
5-1

5. Model Organisation

The previous chapters have described the various facilities of VHDL somewhat in
isolation. The purpose of this chapter is to show how they are all tied together to form a
complete VHDL description of a digital system.

5.1. Design Units and Libraries
When you write VHDL descriptions, you write them in a design file, then invoke a

compiler to analyse them and insert them into a design library. A number of VHDL
constructs may be separately analysed for inclusion in a design library. These constructs
are called library units. The primary library units are entity declarations, package
declarations and configuration declarations (see Section 5.2). The secondary library units
are architecture bodies and package bodies. These library units depend on the
specification of their interface in a corresponding primary library unit, so the primary unit
must be analysed before any corresponding secondary unit.

A design file may contain a number of library units. The structure of a design file can
be specified by the syntax:

design_file ::= design_unit { design_unit }

design_unit ::= context_clause library_unit

context_clause ::= { context_item }

context_item ::= library_clause | use_clause

library_clause ::= library logical_name_list ;

logical_name_list ::= logical_name { , logical_name }

library_unit ::= primary_unit | secondary_unit

primary_unit ::=
entity_declaration | configuration_declaration | package_declaration

secondary_unit ::= architecture_body | package_body

Libraries are referred to using identifiers called logical names. This name must be
translated by the host operating system into an implementation dependent storage name.
For example, design libraries may be implemented as database files, and the logical name
might be used to determine the database file name. Library units in a given library can be
referred to by prefixing their name with the library logical name. So for example,
ttl_lib.ttl_10 would refer to the unit ttl_10 in library ttl_lib.

The context clause preceding each library unit specifies which other libraries it
references and which packages it uses. The scope of the names made visible by the
context clause extends until the end of the design unit.

There are two special libraries which are implicitly available to all design units, and
so do not need to be named in a library clause. The first of these is called work, and refers
to the working design library into which the current design units will be placed by the
analyser. Hence in a design unit, the previously analysed design units in a design file can
be referred to using the library name work.

5-2 The VHDL Cookbook

The second special libary is called std, and contains the packages standard and textio.
Standard contains all of the predefined types and functions. All of the items in this
package are implicitly visible, so no use clause is necessary to access them.

5.2. Configurations
In Sections 3.2.3 and 3.2.4 we showed how a structural description can declare a

component specification and create instances of components. We mentioned that a
component declared can be thought of as a template for a design entity. The binding of
an entity to this template is achieved through a configuration declaration. This
declaration can also be used to specify actual generic constants for components and
blocks. So the configuration declaration plays a pivotal role in organising a design
description in preparation for simulation or other processing.

The syntax of a configuration declaration is:
configuration_declaration ::=

configuration identifier of entity_name is
configuration_declarative_part
block_configuration

end [configuration_simple_name] ;

configuration_declarative_part ::= { configuration_declarative_item }

configuration_declarative_item ::= use_clause

block_configuration ::=
for block_specification

{ use_clause }
{ configuration_item }

end for ;

block_specification ::= architecture_name | block_statement_label

configuration_item ::= block_configuration | component_configuration

component_configuration ::=
for component_specification

[use binding_indication ;]
[block_configuration]

end for ;
component_specification ::= instantiation_list : component_name

instantiation_list ::=
instantiation_label { , instantiation_label)
| others
| all

binding_indication ::=
entity_aspect
[generic_map_aspect]
[port_map_aspect]

entity_aspect ::=
entity entity_name [(architecture_identifier)]
| configuration configuration_name
| open

generic_map_aspect ::= generic map (generic_association_list)

port_map_aspect ::= port map (port_association_list)

5. Model Organisation 5-3

The declarative part of the configuration declaration allows the configuration to use
items from libraries and packages. The outermost block configuration in the
configuration declaration defines the configuration for an architecture of the named
entity. For example, in Chapter 3 we had an example of a processor entity and
architecture, outlined again in Figure 5-1. The overall structure of a configuration
declaration for this architecture might be:

configuration test_config of processor is

use work.processor_types.all

for block_structure
configuration items

end for;

end test_config;

In this example, the contents of a package called processor_types in the current
working library are made visible, and the block configuration refers to the architecture
block_structure of the entity processor.

Within the block configuration for the architecture, the submodules of the architecture
may be configured. These submodules include blocks and component instances. A block
is configured with a nested block configuration. For example, the blocks in the above
architecture can be configured as shown in Figure 5-2.

Where a submodule is an instance of a component, a component configuration is used
to bind an entity to the component instance. To illustrate, suppose the data_path block in
the above example contained an instance of the component alu, declared as shown in

entity processor is
generic (max_clock_speed : frequency := 30 MHz);
port (port list);

end processor;

architecture block_structure of processor is

declarations

begin

control_unit : block
port (port list);
port map (association list);
declarations for control_unit

begin
statements for control_unit

end block control_unit;

data_path : block
port (port list);
port map (association list);
declarations for data_path

begin
statements for data_path

end block data_path;

end block_structure;

Figure 5-1. Example processor entity and architecture body.

5-4 The VHDL Cookbook

Figure 5-3. Suppose also that a library project_cells contains an entity called alu_cell
defined as:

entity alu_cell is
generic (width : positive);
port (function_code : in alu_function;

operand1, operand2 : in bit_vector(width-1 downto 0);
result : out bit_vector(width-1 downto 0);
flags : out alu_flags);

end alu_cell;

with an architecture called behaviour. This entity matches the alu component template,
since its operand and result ports can be constrained to match those of the component,
and the flags port can be left unconnected. A block configuration for data_path could be
specified as shown in Figure 5-4.

Alternatively, if the library also contained a configuration called alu_struct for an
architecture structure of the entity alu_cell, then the block configuration could use this, as
shown in Figure 5-5.

configuration test_config of processor is

use work.processor_types.all

for block_structure
for control_unit

configuration items
end for;
for data_path

configuration items
end for;

end for;

end test_config;

Figure 5-2. Configuration of processor example.

data_path : block
port (port list);
port map (association list);
component alu

port (function : in alu_function;
op1, op2 : in bit_vector_32;
result : out bit_vector_32);

end component;
other declarations for data_path

begin
data_alu : alu

port map (function => alu_fn, op1 => b1, op2 => b2, result => alu_r);
other statements for data_path

end block data_path;

Figure 5-3. Structure of processor data-path block.

5. Model Organisation 5-5

5.3. Complete Design Example
To illustrate the overall structure of a design description, a complete design file for

the example in Section 1.4 is shown in Figure 5-6. The design file contains a number of
design units which are analysed in order. The first design unit is the entity declaration of
count2. Following it are two secondary units, architectures of the count2 entity. These
must follow the entity declaration, as they are dependent on it. Next is another entity
declaration, this being a test bench for the counter. It is followed by a secondary unit
dependent on it, a structural description of the test bench. Following this is a
configuration declaration for the test bench. It refers to the previously defined library
units in the working library, so no library clause is needed. Notice that the count2 entity
is referred to in the configuration as work.count2, using the library name. Lastly, there is
a configuration declaration for the test bench using the structural architecture of count2.
It uses two library units from a separate reference library, misc. Hence a library clause is
included before the configuration declaration. The library units from this library are
referred to in the configuration as misc.t_flipflop and misc.inverter.

This design description includes all of the design units in one file. It is equally
possible to separate them into a number of files, with the opposite extreme being one
design unit per file. If multiple files are used, you need to take care that you compile the
files in the correct order, and re-compile dependent files if changes are made to one
design unit. Source code control systems can be of use in automating this process.

-- primary unit: entity declaration of count2

for data_path
for data_alu : alu

use entity project_cells.alu_cell(behaviour)
generic map (width => 32)
port map (function_code => function, operand1 => op1, operand2 => op2,

result => result, flags => open);
end for;
other configuration items

end for;

Figure 5-4. Block configuration using library entity.

for data_path
for data_alu : alu

use configuration project_cells.alu_struct
generic map (width => 32)
port map (function_code => function, operand1 => op1, operand2 => op2,

result => result, flags => open);
end for;
other configuration items

end for;

Figure 5-5. Block configuration using another configuration.

5-6 The VHDL Cookbook

entity count2 is
generic (prop_delay : Time := 10 ns);
port (clock : in bit;

q1, q0 : out bit);
end count2;

-- secondary unit: a behavioural architecture body of count2

architecture behaviour of count2 is

begin

count_up: process (clock)

variable count_value : natural := 0;

begin
if clock = ’1’ then

count_value := (count_value + 1) mod 4;
q0 <= bit’val(count_value mod 2) after prop_delay;
q1 <= bit’val(count_value / 2) after prop_delay;

end if;
end process count_up;

end behaviour;

-- secondary unit: a structural architecture body of count2

architecture structure of count2 is

component t_flipflop
port (ck : in bit; q : out bit);

end component;

component inverter
port (a : in bit; y : out bit);

end component;

signal ff0, ff1, inv_ff0 : bit;

begin

bit_0 : t_flipflop port map (ck => clock, q => ff0);

inv : inverter port map (a => ff0, y => inv_ff0);

bit_1 : t_flipflop port map (ck => inv_ff0, q => ff1);

q0 <= ff0;
q1 <= ff1;

end structure;

Figure 5-6. Complete design file.

5. Model Organisation 5-7

-- primary unit: entity declaration of test bench

entity test_count2 is
end test_count2;

-- secondary unit: structural architecture body of test bench

architecture structure of test_count2 is

signal clock, q0, q1 : bit;

component count2
port (clock : in bit;

q1, q0 : out bit);
end component;

begin

counter : count2
port map (clock => clock, q0 => q0, q1 => q1);

clock_driver : process
begin

clock <= ’0’, ’1’ after 50 ns;
wait for 100 ns;

end process clock_driver;

end structure;

-- primary unit: configuration using behavioural architecture

configuration test_count2_behaviour of test_count2 is

for structure -- of test_count2
for counter : count2

use entity work.count2(behaviour);
end for;

end for;

end test_count2_behaviour;

-- primary unit: configuration using structural architecture

library misc;

configuration test_count2_structure of test_count2 is

for structure -- of test_count2
for counter : count2

use entity work.count2(structure);
for structure -- of count_2

for all : t_flipflop
use entity misc.t_flipflop(behaviour);

end for;
for all : inverter

use entity misc.inverter(behaviour);
end for;

end for;
end for;

end for;

end test_count2_structure;

Figure 5-6 (continued).

