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Introduction
Side Channel Attack Channels
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Introduction

Cryptographic Processing
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Message | Cryptographic Processing Message
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Secret keys /‘
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Introduction
Side-Channel Attacks (SCA)

El Noninvasive and passive attack
H Targets implementation of algorithm
E Not interested in exploiting algorithm weaknesses

B Use information obtained from physical implementation
rather than crypto-analysis of the cipher

B Exploit physical signals leaking from the hardware [1]:

El Power
B Electromagnetic radiation

Kl Delay
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Introduction
Side Channel Attacks

Leaked Information
(power consumption,
electromagnetic radiation,
timing, errors, etc.)
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Introduction

SCA During Decryption in loT Devices

Decryption Output

Cipher Text Procaas (Plain text)

Side Channel Information:

« Power consumption .

» EM Radiation Side Channel
- Injection of Faults ) Analysis

« Acoustic Sound

« Etc.
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Introduction

Post-Silicon Attack Taxonomy [2] (does not include Trojans!)

Passive Attacks | | Active Attacks
/ A A

Power Analysis Elemromagnem Fault Injection

Analysis
[sPa|[DPA|[cPA| | [SEMA|[DEMA|  [voitage | | Clock Pin EM Laser
: Glitching | | Tampering | [Distrubances| | Glitching
Timing Analysis
Time Access Trace

Driven | | Driven Driven
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Power Analysis
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PA

Power Analysis Attacks

El Analyze power consumption of device
H Need to capture current from Vpp of Vsg

E Aims to reveal secret key when execution path depends on
key bits

I Succeeded in breaking AES secret key in few minutes
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PA

Sources of Power Dissipation in ICs

El Static due to transistor & substrate leakage (x Vppl)
B Dynamic due to gate transitions & activities (x CV3,f/2)

E Overlap/short-circuit due to using CMOS technology
(o< Vpplf)
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PA

Static Power Disspication: Leakage Current [,

=
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PA

Dynamic Power Dissipation: Parasitic Capacitor Charge/Discharge
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PA

Overlap Power Dissipation: Slow Transition Time

pMOS on _CI I:pMOS
off

_‘ ._
on
nMO S Off
_' I: nMOS
Overlap AV
Current /\ SS_ |
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PA

AND Gate Transitions

a b q Energy
0—0 0—-0 0—0 Eo_o
0—0 0—1 0—0 E()_>0
0—0 1—0 0—-0 Eo_o
0—-0 11 0—-0 Eo_o
0—1 00 0—-0 Eo—o
0—1 0—1 0—1 Eo_1
0—1 1—-0 0—-0 Eo_o
0—1 1—=1 0—1 Eo_1
1—-0 0—0 0—0 E()_>0
150 0—1 0—-0 Eo—o
150 10 10 Ei_o
1—-0 11 1-0 Ei_o
1—1 0—0 0—0 E()_>0
1—1 0—1 0—1 Eo_.q
1—=1 1—=0 1—=0 Ei_o
11 11 11 Eq_q
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PA

Energy Statistics in AND Gate Transitions

El Probability gate remains in O power state

9

16

E Probability gate remains in 1 power state

1

16

E Probability of gate state changing from 0 to 1

3
P(Eo1) = 16

P(Eo—o) =

p(Eio1) =

A Probability of gate state changing from 1to 0

3

P(Ei-0) = 75
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PA

Dynamic Power Dissipation: SmartCard Power Consumption [3]
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PA

Information Leakage from Data Bus

El Hamming weight leakage in precharged bus: i.e. how
many sources discharge bus to '0’.

K Transition count leakage: i.e. how many gates change
state by data bus.

Vbp

o
Common Bus

Source 1|~ Source 2 iSomcc 3]
| I I

C

|
!
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PA

Transition Count Power Leakage: 8-bit RAM to Register Transfer

A {77 8 transitions

__________________________________________

6 transitions

---------------------------------------------------------------------------------

4 transitions

i _ 2 transitions

....................................................................

0 transitions

Voltage

--------------------------------------------------------------------------------------------------

........................................

IIJIIIIIIIIIII'IIIIIIIIIIIIII'IIII'I\IIIII
[ [ I I [ I [ [ [

Time
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PA Types

Power Analysis Types
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PA Types
Types of Power Analysis

El Simple power analysis (SPA)
K Differential power analysis (DPA)

E Correlation power analysis (CPA)
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SPA

SPA

©Fayez Gebali, 2024 25/55



SPA

Simple power analysis (SPA) [4, 5]

El Does not require DSP or statistical techniques

B Visual analysis for patterns that identify key bits or
functions

E Used as first step before more sophisticated attacks
B Allows to recognize instructions or groups of instructions
B Infer hamming weight when loading on a bus

@ Simple to prevent
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SPA for 16-Round DES

6.0
5.0
4.0
?(\3.0
£ 2.0
=
- 1.0

6 7

2 3 4 5
Time (in 3.5714MHz clock cycles)

El Upper trace for 7 clock cycles when JMP is performed
B Lower trace for 7 clock cycles when JMP is not performed
H Divergence is in clock cycle 6
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Sources of Power Variations

El Large-scale features identify the rounds or iterations

K Small-scale features identify individual operations can be
identified, e.g. multiplication vs. squaring. This can reveal
if key bit is 0 or 1

E Higher-magnification can even reveal data bits in reduction

or multiplication or division operations since these could be
done sequentially
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DPA

DPA
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Differential Power Analysis (DPA)

B Attacker need not know hardware architecture of device
H Requires a large number of traces

E Requires two phases: (a) data collection and (b) data
analysis

B Attack uses statistical analysis and error correction
techniques

B Difficult to avoid
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DPA

Differential Power Analysis (DPA) Analysis [3]

El Attacker gathers N random plaintext input (PTI) messages
and their ciphertext output (CTO) using DES key Ki

B Attacker defines a partitioning function D(CTO, CTO, K16)

E Low and high power traces are constructed:

So = {S(i,/)|D=0}
Sy = {S(L,)ID=1}

A D(.,-,-)was chosen as

D(CTO;, CTOs, K16) = CTO; & SBOX; (CTO1.6 ® K161.6)
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DPA

Differential Power Analysis (DPA) Analysis [3]

B Average power is obtained

Po(i) = (1/ISel) > S(i.)),
S(i,/)€So

Pi(j) = (1/IS4]) E:SU
S(i.j)€Sq

H A discrete time DPA signal trace is obtained
T(j) = Po(j) — P1(j)

A T(j) is used to guess the secret key
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DPA Results for DES [6]

-|P - — Round 1 — — Round 2 —

- WNJW(W“M—

El Function D is chosen as bit S(/, 5)
H This bit is placed in R register and affects Round 1

E This also affects Round 2
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DPA Results for DES [3]

(a) Round 14 Round 15 Round 16
b - —_—
(o) WWW
4 A " PR XA A
(C) L7 | v |T|T 3 L Ll | | ¥

(b) when key is correct and (c) when key is incorrect
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DPA Countermeasures

El Filters to reduce power supply fluctuations
K Physical shielding to reduce leakage

E Gate/circuit design that reduces leakage
B Algorithm designs to obfuscate operations
B Introduce noise in leaked information

A Use dataflow computing paradigm
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Timing

Timing Attack
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Timing

Encrypt/Decrypt Timing Variations Causes

El Value of encryption key bit 0 or 1

H Optimizations that depend on input
E Bypass unnecessary operations

B Branching and conditional statements
H Cache hits

@ Processor instructions that require different times
(multiplication, division)
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Timing
Timing Attack Countermeasures [7]

El Ensure all operations take same time (not practical)
H Use timer to delay output results (not practical)

HE Introduce random delays

A Introduce dummy instructions/operations

HE Hide inputs to the modular exponentiation

A Use blinding as suggested by Kocher [7]
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Timing

Other Timing Attack Countermeasures [9]

El Use parallel implementations of the algorithm
B Use dataflow processing

K Randomized dataflow processing [8]
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Timing

Timing Attack: Attack on a Password Verification

El Assume a password is 8-bytes long
H Guessing the password would require 254 trials

E Password verification scans the input bytes sequentially
(see pseudo code on next slide)
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Timing

Timing Attack: Insecure Password Verification Sequential

Algorithm

1: function flag = verify_PWD(f’, P)
2. fori=1:7do

3 if ﬁ,’ # pj then

4: return flag = ‘false/

5. endif

6: end for

7: return ‘true’

El Attacker measures delay to get ‘false’
H Can guess bits one bit at-a-time
E Exit loop as soon as a mismatch is found
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Timing

Timing Attack: Attack Steps

El Use all values of password first byte
P =(n,0,0,0,0,0,0,0), 0<n< 256
H Measure execution time 7(n) for all values of n

E Extract maximum execution time as indicative of a correct
byte:

ng) = n
T( 0) 0§T2)2(56 T( )

B Value of byte 0 is ng.

H Repeat for all remaining bytes
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Timing

Timing Attack: Secure Password Verification Sequential Algorithm

1:
2:
3:
4:
5:
6:
7:
8:

function flag = verify_PWD(P, P)
flag = ‘true/
fori=1:7do

if ﬁ,’ 75 Pi then

flag = ‘false/

end if
end for
return flag

No early exit from loop. Constant time implementation.
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EMA

EM Attacks
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Electromagnetic Attacks [10]

El Requires chip-scale EM inductive probes (=~ 100.m)
B ADC Sampling frequencies > 1GHz are now possible

E Sometimes, package surface can be eroded for probe to
be closer to chip

B Most activity is near CPU
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EM Attacks

TTA(00) and TTA(FF) POWER STGNATURES

T T T T
TIA(00) and TIA(FF) EM SIGNATURES

FE
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EMA Countermeasures

El Shield hardware
H Redundant EM noise-generating modules

E Extra dummy instructions or operations
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Fault Injection Attack (FIA)
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Fault Injection Attacks (FIA)

El Fault injection attack is an active attack (not passive like
SCA)

K Faulty input is injected to produce erroneous outputs

HE Used in combination with SCA to reduce complexity of
attack

B There is invasive (destructive) and non-invasive FIA

H Creates transient fault during an operation to reduce or
disable security features & countermeasures
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Fault Injection Attack Approaches [11, 12]

El Reduce supply voltage (transient faults)

H Injection of power spikes or brownouts (voltage glitching)
E Vary clock frequency (clock glitching)

A Overheat the device (affect DRAM)

HE Shine intense light (laser or flash)

[ Strong EM pulses
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FIA Through Firmware Boot

El Assume the firmware is on an external malicious flash
H CPU attempts to authenticate bytes from the flash
E Authentication is through hashing or CRC, etc.

A Authenticated boot is indicated to CPU by a single “yes”
pulse

H Attacker might try to mimic the “yes” pulse through a glitch
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FIA Voltage Glitching

Nominal Voltage
+/- 10%

Voltage
Glitch
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FIA Clock Glitching

El Clock glitching attempts to tamper with external clock lines

E Short pulse(s) introduced creating early rising clock
edge(s)

E The glitch is synchronized with instruction execution
B During RAM read, data is loaded before it is stable on bus

H During RAM fetch, instruction is not executed
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FIA Clock Glitching

Normal Clock I | | | I | | | | |

4 s s s s s

Load 1 Load 2 Load 3 Load 4 Load 5 Load 6
Execute 1 Execute2 Execute3 Execute4 Execute S

Glitched Clock | | | | ” I | | | | |

s 4 P 2 4 s
Load 1 Load 2 Load 4 Load 5 Load 6 Load 7
Execute 1 Execute 3 Execute 4 Execute5 Execute 6
Load 3
Execute 2

El Instruction #2 is not executed
H Preempted by Instruction #3
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FIA Countermeasures: Rambus CryptoManager Root of Trust

El Security co-processor

A Full-programmable

HE FIPS 140-2 compliant

A Offer layered security

H Protect agains tampering, software and hardware attacks

B Cryptographic accelerators: AES, 3DES, HMAC,
SHA-2/SHA-3

Can be offered with DPA protection
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