
Introduction

Project Goals

Design Objectives

Literature Survey

Design Methodology

Final Design

Testing and Validation

Discussion

Localstar: Notebook programming in browser-driven local-first executables

Deliver a smoother notebook programming experience for use by
students, instructors, and researchers in education.

Create a hackable platform that enables people to develop the system
into the future for their needs. Embrace modern web technologies to
deliver highly interactive visualizations.

Grant Hames
Software Engineering | hamesg@uvic.ca

Dylan Brown
Software Engineering | dylanbrown@uvic.ca

● Integrate Starboard notebook through iframe and accompanying
web-standard communication mechanism

● Provide file system navigator to support file and directory creation,
deletion, and modification. HTTP REST with plans to use Server
Side Events in the future.

● Implement a context menu to support filesystem and provide
standardized file and directory control.

● Implement autosave functionality to prevent data loss through
efficient debounced updates.

● Project environment file to store client state for repeated use and
personalization.

Client
Technologies

Implementation

● Preact JavaScript framework for UI
● Redux for state management
● TailwindCSS for styling

Executable

Server

SENG 499
Spring 2021

➡ ● 37 unit tests across 9 test suites covered the most critical sources
of error in the client code. All pass in final build

● Compatibility testing was done to test cross-platform support and
the self-contained nature of Localstar using a Windows Sandbox
environment. Localstar successfully ran, without additional
resources under these parameters.

● Google Lighthouse was used for accessibility testing, yielding
100/100 for all applicable automated tests

● More tests are needed but time constraints of project restricted their
implementation. Future testing is planned to cover browser support,
and end to end testing.

1. < 30MB download for a single executable binary.
2. No installation; self-contained.
3. Double click to run.
4. Optionally could run remotely like Jupyter.
5. Memory usage comparable to Jupyter.
6. Supports the most popular and applicable programming

languages.
a. Full Python support.
b. Full support for `.ipynb` Jupyter.

7. Built with stable technologies:
a. Either stable/finished or actively maintained with funding.
b. Codebase is approachable by the target audience of our

platform, should they need to dive into it one day.

Objectives

Observing the target audience of this project, we have defined a set
of principles from which our design objectives are derived.

● Interoperable
● Modern
● Future-proof

● Low-setup
● Deployable
● Available
● Private

- Lower is better: bandwidth usage; disk usage; memory usage;
complexity when installed on disk; number of dependencies; number of
installation steps or interactivity to install; number of launch steps or
interactivity to launch

- Higher is better: real world applicability to users; programming
language availability; activity, stability, and health of dependencies;
portability; interoperability

Recommendations

Implementation Changes
● Switching from REST to WebSockets or Server Sent Events would

allow server to announce local filesystem changes and improve
synchronization between client and local filesystem.

● We recommend further research be done on running Pyodide in a
web worker, or another method from isolating Python execution from
Starboard, addressing the problems in the discussion

● As mentioned in testing, we recommend the testing suite be
improved and built upon, which would further our principal goals of
having a maintainable, and accessible codebase for our target
audience

Based on what people will like
to work in, and what they would
like to build
● Textbooks / Courses
● Visualizations with

animation and interactivity
● Choice of language
● Plugin-like flexibility

Yes. With Starboard

Supporting the web platform
is a great start; so is Python.
Possible to have both?

Installation free?
Yes: Deno & Browsers

Running Python in a
browser? Yes: WASM.

Notebooks are emerging as a critical part of education worldwide,
primarily through the Jupyter Notebook system.

Unfortunately it brings many pitfalls and difficulties to students and
instructors. Is there a brighter future for this technology?

● Difficult and large
installation

● Many moving parts
include the CLI and
package managers

● Limited graphics
support

What does a better experience look like?

● Local-First:
● Flexible:
● Explorable:

Lives on your laptop; private and secure
Evolves with you through plugins
Learn from any resources on the web. Copy/Paste
snippets, share notebooks, and find community

GitHub Actions as seen in the image above, our CI tool of choice, was far
more problematic than we would have liked. Many development hours
were spent supporting this pipeline that could have been spent
elsewhere.

Deno supports single-file executables but not embedding files. We have
designed a custom virtual filesystem to support this. Current binary layout:

● HTTP REST server. Relays built-in and computer files
● No dependencies. Kept lightweight.
● Ready to support arbitrary code execution for custom plugins and

notebook cell types

Validating size expectatons - our chosen platform grew over the
course of our project. Now 65MB binary for Linux. 38MB for
Windows.

This is still smaller than `miniconda` Python installation

Conclusion
● Localstar provides a notebook platform foundation with improvements

over the current Jupyter-based notebook experience.
● Future-oriented design while remaining simple, hackable, performant,

and easy to use.
● We are excited for the future of the project and the social changes

which will come with increased use of notebooks in education.

We still believe using Starboard was the correct choice to achieve the
goals we set out to. However, it also led to complications with Python
cell fragility and concerns over lack of package support.

New Features

● Client file system improvements, specifically relocation of files
● We recommend future work to be done to implement local filesystem

access in Python/Pyodide.
● Project file feature was not implemented due to time constraints but

would help achieve the low-setup principal of this project.
● For performance, we recommend offloading some code to worker

threads or servers as opposed to in browser execution.
● Current embed layout could be ZIP archive, allowing easy edits,

proposed structure shown below:
Starboard + Dependencies: 12.9 MB Localstar + Dependencies: 290kb

Below is Localstar running from a Deno local executable in Firefox. The local
filesystem is connected and shown on the left.

Neil Ernst
SENG 499 Supervisor | nernst@uvic.ca

