4. VHDL Describes Behaviour

In Section 1.2 we stated that the behaviour of adigital system could be described in
terms of programming language notation. The familiar sequential programming language
aspects of VHDL were covered in detail in Chapter 2. In this chapter, we describe how
these are extended to include statements for modifying values on signals, and means of
responding to the changing signal values.

4.1. Signal Assignment

A signal assignment schedules one or more transactionsto asignal (or port). The
syntax of asignal assignment is:
signal_assignment_statement ::= target <=[transport] waveform;
target ::= name | aggregate
waveform ::= waveform_element { , waveform_element }
waveform_element ::=
value_expression [after time_expression]
| null [after time_expression]
The target must represent asignal, or be an aggregate of signals (see also variable
assignments, Section 2.4.1). If the time expression for the delay is omitted, it defaults to
0fs. This meansthat the transaction will be scheduled for the same time as the
assignment is executed, but during the next simulation cycle.

Each signal has associated with it a projected output waveform, which isalist of
transactions giving future values for the signal. A signal assignment adds transactions to
thiswaveform. So, for example, the signal assignment:

s <="0" after 10 ns;

will cause the signal enable to assume the value true 10 ns after the assignment is
executed. We can represent the projected output waveform graphically by showing the
transactions along atime axis. So if the above assignment were executed at time 5 ns, the
projected waveform would be:

15ns
0

When simulation time reaches 15 ns, this transaction will be processed and the signa
updated.

Suppose then at time 16 ns, the assignment:
s <="1"after 4 ns, '0’ after 20 ns;

were executed. The two new transactions are added to the projected output waveform:

4-2 The VHDL Cookbook

20ns 36ns
" 0

Note that when multiple transactions are listed in a signal assignment, the delay times
specified must be in ascending order.

If asignal assignment is executed, and there are already old transactions from a
previous assignmenton the projected output waveform, then some of the old transactions
may be deleted. The way this is done depends on whether the word transport isincluded
in the new assignment. If it isincluded, the assignment is said to use transport delay. In
this case, all old transactions scheduled to occur after the first new transaction are deleted
before the new transactions are added. It is as though the new transactions supercede the
old ones. So given the projected output waveform shown immediately above, if the
assignment:

s <=transport 'Z’ after 10 ns;

were executed at time 18 ns, then the transaction scheduled for 36 ns would be deleted,
and the projected output waveform would become:

20ns 28ns
" 7

The second kind of delay, inertial delay, is used to model devices which do not
respond to input pulses shorter than their output delay. Anintertial delay is specified by
omitting the word transport from the signal assignment. When an inertial delay
transaction is added to a projected output waveform, firstly all old transactions scheduled
to occur after the new transaction are deleted, and the new transaction is added, asin the
case of transport delay. Next, all old transactions scheduled to occur before the new
transaction are examined. If there are any with a different value from the new transaction,
then al transactions up to the last one with a different value are deleted. The remaining
transactions with the same value are | eft.

To illustrate this, suppose the projected output waveform at time O nsis:

10ns 15ns 20ns 30ns
1’ 0’ 17’ 'z

and the assignment:
s <="1" after 25 ns;

is executed also at 0 ns. Then the new projected ouptut waveformis:

20ns 25ns
" "

When a signal assignment with multiple waveform elements is specified with intertial
delay, only thefirst transaction usesinertial delay; the rest are treated as being transport
delay transactions.

4.2. Processes and the Wait Statement

The primary unit of behavioural descriptionin VHDL isthe process. A processisa
sequential body of code which can be activated in response to changes in state. When
more than one process is activated at the same time, they execute concurrently. A process
is specified in a process statement, with the syntax:

4. VHDL Describes Behaviour 4-3

process_statement ::=
[process label :]
process [(sensitivity _list)]
process declarative part
begin
process_statement_part
end process|[process label] ;
process declarative part ::={ process _declarative item}
process declarative item ::=
subprogram_declaration
| subprogram_body
| type declaration
| subtype_declaration
| constant_declaration
| variable_declaration
| alias_declaration
| use clause
process_statement_part ::= { sequential_statement }
sequential_statement ::=
wait_statement
| assertion_statement
| signal_assignment_statement
| variable_assignment_statement
| procedure_call_statement
| if_statement
| case statement
| loop_statement
| next_statement
| exit_statement
| return_statement
| null_statement

A process statement is a concurrent statement which can be used in an architecture body
or block. The declarations define items which can be used locally within the process.
Note that variables may be defined here and used to store state in a model.

A process may contain a number of signal assignment statements for a given signal,
which together form adriver for the signal. Normally there may only be one driver for a
signal, and so the code which determines a signals value is confined to one process.

A processis activated initially during the initialisation phase of simulation. It
executes all of the sequential statements, and then repests, starting again with the first
statement. A process may suspended itself by executing await statement. Thisis of the
form:

wait_statement ::=
wait [sensitivity clause] [condition_clause] [timeout_clause] ;
sengitivity _clause ::= on sensitivity_list
sensitivity list ;;=signal_name{ , signal_name}
condition_clause ::= until condition
timeout_clause :;=for time_expression

The sensitivity list of the wait statement specifies a set of signals to which the process
issensitive whileit is suspended. When an event occurs on any of these signals (that is,
the value of the signal changes), the process resumes and evaluates the condition. If itis
true or if the condition is omitted, execution procedes with the next statement, otherwise
the process resuspends. If the sensitivity clause is omitted, then the processis sensitive to
all of the signals mentioned in the condition expression. The timeout expression must

4-4 The VHDL Cookbook

evaluate to a positive duration, and indicates the maximum time for which the process
will wait. If it is omitted, the process may wait indefinitely.

If asensitivity list isincluded in the header of a process statement, then the processis
assumed to have an implicit wait statement at the end of its statement part. The
sengitivity list of thisimplicit wait statement is the same as that in the process header. In
this case the process may not contain any explicit wait statements.

An example of a process statements with a sensitivity list:

process (reset, clock)
variable state : bit := false;
begin
if reset then
state := false;
elsif clock = true then
state := not state;
end if;
g <= state after prop_delay;
-- implicit wait on reset, clock
end process;

During the initialization phase of simulation, the processis activated and assigns the
initial value of stateto the signal g. It then suspends at the implicit wait statement
indicated in the comment. When either reset or clock change value, the processis
resumed, and execution repeats from the beginning.

The next example describes the behaviour of a synchronization device called a
Muller-C element used to construct asynchronous logic. The output of the device starts at
the value '0’, and stays at this value until both inputs are '1’, at which time the output
changesto’l’. The output then stays 1’ until both inputs are’0’, at which time the output
changes back to 0.

muller_c_2: process

begin
wait untila="1"and b ="1";
q<="1"
wait until a="'0"and b =07
q<="0"

end process muller_c_2;

This process does not include a sensitivity list, so explicit wait statements are used to
control the suspension and activation of the process. In both wait statements, the
sensitivity list isthe set of signalsa and b, determined from the condition expression.

4.3. Concurrent Signal Assignment Statements

Often a process describing adriver for asignal contains only one signal assignment
statement. VHDL provides a convenient short-hand notation, called a concurrent signal
assignment statement, for expressing such processes. The syntax is.

concurrent_signal_assignment_statement ::=
[1abel :] conditiona_signal_assignment
| [label :] selected_signal_assignment

For each kind of concurrent signal assignment, there is a corresponding process
statement with the same meaning.

4.3.1. Conditional Signal Assignment

A conditional signal assignment statement is a shorthand for a process containing
signal assignmentsin an if statement. The syntax is:

4. VHDL Describes Behaviour 4-5

conditional _signal_assignment ::= target <= options conditional_waveforms;
options ::=[guarded] [transport]
conditional_waveforms ::=
{ waveform when condition else }
waveform
Use of the word guarded is not covered in this booklet. If theword transport is
included, then the signal assignments in the equivalent process use transport delay.

Suppose we have a conditional signal assignment:

s <= waveform_1 when condition_1 else
waveform_2 when condition_2 else

waveform_n;

Then the equivalent processis:

process
if condition_1 then
s <= waveform_1;
elsif condition_2 then
s <= waveform_2;
elsif ...

else
s <= waveform_n;
wait [sensitivity_clause],
end process;

If none of the waveform value expressions or conditions contains a reference to asignal,
then the wait statement at the end of the equivalent process has no sensitivity clause.
This meansthat after the assignment is made, the process suspends indefinitely. For
example, the conditional assignment:

reset <="'1', '0' after 10 ns when short_pulse_required else
'1', '0" after 50 ns;

schedules two transactions on the signal reset, then suspends for the rest of the
simulation.

On the other hand, if there are references to signals in the waveform value expressions
or conditions, then the wait statement has a sensitivity list consisting of al of the signals
referenced. So the conditional assignment:

mux_out <='Z' after Tpd when en ='0" else
in_O after Tpd when sel ='0" else
in_1 after Tpd;
is sensitiveto the signals en and sel. The processis activated during the initialization
phase, and thereafter whenever either of en or sel changes value.

The degenerate case of a conditional signal assignment, containing no conditional
parts, is equivalent to a process containing just asignal assignment statement. So:
S <= waveform;

isequivalent to:

process

s <= waveform;

wait [sensitivity _clause |,
end process;

4-6 The VHDL Cookbook

4.3.2. Selected Signal Assignment

A selected signal assignment statement is a shorthand for a process containing signal
assignments in a case statement. The syntax is:
selected_signal_assignment ::=
with expression select
target <= options selected waveforms;;

selected waveforms ::=
{ waveform when choices, }
waveform when choices

choices ::= choice{ | choice }
The options part is the same as for a conditional signal assignment. So if the word
transport isincluded, then the signal assignments in the equivalent process use transport
delay.
Suppose we have a selected signal assignment:
with expression select

s <= waveform_1 when choice_list_1,
waveform_2 when choice_list_2,

waveform_n when choice_list_n;

Then the equivalent processis:

process
case expression is

when choice_list_1=>

s <= waveform_1;

when choice_list 2=>

s <= waveform_2;

when choice_list_ n=>
s <= waveform_n;
end case;
wait [sensitivity _clause |
end process;

The sensitivity list for the wait statement is determined in the same way as for a
conditional signal assignment. That is, if no signals are referenced in the selected signal
assignment expression or waveforms, the wait statement has no sensitivity clause.
Otherwise the sensitivity clause contains al the signals referenced in the expression and
waveforms.

An example of a selected signal assignment statement:

with alu_function select
alu_result <= opl + op2 when alu_add | alu_incr,
opl — op2 when alu_subtract,
opl and op2 when alu_and,
opl or op2 when alu_or,
opl and not op2 when alu_mask;

In this example, the value of the signal alu_function is used to select which signal
assignment to alu_result to execute. The statement is sensitive to the signals
alu_function, op1 and op2, so whenever any of these change value, the selected signal
assignment is resumed.

