2. VHDL isLikea Programming Language

Asmentioned in Section 1.2, the behaviour of a module may be described in
programming language form. This chapter describes the facilitiesin VHDL which are
drawn from the familiar programming language repertoire. If you are familiar with the
Ada programming language, you will notice the similarity with that language. Thisis
both a convenience and a nuisance. The convenience is that you don’t have much to learn
to use these VHDL facilities. The problem is that the facilities are not as comprehensive
as those of Ada, though they are certainly adequate for most modeling purposes.

2.1. Lexical Elements

21.1. Comments

Comments in VHDL start with two adjacent hyphens (*--') and extend to the end of
the line. They have no part in the meaning of a VHDL description.

2.1.2. Identifiers
Identifiers in VHDL are used as reserved words and as programmer defined names.
They must conform to the rule:
identifier ::= letter { [underline] letter_or_digit }
Note that case of letters is not considered significant, so the idertdieasdCat are the
same. Underline characters in identifiers are significarith& Name andThisName
are different identifiers.

2.1.3. Numbers
Literal numbers may be expressed either in decimal or in a base between two and

sixteen. If the literal includes a point, it represents a real number, otherwise it represents
an integer. Decimal literals are defined by:

decimal_literal ::= integer [. integer] [exponent]

integer ::=digit { [underline] digit }

exponent ::= E [+] integer | E - integer
Some examples are:

0 1 123_456_789 987E6 -- integer literals

0.0 0.5 2.718 28 12.4E-9-- real literals

Based literal numbers are defined by:
based literal ::= base # based integer [. based_integer | # [exponent]
base ::= integer
based integer ::= extended_digit { [underline] extended digit }
extended_digit ::= digit | letter

2-2 The VHDL Cookbook

The base and the exponent are expressed in decimal. The exponent indicates the power
of the base by which the literal is multiplied. The letters A to F (upper or lower case) are
used as extended digits to represent 10 to 15. Some examples:

2#1100_0100# 16#CA#4#301#E1 -- the integer 196
2#1.1111_ 1111 111#E+11 16#F.FF#E2 -- the real number 4095.0

2.1.4. Characters

Literal characters are formed by enclosing an ASCII character in single-quote marks.
For example:
A

2.1.5. Strings

Literal strings of characters are formed by enclosing the characters in double-quote
marks. To include a double-quote mark itself in astring, apair of double-quote marks
must be put together. A string can be used as a value for an object which is an array of
characters. Examples of strings:

"A string"
-- empty string
"A string in a string: ™A string™". " -- contains quote marks

2.1.6. Bit Strings

VHDL provides a convenient way of specifying literal values for arrays of type bit
(O'sand '1's, see Section 2.2.5). The syntax is:
bit_string_literal ::= base specifier " bit_value"
base specifier :=B|O|X
bit value ::= extended_digit { [underline] extended digit }
Base specifier B stands for binary, O for octal and X for hexadecimal. Some examples:
B"1010110"-- length is 7

0"126" -- length is 9, equivalent to B"001_010_110"
X"56" -- length is 8, equivalent to B"0101_0110"

2.2. DataTypesand Objects

VHDL provides a number of basic, or scalar, types, and a means of forming
compositetypes. The scalar types include numbers, physical quantities, and enumerations
(including enumerations of characters), and there are a number of standard predefined
basic types. The composite types provided are arrays and records. VHDL also provides
access types (pointers) and files, athough these will not be fully described in this booklet.

A datatype can be defined by atype declaration:
full_type declaration ::= typeidentifier istype definition ;
type_definition ::=

scalar_type_definition

| composite type definition

| access type definition

| file_type_definition
scalar_type definition ::=

enumeration_type definition | integer_type definition

| floating_type definition | physical_type definition
composite_type definition ::=

array_type definition

| record_type definition

2. VHDL isLike a Programming Language 2-3

Examples of different kinds of type declarations are given in the following sections.

2.2.1. Integer Types

An integer type isarange of integer values within a specified range. The syntax for

specifying integer typesis:

integer_type_definition ::= range_constraint

range_constraint ::= range range

range ::= simple_expression direction simple_expression

direction ::= to | downto
The expressions that specify the range must of course evaluate to integer numbers. Types
declared with the keyword to are called ascending ranges, and those declared with the
keyword downto are called descending ranges. The VHDL standard allows an
implementation to restrict the range, but requires that it must at least allow the range —
2147483647 to +2147483647.

Some examples of integer type declarations:
type byte_intis range 0 to 255;

type signed_word_int is range —32768 to 32767;
type bit_index is range 31 downto O;

There is a predefined integer type called integer. The range of thistypeis
implementation defined, though it is guaranteed to include —2147483647 to
+2147483647.

2.2.2. Physical Types

A physical type is a numeric type for representing some physical quantity, such as
mass, length, time or voltage. The declaration of a physical type includes the
specification of a base unit, and possibly a number of secondary units, being multiples of
the base unit. The syntax for declaring physical types is:

physical_type definition ::=
range_constraint
units
base unit_declaration
{ secondary_unit_declaration }
end units

base unit_declaration ::= identifier ;
secondary_unit_declaration ::= identifier = physical_literal ;
physical_literal ::=[abstract_literal] unit_name

Some examples of physical type declarations:

type length is range 0 to 1E9
units
um;
mm = 1000 um;
cm =10 mm,;
m = 1000 mm;
in=25.4 mm;
ft=12in;
yd = 3 ft;
rod = 198 in;
chain = 22 yd;
furlong = 10 chain;
end units;

2-4 The VHDL Cookbook

type resistance is range 0 to 1E8
units
ohms;
kohms = 1000 ohms;
Mohms = 1E6 ohms;
end units;

The predefined physical type time isimportant in VHDL, asit is used extensively to
specify delaysin simulations. Its definitioniis:

type time is range implementation_defined
units
fs;
ps = 1000 fs;
ns = 1000 ps;
us = 1000 ns;
ms = 1000 us;
sec = 1000 ms;
min = 60 sec;
hr = 60 min;
end units;

To write avalue of some physical type, you write the number followed by the unit.
For example:
10mm 1rod 1200o0hm 23ns

2.2.3. Floating Point Types
A floating point type is a discrete approximation to the set of real numbersin a
specified range. The precision of the approximation is not defined by the VHDL
language standard, but must be at least six decimal digits. The range must include at |east
—1E38 to +1E38. A floating point type is declared using the syntax:
floating_type_definition := range_constraint
Some examples are:
type signal_level is range —10.00 to +10.00;
type probability is range 0.0 to 1.0;

There is a predefined floating point type called real. The range of thistypeis
implementation defined, though it is guaranteed to include —1E38 to +1E38.

2.2.4. Enumeration Types

An enumeration type is an ordered set of identifiers or characters. The identifiers and
characters within a single enumeration type must be distinct, however they may be reused
in several different enumeration types.

The syntax for declaring an enumeration type is:
enumeration_type_definition ::= (enumeration_literal { , enumeration litera })
enumeration_literal ::= identifier | character_literal

Some examples are:
type logic_level is (unknown, low, undriven, high);
type alu_function is (disable, pass, add, subtract, multiply, divide);
type octal_digitis (0", '1’, 2, '3, 4", ’5', 6", 'T):;

There are a number of predefined enumeration types, defined as follows:
type severity_level is (note, warning, error, failure);

type boolean is (false, true);

2. VHDL isLike a Programming Language 2-5

type bitis (0", '1);

type character is (
NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,

BS, HT, LF, VT, FF, CR, SO, S|,
DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,
CAN, EM, SUB, ESC, FSP, GSP, RSP, USP,
" , #, '$, %, &,

'C, v, ! '+ T,
0, 1, 2, '3, 4, 5, 6, 7,
'8, 9, <, = > ?,
'@’ ‘A 'B’, 'C, D, B, ', ‘G,
'H’, T, 'J, 'K, L, ™, ‘N, ‘0,
P, 'Q’, 'R, 'S, T, U, V', W,
X, Y, 'z, T, N, T, n, T
" a, b, ', 'd’, e’ ', g,
'h, T, T, 'K, T, m’, n’, '0’,
P, 'q, ', 's’, 't u’, v, W',
X Y, z, 1, (8 Y, -~ DEL);

Note that type character is an example of an enumeration type containing a mixture of
identifiers and characters. Also, the characters’0’ and "1’ are members of both bit and
character . Where’0’ or "1’ occur in a program, the context will be used to determine
which type is being used.

2.25. Arrays

Anarray in VHDL is an indexed collection of elements all of the sametype. Arrays
may be one-dimensiona (with one index) or multi-dimensional (with a number of
indices). In addition, an array type may be constrained, in which the bounds for an index
are established when the type is defined, or unconstrained, in which the bounds are
established subsequently.

The syntax for declaring an array typeis:

array_type_definition ::=
unconstrained_array_definition | constrained_array_definition

unconstrained array_definition ::=
array (index_subtype definition{ , index_subtype definition})
of element_subtype indication
constrained_array_definition ::=
array index_constraint of element_subtype_indication

index_subtype_definition ::= type_mark range <>

index_constraint ::= (discrete_range{ , discrete range})

discrete range ::= discrete_subtype indication | range
Subtypes, referred to in this syntax specification, will be discussed in detail in
Section 2.2.7.

Some examples of constrained array type declarations:
type word is array (31 downto 0) of bit;

type memory is array (address) of word;
type transform is array (1 to 4, 1 to 4) of real;
type register_bank is array (byte range 0 to 132) of integer;

An example of an unconstrained array type declaration:
type vector is array (integer range <>) of real;

2-6 The VHDL Cookbook

The symbol ‘<>’ (called a box) can be thought of as a place-holder for the index range,
which will be filled in later when the array type is used. For example, an object might be
declared to be a vector of 20 elements by giving its type as:

vector(1 to 20)

There are two predefined array types, both of which are unconstrained. They are
defined as:

type string is array (positive range <>) of character,;

type bit_vector is array (natural range <>) of bit;

The type9ositive andnatural are subtypes adfteger, defined in Section 2.2.7 below.
The typebit_vector is particularly useful in modeling binary coded representations of
values in simulations of digital systems.

An element of an array object can referred to by indexing the name of the object. For
example, supposeandb are one- and two-dimensional array objects respectively. Then
the indexed nameg1) andb(1, 1) refer to elements of these arrays. Furthermore, a
contiguous slice of a one-dimensional array can be referred to by using a range as an
index. For examplea(8 to 15) is an eight-element array which is part of the aaray

Sometimes you may need to write a literal value of an array type. This can be done
using an array aggregate, which is a list of element values. Suppose we have an array
type declared as:

type ais array (1 to 4) of character;

and we want to write a value of this type containing the elements 'f', ‘o', '0’, 'd" in that
order. We could write an aggregate witisitional association as follows:

in which the elements are listed in the order of the index range, starting with the left
bound of the range. Alternatively, we could write an aggregatenasitied association:
(1=>7,3=>'0,4=>"d,2=>"0)
In this case, the index for each element is explicitly given, so the elements can be in any
order. Positional and named association can be mixed within an aggregate, provided all
the positional associations come first. Also, the wahers can be used in place of an
index in a named association, indicating a value to be used for all elements not explicitly
mentioned. For example, the same value as above could be written as:
(f, 4 =>"'d’, others =>'0)

2.2.6. Records

VHDL provides basic facilities for records, which are collections of named elements
of possibly different types. The syntax for declaring record types is:
record_type definition ::=
record
element_declaration
{ element_declaration }
end record

element_declaration ::= identifier_list : element_subtype definition ;
identifier_list ::= identifier { , identifier)
element_subtype_definition ::= subtype indication

An example record type declaration:

2. VHDL isLike a Programming Language 2-7

type instruction is
record
op_code . processor_op;
address_mode : mode;
operandl, operand?2: integer range 0 to 15;
end record,;

When you need to refer to afield of arecord object, you use a selected name. For
example, suppose that r is arecord object containing afield caled f. Then the namer.f
refersto that field.

Asfor arrays, aggregates can be used to write literal values for records. Both
positional and named association can be used, and the same rules apply, with record field
names being used in place of array index names.

2.2.7. Subtypes
The use of a subtype allows the values taken on by an object to be restricted or
constrained subset of some base type. The syntax for declaring a subtypeis:
subtype declaration ::= subtype identifier is subtype indication ;
subtype indication ::=[resolution_function_name] type_mark [constraint]
type_mark ::= type_name | subtype_name
congtraint ::= range_constraint | index_constraint
There are two cases of subtypes. Firstly a subtype may constrain values from a scalar
type to be within a specified range (a range constraint). For example:
subtype pin_count is integer range 0 to 400;

subtype digits is character range '0’ to '9’;
Secondly, a subtype may constrain an otherwise unconstrained array type by
specifying bounds for the indices. For example:
subtype id is string(1 to 20);

subtype word is bit_vector(31 downto 0);

There are two predefined numeric subtypes, defined as:
subtype natural is integer range O to highest_integer

subtype positive is integer range 1 to highest_integer

2.2.8. Object Declarations

An object isanamed item in a VHDL description which has a value of a specified
type. There are three classes of objects: constants, variables and signals. Only the first
two will be discusses in this section; signals will be covered in Section 3.2.1. Declaration
and use of constants and variables is very much like their use in programming languages.

A constant is an object which isinitialised to a specified value when it is created, and
which may not be subsequently modified. The syntax of a constant declaration is:

constant_declaration ;:=
constant identifier_list : subtype_indication [:= expression] ;
Constant declarations with the initialising expression missing are called deferred
constants, and may only appear in package declarations (see Section 2.5.3). Theinitial
value must be given in the corresponding package body. Some examples:
constant e : real := 2.71828;

constant delay : Time :=5 ns;

constant max_size : natural,

2-8 The VHDL Cookbook

A variable is an object whose value may be changed after it is created. The syntax for
declaring variablesis:
variable declaration ::=
variableidentifier_list : subtype indication [:= expression] ;
Theinitial value expression, if present, is evaluated and assigned to the variable when it
iscreated. If the expression is absent, a default value is assigned when the variableis
created. The default value for scalar types is the leftmost value for the type, that isthe
firstinthelist of an enumeration type, the lowest in an ascending range, or the highest in
adescending range. If the variable isa composite type, the default value is the
composition of the default values for each element, based on the element types.
Some examples of variable declarations:
variable count : natural := 0;

variable trace : trace_array;
Assuming the type trace_array isan array of boolean, then the initial value of the
variable trace is an array with all elements having the value false.

Given an existing object, it is possible to give an alternate name to the object or part
of it. Thisisdone using and alias declaration. The syntax is:
alias_declaration ::= aliasidentifier : subtype_indication is name;;
A reference to an aliasisinterpreted as a reference to the object or part corresponding to
thealias. For example:
variable instr : bit_vector(31 downto 0);

alias op_code : bit_vector(7 downto 0) is instr(31 downto 24);

declares the name op_code to be an alias for the left-most eight bits of instr.

2.2.9. Attributes

Types and objects declared in aVHDL description can have additional information,
called attributes, associated with them. There are a number of standard pre-defined
attributes, and some of those for types and arrays are discussed here. An attributeis
referenced using the *” notation. For example,

thing'attr

refers to the attributattr of the type or objeahing.

Firstly, for any scalar type or subtype T, the following attributes can be used:
Attribute Result

T'left Left bound of T
T'right Right bound of T
T'low Lower bound of T
T'high Upper bound of T

For an ascending range, T'left = T'low, and T'right = T'high. For a descending range,
T'left = T'high, and T'right = T'low.

Secondly, for any discrete or physical type or subtype T, X a member of T, and N an
integer, the following attributes can be used:

2. VHDL isLike a Programming Language 2-9

Attribute Result

T’pos(X) Position number of X in T

T'val(N) Vaueat positionN inT

T'leftof (X) Vauein T which is one position left from X
T'rightof(X) Valuein T which is one position right from X
T’pred(X) Vauein T which is one position lower than X
T'succ(X) Valuein T which is one position higher than X

For an ascending range, T'leftof(X) = T’pred(X), and T’rightof(X) = T'succ(X). For a
descending range, T'leftof(X) = T'succ(X), and T'rightof(X) = T'pred(X).

Thirdly, for any array type or object A, and N an integer between 1 and the number of
dimensions of A, the following attributes can be used:

Attribute Result

A’left(N) Left bound of index range of dim'n N of A
A'right(N) Right bound of index range of dim’'n N of A
A'low(N) Lower bound of index range of dim'n N of A
A'high(N) Upper bound of index range of dim’n N of A
A'range(N) Index range of dim'n N of A
A'reverse_range(N) Reverse of index range of dim’n N of A
A'length(N) Length of index range of dim'n N of A

2.3. Expressionsand Operators

Expressions in VHDL are much like expressions in other programming languages.
An expression is a formula combining primaries with operators. Primaries include names
of objects, literals, function calls and parenthesized expressions. Operators are listed in
Table 2-1 in order of decreasing precedence.

The logical operatorand, or, nand, nor, xor andnot operate on values of tyé or
boolean, and also on one-dimensional arrays of these types. For array operands, the
operation is applied between corresponding elements of each array, yielding an array of
the same length as the result. Bibandboolean operandsand, or, nand, andnor are
‘short-circuit’ operators, that is they only evaluate their right operand if the left operand
does not determine the result. &al andnand only evaluate the right operand if the left
operand is true or '1', amd andnor only evaluate the right operand if the left operand is
false or '0'".

The relational operators =, /=, <, <=, > and >= must have both operands of the same
type, and yieldoolean results. The equality operators (= and /=) can have operands of
any type. For composite types, two values are equal if all of their corresponding elements
are equal. The remaining operators must have operands which are scalar types or one-
dimensional arrays of discrete types.

The sign operators (+ and —) and the addition (+) and subtraction (-) operators have
their usual meaning on numeric operands. The concatenation operator (&) operates on
one-dimensional arrays to form a new array with the contents of the right operand
following the contents of the left operand. It can also concatenate a single new element to
an array, or two individual elements to form an array. The concatenation operator is most
commonly used with strings.

2-10 The VHDL Cookbook

Highest precedence: * abs not

* / mod rem

+(sign) - (sign)

+ - &

= /= < <= > >=
Lowest precedence: and or nand nor xor

Table 7-1. Operators and precedence.

The multiplication (*) and division (/) operators work on integer, floating point and
physical typestypes. The modulus (mod) and remainder (rem) operators only work on
integer types. The absolute value (abs) operator works on any numeric type. Finaly, the
exponentiation (**) operator can have an integer or floating point left operand, but must
have an integer right operand. A negative right operand is only allowed if the left
operand is afloating point number.

2.4. Sequential Statements

VHDL contains a number of facilities for modifying the state of objects and
controlling the flow of execution of models. These are discussed in this section.

24.1. Variable Assignment
Asin other programming languages, a variable is given anew value using an

assignment statement. The syntax is.

variable_assignment_statement ::= target := expression ;

target ::= name | aggregate
In the simplest case, the target of the assignment is an object name, and the value of the
expression is given to the named object. The object and the value must have the same
base type.

If the target of the assignment is an aggregate, then the elements listed must be object
names, and the value of the expression must be a composite value of the same type as the
aggregate. Firstly, al the namesin the aggregate are evaluated, then the expression is
evaluated, and lastly the components of the expression value are assigned to the named
variables. Thisis effectively a parallel assignment. For example, if avariablerisa
record with two fields a and b, then they could be exchanged by writing

(a=>rb,b=>ra):=r
(Notethat thisis an example to illustrate how such an assignment works; it is not an
example of good programming practice!)

2.4.2. |f Statement

Theif statement allows selection of statements to execute depending on one or more
conditions. The syntax is:

2. VHDL isLike a Programming Language 2-11

if statement ::=

if condition then
sequence_of _statements

{ elsif condition then
sequence of statements}

[else
sequence of statements]

end if ;

The conditions are expressions resulting in boolean values. The conditions are
evaluated successively until one found that yields the value true. In that case the
corresponding statement list is executed. Otherwise, if the else clause is present, its
statement list is executed.

2.4.3. Case Statement

The case statement allows selection of statements to execute depending on the value
of aselection expression. The syntax is:
case_statement ::=
case expression is
case _statement_alternative
{ case statement_alternative }
end case;

case _statement_alternative ::=

when choices =>

sequence_of statements

choices ::= choice{ | choice }
choice ::=

simple_expression

| discrete _range

| element_simple_name

| others

The selection expression must result in either a discrete type, or a one-dimensional
array of characters. The alternative whose choice list includes the value of the expression
is selected and the statement list executed. Note that all the choices must be distinct, that
is, no value may be duplicated. Furthermore, all values must be represented in the choice
lists, or the specia choice others must be included asthe last alternative. 1f no choice
list includes the value of the expression, the others alternative is selected. If the
expression results in an array, then the choices may be strings or bit strings.

Some examples of case statements:

case element_colour of
when red =>
statements for red,
when green | blue =>
statements for green or blue;
when orange to turquoise =>
statements for these colours;
end case;

case opcode of
when X"00" => perform_add;
when X"01" => perform_subtract;
when others => signal_illegal_opcode;
end case;

2-12 The VHDL Cookbook

2.4.4. Loop Statements

VHDL has abasic loop statement, which can be augmented to form the usual while
and for loops seen in other programming languages. The syntax of the loop statement is:

loop_statement ::=
[loop_label :]
[iteration_scheme] loop
sequence_of _statements
end loop [loop_label] ;
iteration_scheme ::=
while condition
| for loop_parameter specification

parameter _specification ::=
identifier in discrete_range
If the iteration scheme is omitted, we get aloop which will repeat the enclosed
statements indefinitely. An example of such abasicloopis:
loop

do_something;
end loop;

The whileiteration scheme allows atest condition to be evaluated before each
iteration. The iteration only proceedsif the test evaluatesto true. If thetest isfalse, the
loop statement terminates. An example:

while index < length and str(index) /="' loop
index := index + 1,
end loop;

The for iteration scheme alows a specified number of iterations. The loop parameter
specification declares an object which takes on successive values from the given range for
each iteration of the loop. Within the statements enclosed in the loop, the object is
treated as a constant, and so may not be assigned to. The object does not exist beyond
execution of the loop statement. An example:

for itemin 1to last_item loop
table(item) := 0;
end loop;

There are two additional statements which can be used inside aloop to modify the
basic pattern of iteration. The ‘next’ statement terminates execution of the current
iteration and starts the subsequent iteration. The ‘exit’ statement terminates execution of
the current iteration and terminates the loop. The syntax of these statements is:

next_statement ::= next [loop_label] [when condition] ;
exit_statement ::= exit [loop_label] [when condition] ;
If the loop label is omitted, the statement applies to the inner-most enclosing loop,
otherwise it applies to the named loop. If the when clause is present but the condition is
false, the iteration continues normally. Some examples:
foriin 1to max_str_lenloop
a(i) := buf(i);
exit when buf(i) = NUL;
end loop;

2. VHDL isLike a Programming Language 2-13

outer_loop : loop
inner_loop : loop
do_something;
next outer_loop when temp = 0;
do_something_else;
end loop inner_loop;
end loop outer_loop;

2.4.5. Null Statement

The null statement has no effect. It may be used to explicitly show that no action is
required in certain cases. It ismost often used in case statements, where al possible
values of the selection expression must be listed as choices, but for some choices no
action isrequired. For example:

case controller_command is
when forward => engage_motor_forward;
when reverse => engage_motor_reverse;
when idle => null;

end case;

2.4.6. Assertions

An assertion statement is used to verify a specified condition and to report if the
condition isviolated. The syntax is:
assertion_statement ::=
assert condition

[report expression]

[severity expression] ;
If the report clause is present, the result of the expression must be astring. Thisisa
message which will be reported if the condition isfalse. If it is omitted, the default
message is "Assertion violation". If the severity clause is present the expression must be
of the type severity_level. If it isomitted, the default iserror. A ssimulator may terminate
execution if an assertion violation occurs and the severity value is greater than some
implementation dependent threshold. Usually the threshold will be under user control.

2.5. Subprogramsand Packages

Like other programming languages, VHDL provides subprogram facilitiesin the form
of procedures and functions. VHDL also provided a package facility for collecting
declarations and objects into modular units. Packages also provide a measure of data
abstraction and information hiding.

25.1. Proceduresand Functions

Procedure and function subprograms are declared using the syntax:
subprogram_declaration ::= subprogram_specification ;
subprogram_specification ::=
procedure designator [(formal_parameter list)]
| function designator [(formal_parameter_list)] return type_mark
A subprogram declaration in this form simply names the subprogram and specifies the
parameters required. The body of statements defining the behaviour of the subprogramis
deferred. For function subprograms, the declaration also specifies the type of the result
returned when the function is called. Thisform of subprogram declaration istypically
used in package specifications (see Section 2.5.3), where the subprogram body is given in
the package body, or to define mutually recursive procedures.

2-14 The VHDL Cookbook

The syntax for specifying the formal parameters of a subprogramiis:
formal_parameter_list ::= parameter_interface list
interface list ::= interface_element { ; interface_element }
interface_element ::= interface_declaration

interface_declaration ::=
interface_constant_declaration
| interface signal_declaration
| interface variable declaration

interface_constant_declaration ;:=
[constant] identifier_list: [in] subtype indication [:= static_expression]
interface variable declaration ::=
[variable] identifier_list : [mode] subtype indication [:= static_expression]
For now we will only consider constant and variable parameters, although signals can
also be used (see Chapter 3). Some examples will clarify this syntax. Firstly, asimple
example of a procedure with no parameters:

procedure reset;

This simply defines reset as a procedure with no parameters, whose statement body will
be given subsequently in the VHDL program. A procedure call to reset would be:

reset;

Secondly, here is a declaration of a procedure with some parameters:

procedure increment_reg(variable reg : inout word_32;
constant incr : in integer := 1);

In this example, the procedure increment_reg has two parameters, the first called reg
and the second called incr. Reg is avariable parameter, which means that in the
subprogram body, it is treated as a variable object and may be assigned to. This means
that when the procedure is called, the actual parameter associated with reg must itself be
avariable. The mode of reg isinout, which means that reg can be both read and assigned
to. Other possible modes for subprogram parameters are in, which means that the
parameter may only be read, and out, which means that the parameter may only be
assigned to. If the modeisinout or out, then the word variable can be omitted and is
assumed.

The second parameter, incr, is a constant parameter, which meansthat it is treated as a
constant object in the subprogram statement body, and may not be assigned to. The
actual parameter associated with incr when the procedure is called must be an expression.
Given the mode of the parameter, in, the word constant could be omitted and assumed.
The expression after the assignment operator is a default expression, which is used if no
actual parameter is associated with incr in acall to the procedure.

A call to asubprogram includes alist of actual parameters to be associated with the
formal parameters. This association list can be position, named, or a combination of
both. (Compare this with the format of aggregates for values of composite types.) A call
with positional association lists the actua parametersin the same order as the formals.
For example:

increment_reg(index_reg, offset-2); -- add value to index_reg
increment_reg(prog_counter); -- add 1 (default) to prog_counter

A call with named association explicitly gives the formal parameter name to be associated
with each actual parameter, so the parameters can bein any order. For example:

increment_reg(incr => offset—2, reg => index_reg);

increment_reg(reg => prog_counter);

2. VHDL isLike a Programming Language 2-15

Note that the second call in each example does not give a value for the formal parameter
incr, so the default value is used.

Thirdly, hereis an example of function subprogram declaration:
function byte_to_int(byte : word_8) return integer;

The function has one parameter. For functions, the parameter mode must bein, and this
isassumed if not explicitly specified. If the parameter classis not specified it is assumed
to be constant. The value returned by the body of this function must be an integer.

When the body of a subprogram is specified, the syntax used is:
subprogram_body ::=
subprogram_specificationis
subprogram_declarative part
begin
subprogram_statement_part
end [designator] ;
subprogram_declarative part ::= { subprogram_declarative item}
subprogram_statement_part ::= { sequential_statement }
subprogram_declarative item ::=
subprogram_declaration
| subprogram_body
| type declaration
| subtype_declaration
| constant_declaration
| variable_declaration
| dlias_declaration
The declarative items listed after the subprogram specification declare things which are to
be used locally within the subprogram body. The names of these items are not visible
outside of the subprogram, but are visible inside locally declared subprograms.
Furthermore, these items shadow any things with the same names declared outside the
subprogram.

When the subprogram is called, the statements in the body are executed until either
the end of the statement list is encountered, or areturn statement is executed. The syntax
of areturn statement is:

return_statement ::= return [expression] ;
If areturn statement occurs in a procedure body, it must not include an expression. There
must be at least one return statement in a function body, it must have an expression, and
the function must compl ete by executing a return statement. The value of the expression
is the valued returned to the function call.

Another point to note about function subprograms s that they may not have any side-
effects. This meansthat no visible variable declared outside the function body may be
assigned to or altered by the function. Thisincludes passing anon-local variableto a
procedure as a variable parameter with mode out or inout. Theimportant result of this
rule isthat functions can be called without them having any effect on the environment of
the call.

An example of afunction body:

2-16 The VHDL Cookbook

function byte_to_int(byte : word_8) return integer is
variable result : integer := 0;
begin
for indexin 0to 7 loop
result := result*2 + bit'pos(byte(index));
end loop;
return result;
end byte to_int;

2.5.2. Overloading

VHDL allows two subprograms to have the same name, provided the number or base
types of parameters differs. The subprogram name is then said to be overloaded. When a
subprogram call is made using an overloaded name, the number of actual parameters,
their order, their base types and the corresponding formal parameter names (if named
association is used) are used to determine which subprogram is meant. If thecall isa
function call, the result typeis also used. For example, suppose we declared the two
subprograms:

function check_limit(value : integer) return boolean;

function check_limit(value : word_32) return boolean;

Then which of the two functionsis called depends on whether a value of type integer or
word_8 isused as the actual parameter. So

test := check_Ilimit(4095)

would call the first function, and
test := check_limit(X"0000_OFFF")

would call the second function.

The designator used to define a subprogram can be either an identifier or astring
representing any of the operator symbols listed in Section 2.3. The latter case allows
extra operand types to be defined for those operators. For example, the addition operator
might be overloaded to add word_32 operands by declaring a function:

function "+" (a, b : word_32) return word_32 is
begin
return int_to_word_32(word_32_to_int(a) + word_32_to_int(b));
end "+";
Within the body of this function, the addition operator is used to add integers, sinceits
operands are both integers. However, in the expression:
X"1000_0010" + X"0000_FFDO"

the newly declared function is called, since the operands to the addition operator are both
of typeword_32. Notethat it isalso possibleto call operators using the prefix notation
used for ordinary subprogram calls, for example:

"+" (X"1000_0010", X"0000_FFDO0")

2.5.3. Package and Package Body Declarations

A package is a collection of types, constants, subprograms and possibly other things,
usually intended to implement some particular service or to isolate a group of related
items. In particular, the details of constant values and subprogram bodies can be hidden
from users of a package, with only their interfaces made visible.

A package may be split into two parts: a package declaration, which definesits
interface, and a package body, which defines the deferred details. The body part may be
omitted if there are no deferred details. The syntax of a package declaration is:

2. VHDL isLike a Programming Language 2-17

package declaration ::=

package identifier is

package declarative part

end [package simple name] ;
package declarative part ::={ package declarative item}
package declarative item ::=

subprogram_declaration

| type_declaration

| subtype_declaration

| constant_declaration

| dlias_declaration

| use clause

The declarations define things which are to be visible to users of the package, and which
are also visible inside the package body. (There are also other kinds of declarations
which can be included, but they are not discussed here.)

An example of a package declaration:

package data_types is
subtype address is bit_vector(24 downto 0);
subtype data is bit_vector(15 downto 0);
constant vector_table_loc : address;
function data_to_int(value : data) return integer;
function int_to_data(value : integer) return data;
end data_types;

In this example, the value of the constant vector_table_loc and the bodies of the two
functions are deferred, so a package body needs to be given.

The syntax for a package body is:
package body ::=
package body package simple nameis
package body declarative part
end [package simple name] ;
package body declarative part ::={ package body declarative item}
package body declarative item ::=
subprogram_declaration
| subprogram_body
| type declaration
| subtype_declaration
| constant_declaration
| alias_declaration
| use clause

Note that subprogram bodies may be included in a package body, whereas only
subprogram interface declarations may be included in the package interface declaration.
The body for the package data_types shown above might be written as:
package body data_types is
constant vector_table loc : address := X"FFFF0Q";

function data_to_int(value : data) return integer is
body of data_to_int
end data_to_int;

function int_to_data(value : integer) return data is
body of int_to_data
end int_to_data;

end data_types;

2-18 The VHDL Cookbook

In this package body, the value for the constant is specified, and the function bodies are
given. The subtype declarations are not repeated, as those in the package declarations are
visible in the package body.

2.5.4. Package Use and Name Visibility

Once a package has been declared, items declared within it can be used by prefixing
their names with the package name. For example, given the package declaration in
Section 2.4.3 above, the items declared might be used as follows:

variable PC : data_types.address;
int_vector_loc := data_types.vector_table loc + 4*int_level,

offset := data_types.data_to_int(offset_reg);

Often it is convenient to be able to refer to names from a package without having to
qualify each use with the package name. This may be done using ause clausein a
declaration region. The syntax is:

use_clause ::= use selected_name{ , selected name} ;

selected_name ::= prefix . suffix
The effect of the use clause isthat all of the listed names can subsequently be used
without having to prefix them. If al of the declared namesin a package areto be used in
this way, you can use the special suffix all, for example:

use data_types.all;

