PCB Design, Assembly and Manufacturing of a Power Distribution Board

Group 4 - Ethan Janus, Peter Sun, Zheng Feng, Riley Wong Faculty Supervisor: Hong-Chuan Yang

Background

Electronic devices are becoming more important in people's daily lives. From a simple light bulb lighting our life to CPU powering our smartphone, electronic devices are becoming more complex. These devices require strict management of voltages and current in their circuits. With a well-design power distribution board, electronic devices can have a longer working life-span and work stably. Therefore power distribution boards use widely in electronic devices such as drones.

This project will design a fully functional modular power distribution board that can deliver the power from batteries to an avionic aircraft's onboard system. To improve the stability, the design of power distribution board will be divided into five different modules:

- 1. 12V to 3.3V converter
- 2. 12V to 5V converter
- 12V to 8V converter
- 4. 12V to 24V converter
- 5. Voltage selector

Objective & Goals

- Design a modular power distribution system that provides 3.3V, 5V, 8V (i) and 24V to unmanned aircrafts subsystems
- Voltage Selector that prioritizes auxiliary input over battery input and (ii) supplies power to voltage converters
- Optional: Include a voltage and current sensing capabilities for each (iii) voltage converter
- Required specifications of the voltage converters are listed in the (iv) following table 1

Table 1: Voltage convert board requirement specification

Figure 1: Block diagram of the overall design layout

Methods	Re
 The design is split up into 5 boards: Voltage selector board 4 Voltage converters with a integrated hall effect sensor for current measurement 	The v speci
 Voltage Selector: Designed using the LTC4416 as MOSFET Controller Uses two PMOS MOSFETs for switching states Selection ability between 2 inputs Able to supply up combined 40A to 4 outputs 	The F Volta 180r 4.2m 2 inp 4 out
 Voltage Converters: Buck or boost converter used to convert 12V input to 3.3V, 5V, 8V, or 24V output Used Webench to generate schematics for voltage converters Output current maximum of 2-4 Apms 	Volta 60m 4.2m 1 inp 1 out
 Hall Effect Sensor: Uses ACS722LLCTR-10AB to measure output current using the Hall effect Has one output to measure current and one output to measure voltage 	The f

- Has one output to measure current and one output to measure voltage
- Produces 132mV per A from output so current can be read by a
- microcontroller

Figure 2: Voltage Selector

Figure 5: 8V Converter

esults

voltage converters were simulated using Webench and the cifications achieved can be found in table 2:

- PCB boards were designed: tage selector board)mm x 60mm
- mm mounting holes at corners 4mm offset from the edges puts
- utputs
- tage Converters
- nm x 60mm
- mm mounting holes at corners 4mm offset from the edges put
- utput

finalized PCB designs can be seen below in figure 2 to 6.

Figure 4: 5V Converter

Figure 6: 24V Converter

Table 2: Simulated results of converters and selector

Objective Input vo

Efficienc and inpu 12V Full load Voltage voltage Ripple Transien voltage in at 12 Fransier

voltage in at 12 Current Current accuracy Board to compone (USD\$)

Conclusions

Project Creation Results:

• Voltage Selector created and simulated successfully Voltage Converters created and simulated successfully • Hall Effect Sensor created and simulated successfully

Project Statements:

• Design objectives for each board were all met • Each project component was thoroughly simulated • No physical prototype were made for the project

/es	12V to 3.3V converter	12V to 5V converter	12V to 8V converter	12V to 24V converter	Voltage Selector
ltage range	10-22	10-14	11-13	10-14	6-36V
cy at full load it voltage at	87.5%	95.2%	96.5%	95.7%	98.65%
d current (A)	3	2	4	2	40
out actual (V) in at 12V	3.322	4.98V	8.04	24.15	N/A
voltage (V) at in at 12V	5.92mV	14.30 mV	21.76mV	300 mV	N/A
nt overshoot (V) at voltage V	80mV	90mV	200mV	400mV	N/A
nt undershoot (V) at voltage V	90mV	100mV	260mV	100mV	N/A
sensor m output (V)	3.3	3.3	3.3	3.3	N/A
sensor y	3%	3%	3%	3%	N/A
otal ent cost	17.31	11.85	13.96	14.86	27.26