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Introduction

The Newton algorithm described in the previous presentation
is the basis of many other optimization algorithms such as the
Gauss-Newton algorithm and the family of conjugate-
directions algorithms.

These algorithms possess certain advantages for certain
applications depending, for example, on the characteristics
and size of the problem to be solved.

A specific family of algorithms derived from the basic Newton
algorithm, the family of quasi-Newton algorithms, have
certain unique features that make them very suitable for the
design of recursive digital filters.
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Introduction Cont’d

Quasi-Newton algorithms offer a number of important
advantages as follows:

– They do not require the second derivatives of the function.

– There is no need to invert an n × n matrix.

– There is no need to check an n × n matrix for positive
definiteness.

– Can be used with inexact line searches which lead to improved
efficiency.

– They offer fast convergence.

– Are robust.

The underlying principle in these algorithms is to generate a
matrix S on the basis of successive gradient evaluations, which
becomes the inverse Hessian under certain ideal conditions.
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Introduction Cont’d

Consider a function of n independent variables, f (x), and let the
gradients of f (x) at points xk and xk+1 be gk and gk+1, respectively.

The gradient of a function is obviously another function.

So if we let
xk+1 = xk + δk

then the Taylor series gives the elements of gk+1 as

g(k+1)m = gkm +
n∑

i=1

∂gkm
∂xk i

δk i +
1

2

n∑
i=1

n∑
j=1

∂2gkm
∂xk i∂xkj

δk iδkj + o
(
||δ||22

)
for m = 1, 2, . . . , n.
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Introduction Cont’d

· · ·
g(k+1)m = gkm +

n∑
i=1

∂gkm
∂xk i

δk i +
1

2

n∑
i=1

n∑
j=1

∂2gkm
∂xk i∂xkj

δk iδkj + o
(
||δ||22

)
If f (x) is a quadratic function, the second and higher derivatives of
f (x) are constant and zero, respectively, and as a result the second
and higher derivatives of gkm are zero.

Thus we get

g(k+1)m = gkm +
n∑

i=1

∂2fk
∂xk i∂xkm

δk i for m = 1, 2, . . . , n

or
g(k+1)m = gk + Hδk
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Introduction Cont’d

· · ·
g(k+1)m = gk + Hδk

The above relation can be expressed as

γk = Hδk

where δk = xk+1 − xk

and γk = gk+1 − gk

If γk and δk are known, a certain amount of information is available
about the Hessian is available.
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Introduction Cont’d

· · ·
γk = Hδk

If we let x0, x1, . . . , xn−1 be a series of points such that the
changes

δ0 = x1 − x0, δ1 = x2 − x1, . . . , δn−1 = xn − xn−1

are linearly independent, then

γ0 = Hδ0, γ1 = Hδ1, . . . , γn−1 = Hδn−1

or [
γ0 γ1 . . . γn−1

]
= H

[
δ0 δ1 · · · δn−1

]
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Introduction Cont’d

· · · [
γ0 γ1 . . . γn−1

]
= H

[
δ0 δ1 · · · δn−1

]
Solving for H, we get

H =
[
γ0 γ1 · · · γn−1

][
δ0 δ1 · · · δn−1

]−1

The solution exists because the changes in x have been
assumed to be linearly independent and, therefore, matrix
[δ0 δ1 · · · δn−1] is nonsingular.

In effect, we can eliminate the need for the second derivatives
by calculating the Hessian using the values of n successive
gradients and n successive linearly independent changes in x.

This idea is implemented in the next algorithm.
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Alternative Implementation of Newton Algorithm

1. Input x00 and ε.

Input a set of n linearly independent vectors δ0, δ1, . . . , δn−1.

Set k = 0.

2. Compute gk0.

3. For i = 0 to n − 1 do:

a. Set xk(i+1) = xk i + δi .

b. Compute gk(i+1).
c. Set γk i = gk(i+1) − gk i .

4. Compute

Hk =
[
γk0 γk1 · · · γk(n−1)

][
δ0 δ1 · · · δn−1

]−1
If Hk is not positive definite, force it to become positive
definite.
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Alternative Implementation of Newton Algorithm Cont’d

5. Determine Sk = H−1k .

6. Set dk = −Skgk0 and find αk , the value of α that minimizes
f (xk0 + α dk), using a line search.

7. Set x(k+1)0 = xk0 + αkdk and compute f(k+1)0 = f (x(k+1)0).

8. If ‖αkdk‖2 < ε, then output
^
x = x(k+1)0, f (

^
x ) = f(k+1)0,

and stop.

Otherwise, set k = k + 1 and repeat from step 2.
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Alternative Implementation of Newton Algorithm Cont’d

The algorithm described is essentially the Newton algorithm,
except that the Hessian is calculated by using n values of γ
and n linearly independent changes in x instead of using the
second derivatives.

In quasi-Newton algorithms, a matrix S, which serves the
same purpose as the inverse Hessian, is initially assumed to be
the identity matrix, I, and in each iteration an appropriate
correction is made to S which assures that the corrected
matrix is a better approximation of the inverse Hessian while
remaining positive definite.

A generic quasi-Newton algorithm is described next.
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Quasi-Newton Algorithms

1. Input x0 and ε. Set S0 = In and k = 0. Compute g0.

2. Set dk = −Skgk and find αk , the value of α that minimizes
f (xk + α dk), using a line search.

3. Set δk = α kdk and xk+1 = xk + δk , and compute
fk+1 = f (xk+1).

4. If ‖δk‖2 < ε, then output
^
x = xk+1, f (

^
x ) = fk+1 and stop.

5. Compute gk+1 and set γk = gk+1 − gk .

6. Compute Sk+1 = Sk + Ck .

7. Check Sk+1 for positive definiteness and if it is found to be
nonpositive definite force it to become positive definite.

8. Set k = k + 1 and go to step 2.
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Quasi-Newton Algorithms Cont’d

In Step 2 a direction vector is generated which is analogous to
the Newton direction.

In Step 3 the function is minimized with respect to the line
defined by the direction vector as usual.

In Step 5 the next gradient and the difference between the
next and the present gradient, i.e., γk , are calculated.

In Step 6, a correction is applied to the current S matrix to
obtain the next S matrix.
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Quasi-Newton Algorithms Cont’d

Several quasi-Newton algorithms are available, which differ
from one another in the formula used to update matrix Sk+1

in Step 6 of the generic quasi-Newton algorithm presented.

The two most important updating formulas are the
Davidon-Fletcher-Powell (DFP) formula in which

Sk+1 = Sk +
δkδ

T
k

γT
k δk

−
Skγkγ

T
k Sk

γT
k Skγk

and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula in
which

Sk+1 = Sk +

(
1 +

γT
k Skγk

γT
k δk

)
δkδ

T
k

γT
k δk

−
(δkγ

T
k Sk + Skγkδ

T
k )

γT
k δk
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Quasi-Newton Algorithms Cont’d

The DFP and BFGS algorithms have the following important
advantages relative to other quasi-Newton algorithms:

For a quadratic problem, matrix S becomes the inverse
Hessian in n iterations.

Also matrix Sk+1 is positive definite, if Sk is positive definite.

Thus if we start with S0 = I, the positive definiteness of S is
assured throughout the optimization.

For a general nonquadratic problem, matrix Sk+1 is positive
definite, if Sk is positive definite provided that an exact line
search is used.
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Quasi-Newton Algorithms Cont’d

The positive definiteness of Sk+1 can also be assured if an
inexact line search is used except that a scalar parameter
associated with these algorithms has to be checked.

If it becomes negative, Sk+1 has to be forced to become
positive definite, e.g., replaced by the identity matrix.

The DFP and BFGS formulas have very similar mathematical
properties and, in fact, they are related through a principle
known as mathematical duality.

However, experiments carried out by Fletcher have shown that
the use of the BFGS formula tends to lead to reduced
computation.

The reason has not as yet been identified.
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Quasi-Newton Algorithms Cont’d

An important advantage of quasi-Newton algorithms relates
to the fact that they can be used with inexact line searches.

These are low precision line searches that have the unusual
property that their inexactness does not affect the
convergence properties of the quasi-Newton algorithm.

Thus they lead to reduced computational effort.
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Fletcher’s Inexact Line Search

In each iteration of a typical optimization algorithm, a change is
applied to the most recent value of xk by applying a change α dk
such that

xk+1 = xk + α dk

where dk is a descent direction.

Then the function

f (xk+1) = f (xk + α dk)

is minimized with respect to parameter α.

In an exact line search, the function is continuously reduced until
the precise value of α that minimizes the function,

^
α, is obtained.

In an inexact line search, the function is continuously reduced until
a value of α that falls in a specified parametric interval is obtained.
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Fletcher’s Inexact Line Search Cont’d

Let us assume that function f (xk+1) has a unique minimum.

Since dk is a descent direction, the function will decrease as
we increase α and it follows that the minimum will be located
over some positive range of α as shown in the figure.

0

α

f (xk)

f (xk+1)

α

(
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Fletcher’s Inexact Line Search Cont’d

The linear approximation of the Taylor series for f (xk+1) is of
the form

f (xk+1) = f (xk)+α gTk dk where gTk dk =
df (xk + α dk)

dα

∣∣∣∣
α=0

See line A in the figure.

0

α

f (xk)

f (xk+1)

A

α

(

Frame # 20 Slide # 57 A. Antoniou Digital Signal Processing – Secs. 16.4–16.6



Fletcher’s Inexact Line Search Cont’d

· · ·
f (xk+1) = f (xk) + α gTk dk

Similarly, the equation

f (xk+1) = f (xk) + ρα gTk dk

where 0 ≤ ρ ≤ 0.5 represents a line whose slope ranges from 0
to 0.5gTk dk depending on the value of ρ.

See line B in the next slide.
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Fletcher’s Inexact Line Search Cont’d

· · ·
f (xk+1) = f (xk) + ρα gTk dk

Let us assume that line B intersects the curve at α = α2 as
shown.

α20

α

f (xk)

f (xk+1)

B

A

α

(
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Fletcher’s Inexact Line Search Cont’d

Now consider the equation

gT
k+1dk = σ gT

k dk where 0 < σ < 1 and σ ≥ ρ

This equation defines some point α = α1 at which the first
derivative of f (xk+1) is equal to a fraction of the derivative of the
function at α = 0 as shown by line C in the figure.

α1 α20

α

f (xk)

f (xk+1)

B

C

A

α

(
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α1 α20
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A

α
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Fletcher’s Inexact Line Search Cont’d

Thus the equations

f (xk+1) = f (xk) + ρα gTk dk

gTk+1dk = σ gTk dk

define an interval [α1, α2] that would bracket the minimum
point.

α1 α20

α

f (xk)

f (xk+1)

B

C

A

α

(
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Fletcher’s Inexact Line Search Cont’d

By choosing parameters, ρ and σ, the width of interval [α1, α2] can
be controlled.

If a value of α in the range [α1, α2], say, α0, is somehow obtained,
the reduction in the function may be deemed to be sufficient and
the line search can be terminated.

Value α0 can be checked by checking whether the inequalities

f (xk+1) ≤ f (xk) + ραgT
k dk

and
gT
k+1dk ≥ σ gT

k dk

are satisfied at point α = α0.

If they are satisfied, then α1 ≤ α ≤ α2.

These inequalities are known as the Goldstein inequalities.
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Fletcher’s Inexact Line Search Cont’d

α1 α2α00

α

f (xk)

f (xk+1)

B

C

A

α

(
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Fletcher’s Inexact Line Search Cont’d

· · ·
f (xk+1) ≤ f (xk) + ραgTk dk

If the first Goldstein inequality is not satisfied at α = α0, then
obviously α0 > α2 as shown.

α1 α0α20

α

f (xk)

f (xk+1)

B

C

A

α

(
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Fletcher’s Inexact Line Search Cont’d

In such a case, a better value of α can be deduced by
applying interpolation.

α1 α0α20

α

f (xk)

f (xk+1)

B

C

A

α

(
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Fletcher’s Inexact Line Search Cont’d

· · ·
gTk+1dk ≥ σ gTk dk

If the second Goldstein inequality is not satisfied at α = α0,
then obviously α0 < α1 as shown.

α1α0
α20

α

f (xk)

f (xk+1)

B

C

A

α

(
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Fletcher’s Inexact Line Search Cont’d

In such a case, a better value of α can be deduced by
applying extrapolation.

α1α0
α20

α

f (xk)

f (xk+1)

B

C

A

α

(
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Fletcher’s Inexact Line Search Cont’d

Interpolation and extrapolation formulas for use in Fletcher’s
inexact line search can be readily deduced by assuming a
quadratic representation for f (xk + α dk) and then finding the
location of the minimum point.

To achieve efficiency, the interpolation information available
for the implementation of Goldstein’s inequalities should as far
as possible be used.
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Fletcher’s Inexact Line Search Cont’d

The interpolation and extrapolation formulas used by Fletcher are
as follows:

For α0 > α2

^
α0 = αL +

(α0 − αL)2f ′L
2[fL − f0 + (α0 − αL)f ′L ]

For α0 < α1

^
α0 = α0 +

(α0 − αL)f ′0
(f ′L − f ′0 )

where

fL = f (xk + αLdk) and f ′L = f ′(xk + αLdk) = g(xk + αLdk)Tdk

f0 = f (xk + α0dk) and f ′0 = f ′(xk + α0dk) = g(xk + α0dk)Tdk
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Fletcher’s Inexact Line Search Cont’d

A basic inexact line search is as follows:

1. Obtain an estimate of the minimum point α0 in some way.

2. Check the first Goldstein condition

f (xk+1) ≤ f (xk) + ραgT
k dk

3. If the condition in Step 2 is not satisfied, carry out an interpolation
and repeat from Step 2.

4. Check the second Goldstein condition

gT
k+1dk ≥ σ gT

k dk

5. If the condition in Step 4 is not satisfied, carry out an extrapolation
and repeat from Step 2.

6. Output the most recent
^
α0 and the function value f (

^
α0), and stop.
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Fletcher’s Inexact Line Search Cont’d
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Fletcher’s Inexact Line Search Cont’d

A practical inexact line-search algorithm would need to initialize σ
and ρ and some other parameters that are required.

It should generate the information required by the Goldstein
conditions and the interpolation and extrapolation formulas.

In addition, it should deal with unusual circumstances that may
arise in general nonquadratic optimization problems.

For example, an extrapolation could in principle locate a maximum
point at some negative value of α or it may generate a positive
value larger than the most recent value of

^
α0 generated by the

previous interpolation.

These are all unreasonable values for
^
α0 and should be ignored.

This can be achieved by ensuring that αmin <
^
α0 < αmax where

αmin and αmax are the values of
^
α0 predicted by the most recent

extrapolation and interpolation, respectively.

Frame # 34 Slide # 81 A. Antoniou Digital Signal Processing – Secs. 16.4–16.6



Fletcher’s Inexact Line Search Cont’d

A practical inexact line-search algorithm would need to initialize σ
and ρ and some other parameters that are required.

It should generate the information required by the Goldstein
conditions and the interpolation and extrapolation formulas.

In addition, it should deal with unusual circumstances that may
arise in general nonquadratic optimization problems.

For example, an extrapolation could in principle locate a maximum
point at some negative value of α or it may generate a positive
value larger than the most recent value of

^
α0 generated by the

previous interpolation.

These are all unreasonable values for
^
α0 and should be ignored.

This can be achieved by ensuring that αmin <
^
α0 < αmax where

αmin and αmax are the values of
^
α0 predicted by the most recent

extrapolation and interpolation, respectively.

Frame # 34 Slide # 82 A. Antoniou Digital Signal Processing – Secs. 16.4–16.6



Fletcher’s Inexact Line Search Cont’d

A practical inexact line-search algorithm would need to initialize σ
and ρ and some other parameters that are required.

It should generate the information required by the Goldstein
conditions and the interpolation and extrapolation formulas.

In addition, it should deal with unusual circumstances that may
arise in general nonquadratic optimization problems.

For example, an extrapolation could in principle locate a maximum
point at some negative value of α or it may generate a positive
value larger than the most recent value of

^
α0 generated by the

previous interpolation.

These are all unreasonable values for
^
α0 and should be ignored.

This can be achieved by ensuring that αmin <
^
α0 < αmax where

αmin and αmax are the values of
^
α0 predicted by the most recent

extrapolation and interpolation, respectively.

Frame # 34 Slide # 83 A. Antoniou Digital Signal Processing – Secs. 16.4–16.6



Fletcher’s Inexact Line Search Cont’d

A practical inexact line-search algorithm would need to initialize σ
and ρ and some other parameters that are required.

It should generate the information required by the Goldstein
conditions and the interpolation and extrapolation formulas.

In addition, it should deal with unusual circumstances that may
arise in general nonquadratic optimization problems.

For example, an extrapolation could in principle locate a maximum
point at some negative value of α or it may generate a positive
value larger than the most recent value of

^
α0 generated by the

previous interpolation.

These are all unreasonable values for
^
α0 and should be ignored.

This can be achieved by ensuring that αmin <
^
α0 < αmax where

αmin and αmax are the values of
^
α0 predicted by the most recent

extrapolation and interpolation, respectively.

Frame # 34 Slide # 84 A. Antoniou Digital Signal Processing – Secs. 16.4–16.6



Fletcher’s Inexact Line Search Cont’d

A practical inexact line-search algorithm would need to initialize σ
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Fletcher’s Inexact Line Search Cont’d
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Fletcher’s Inexact Line Search Cont’d

If during an interpolation or extrapolation a value of
^
α0 is

obtained in the red regions shown in the previous figure, it is
replaced by a more reasonable value.

A practical implementation of Fletcher’s inexact line search as
well as relevant details can be found in the textbook.
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Choice between L2 and L∞ Solutions

L2 solutions are easier to obtain and filters based on these
solutions will reject more signal power in stopbands.

However, the passband error tends to have large peaks near
passband edges, which are undesirable in practice.

L∞ solutions are more difficult to obtain because they require
the application of minimax algorithms which entail much more
computation.

However, they offer the advantage that the approximation
error tends to be uniformly distributed in passbands, i.e., they
tend to yield equiripple solutions such as those obtained with
the elliptic approximation.
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Minimax Algorithms

Minimax algorithms are essentially sequential algorithms that
involve a series of unconstrained optimizations.

A representative algorithm of this class is the so-called
least-pth algorithm.
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Least-pth Minimax Algorithm

Since

lim
p→∞

Lp(x) = L∞(x) =
_
E (x) lim

p→∞


K∑
i=1

 |ei (x)|
_
E (x)

p
1/p

where
_
E (x) = max

1 ≤ i ≤ K
|ei (x)|

it should be possible, in theory, to solve the minimax problem
by minimizing the Lp norm for some large value of p, say, 128.

Unfortunately, that does not work out well in practice because
the L∞ norm tends to be badly ill-conditioned.
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Least-pth Minimax Algorithm Cont’d

It turns out that the objective function has many valleys and
ridges as well as multiple minima and locating a good
minimum point would not be easy.

To visualize the situation, think of a problem that involves
only two independent variables and think of the Rocky
Mountains.

What the least-pth algorithm does is to obtain a solution for
the L2 norm, which is easy to obtain since the problem is well
behaved.
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Least-pth Minimax Algorithm Cont’d

Then the L4 norm is minimized using the solution obtained for the
L2 norm as the initialization.

Since the L4 problem is similar to the L2 problem, the solution of
the L4 problem is most likely to be located in the same locale of the
parameter space as the solution of the L2 problem and, thus, it
would be relatively easy to obtain.

Similarly, the solution of the L8 problem can more easily be obtained
by using the solution of the L4 problem as the initialization, and so
on.

Is effect, starting with the L2 norm, the problem is repeatedly
modified a little by increasing the value of p and then solving the
problem again using the previous solution as initialization.

This sequential technique enables the algorithm to locate a good
minimum point.
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Least-pth Minimax Algorithm Cont’d

1. Input
^
x 0 and ε1 and et k = 1, p = 2, µ = 2,

_
E 0 = 1099.

2. Initialize frequencies ω1, ω2, . . . , ωK .

3. Using
^
x k−1 as initial value, minimize

Ψk(x) =
_
E (x)


K∑
i=1

 |ei (x)|
_
E (x)

p
1/p

where
_
E (x) = max

1≤i≤K
|ei (x)|

with respect to x, to obtain
^
x k . Set

_
E k =

_
E (

^
x ).

4. If |
_
E k−1 −

_
E k | < ε1, then output

^
x k and

_
E k , and stop.

Otherwise, set p = µp, k = k + 1 and go to step 3.
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Charalambous Minimax Algorithm

Another popular minimax algorithm is one due to
Charalambous.

Like the least-pth algorithm, the Charalambous algorithm is a
sequential optimization algorithm.

It involves minimizing a function of the form

Ψ(x,λ, ξ) =
∑
i∈I1

1

2
λi [φi (x, ξ)]2 +

∑
i∈I2

1

2
[φi (x, ξ)]2

where ξ and λi for i = 1, 2, . . . ,K are constants and

φi (x, ξ) = |ei (x)| − ξ
I1 = {i : φi (x, ξ) > 0 and λi > 0}
I2 = {i : φi (x, ξ) > 0 and λi = 0}
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Charalambous Minimax Algorithm Cont’d

· · ·
Ψ(x,λ, ξ) =

∑
i∈I1

1

2
λi [φi (x, ξ)]2 +

∑
i∈I2

1

2
[φi (x, ξ)]2

Since the objective function comprises sums of squares of function
φi (x, ξ), ill-conditioning is less likely to arise in this algorithm.

Note that ith term λi [φi (x, ξ)]2 is dropped from the first summation
if λi becomes negative.

This tends to reduce the amount of computation significantly and
renders the Charalambous algorithm more efficient than the
least-pth algorithm.

(See Chap. 16 and references at the end of the chapter for details.)
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Improved Minimax Algorithms

To achieve good results in the minimax algorithms described,
the sampling of e(x, ω) with respect to ω must be dense.

Otherwise, the error function may develop spikes in the
intervals between sample points during the minimization,
usually near band edges, as shown.
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Improved Minimax Algorithms Cont’d

This problem is usually overcome by using a fairly large
number of sample points of the order of 5 to 10 times the
number of variables.

For example, if an eighth-order digital filter is to be designed,

– the transfer function would involve 17 independent variables
(four per biquadratic transfer function plus one).

– In such a case 85 to 170 sample points may be required which
means that 85 to 170 gain evaluations would be required.

– A single optimization may necessitate from 300 to 600
function evaluations, and a minimax algorithm may require 5
to 10 unconstrained optimizations to converge.

That means that we would require to calculate the gain of the
filter some 105 to 106 times, many more if a very selective
filter is required.
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Improved Minimax Algorithms Cont’d

The amount of computation required to carry out a design
and/or the probability of spikes in the error function can be
reduced by using a so called nonuniform variable sampling.

This technique involves seven steps as detailed in the next few
slides.
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Improved Minimax Algorithms Cont’d

1. Define a dense grid of L uniformly spaced sample points ω̄1 to ω̄L

over the frequency band of interest, as shown, where L is of the
order of 10 to 20 times the number of independent variables
depending on the application.

These points can be referred to as virtual sample points.
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Improved Minimax Algorithms Cont’d

2. Divide the frequency band of interest into K intervals, where
K = L/10, such that

– intervals Ω1 and ΩK contain just one virtual sample point
each, the left-hand band edge and right-hand band edge,
respectively,

– intervals Ω2 and Ω(K−1) contain 5 virtual sample points each,

– intervals Ω3 to Ω(K−2) contain 10 virtual sample points each.

As will be seen later on, each of intervals Ω1 and ΩK will
carry just one actual sample frequency and, consequently, the
above scheme will lead to a higher density of actual sample
frequencies near band edges where the error tends to be larger
in practice.

Other choices of interval sizes could work out just as well or
better, e.g., 1, 2, 5, 11, . . ., 11, 5, 2, 1.
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Improved Minimax Algorithms Cont’d
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Improved Minimax Algorithms Cont’d

3. Evaluate the error function with respect to the virtual sample
frequencies, ω̄1, ω̄2, . . . , ω̄L.

4. For each of the K intervals, find the virtual sample frequency that
yields the maximum error for the interval. Let these frequencies be
_
ω i for i = 1, 2, . . . ,K .
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Improved Minimax Algorithms Cont’d

5. Using frequencies
_
ω i as the actual sample frequencies, i.e., set

ωi =
_
ω i for i = 1, 2, . . . ,K , optimize the objective function.

6. Repeat from Step 4 until convergence is achieved.
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Improved Minimax Algorithms Cont’d

By applying the nonuniform variable sampling technique before each
optimization, the frequencies at which spikes are beginning to form
are located and are used as the actual sample frequencies in the
next optimization.

In this way, spikes are suppressed and the maximum error is reduced.

Note that the error function is evaluated with respect to the dense
set of frequencies ω̄1, ω̄2, . . . , ω̄L just once before each optimization
and only the actual sampling frequencies ωi =

_
ω i for

i = 1, 2, . . . ,K are used by the optimization.

In this way, the amount of computation required can be reduced by
as much as 50% relative to that required if uniform fixed sampling is
used.

In other words, we perform a small amount of computation to tune
the initialization in order to save a lot of computation in performing
the optimization.
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By applying the nonuniform variable sampling technique before each
optimization, the frequencies at which spikes are beginning to form
are located and are used as the actual sample frequencies in the
next optimization.

In this way, spikes are suppressed and the maximum error is reduced.

Note that the error function is evaluated with respect to the dense
set of frequencies ω̄1, ω̄2, . . . , ω̄L just once before each optimization
and only the actual sampling frequencies ωi =

_
ω i for

i = 1, 2, . . . ,K are used by the optimization.

In this way, the amount of computation required can be reduced by
as much as 50% relative to that required if uniform fixed sampling is
used.

In other words, we perform a small amount of computation to tune
the initialization in order to save a lot of computation in performing
the optimization.
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By applying the nonuniform variable sampling technique before each
optimization, the frequencies at which spikes are beginning to form
are located and are used as the actual sample frequencies in the
next optimization.

In this way, spikes are suppressed and the maximum error is reduced.

Note that the error function is evaluated with respect to the dense
set of frequencies ω̄1, ω̄2, . . . , ω̄L just once before each optimization
and only the actual sampling frequencies ωi =

_
ω i for

i = 1, 2, . . . ,K are used by the optimization.

In this way, the amount of computation required can be reduced by
as much as 50% relative to that required if uniform fixed sampling is
used.

In other words, we perform a small amount of computation to tune
the initialization in order to save a lot of computation in performing
the optimization.
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By applying the nonuniform variable sampling technique before each
optimization, the frequencies at which spikes are beginning to form
are located and are used as the actual sample frequencies in the
next optimization.

In this way, spikes are suppressed and the maximum error is reduced.

Note that the error function is evaluated with respect to the dense
set of frequencies ω̄1, ω̄2, . . . , ω̄L just once before each optimization
and only the actual sampling frequencies ωi =

_
ω i for

i = 1, 2, . . . ,K are used by the optimization.

In this way, the amount of computation required can be reduced by
as much as 50% relative to that required if uniform fixed sampling is
used.

In other words, we perform a small amount of computation to tune
the initialization in order to save a lot of computation in performing
the optimization.
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By applying the nonuniform variable sampling technique before each
optimization, the frequencies at which spikes are beginning to form
are located and are used as the actual sample frequencies in the
next optimization.

In this way, spikes are suppressed and the maximum error is reduced.

Note that the error function is evaluated with respect to the dense
set of frequencies ω̄1, ω̄2, . . . , ω̄L just once before each optimization
and only the actual sampling frequencies ωi =

_
ω i for

i = 1, 2, . . . ,K are used by the optimization.

In this way, the amount of computation required can be reduced by
as much as 50% relative to that required if uniform fixed sampling is
used.

In other words, we perform a small amount of computation to tune
the initialization in order to save a lot of computation in performing
the optimization.
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Improved Minimax Algorithms Cont’d

The details of the technique, including a set of formulas that
implement the segmentation scheme described, can be found
in the textbook.
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This slide concludes the presentation.

Thank you for your attention.
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