1. Introduction

VHDL isalanguage for describing digital electronic systems. It arose out of the
United States Government’s Very High Speed Integrated Circuits (VHSIC) program,
initiated in 1980. In the course of this program, it became clear that there was a need for
a standard language for describing the structure and function of integrated circuits (ICs).
Hence the VHSIC Hardware Description Language (VHDL) was developed, and
subsequently adopted as a standard by the Institute of Electrical and Electronic Engineers
(IEEE) in the US.

VHDL is designed to fill a number of needs in the design process. Firstly, it allows
description of the structure of a design, that is how it is decomposed into sub-designs, and
how those sub-designs are interconnected. Secondly, it allows the specification of the
function of designs using familiar programming language forms. Thirdly, as a result, it
allows a design to be simulated before being manufactured, so that designers can quickly
compare alternatives and test for correctness without the delay and expense of hardware
prototyping.

The purpose of this booklet is to give you a quick introduction to VHDL. This is
done by informally describing the facilities provided by the language, and using examples
to illustrate them. This booklet does not fully describe every aspect of the language. For
such fine details, you should consult tB&EE Standard VHDL Language Reference
Manual. However, be warned: the standard is like a legal document, and is very difficult
to read unless you are already familiar with the language. This booklet does cover
enough of the language for substantial model writing. It assumes you know how to write
computer programs using a conventional programming language such as Pascal, C or
Ada.

The remaining chapters of this booklet describe the various aspects of VHDL in a
bottom-up manner. Chapter 2 describes the facilities of VHDL which most resemble
normal sequential programming languages. These include data types, variables,
expressions, sequential statements and subprograms. Chapter 3 then examines the
facilities for describing the structure of a module and how it it decomposed into sub-
modules. Chapter 4 covers aspects of VHDL that integrate the programming language
features with a discrete event timing model to allow simulation of behaviour. Chapter 5
is a key chapter that shows how all these facilities are combined to form a complete
model of a system. Then Chapter 6 is a pot-pourri of more advanced features which you
may find useful for modeling more complex systems.

Throughout this booklet, the syntax of language features is presented in Backus-Naur
Form (BNF). The syntax specifications are drawn from the IEEE VHDL Standard.
Concrete examples are also given to illustrate the language features. In some cases, some
alternatives are omitted from BNF productions where they are not directly relevant to the
context. For this reason, the full syntax is included in Appendix A, and should be
consulted as a reference.



1-2 The VHDL Cookbook

['IHA A F

s G 'B—

A y LIJ
s £ H
A
Y
(@) EEIB g H B
(b)

Figure 1-1. Example of a structural description.

1.1. Describing Structure

A digital electronic system can be described as a module with inputs and/or outputs.
The electrical values on the outputs are some function of the values on the inputs.
Figure 1-1(a) shows an example of thisview of adigital system. The module F has two
inputs, A and B, and an output Y. Using VHDL terminology, we call the module F a
design entity, and the inputs and outputs are called ports.

One way of describing the function of amodule is to describe how it is composed of
sub-modules. Each of the sub-modulesis an instance of some entity, and the ports of the
instances are connected using signals. Figure 1-1(b) shows how the entity F might be
composed of instances of entitiesG, H and I. Thiskind of descriptioniscalled a
structural description. Note that each of the entities G, H and | might also have a
structural description.

1.2. Describing Behaviour

In many cases, it is not appropriate to describe a module structurally. One such case
isamodule which is at the bottom of the hierarchy of some other structural description.
For example, if you are designing a system using |C packages bought from an 1C shop,
you do not need to describe the internal structure of an IC. In such cases, a description of
the function performed by the module is required, without reference to its actual internal
structure. Such adescription is called a functional or behavioural description.

Toillustrate this, suppose that the function of the entity F in Figure 1-1(a) isthe
exclusive-or function. Then a behavioural description of F could be the Boolean function
Y=A .B+A.B

More complex behaviours cannot be described purely as a function of inputs. In
systems with feedback, the outputs are aso a function of time. VHDL solvesthis
problem by allowing description of behaviour in the form of an executable program.
Chapters 2 and 4 describe the programming language facilities.

1.3. Discrete Event Time Modéel

Once the structure and behaviour of a module have been specified, it is possible to
simulate the module by executing its bevioural description. Thisis done by simulating



1. Introduction 1-3

the passage of timein discrete steps. At some simulation time, a module input may be
stimulated by changing the value on an input port. The module reacts by running the
code of its behavioural description and scheduling new values to be placed on the signals
connected to its output ports at some later smulated time. Thisis called scheduling a
transaction on that signal. If the new value is different from the previous value on the
signal, an event occurs, and other modules with input ports connected to the signal may
be activated.

The simulation starts with an initialisation phase, and then proceeds by repeating a
two-stage simulation cycle. In theinitialisation phase, al signals are given initia values,
the simulation time is set to zero, and each module’s behaviour program is executed.
This usually results in transactions being scheduled on output signals for some later time.

In the first stage of a simulation cycle, the simulated time is advanced to the earliest
time at which a transaction has been scheduled. All transactions scheduled for that time
are executed, and this may cause events to occur on some signals.

In the second stage, all modules which react to events occurring in the first stage have
their behaviour program executed. These programs will usually schedule further
transactions on their output signals. When all of the behaviour programs have finished
executing, the simulation cycle repeats. If there are no more scheduled transactions, the
whole simulation is completed.

The purpose of the simulation is to gather information about the changes in system
state over time. This can be done by running the simulation under the control of a
simulation monitor. The monitor allows signals and other state information to be viewed
or stored in a trace file for later analysis. It may also allow interactive stepping of the
simulation process, much like an interactive program debugger.

1.4. A Quick Example

In this section we will look at a small example of a VHDL description of a two-bit
counter to give you a feel for the language and how it is used. We start the description of
an entity by specifying its external interface, which includes a description of its ports. So
the counter might be defined as:

entity count2 is
generic (prop_delay : Time := 10 ns);
port (clock : in bit;
gl, qO : out bit);
end count2;
This specifies that the entitpunt2 has one input and two outputs, all of which are bit
values, that is, they can take on the values '0' or '1". It also defines a generic constant
calledprop_delay which can be used to control the operation of the entity (in this case its
propagation delay). If no value is explicitly given for this value when the entity is used in
a design, the default value of 10 ns will be used.

An implementation of the entity is described in an architecture body. There may be
more than one architecture body corresponding to a single entity specification, each of
which describes a different view of the entity. For example, a behavioural description of
the counter could be written as:

architecture behaviour of count2 is
begin
count_up: process (clock)

variable count_value : natural := 0;



1-4 The VHDL Cookbook

T_FLIPFLOP
CLOCK o Q0L
F——« o =
BIT_1
INV T_FLIPFLOP
INVERTER 01
INV_FFO FF1
A Y CK Q 45

Figure 1-2. Structure of count2.

begin

if clock ='1" then
count_value := (count_value + 1) mod 4;
g0 <= bit'val(count_value mod 2) after prop_delay;
gl <= bit'val(count_value / 2) after prop_delay;
end if;
end process count_up;

end behaviour;

In this description of the counter, the behaviour isimplemented by a process called
count_up, which is sensitive to the input clock. A processis abody of code whichis
executed whenever any of the signalsit is sensitive to changes value. This process has a
variable called count_value to store the current state of the counter. The variableis
initialized to zero at the start of simulation, and retains its value between activations of
the process. When the clock input changes from ‘0’ to '1’, the state variable is
incremented, and transactions are scheduled on the two output ports based on the new
value. The assignments use the generic constant prop_delay to determine how long after
the clock change the transaction should be scheduled. When control reaches the end of
the process body, the process is suspended until another change occurs on clock.

The two-bit counter might also be described as a circuit composed of two T-flip-flops
and an inverter, as shown in Figure 1-2. This can be written in VHDL as:

architecture structure of count2 is

component t_flipflop
port (ck : in bit; g : out bit);
end component;

component inverter
port (a :in bit; y: out bit);
end component;

signal ff0, ff1, inv_ffO : bit;

begin
bit_0 : t_flipflop port map (ck => clock, q => ff0);
inv : inverter port map (a => ff0, y => inv_ff0);

bit_1 : t_flipflop port map (ck => inv_ff0, g => ff1);



1. Introduction 1-5

g0 <= ff0;
gl <= ff1;

end structure;

In this architecture, two component types are declared, t_flipflop and inverter, and
three internal signals are declared. Each of the componentsis then instantiated, and the
ports of the instances are mapped onto signals and ports of the entity. For example, bit_0
isan instance of thet_flipflop component, with its ck port connected to the clock port of
the count2 entity, and its q port connected to the internal signal ff0. The last two signal
assignments update the entity ports whenever the values on the internal signals change.



