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Introduction

In the invariant impulse-response approximation method and
two other methods mentioned in Probs. 11.9 and 11.11,
namely,

– the invariant unit-step-response method, and

– the invariant sinusoid-response method,

the derived digital filter has exactly the same impulse,
unit-step, or sinusoid response, as appropriate, as the original
analog filter for t = nT .

An approximation method will now be described whereby a
digital filter is derived that has approximately the same
time-domain response as the original analog filter for any
excitation.
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Bilinear-Transformation Method – Derivation

Consider an analog integrator characterized by the transfer
function

HAI (s) =
1

s

and assume that its response to an excitation x(t) is y(t) as
shown in the figure.

Analog integratorx(t) y(t)
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Derivation Cont’d

The impulse response of the integrator is given by

L−1HI (s) = hI (t) =

{
1 for t ≥ 0+

0 for t ≤ 0−

and its response at instant t to an arbitrary right-sided
excitation x(t), i.e., x(t) = 0 for t < 0, is given by the
convolution integral

y(t) =

∫ t

0
x(τ)hI (t − τ) dτ

(See Theorem 2.14 in textbook.)
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Derivation Cont’d

· · ·
y(t) =

∫ t

0
x(τ)hI (t − τ) dτ

If t2 > t1 > 0+, we can write

y(t2)− y(t1) =

∫ t2

0
x(τ)hI (t2− τ) dτ −

∫ t1

0
x(τ)hI (t1− τ) dτ

(A)
For t1, t2 ≥ τ > 0+

hI (t2 − τ) = hI (t1 − τ) = 1

and thus Eq. (A) simplifies to

y(t2)− y(t1) =

∫ t2

t1

x(τ) dτ
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Derivation Cont’d

y(t2)− y(t1) =

∫ t2

t1

x(τ) dτ

As t1 → t2, we note from the figure shown that

y(t2)− y(t1) ≈ t2 − t1

2
[x(t1) + x(t2)]

t1 t2 

τ

x(τ) 
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Derivation Cont’d

· · ·
y(t2)− y(t1) ≈ t2 − t1

2
[x(t1) + x(t2)]

If we let t1 = nT − T and t2 = nT , then the difference
equation

y(nT )− y(nT − T ) =
T

2
[x(nT − T ) + x(nT )]

can be formed.

The above equation represents a digital integrator that has
approximately the same time-domain response as the analog
integrator for any excitation.
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Derivation Cont’d

· · ·
y(nT )− y(nT − T ) =

T

2
[x(nT − T ) + x(nT )]

By applying the z transform, we obtain

Y (z)− z−1Y (z) =
T

2
[z−1X (z) + X (z)]

Hence the transfer function of the digital integrator can be
derived as

HDI (z) =
Y (z)

X (z)
=

T

2

(
z + 1

z − 1

)
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Derivation Cont’d

· · ·
HDI (z) =

Y (z)

X (z)
=

T

2

(
z + 1

z − 1

)
The above equation can be expressed as

HDI (z) = HAI (s)

∣∣∣∣∣
s= 2

T ( z−1
z+1 )

where

HAI (s) =
1

s

is the transfer function of the analog integrator.
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Derivation Cont’d

· · ·
HDI (z) = HAI (s)

∣∣∣∣∣
s= 2

T ( z−1
z+1 )

If we now apply the bilinear transformation to the transfer function
of an arbitrary analog filter the discrete-time transfer function

HD(z) = HA(s)

∣∣∣∣∣
s= 2

T ( z−1
z+1 )

will be obtained.

The digital filter represented by HD(z) will produce approximately
the same time-domain response as the analog filter from which it
was derived for any excitation.

Furthermore, the time-domain response of the digital filter would
tend to approach that of the analog filter as T → 0.
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Mapping Properties

The relation between the frequency response of the derived digital
filter and that of the original analog filter can be established by
examining the mapping properties of the bilinear transformation

s =
2

T

(
z − 1

z + 1

)

Variable z can be expressed as a function of s as

z =
2
T + s
2
T − s

With s = σ + jω, we obtain z = re jθ where

r =

[(
2
T + σ

)2
+ ω2(

2
T − σ

)2
+ ω2

] 1
2

and θ = tan−1 ω
2
T + σ

+ tan−1 ω
2
T − σ
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Mapping Properties Cont’d

· · ·
r =

[(
2
T + σ

)2
+ ω2(

2
T − σ

)2
+ ω2

] 1
2

and θ = tan−1 ω
2
T + σ

+ tan−1 ω
2
T − σ

Evidently,
if σ > 0 then r > 1
if σ = 0 then r = 1
if σ < 0 then r < 1

Therefore, the bilinear transformation maps

– the open right-half s plane onto the region outside the unit
circle |z | = 1 of the z plane;

– the jω axis of the s plane onto the unit circle |z | = 1 of the z
plane;

– the open left-half s plane onto the region inside the unit circle
|z | = 1 of the z plane.
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Mapping Properties Cont’d
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Mapping Properties Cont’d
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Mapping Properties Cont’d
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Mapping Properties Cont’d

s  plane z  plane jω

σ

(a)

 = 0 s= j∞
s=−j∞

s
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Mapping Properties Cont’d

· · ·
θ = tan−1 ω

2
T + σ

+ tan−1 ω
2
T − σ

For the case where σ = 0, the jω axis maps onto the unit circle
|z | = 1 as was shown. For σ = 0, we have

θ = 2 tan−1 ωT

2

Hence
if ω = 0 then θ = 0
if ω →∞ then θ = π
if ω → −∞ then θ = −π

Therefore, the origin of the s plane maps onto point [1, 0] of the z
plane, and the positive and negative jω axes map onto the top and
bottom semicircles |z | = 1, respectively.
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Mapping Properties Cont’d
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Mapping Properties Cont’d
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Mapping Properties Cont’d
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Mapping Properties Cont’d

We know that the frequency response of an analog filter is the
continuous-time transfer function evaluated on the imaginary
axis of the s plane.

Similarly, the frequency response of a digital filter is the
discrete-time transfer function evaluated on the unit circle
|z | = 1 of the z plane.

Since the jω axis of the s plane maps onto the unit circle of
the z plane, it follows that a given frequency in the analog
filter ω must correspond to some frequency Ω in the baseband
of the digital filter and vice-versa.
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Mapping Properties Cont’d

If the analog filter has a maximum or minimum gain of some
value at a certain frequency, then the digital filter will have
the same maximum or minimum gain at a corresponding
frequency.

Hence it follows that if

M1 ≤ |HA(jω)| ≤ M2 for ω1 ≤ ω ≤ ω2

then

M1 ≤ |HD(e jω
T

)| ≤ M2 for Ω1 ≤ ω ≤ Ω2

Therefore, passbands and stopbands in the analog filter
translate into passbands and stopbands in the digital filter,
respectively.
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Mapping Properties Cont’d
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Mapping Properties Cont’d

If HA(s) is a rational function of s with real coefficients, then HD(z)
will be a rational function of z with real coefficients.

This follows from the fact that the bilinear transformation is a
rational function of z with real coefficients.

Since the left-half s plane maps inside the unit circle |z | = 1 of the
z plane, a stable analog filter will yield a stable digital filter.

This follows from the fact that the poles of a stable analog filter,
which are located in the left-half s plane, will map inside the unit
circle of the z plane.

Since the numerator degree in HA(s) is equal to or less than the
denominator degree, the numerator degree in HD(z) cannot be
greater than the denominator degree.

This follows from the fact that the numerator degree in the bilinear
transformation is equal to the denominator degree.
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Mapping Properties Cont’d
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Mapping Properties Cont’d
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Mapping Properties Cont’d
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The Warping Effect

The application of the bilinear transformation to a
continuous-time transfer function HA(s) would give a
discrete-time transfer function

HD(z) = HA(s)

∣∣∣∣∣
s= 2

T ( z−1
z+1 )

Let ω and Ω be the frequency variables in the analog filter
and the derived digital filter, respectively.

From the above equation, we obtain

HD(e jΩT ) = HA(jω) provided that ω =
2

T
tan

ΩT

2

Frame # 20 Slide # 41 A. Antoniou Digital Signal Processing – Secs. 11.6, 11.7



The Warping Effect

The application of the bilinear transformation to a
continuous-time transfer function HA(s) would give a
discrete-time transfer function

HD(z) = HA(s)

∣∣∣∣∣
s= 2

T ( z−1
z+1 )

Let ω and Ω be the frequency variables in the analog filter
and the derived digital filter, respectively.

From the above equation, we obtain

HD(e jΩT ) = HA(jω) provided that ω =
2

T
tan

ΩT

2

Frame # 20 Slide # 42 A. Antoniou Digital Signal Processing – Secs. 11.6, 11.7



The Warping Effect Cont’d

· · ·
HD(e jΩT ) = HA(jω) provided that ω =

2

T
tan

ΩT

2

For Ω < 0.3/T
ω ≈ Ω

and, as a result, the digital filter has the same frequency
response as the analog filter.

For higher frequencies, however, the relation between ω and Ω
becomes nonlinear and distortion is introduced in the
frequency scale of the digital filter relative to that of the
analog filter.

This is known as the warping effect.
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becomes nonlinear and distortion is introduced in the
frequency scale of the digital filter relative to that of the
analog filter.

This is known as the warping effect.
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The Warping Effect Cont’d

The influence of the warping effect on the amplitude response
can be demonstrated by considering an analog filter with a
number of uniformly spaced passbands centered at regular
intervals as shown in the next slide.
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The Warping Effect Cont’d
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The Warping Effect Cont’d

The derived digital filter has the same number of passbands,
but the center frequencies and bandwidths of higher-frequency
passbands tend to be reduced disproportionately.
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The Warping Effect Cont’d

The effect of the bilinear transformation on the phase
response can be examined by considering an analog filter with
linear phase response.

Since the relation between the frequencies in the analog and
digital filter is highly nonlinear, the digital filter obtained will
have a nonlinear phase response as shown in the next slide.
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The Warping Effect Cont’d
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Example

The transfer function

HA(s) =
3∏

j=1

a0j + s2

b0j + b1js + s2

where a0j and bij are given in the table shown is an elliptic
bandstop filter with a passband ripple of 1 dB and a minimum
stopband loss of 34.45 dB.

j a0j b0j b1j

1 6.250000 6.250000 2.618910
2 8.013554 1.076433E+1 3.843113E -1
3 4.874554 3.628885 2.231394E -1
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Example Cont’d

Using the bilinear transformation method, obtain a corresponding
discrete-time transfer function.

Assume a sampling frequency of 10 rad/s.
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Example Cont’d
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Prewarping

If only the amplitude response is of concern, the warping
effect can for all practical purposes be eliminated by
prewarping the analog filter.

Let ω and Ω be the frequency variables in the analog and
digital filter, respectively.

Since

ω =
2

T
tan

ΩT

2

we have

Ω =
2

T
tan−1 ωT

2
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Prewarping Cont’d

· · ·
ω =

2

T
tan

ΩT

2
, Ω =

2

T
tan−1 ωT

2

If ω1, ω2, . . . , ωi , . . . are the passband and stopband edges in
the analog filter, then the corresponding passband and
stopband edges in the digital filter are given by

Ωi =
2

T
tan−1 ωiT

2
for i = 1, 2, . . .

Consequently, if prescribed passband and stopband edges Ω̃1,
Ω̃2, . . . , Ω̃i , . . . are to be achieved in the digital filter, the
analog filter must be prewarped before application of the
bilinear transformation to ensure that

ωi =
2

T
tan

Ω̃iT

2
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Prewarping Cont’d

· · ·
ωi =

2

T
tan

Ω̃iT

2
, Ωi =

2

T
tan−1 ωiT

2

Under these circumstances

Ωi =
2

T
tan−1 ωiT

2
=

2

T
tan−1

[
T

2
· 2

T
tan

Ω̃iT

2

]
= Ω̃i

as required.
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The Warping Effect Cont’d

The bilinear transformation method together with a
prewarping technique can be used to design Butterworth,
Chebyshev, inverse-Chebyshev, and elliptic filters that would
satisfy arbitrary prescribed specifications as shown in
Chap. 12.
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Digital-Filter Transformations

Given a lowpass digital filter, a corresponding highpass,
bandpass, or bandstop filter can be deduced by using a family
of digital-filter transformations known as the Constantinides
transformations.

Lowpass filters are usually easier to design than bandpass or
bandstop filters and, therefore, these transformations can
render a difficult filter-design problem to a simpler one.

These transformations have certain other applications as well,
for example, they can be used to construct filters with variable
cutoff frequencies. (See textbook for details.)
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Digital-Filter Transformations Cont’d

Type Transformation α, k

LP to LP z = z̄−α
1−αz̄ α =

sin[(Ωp−ωp)T/2]
sin[(Ωp+ωp)T/2]

LP to HP z = − z̄−α
1−αz̄ α =

cos[(Ωp−ωp)T/2]
cos[(Ωp+ωp)T/2]

LP to BP z = − z̄2− 2αk
k+1

z̄+ k−1
k+1

1− 2αk
k+1

z̄+ k−1
k+1

z̄2
α =

cos[(ωp2+ωp1)T/2]
cos[(ωp2−ωp1)T/2]

k =tan
ΩpT

2
cot

(ωp2−ωp1)T

2

LP to BS z =
z̄2− 2α

1+k
z̄+ 1−k

1+k

1− 2α
1+k

z̄+ 1−k
1+k

z̄2
α =

cos[(ωp2+ωp1)T/2]
cos[(ωp2−ωp1)T/2]

k =tan
ΩpT

2
tan

(ωp2−ωp1)T

2
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This slide concludes the presentation.

Thank you for your attention.
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