \text { with } b_{0}=1
\end{aligned}
$$

Lattice Realization Cont'd

$$
N_{N}(z)=\sum_{i=0}^{j} \alpha_{j i} z^{-i}=\sum_{i=0}^{N} a_{i} z^{-i} \quad \text { and } \quad D_{N}(z)=\sum_{i=0}^{j} \beta_{j i} z^{-i}=\sum_{i=0}^{N} b_{i} z^{-i}
$$

2. Obtain $\nu_{j}, \mu_{j}, N_{j-1}(z)$, and $D_{j-1}(z)$ for $j=N, N-1, \ldots, 2$ using the following recursive relations:

$$
\begin{aligned}
\nu_{j} & =\alpha_{j j}, \quad \mu_{j}=\beta_{j j} \\
P_{j}(z) & =D_{j}\left(\frac{1}{z}\right) z^{-j}=\sum_{i=0}^{j} \beta_{j i} z^{i-j} \\
N_{j-1}(z) & =N_{j}(z)-\nu_{j} P_{j}(z)=\sum_{i=0}^{j-1} \alpha_{j i} z^{-i} \\
D_{j-1}(z) & =\frac{D_{j}(z)-\mu_{j} P_{j}(z)}{1-\mu_{j}^{2}}=\sum_{i=0}^{j-1} \beta_{j i} z^{-i}
\end{aligned}
$$

Lattice Realization Cont'd

3. Obtain ν_{1}, μ_{1}, and $N_{0}(z)$ as follows:

$$
\begin{aligned}
\nu_{1} & =\alpha_{11}, \quad \mu_{1}=\beta_{11} \\
P_{1}(z) & =D_{1}\left(\frac{1}{z}\right) z^{-1}=\beta_{10} z^{-1}+\beta_{11} \\
N_{0}(z) & =N_{1}(z)-\nu_{1} P_{1}(z)=\alpha_{00}
\end{aligned}
$$

Lattice Realization Cont'd

3. Obtain ν_{1}, μ_{1}, and $N_{0}(z)$ as follows:

$$
\begin{aligned}
\nu_{1} & =\alpha_{11}, \quad \mu_{1}=\beta_{11} \\
P_{1}(z) & =D_{1}\left(\frac{1}{z}\right) z^{-1}=\beta_{10} z^{-1}+\beta_{11} \\
N_{0}(z) & =N_{1}(z)-\nu_{1} P_{1}(z)=\alpha_{00}
\end{aligned}
$$

4. Complete the realization by letting

$$
\nu_{0}=\alpha_{00}
$$

Example

Realize the transfer function

$$
H(z)=\frac{a_{0}+a_{1} z^{-1}+a_{2} z^{-2}}{1+b_{1} z^{-1}+b_{2} z^{-2}}
$$

using the lattice method.

Solution

Step 1 We can write

$$
\begin{aligned}
& N_{2}(z)=\alpha_{20}+\alpha_{21} z^{-1}+\alpha_{22} z^{-2}=a_{0}+a_{1} z^{-1}+a_{2} z^{-2} \\
& D_{2}(z)=\beta_{20}+\beta_{21} z^{-1}+\beta_{22} z^{-2}=1+b_{1} z^{-1}+b_{2} z^{-2}
\end{aligned}
$$

Example Cont'd

Step 2: For $j=2$, we get

$$
\begin{aligned}
\nu_{2} & =\alpha_{22}=a_{2} \quad \mu_{2}=\beta_{22}=b_{2} \\
P_{2}(z) & =D_{2}\left(\frac{1}{z}\right) z^{-2}=z^{-2}+b_{1} z^{-1}+b_{2}=\beta_{20} z^{-2}+\beta_{21} z^{-1}+\beta_{22} \\
N_{1}(z) & =N_{2}(z)-\nu_{2} P_{2}(z)=a_{0}+a_{1} z^{-1}+a_{2} z^{-2}-\nu_{2}\left(z^{-2}+b_{1} z^{-1}+b_{2}\right) \\
& =\alpha_{10}+\alpha_{11} z^{-1} \\
D_{1}(z) & =\frac{D_{2}(z)-\mu_{2} P_{2}(z)}{1-\mu_{2}^{2}}=\frac{1+b_{1} z^{-1}+b_{2} z^{-2}-\mu_{2}\left(z^{-2}+b_{1} z^{-1}+b_{2}\right)}{1-\mu_{2}^{2}} \\
& =\beta_{10}+\beta_{11} z^{-1}
\end{aligned}
$$

where

$$
\begin{aligned}
& \alpha_{10}=a_{0}-a_{2} b_{2} \quad \alpha_{11}=a_{1}-a_{2} b_{1} \\
& \beta_{10}=1, \quad \beta_{11}=\frac{b_{1}}{1+b_{2}}
\end{aligned}
$$

Example Cont'd

Step 3 Similarly, for $j=1$ we have

$$
\begin{aligned}
\nu_{1} & =\alpha_{11}=a_{1}-a_{2} b_{1} \quad \mu_{1}=\beta_{11}=\frac{b_{1}}{1+b_{2}} \\
P_{1}(z) & =D_{1}\left(\frac{1}{z}\right) z^{-1}=\beta_{10} z^{-1}+\beta_{11} \\
N_{0}(z) & =N_{1}(z)-\nu_{1} P_{1}(z)=\alpha_{10}+\alpha_{11} z^{-1}-\nu_{1}\left(\beta_{10} z^{-1}+\beta_{11}\right)=\alpha_{00}
\end{aligned}
$$

where

$$
\alpha_{00}=\left(a_{0}-a_{2} b_{2}\right)-\frac{\left(a_{1}-a_{2} b_{1}\right) b_{1}}{1+b_{2}}
$$

Example Cont'd

Step 3 Similarly, for $j=1$ we have

$$
\begin{aligned}
\nu_{1} & =\alpha_{11}=a_{1}-a_{2} b_{1} \quad \mu_{1}=\beta_{11}=\frac{b_{1}}{1+b_{2}} \\
P_{1}(z) & =D_{1}\left(\frac{1}{z}\right) z^{-1}=\beta_{10} z^{-1}+\beta_{11} \\
N_{0}(z) & =N_{1}(z)-\nu_{1} P_{1}(z)=\alpha_{10}+\alpha_{11} z^{-1}-\nu_{1}\left(\beta_{10} z^{-1}+\beta_{11}\right)=\alpha_{00}
\end{aligned}
$$

where

$$
\alpha_{00}=\left(a_{0}-a_{2} b_{2}\right)-\frac{\left(a_{1}-a_{2} b_{1}\right) b_{1}}{1+b_{2}}
$$

Step 4: Finally, step 4 gives

$$
\nu_{0}=\alpha_{00}
$$

Example Cont'd

Summarizing, the multiplier constants for a general second-order lattice realization are as follows:

$$
\begin{aligned}
\nu_{0} & =\left(a_{0}-a_{2} b_{2}\right)-\frac{\left(a_{1}-a_{2} b_{1}\right) b_{1}}{1+b_{2}} \\
\nu_{1} & =a_{1}-a_{2} b_{1}, \quad \nu_{2}=a_{2} \\
\mu_{1} & =\frac{b_{1}}{1+b_{2}}, \quad \mu_{2}=b_{2}
\end{aligned}
$$

Example Cont'd

(b)

$$
\begin{aligned}
& \nu_{0}=\left(a_{0}-a_{2} b_{2}\right)-\frac{\left(a_{1}-a_{2} b_{1}\right) b_{1}}{1+b_{2}}, \nu_{1}=a_{1}-a_{2} b_{1} \\
& \nu_{2}=a_{2}, \mu_{1}=\frac{b_{1}}{1+b_{2}}, \mu_{2}=b_{2}
\end{aligned}
$$

Lattice Realization Cont'd

- A problem associated with the lattice configuration presented is that it requires a large number of multipliers.

Lattice Realization Cont'd

- A problem associated with the lattice configuration presented is that it requires a large number of multipliers.
- Fortunately, a more economical lattice structure is possible.
- A problem associated with the lattice configuration presented is that it requires a large number of multipliers.
- Fortunately, a more economical lattice structure is possible.
- It turns out that the 2-multiplier lattice module shown earlier can be replaced by one of two 1-multiplier lattice modules as shown in the next slide.

Lattice Realization Cont'd

Lattice Realization Cont'd

- Parameters μ_{j} for $j=1,2, \ldots, N$ stay the same as before.

Lattice Realization Cont'd

■ Parameters μ_{j} for $j=1,2, \ldots, N$ stay the same as before.

- However, parameters ν_{j} need to be recalculated as

$$
\tilde{\nu}_{j}=\frac{\nu_{j}}{\xi_{j}}
$$

where

$$
\xi_{j}= \begin{cases}1 & \text { for } j=N \\ \prod_{i=j}^{N-1}\left(1+\varepsilon_{i} \mu_{i+1}\right) & \text { for } j=0,1, \ldots, N-1\end{cases}
$$

■ Parameters μ_{j} for $j=1,2, \ldots, N$ stay the same as before.
■ However, parameters ν_{j} need to be recalculated as

$$
\tilde{\nu}_{j}=\frac{\nu_{j}}{\xi_{j}}
$$

where

$$
\xi_{j}= \begin{cases}1 & \text { for } j=N \\ \prod_{i=j}^{N-1}\left(1+\varepsilon_{i} \mu_{i+1}\right) & \text { for } j=0,1, \ldots, N-1\end{cases}
$$

- Parameter ε_{i} takes the value of +1 or -1 depending on which of the two 1-multiplier lattice modules is used.

Cascade Realization

- Consider an arbitrary number of filter sections connected in cascade as shown and assume that the ith section is characterized by

$$
Y_{i}(z)=H_{i}(z) X_{i}(z)
$$

(a)

Cascade Realization Cont'd

- We can write

$$
\begin{aligned}
& Y_{1}(z)=H_{1}(z) X_{1}(z)=H_{1}(z) X(z) \\
& Y_{2}(z)=H_{2}(z) X_{2}(z)=H_{2}(z) Y_{1}(z)=H_{1}(z) H_{2}(z) X(z) \\
& Y_{3}(z)=H_{3}(z) X_{3}(z)=H_{3}(z) Y_{2}(z)=H_{1}(z) H_{2}(z) H_{3}(z) X(z)
\end{aligned}
$$

$$
Y(z)=Y_{M}(z)=H_{M}(z) Y_{M-1}(z)=H_{1}(z) H_{2}(z) \cdots H_{M}(z) X(z)
$$

Cascade Realization Cont'd

- Therefore, the overall transfer function of a cascade arrangement of filter sections is equal to the product of the individual transfer functions, that is,

$$
H(z)=\prod_{i=1}^{M} H_{i}(z)
$$

- Therefore, the overall transfer function of a cascade arrangement of filter sections is equal to the product of the individual transfer functions, that is,

$$
H(z)=\prod_{i=1}^{M} H_{i}(z)
$$

- An Nth-order transfer function can be factorized into a product of first- and second-order transfer functions of the form

$$
H_{i}(z)=\frac{a_{0 i}+a_{1 i} z^{-1}}{1+b_{1 i} z^{-1}} \quad \text { and } \quad H_{i}(z)=\frac{a_{0 i}+a_{1 i} z^{-1}+a_{2 i} z^{-2}}{1+b_{1 i} z^{-1}+b_{2 i} z^{-2}}
$$

- Therefore, the overall transfer function of a cascade arrangement of filter sections is equal to the product of the individual transfer functions, that is,

$$
H(z)=\prod_{i=1}^{M} H_{i}(z)
$$

- An Nth-order transfer function can be factorized into a product of first- and second-order transfer functions of the form

$$
H_{i}(z)=\frac{a_{0 i}+a_{1 i} z^{-1}}{1+b_{1 i} z^{-1}} \quad \text { and } \quad H_{i}(z)=\frac{a_{0 i}+a_{1 i} z^{-1}+a_{2 i} z^{-2}}{1+b_{1 i} z^{-1}+b_{2 i} z^{-2}}
$$

- Each of these low-order transfer functions can be realized using any one of the methods described.

Cascade Realization Cont'd

- For example, an arbitrary transfer function can be realized by using a cascade arrangement of canonic sections as shown.

(b)

Parallel Realization

- Another realization comprising first- and second-order filter sections is based on the parallel configuration shown.

Parallel Realization Cont'd

- We note that all the parallel sections have a common input, i.e., $X_{1}(z)=X_{2}(z)=\cdots=X_{M}(z)=X(z)$.

Parallel Realization Cont'd

- We note that all the parallel sections have a common input, i.e., $X_{1}(z)=X_{2}(z)=\cdots=X_{M}(z)=X(z)$.
- Hence

$$
\begin{aligned}
Y(z) & =Y_{1}(z)+Y_{2}(z)+\cdots+Y_{M}(z) \\
& =H_{1}(z) X_{1}(z)+H_{2}(z) X_{2}(z)+\cdots+H_{M}(z) X_{M}(z) \\
& =H_{1}(z) X(z)+H_{2}(z) X(z)+\cdots+H_{M}(z) X(z) \\
& =\left[H_{1}(z)+H_{2}(z)+\cdots+H_{M}(z)\right] X(z) \\
& =H(z) X(z)
\end{aligned}
$$

where

$$
H(z)=\sum_{i=1}^{M} H_{i}(z)
$$

Example

Obtain a parallel realization of the transfer function

$$
H(z)=\frac{10 z^{4}-3.7 z^{3}-1.28 z^{2}+0.99 z}{\left(z^{2}-z+0.34\right)\left(z^{2}+0.9 z+0.2\right)}
$$

using canonic sections.
Solution The transfer function can be expressed as

$$
H(z)=\frac{10 z^{4}-3.7 z^{3}-1.28 z^{2}+0.99 z}{\left(z-p_{1}\right)\left(z-p_{2}\right)\left(z-p_{3}\right)\left(z-p_{4}\right)}
$$

where

$$
\begin{aligned}
p_{1}, p_{2} & =0.5 \mp j 0.3 \\
p_{3} & =-0.4 \\
p_{4} & =-0.5
\end{aligned}
$$

Example Cont'd

If we expand $H(z) / z$ into partial fractions, we get

$$
\frac{H(z)}{z}=\frac{R_{1}}{z-0.5+j 0.3}+\frac{R_{2}}{z-0.5-j 0.3}+\frac{R_{3}}{z+0.4}+\frac{R_{4}}{z+0.5}
$$

where

$$
R_{1}=1, \quad R_{2}=1, \quad R_{3}=3, \quad R_{4}=5
$$

Example Cont'd

If we expand $H(z) / z$ into partial fractions, we get

$$
\frac{H(z)}{z}=\frac{R_{1}}{z-0.5+j 0.3}+\frac{R_{2}}{z-0.5-j 0.3}+\frac{R_{3}}{z+0.4}+\frac{R_{4}}{z+0.5}
$$

where

$$
R_{1}=1, \quad R_{2}=1, \quad R_{3}=3, \quad R_{4}=5
$$

Thus

$$
H(z)=\frac{z}{z-0.5+j 0.3}+\frac{z}{z-0.5-j 0.3}+\frac{3 z}{z+0.4}+\frac{5 z}{z+0.5}
$$

Example Cont'd

$$
H(z)=\frac{z}{z-0.5+j 0.3}+\frac{z}{z-0.5-j 0.3}+\frac{3 z}{z+0.4}+\frac{5 z}{z+0.5}
$$

Combining the first two and the last two partial fractions into second-order transfer functions, we get

$$
H(z)=H_{1}(z)+H_{2}(z)
$$

where

$$
H_{1}(z)=\frac{2-z^{-1}}{1-z^{-1}+0.34 z^{-2}} \quad \text { and } \quad H_{2}(z)=\frac{8+3.5 z^{-1}}{1+0.9 z^{-1}+0.2 z^{-2}}
$$

Example Cont'd

$$
H(z)=\frac{z}{z-0.5+j 0.3}+\frac{z}{z-0.5-j 0.3}+\frac{3 z}{z+0.4}+\frac{5 z}{z+0.5}
$$

Combining the first two and the last two partial fractions into second-order transfer functions, we get

$$
H(z)=H_{1}(z)+H_{2}(z)
$$

where

$$
H_{1}(z)=\frac{2-z^{-1}}{1-z^{-1}+0.34 z^{-2}} \quad \text { and } \quad H_{2}(z)=\frac{8+3.5 z^{-1}}{1+0.9 z^{-1}+0.2 z^{-2}}
$$

Using canonic structures for the two second-order transfer functions, the structure on the next slide is readily obtained.

Example Cont'd

■ Given a signal flow graph with inputs $j=1,2, \ldots, J$ and outputs $k=1,2, \ldots, K$, a corresponding signal flow graph can be derived by reversing the direction in each and every branch such that the J input nodes become output nodes and the K output nodes become input nodes.

■ Given a signal flow graph with inputs $j=1,2, \ldots, J$ and outputs $k=1,2, \ldots, K$, a corresponding signal flow graph can be derived by reversing the direction in each and every branch such that the J input nodes become output nodes and the K output nodes become input nodes.

- The signal flow graph so derived is said to be the transpose of the original signal flow graph.

- If a signal flow graph and its transpose are characterized by transfer functions $H_{j k}(z)$ and $H_{k j}(z)$, respectively, then

$$
H_{j k}(z)=H_{k j}(z)
$$

- If a signal flow graph and its transpose are characterized by transfer functions $H_{j k}(z)$ and $H_{k j}(z)$, respectively, then

$$
H_{j k}(z)=H_{k j}(z)
$$

■ In effect, given a digital-filter structure a corresponding transpose structure can be obtained that has the same transfer function.

- If a signal flow graph and its transpose are characterized by transfer functions $H_{j k}(z)$ and $H_{k j}(z)$, respectively, then

$$
H_{j k}(z)=H_{k j}(z)
$$

- In effect, given a digital-filter structure a corresponding transpose structure can be obtained that has the same transfer function.
- Sometimes, the derived transpose structure has improved features relative to the original structure.

Example

Example Cont'd

(b)

(c)

Example Cont'd

This slide concludes the presentation. Thank you for your attention.

