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Introduction

t The weighted-Chebyshev method for the design of
nonrecursive filters is an iterative multivariable optimization
method based on the Remez Exchange Algorithm.

t It can be used to design optimal nonrecursive filters with
arbitrary amplitude responses.
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Introduction – Historical Evolution

t Herrmann published a short paper in Electronics Letters in
May 1970 on the design of nonrecursive filters.

t This paper was followed by a series of papers by Parks,
McClellan, Rabiner, and Herrmann during the early seventies.t These developments led in 1975 to the well-known
McClellan-Parks-Rabiner computer program for the design of
nonrecursive filters, which has found widespread applications.t Enhancements to the weighted-Chebyshev method were
proposed by Antoniou during the early eighties.
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Problem Formulation

Consider a nonrecursive filter characterized by the transfer function

H(z) =
N−1∑
n=0

h(nT )z−n

and assume thatt the filter length N is odd (the filter order N − 1 is even),t the impulse response is symmetrical, andt the sampling frequency is ωs = 2π rad/s (the Nyquist
frequency is π rad/s) and the sampling period is T = 1 s.
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Problem Formulation Cont’d

t The frequency response of the filter can be expressed as

H(e jω) = e−jcωPc(ω)

where

Pc(ω) =
c∑

k=0

ak cos kω (A)

is the frequency response of a noncausal version of the required
filter and

a0 = h(c)

ak = 2h(c − k) for k = 1, 2, . . . , c

c = (N − 1)/2
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Error Function

t An error function E (ω) can be constructed as

E (ω) = W (ω)[D(ω)− Pc(ω)]

where e−jcωD(ω) is the idealized frequency response of the desired
filter, W (ω) is a weighting function, and

Pc(ω) =
c∑

k=0

ak cos kω

t If |E (ω)| is minimized such that

|E (ω)| = |W (ω)[D(ω)− Pc(ω)]| ≤ δp for ω ∈ Ω (B)

with respect to a set of frequencies in the interval [0, π], say Ω, a
filter can be obtained in which

|E0(ω)| = |D(ω)− Pc(ω)| ≤ δp
|W (ω)| for ω ∈ Ω (C)
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Lowpass Filters

t In the case of a lowpass filter, the minimization of |E (ω)| will force
the inequality

|E0(ω)| = |D(ω)− Pc(ω)| ≤ δp
|W (ω)| for ω ∈ Ω (C)

where

D(ω) =

{
1 for 0 ≤ ω ≤ ωp

0 for ωa ≤ ω ≤ π

t In effect, a minimization algorithm will force the actual gain
function Pc(ω) to approach the ideal gain function D(ω).
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Lowpass Filters Cont’d
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Lowpass Filters Cont’d

t If we choose the weighting function

W (ω) =

{
1 for 0 ≤ ω ≤ ωp
δp
δa

for ωa ≤ ω ≤ π

then from Eq. (C), i.e.,

|E0(ω)| = |D(ω)− Pc(ω)| ≤ δp
|W (ω)| for ω ∈ Ω (C)

we get

|E0(ω)| ≤
{
δp for 0 ≤ ω ≤ ωp

δa for ωa ≤ ω ≤ π
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Minimax Problem

t The most appropriate approach for the solution of the
optimization problem just described is to solve the minimax
problem

minimize
x

{max
ω
|E (ω)|}

where
x = [a0 a1 · · · ac ]T

t By virtue of the so-called alternation theorem, there is a
unique equiripple solution of the above minimax problem.t Note that weighted-Chebyshev filters are so called because
they have an equiripple amplitude response just like
Chebyshev filters but are not related to Chebyshev filters in
any other way.
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Minimax Problem Cont’d
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Alternation Theorem

t If Pc(ω) is a linear combination of r = c + 1 cosine functions of the
form

Pc(ω) =
c∑

k=0

ak cos kω

then a necessary and sufficient condition that Pc(ω) be the unique,
best, weighted-Chebyshev approximation to a continuous function
D(ω) on Ω, where Ω is a dense and compact subset of the
frequency interval [0, π], is that the weighted error function E (ω)
exhibit at least r + 1 extremal frequencies ω̂i in Ω such that

ω̂0 < ω̂1 < · · · < ω̂r

E (ω̂i+1) = −E (ω̂i ) for i = 0, 1, . . . , r − 1

and
|E (ω̂i )| = max

ω∈Ω
|E (ω)| for i = 0, 1, . . . , r
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Alternation Theorem Cont’d

Notes:

– A subset Ω is dense if it has a sufficiently large number of
members for the application at hand.

– A subset Ω is compact if it is closed and bounded.

– A subset is closed if all its limits are members of the set.

– A subset is bounded if all its members are bounded.
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Alternation Theorem Cont’d

t From the alternation theorem and Eq. (B), i.e.,

E (ω) = W (ω)[D(ω)− Pc(ω)] (B)

we can write

E (ω̂i ) = W (ω̂i )[D(ω̂i )− Pc(ω̂i )] = (−1)iδ

for i = 0, 1, . . . , r , where δ is a constant.

t The above system of equations can be put in matrix form as


1 cos ω̂0 cos 2ω̂0 · · · cos cω̂0

1
W (ω̂0)

1 cos ω̂1 cos 2ω̂1 · · · cos cω̂1
−1

W (ω̂1)

· · · · · · · · · · · · · · · · · ·
1 cos ω̂r cos 2ω̂r · · · cos cω̂r

(−1)r

W (ω̂r )



a0

a1

...
ac
δ

 =


D(ω̂0)
D(ω̂1)

...
D(ω̂r−1)
D(ω̂r )


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Alternation Theorem Cont’d

t If the extremal frequencies (or extremals for short) were
known, coefficients ak and, in turn, the frequency response of
the filter could be computed using Eq. (A), i.e.,

Pc(ω) =
c∑

k=0

ak cos kω (A)

t The solution of this system exists since the above
(r + 1)× (r + 1) matrix is known to be nonsingular.
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Basic Remez Exchange Algorithm

t The Remez exchange algorithm is an iterative multivariable
algorithm that is naturally suited for the solution of the
minimax problem just described.

It is based on the second optimization method of Remez.
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Basic Remez Exchange Algorithm Cont’d

1. Initialize extremal frequencies ω̂0, ω̂1, . . . , ω̂r and ensure that
an extremal is assigned at each band edge.

2. Locate the frequencies
_
ω0,

_
ω1, . . . ,

_
ωρ at which the

magnitude of the error

|E (ω)| = |W (ω)[D(ω)− Pc(ω)]|

is maximum and |E (
_
ω i )| ≥ δ (these frequencies are potential

extremals for the next iteration).

3. Compute the convergence parameter

Q =
max |E (

_
ω i )| −min |E (

_
ω i )|

max |E (
_
ω i )|

where i = 0, 1, . . . , ρ.
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Basic Remez Exchange Algorithm Cont’d

4. Reject ρ− r superfluous potential extremals
_
ω i according to

an appropriate rejection criterion and renumber the remaining
_
ω i by setting ω̂i =

_
ω i for i = 0, 1, . . . , r .

5. If Q > ε, where ε is a convergence tolerance (say ε = 0.01),
repeat from step 2; otherwise continue to step 6.

6. Compute Pc(ω) using the last set of extremal frequencies;
then deduce h(n), the impulse response of the required filter,
and stop.
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Initialization of Extremal Frequencies

The implementation of the basic Remez algorithm can be
accomplished as follows:

Step 1:t A simple initialization scheme is to distribute the extremals
uniformly in each passband and stopband such that

– the total number of extremals is exactly equal to
r + 1 = (N + 3)/2,

– the number of extremals in each passband or stopband is
proportional to the bandwidth of the passband or stopband,

– there is an extremal at each band edge.

Such a scheme is illustrated in the next slide.
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Initialization of Extremal Frequencies Cont’d
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Initialization of Extremal Frequencies Cont’d

t For a filter with J bands with bandwidths B1, B2, . . . , BJ , the
number of extremals and intervals between extremals for each band
can be calculated by using the formulas

W0 =
1

r + 1− J

J∑
j=1

Bj

mj = int

(
Bj

W0
+ 0.5

)
for j = 1, 2, . . . , J − 1

and mJ = r −
J−1∑
j=1

(mj + 1)

Wj =
Bj

mj
for j = 1, 2, . . . , J

where r = (N + 1)/2 and N is the filter length.
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Updating of Extremals

Step 2:t In order to locate the frequencies
_
ω0,

_
ω1, . . . ,

_
ωρ at which

|E (ω)| is maximum such that |E (
_
ω i )| ≥ δ, we calculate

coefficients a0, a1, . . . , ac and parameter δ by solving the
system


1 cos ω̂0 cos 2ω̂0 · · · cos cω̂0

1
W (ω̂0)

1 cos ω̂1 cos 2ω̂1 · · · cos cω̂1
−1

W (ω̂1)

· · · · · · · · · · · · · · · · · ·
1 cos ω̂r cos 2ω̂r · · · cos cω̂r

(−1)r

W (ω̂r )



a0

a1
...
ac
δ

 =


D(ω̂0)
D(ω̂1)

...
D(ω̂r−1)
D(ω̂r )


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Updating of Extremals Cont’d

t With coefficients a0, a1, . . . , ac known, polynomial

Pc(ω) =
c∑

k=0

ak cos kω

can be calculated.

t With Pc(ω) known, the error function

|E (ω)| = |W (ω)[D(ω)− Pc(ω)]|

can be calculated.
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Updating of Extremals Cont’d

t The maxima of the error function can be obtained by
evaluating |E (ω)| over a dense set of frequencies in the
passband(s) and stopband(s) of the required filter.

t A sufficient number of frequency points for most applications
is around 16 sample points per ripple in |E (ω)|, i.e., 8(N + 1).t An actual plot of |E (ω)| versus ω is shown in the next slide.
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Updating of Extremals Cont’d
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Updating of Extremals Cont’d
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Updating of Extremals Cont’d

|E
(ω

)|
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Updating of Extremals Cont’d

t The approach just described is easy to apply.

However, it is inefficient and may be subject to numerical
ill-conditioning in particular if δ is small and N is large.

Note that a 50× 50 matrix is quite typical and a 100× 100
matrix is not unusual.
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Updating of Extremals Cont’d

t An alternative and more efficient approach is to deduce δ
analytically (by using Cramer’s rule) and then interpolate
Pc(ω) on the r frequency points using the barycentric form of
the Lagrange interpolation formula, as follows:

t Calculate parameter δ as

δ =
r∑

k=0

αkD(ω̂k)∑r
k=0 (−1)kαk

W (ω̂)
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Updating of Extremals Cont’d

t With δ and

Pc(ω̂k) = Ck = D(ω̂k)− (−1)k
δ

W (ω̂k)

known, the following interpolation formula can be constructed:

Pc(ω) =



Ck for ω = ω̂0, ω̂1, . . . , ω̂r−1
r−1∑
k=0

βkCk

x − xk
r−1∑
k=0

βk
x − xk

otherwise

where αk =
∏r

i=0, i 6=k
1

xk−xi , βk =
∏r−1

i=0, i 6=k
1

xk−xi

and x = cosω and xi = cos ω̂i for i = 0, 1, . . . , r
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Updating of Extremals Cont’d

t Using the interpolation formula, the value of Pc(ω) for any
frequency ω can be computed.

t Since W (ω) and D(ω) are known, the error function

|E (ω)| = |W (ω)[D(ω)− Pc(ω)]|

and, in turn, the frequencies
_
ω0,

_
ω1, . . . ,

_
ωρ at which |E (ω)|

is maximum can be deduced.
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Updating of Extremals Cont’d

ω4j
^

+

ω3jˆ

−

ω5jˆ

−

ω6jˆ

+

ω2jˆ

+ −−

ω7jˆ

ωRj

ω1jˆ

ωLj

|Pc (ω)|

|δ|
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Convergence Parameter

Step 3:t Compute the convergence parameter

Q =
max |E (

_
ω i )| −min |E (

_
ω i )|

max |E (
_
ω i )|
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Convergence Parameter Cont’d

ω4j
^

+

ω3jˆ

−

ω5jˆ

−

ω6jˆ

+

ω2jˆ

+ −−

ω7jˆ

ωRj

ω1jˆ

ωLj

|δ|

ω6j⁀ω5j⁀ω4j
⁀ω3j

⁀ω2j⁀ω1j⁀

|E(    )|ωi
⁀max

|E(    )|ωi
⁀min

|E(ω)|
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Rejection of Superfluous Potential Extremals

Step 4:t The problem formulation is such that there must be exactly
r + 1 extremals in each iteration.

t Analysis will show that |E (ω)| can have as many as r + 2J − 1
maxima where J is the number of bands:

– For a 1-band filter (differentiators): r+1 (no extra maxima)

– For a 2-band filter (lowpass or highpass filter): r+3 (2 extra
maxima)

– For a 3-band filter (bandpass or bandstop filter): r+5 (4 extra
maxima)

t If in any iteration the number of maxima exceeds r + 1, then
the iteration is said to have generated superfluous potential
extremals.
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Rejection of Superfluous Potential Extremals

Step 4:t The problem formulation is such that there must be exactly
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Rejection of Superfluous Potential Extremals
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Rejection of Superfluous Potential Extremals

Step 4:t The problem formulation is such that there must be exactly
r + 1 extremals in each iteration.t Analysis will show that |E (ω)| can have as many as r + 2J − 1
maxima where J is the number of bands:

– For a 1-band filter (differentiators): r+1 (no extra maxima)
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maxima)
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Rejection of Superfluous Potential Extremals

Step 4:t The problem formulation is such that there must be exactly
r + 1 extremals in each iteration.t Analysis will show that |E (ω)| can have as many as r + 2J − 1
maxima where J is the number of bands:

– For a 1-band filter (differentiators): r+1 (no extra maxima)

– For a 2-band filter (lowpass or highpass filter): r+3 (2 extra
maxima)

– For a 3-band filter (bandpass or bandstop filter): r+5 (4 extra
maxima)t If in any iteration the number of maxima exceeds r + 1, then

the iteration is said to have generated superfluous potential
extremals.
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Rejection of Superfluous Potential Extremals Cont’d

t In the standard McClellan, Rabiner, and Parks algorithm, this
difficulty is circumvented by rejecting the ρ− r potential
extremals

_
ω i that yield the lowest error |E (ω)|.
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Rejection of Superfluous Potential Extremals Cont’d

ω4j
^

+

ω3jˆ

−

ω5jˆ

−

ω6jˆ

+
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ω7jˆ
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ω6j⁀ω5j⁀ω4j
⁀ω3j
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|E(ω)|

|δ|
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Check for Convergence

Step 5:t If the convergence parameter is not small enough, i.e., if the
ripples have not equalized sufficiently, repeat from Step 2.
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Computation of Impulse Response

Step 6:t The impulse response can be determined by recalling that
function Pc(ω) is the frequency response of a noncausal
version of the required filter.

t The impulse response of the noncausal filter, denoted as h0(n)
for −c ≤ n ≤ c , can be determined by computing Pc(kΩ) for
k = 0, 1, . . . , c where Ω = 2π/N, and then using the inverse
discrete Fourier transform.
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Computation of Impulse Response Cont’d

t It can be shown that

h0(n) = h0(−n) =
1

N

{
Pc(0) +

c∑
k=1

2Pc(kΩ) cos

(
2πkn

N

)}

for n = 0, 1, . . . , c .

t The impulse response of the required causal filter is given by

h(n) = h0(n − c)

for n = 0, 1, . . . , c .
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Computation of Impulse Response Cont’d

t It can be shown that

h0(n) = h0(−n) =
1

N

{
Pc(0) +

c∑
k=1

2Pc(kΩ) cos

(
2πkn

N

)}

for n = 0, 1, . . . , c .t The impulse response of the required causal filter is given by

h(n) = h0(n − c)

for n = 0, 1, . . . , c .
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Example

Band D(ω) W (ω) Left band edge Right band edge

1 1 1 0 1.0
2 0 0.4 1.25 π

Sampling frequency: 2π
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Example Cont’d

|E
(ω

)|
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Example Cont’d

|E
(ω

)|
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Example Cont’d
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Example Cont’d

|E
(ω

)|
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Example Cont’d

|E
(ω

)|
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Example Cont’d

|E
(ω

)|
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Computational Complexity

t The Remez exchange described is using an exhaustive search
to identify the maxima of |E (ω)|.

t Consider a filter of length N and assume that |E (ω)| is
evaluated at S sample points per ripple.t The algorithm presented would require S × (N + 1)/2
function evaluations.t One function evaluation requires:

– N − 1 additions

– (N + 1)/2 multiplications

– (N + 1)/2 divisions
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Computational Complexity
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Computational Complexity

t The Remez exchange described is using an exhaustive search
to identify the maxima of |E (ω)|.t Consider a filter of length N and assume that |E (ω)| is
evaluated at S sample points per ripple.t The algorithm presented would require S × (N + 1)/2
function evaluations.t One function evaluation requires:

– N − 1 additions

– (N + 1)/2 multiplications
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Computational Complexity Cont’d

t A Remez optimization usually requires

– 4 to 8 iterations for lowpass or highpass filters,

– 6 to 10 iterations for bandpass filters, and

– 8 to 12 iterations for bandstop filters.

t If prescribed specifications are to be achieved and the
appropriate value of N is unknown, typically two to four
Remez optimizations have to be performed.
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appropriate value of N is unknown, typically two to four
Remez optimizations have to be performed.
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Computational Complexity Cont’d

t For example, if

– N = 101,
– S = 16,
– number of Remez optimizations = 4,
– iterations per optimization = 6,

the design would entail 24 iterations, 19,200 function
evaluations, 1.92× 106 additions, 0.979× 106 multiplications,
and 0.979× 106 divisions.

t This is in addition to the computation required for the
evaluation of δ and coefficients αk , Ck , and βk once per
iteration.t In effect, the amount of computation required to complete a
design is quite substantial.
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Selective Step-by-Step Search

t When the system of equations


1 cos ω̂0 cos 2ω̂0 · · · cos cω̂0

1
W (ω̂0)

1 cos ω̂1 cos 2ω̂1 · · · cos cω̂1
−1

W (ω̂1)

· · · · · · · · · · · · · · · · · ·
1 cos ω̂r cos 2ω̂r · · · cos cω̂r

(−1)r

W (ω̂r )



a0

a1

...
ac
δ

 =


D(ω̂0)
D(ω̂1)

...
D(ω̂r−1)
D(ω̂r )


is solved, the error function |E (ω)| is forced to satisfy the relation

|E (ω̂i )| = |W (ω̂i )[D(ω̂i )− Pc(ω̂i )]| = |δ|

t This relation can be satisfied in a number of ways but the most
likely possibility for the jth band is illustrated in the next slide where
ωLj and ωRj are the left-hand and right-hand edges, respectively.
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Selective Step-by-Step Search Cont’d

ω4j
^

+
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−

ω6jˆ

+

ω2jˆ

+ −−

ω7jˆ

ωRj

ω1jˆ

ωLj

ω6j⁀ω5j⁀ω4j
⁀ω3j

⁀ω2j⁀ω1j⁀

|E(ω)|

|δ|
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Selective Step-by-Step Search Cont’d

t Because of the special nature of the error function

(a) the maxima of |E (ω)| can be easily found by searching in the
vicinity of the extremals;

(b) gradient information can be used to expedite the search for the
maxima of |E (ω)|; and

(c) the closer we get to the solution, the closer are the maxima of
the error function to the extremals.

t By using a selective step-by-step search, a large amount of
computation can be eliminated.
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Selective Step-by-Step Search Cont’d

t Extra ripples can arise in the first and last bands:

ωµjJˆω(µj−1)Jˆ

ωµjJˆ

π

ω(µj−1)Jˆ

0

ω2jˆ

|δ|

|E(ω)|

|δ|

π0

(b) (c)

ω

ω1jˆ

ω2jˆ
(d) (e)

ω1jˆ

ω
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Selective Step-by-Step Search Cont’d

t Also in interior bands:

|δ|

|E(ω)|

(f)

ωLj
ωRj

ωµjjˆω(µj−1)jˆ
(g)

ω1jˆ ω2jˆ ω3jˆ

ω2jˆ

|δ|

(h)

ωLj
ωRj

ω(µj−1)jˆ
(i)

ω1jˆ ωµjjˆ
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Cubic Interpolation Search

t Increased computational efficiency can be achieved by using a
search based on cubic interpolation.

t Assuming that the magnitude of the error can be represented by the
third-order polynomial

|E (ω)| = M = a + bω + cω2 + dω3

where a, b, c , and d are constants then

dM

dω
= G = b + 2cω + 3dω2

Hence, the frequencies at which M has stationary points are given
by

ω̄ =
1

3d

[
−c ±

√
(c2 − 3bd)

]
t Therefore, |E (ω)| has a maximum if

d2M

dω2
= 2c + 6d

_
ω < 0 or

_
ω < − c

3d
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Cubic Interpolation Search Cont’d

ω1 ω2 ω3

~ ~ ~

ω

|E(ω)|

ω⁀
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Cubic Interpolation Search Cont’d

t The cubic interpolation method requires four function
evaluations per potential extremal consistently.

t The selective step-by-step search may require as many as
eight function evaluations per potential extremal in the first
two or three iterations but as the solution is approached only
two or three function evaluations are required.t By using the cubic interpolation to start with and then
switching over to the step-by-step search, a very efficient
algorithm can be constructed.t The decision to switch from cubic to selective can be based
on the value of the convergence parameter Q (see Step 5).

Switching from the cubic to the selective when Q is reduced
below 0.65 works well.
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Improved Rejection Scheme for Superfluous
Potential Extremals

t If an extremal does not move from one iteration to the next,
then the minimum value of E (

_
ω i ) is simply δ, as can be easily

shown, and this happens quite often even in the first or
second iteration of the Remez algorithm.
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Improved Rejection Scheme Cont’d

|E
(ω

)|
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Improved Rejection Scheme Cont’d

t As a consequence, rejecting potential extremals on the basis
of the individual values of E (

_
ω i ) tends to become random and

this can slow the Remez algorithm quite significantly
particularly for multiband filters.

t An improved scheme for the rejection of superfluous extremals
based the rejection on the lowest average band error as well as
the individual values of E (

_
ω i ) is described in the next slide.
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Improved Rejection Scheme Cont’d

t Compute the average band errors

Ej =
1

νj

∑
_
ωi∈Ωj

|E (
_
ω i )| for j = 1, 2, . . . , J

where Ωj is the set of extremals in band j given by

Ωj = {_ω i : ωLj ≤
_
ω i ≤ ωRj}

νj is the number of potential extremals in band j , and J is the
number of bands.

t Rank the J bands in the order of lowest average error and let
l1, l2, . . . , lJ be the ranked list obtained, i.e., l1 and lJ are the
bands with the lowest and highest average error, respectively.
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Improved Rejection Scheme Cont’d

t Reject one
_
ω i in each of bands l1, l2, . . . , lJ−1, l1, l2, ...

until ρ− r superfluous
_
ω i are rejected. In each case, reject

the
_
ω i , other than a band edge, that yields the lowest |E (

_
ω i )|

in the band.

Example:

If J = 3, ρ− r = 3, and the average errors for bands 1, 2, and 3 are
0.05, 0.08, and 0.02, then

_
ω i are rejected in bands 3, 1, and 3.

Note: The potential extremals are not rejected in band 2 which is
the band of highest average error.
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Example

Band D(ω) W (ω) Left band edge Right band edge

1 1 1 0 1.0
2 0 0.4 1.25 π

Sampling frequency: 2π
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Example Cont’d

|E
(ω

)|
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Example Cont’d
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Example Cont’d
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Example Cont’d

|E
(ω

)|
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Comparisons — Amount of Computation

Type of No. of Range Ave. Funct. Evals. Saving, %
Filter Examples of N A B C C v B C v A

LP 45 9-101 2691 722 372 48.9 86.3
HP 42 9-101 2774 710 356 49.9 87.2
BP 44 21-89 2777 667 338 49.3 87.8
BS 35 21-91 2720 639 336 47.4 87.6

A: Exhaustive search
B: Selective search
C: Selective plus cubic search
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Comparisons — Robustness

Type of No. of No. Failures
Filter Examples A B C

LP 46 1 0 0
HP 43 1 0 0
BP 50 3 2 5
BS 45 6 8 8

A: Exhaustive search
B: Selective search
C: Selective plus cubic search
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Prescribed Specifications

t A nonrecursive filter of length N, passband and stopband
weights of 1 and δp/δa, respectively, and specified passband
and stopband edges can be readily designed.

t While the filter obtained will have passband and stopband
edges at the correct locations and the ratio δp/δa will be
exactly as required, the amplitudes of the passband and
stopband ripples are highly unlikely to have the specified
values.t An acceptable design can be obtained by predicting the value
of N on the basis of the required specifications and then
designing filters for increasing or decreasing values of N until
the lowest value of N that satisfies the specifications is found.
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Filter Length Prediction

t A reasonably accurate empirical formula for the prediction of
the required filter length, N, for the case of lowpass and
highpass filters, due to Herrmann, Rabiner, and Chan, is

N = int

[
(D − FB2)

B
+ 1.5

]
where

B = |ωa − ωp|/2π

D = [0.005309(log10 δp)2 + 0.07114 log10 δp − 0.4761] log10 δa

−[0.00266(log10 δp)2 + 0.5941 log10 δp + 0.4278]

F = 0.51244(log10 δp − log10 δa) + 11.012
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Filter Length Prediction

t The formula of Herrmann et al. can also be used to predict
the filter length in the design of bandpass, bandstop, and
multiband filters in general.

t In these filters, a value of N is computed for each transition
band between a passband and stopband or a stopband and
passband and the largest value of N so obtained is taken to be
the predicted filter length.
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Algorithm

1. Compute N using the prediction formula of Herrmann et al.; if
N is even, set N = N + 1.

2. Design a filter of length N using the Remez algorithm and

determine the minimum value of δ, say
^
δ .

(A) If
^

δ > δp, then do:

(a) Set N = N + 2, design a filter of length N using the Remez

algorithm, and find
^

δ ;

(b) If
^

δ ≤ δp, then go to step 3; else, go to step 2(A)(a).

(B) If
^

δ < δp, then do:

(a) Set N = N − 2, design a filter of length N using the Remez

algorithm, and find
^

δ ;

(b) If
^

δ > δp, then go to step 4; else, go to step 2(B)(a).
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Algorithm Cont’d

3. If part A of the algorithm was executed, use the last set of
extremals and the corresponding value of N to obtain the
impulse response of the required filter and stop.

4. If part B of the algorithm was executed, use the last but one
set of extremals and the corresponding value of N to obtain
the impulse response of the required filter and stop.
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Example

In an application, a nonrecursive equiripple bandstop filter is
required which should satisfy the following specifications:

– Odd filter length

– Passband ripple Ap : 0.5 dB

– Minimum stopband attenuation Aa : 50.0 dB

– Lower passband edge ωp1 : 0.8 rad/s

– Upper passband edge ωp2 : 2.2 rad/s

– Lower stopband edge ωa1 : 1.2 rad/s

– Upper stopband edge ωa2 : 1.8 rad/s

– Sampling frequency ωs : 2π rad/s

Design the lowest-order filter that will satisfy the specifications.
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Example Cont’d

The design algorithm gave a filter with the following specifications:

t Passband ripple: 0.4342 dBt Minimum stopband attenuation: 51.23 dB

Progress of Algorithm

N Iters. FE’s Ap, dB Aa, dB

31 10 582 0.5055 49.91
33 7 376 0.5037 49.94
35 9 545 0.4342 51.23
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Example Cont’d

0.785 0 1.571 2.356 3.142 

−55.0 

−30.0 

−5.0 

20.0 

ω, rad/s 

G
a
in

, 
d
B

 

−80.0 

Note: Passband errors multiplied by a factor of 40.
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Advantages of Weighted-Chebyshev Method

t Designs are optimal, i.e., the required filter order for a set of
prescribed specifications is the lowest that can be achieved.

t The minimum filter order to satisfy certain prescribed
specifications can be predicted by using certain empirical
formulas.t Minimum filter order implies a more efficient and faster filter
implementation for real-time applications.t The method is very flexible in that it can be used to design
filters, differentiators, Hilbert transformers, etc.t The solutions achieved are equiripple.
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Disadvantages of Weighted-Chebyshev Method

t The design requires a very large amount of computation.

t Not suitable for applications where the design has to be
carried out in real- or quasi-real time, for example, in
programmable or adaptable filters.
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D-Filter

A DSP software package that incorporates the design techniques
described in this presentation is D-Filter.

For more information about D-Filter or to download a free copy,
click the following link:

http://ece.uvic.ca/∼dsp/Software-ne.html

Frame # 82 Slide # 138 A. Antoniou Digital Signal Processing – Secs. 15.1-15.5, 15.7

http://ece.uvic.ca/~dsp/Software-ne.html


Summary

t Three design techniques that bring about substantial
improvements in the efficiency of the Remez algorithm have
been described:

– A step-by-step exhaustive search

– A cubic interpolation search

– An improved scheme for the rejection of superfluous potential
extremals

t These techniques are implemented in a DSP software package
known as D-Filter.t Extensive experimentation has shown that the selective and
cubic interpolation searches reduce the amount of
computation required by the Remez algorithm by almost 90%
without degrading its robustness.
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Summary Cont’d

t The rejection scheme described increases the efficiency and
robustness of the Remez algorithm further but the scheme has
not been compared with the original method of McClellan,
Rabiner, and Parks.

t By using a prediction technique for the required filter length
proposed by Herrmann, Rabiner, and Chan, filters that satisfy
prescribed specifications can be designed.t For off-line applications, the Remez algorithm continues to be
the method of choice for the design of linear-phase filters,
multiband filters, differentiators, Hilbert transformers.
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Summary Cont’d

t Despite the improvements described, the Remez algorithm
continues to require a large amount of computation.

For applications that need the filter to be designed on-line in
real or quasi-real time, the window method is preferred
although the filters obtained are suboptimal.
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This slide concludes the presentation.

Thank you for your attention.
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