
3-1

3. VHDL Describes Structure

In Section 1.1 we introduced some terminology for describing the structure of a
digital system. In this chapter, we will look at how structure is described in VHDL.

3.1. Entity Declarations
A digital system is usually designed as a hierarchical collection of modules. Each

module has a set of ports which constitute its interface to the outside world. In VHDL, an
entity is such a module which may be used as a component in a design, or which may be
the top level module of the design.

The syntax for declaring an entity is:
entity_declaration ::=

entity identifier is
entity_header
entity_declarative_part

[begin
entity_statement_part]

end [entity_simple_name] ;

entity_header ::=
[formal_generic_clause]
[formal_port_clause]

generic_clause ::= generic (generic_list) ;

generic_list ::= generic_interface_list

port_clause ::= port (port_list) ;

port_list ::= port_interface_list

entity_declarative_part ::= { entity_declarative_item }

The entity declarative part may be used to declare items which are to be used in the
implementation of the entity. Usually such declarations will be included in the
implementation itself, so they are only mentioned here for completeness. Also, the
optional statements in the entity declaration may be used to define some special
behaviour for monitoring operation of the entity. Discussion of these will be deferred
until Section 6.5.

The entity header is the most important part of the entity declaration. It may include
specification of generic constants, which can be used to control the structure and
behaviour of the entity, and ports, which channel information into and out of the entity.

The generic constants are specified using an interface list similar to that of a
subprogram declaration. All of the items must be of class constant. As a reminder, the
syntax of an interface constant declaration is:

interface_constant_declaration ::=
[constant] identifier_list : [in] subtype_indication [:= static_expression]

The actual value for each generic constant is passed in when the entity is used as a
component in a design.

3-2 The VHDL Cookbook

The entity ports are also specified using an interface list, but the items in the list must
all be of class signal. This is a new kind of interface item not previously discussed. The
syntax is:

interface_signal_declaration ::=
[signal] identifier_list : [mode] subtype_indication [bus]

[:= static_expression]

Since the class must be signal, the word signal can be omitted and is assumed. The word
bus may be used if the port is to be connected to more than one output (see Sections 6.1
and 6.2). As with generic constants the actual signals to be connected to the ports are
specified when the entity is used as a component in a design.

To clarify this discussion, here are some examples of entity declarations:
entity processor is

generic (max_clock_freq : frequency := 30 MHz);
port (clock : in bit;

address : out integer;
data : inout word_32;
control : out proc_control;
ready : in bit);

end processor;

In this case, the generic constant max_clock_freq is used to specify the timing behaviour
of the entity. The code describing the entity’s behaviour would use this value to
determine delays in changing signal values.

Next, an example showing how generic parameters can be used to specify a class of
entities with varying structure:

entity ROM is
generic (width, depth : positive);
port (enable : in bit;

address : in bit_vector(depth–1 downto 0);
data : out bit_vector(width–1 downto 0));

end ROM;

Here, the two generic constants are used to specify the number of data bits and address
bits respectively for the read-only memory. Note that no default value is given for either
of these constants. This means that when the entity is used as a component, actual values
must be supplied for them.

Finally an example of an entity declaration with no generic constants or ports:
entity test_bench is
end test_bench;

Though this might at first
seem to be a pointless
example, in fact it
illustrates a common use
of entities, shown in
Figure 3-1. A top-level
entity for a design under
test (DUT) is used as a
component in a test bench
circuit with another entity
(TG) whose purpose is to
generate test values. The
values on signals can be

A

B

Y

ZDUT

Y

Z

A

BTG

TEST_BENCH

Figure 3-1. Test bench circuit.

3. VHDL Describes Structure 3-3

traced using a simulation monitor, or checked directly by the test generator. No external
connections from the test bench are needed, hence it has no ports.

3.2. Architecture Declarations
Once an entity has had its interface specified in an entity declaration, one or more

implementations of the entity can be described in architecture bodies. Each architecture
body can describe a different view of the entity. For example, one architecture body may
purely describe the behaviour using the facilities covered in Chapters 2 and 4, whereas
others may describe the structure of the entity as a hierarchically composed collection of
components. In this section, we will only cover structural descriptions, deferring
behaviour descriptions until Chapter 4.

An architecture body is declared using the syntax:
architecture_body ::=

architecture identifier of entity_name is
architecture_declarative_part

begin
architecture_statement_part

end [architecture_simple_name] ;

architecture_declarative_part ::= { block_declarative_item }

architecture_statement_part ::= { concurrent_statement }

block_declarative_item ::=
subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| signal_declaration
| alias_declaration
| component_declaration
| configuration_specification
| use_clause

concurrent_statement ::=
block_statement
| component_instantiation_statement

The declarations in the architecture body define items that will be used to construct the
design description. In particular, signals and components may be declared here and used
to construct a structural description in terms of component instances, as illustrated in
Section 1.4. These are discussed in more detail in the next sections.

3.2.1. Signal Declarations
Signals are used to connect submodules in a design. They are declared using the

syntax:
signal_declaration ::=

signal identifier_list : subtype_indication [signal_kind] [:= expression] ;

signal_kind ::= register | bus

Use of the signal kind specification is covered in Section 6.2. Omitting the signal kind
results in an ordinary signal of the subtype specified. The expression in the declaration is
used to give the signal an initial value during the initialization phase of simulation. If the
expression is omitted, a default initial value will be assigned.

One important point to note is that ports of an object are treated exactly as signals
within that object.

3-4 The VHDL Cookbook

3.2.2. Blocks
The submodules in an architecture body can be described as blocks. A block is a unit

of module structure, with its own interface, connected to other blocks or ports by signals.
A block is specified using the syntax:

block_statement ::=
block_label :

block [(guard_expression)]
block_header
block_declarative_part

begin
block_statement_part

end block [block_label] ;

 block_header ::=
[generic_clause
[generic_map_aspect ;]]
[port_clause
[port_map_aspect ;]]

generic_map_aspect ::= generic map (generic_association_list)

port_map_aspect ::= port map (port_association_list)

block_declarative_part ::= { block_declarative_item }

block_statement_part ::= { concurrent_statement }

The guard expression is not covered in this booklet, and may be omitted. The block
header defines the interface to the block in much the same way as an entity header defines
the interface to an entity. The generic association list specifies values for the generic
constants, evaluated in the context of the enclosing block or architecture body. The port
map association list specifies which actual signals or ports from the enclosing block or
architecture body are connected to the block’s ports. Note that a block statement part
may also contain block statements, so a design can be composed of a hierarchy of blocks,
with behavioural descriptions at the bottom level of the hierarchy.

As an example, suppose we want to describe a structural architecture of the processor
entity example in Section 3.1. If we separate the processor into a control unit and a data
path section, we can write a description as a pair of interconnected blocks, as shown in
Figure 3-2.
The control unit block has ports clk, bus_control and bus_ready, which are connected to
the processor entity ports. It also has an output port for controlling the data path, which is
connected to a signal declared in the architecture. That signal is also connected to a
control port on the data path block. The address and data ports of the data path block are
connected to the corresponding entity ports. The advantage of this modular
decomposition is that each of the blocks can then be developed independently, with the
only effects on other blocks being well defined through their interfaces.

3. VHDL Describes Structure 3-5

3.2.3. Component Declarations
An architecture body can also make use of other entities described separately and

placed in design libraries. In order to do this, the architecture must declare a component,
which can be thought of as a template defining a virtual design entity, to be instantiated
within the architecture. Later, a configuration specification (see Section 3.3) can be used
to specify a matching library entity to use. The syntax of a component declaration is:

component_declaration ::=
component identifier

[local_generic_clause]
[local_port_clause]

end component ;

Some examples of component declarations:
component nand3

generic (Tpd : Time := 1 ns);
port (a, b, c : in logic_level;

y : out logic_level);
end component;

architecture block_structure of processor is

type data_path_control is … ;

signal internal_control : data_path_control;

begin

control_unit : block
port (clk : in bit;

bus_control : out proc_control;
bus_ready : in bit;
control : out data_path_control);

port map (clk => clock,
bus_control => control, bus_ready => ready;
control => internal_control);

declarations for control_unit
begin

statements for control_unit
end block control_unit;

data_path : block
port (address : out integer;

data : inout word_32;
control : in data_path_control);

port map (address => address, data => data,
control => internal_control);

declarations for data_path
begin

statements for data_path
end block data_path;

end block_structure;

Figure 3-2. Structural architecture of processor example.

3-6 The VHDL Cookbook

component read_only_memory
generic (data_bits, addr_bits : positive);
port (en : in bit;

addr : in bit_vector(depth–1 downto 0);
data : out bit_vector(width–1 downto 0));

end component;

The first example declares a three-input gate with a generic parameter specifying its
propagation delay. Different instances can later be used with possibly different
propagation delays. The second example declares a read-only memory component with
address depth and data width dependent on generic constants. This component could act
as a template for the ROM entity described in Section 3.1.

3.2.4. Component Instantiation
A component defined in an architecture may be instantiated using the syntax:

component_instantiation_statement ::=
instantiation_label :

component_name
[generic_map_aspect]
[port_map_aspect] ;

This indicates that the architecture contains an instance of the named component, with
actual values specified for generic constants, and with the component ports connected to
actual signals or entity ports.

The example components declared in the previous section might be instantiated as:
enable_gate: nand3

port map (a => en1, b => en2, c => int_req, y => interrupt);

parameter_rom: read_only_memory
generic map (data_bits => 16, addr_bits => 8);
port map (en => rom_sel, data => param, addr => a(7 downto 0);

In the first instance, no generic map specification is given, so the default value for the
generic constant Tpd is used. In the second instance, values are specified for the address
and data port sizes. Note that the actual signal associated with the port addr is a slice of
an array signal. This illustrates that a port which is an array can be connected to part of a
signal which is a larger array, a very common practice with bus signals.

