6. Advanced VHDL

This chapter describes some more advanced facilities offered in VHDL. Although
you can write many models using just the parts of the language covered in the previous
chapters, you will find the features described here will significantly extend your model
writing abilities.

6.1. Signal Resolution and Buses

In many digital sytems, buses are used to connect a number of output driversto a
common signal. For example, if open-collector or open-drain output drivers are used
with a pull-up load on asignal, the signal can be pulled low by any driver, and is only
pulled high by the load when all drivers are off. Thisiscalled awired-or or wired-and
connection. On the other hand, if tri-state drivers are used, at most one driver may be
active at atime, and it determines the signal value.

VHDL normally allows only one driver for asignal. (Recall that adriver is defined
by the signal assignmentsin aprocess.) In order to model signals with multiple drivers,
VHDL uses the notion of resolved typesfor signals. A resolved type includesin its
definition aresolution function, which takes the values of all the drivers contributing to a
signal, and combines them to determine the final signal value.

A resolved type for asignal is declared using the syntax for a subtype:
subtype indication ::= [ resolution_function_name ] type_mark [ constraint ]
The resolution function name is the name of afunction previously defined. The function
must take a parameter which is an unconstrained array of values of the signal subtype,
and must return aresult of that subtype. To illustrate, consider the declarations:

type logic_level is (L, Z, H);
type logic_array is array (integer range <>) of logic_level;

function resolve_logic (drivers : in logic_array) return logic_level;
subtype resolved_level is resolve_logic logic_level;

In this example, the type logic_level represents three possible states for adigital
signal: low (L), high-impedance (Z) and high (H). The subtype resolved_level can be
used to declare aresolved signal of thistype. The resolution function might be
implemented as shown in Figure 6-1.

This function iterates over the array of drivers, and if any isfound to have the valueL, the
function returns L. Otherwise the function returns H, since all drivers are either Z or H.
This models awired-or signal with a pull-up. Note that in some cases aresolution
function may be called with an empty array as the parameter, and should handle that case
appropriately. The example above handlesit by returning the value H, the pulled-up
value.



6-2 The VHDL Cookbook

function resolve_logic (drivers : in logic_array) return logic_level;

begin
for index in drivers’range loop
if drivers(index) = L then
return L;
end if;
end loop;
return H;
end resolve_logic;

Figure 7-1. Resolution function for three-state logic

6.2. Null Transactions

VHDL provides afacility to model outputs which may be turned off (for example tri-
state drivers). A signa assignment may specify that no value isto be assigned to a
resolved signal, that is, that the driver should be disconnected. Thisis done with anull
waveform element. Recall that the syntax for awaveform element is:

waveform_element ::=
value_expression [ after time_expression ]
| null [ after time_expression |
So an example of such asignal assignment is:
d_out <= null after Toz;

If al of the drivers of aresolved signal are disconnected, the question of the resulting
signal value arises. There are two possibilities, depending on whether the signal was
declared with signal kind register or bus. For register kind signal's, the most recently
determined value remains on the signal. This can be used to model charge storage nodes
in MOS logic families. For bus kind signals, the resolution function must determine the
value for the signal when no drivers are contributing to it. Thisis how tri-state, open-
collector and open-drain buses would typically be modeled.

6.3. Generate Statements

VHDL has an additional concurrent statement which can be used in architecture
bodies to describe regular structures, such as arrays of blocks, component instances or
processes. The syntax is.

generate_statement ::=
generate |abel :
generation_scheme gener ate
{ concurrent_statement }
end generate[ generate label | ;

generation_scheme ::=
for generate parameter_specification
| if condition
The for generation scheme describes structures which have a repeating pattern. The if
generation scheme is usually used to handle exception cases within the structure, such as
occur at the boundaries. Thisisbest illustrated by example. Suppose we want to
describe the structure of an adder constructed out of full-adder cells, with the exception of



6. Advanced VHDL 6-3

adder : for iin 0 to width-1 generate

Is_bit:if i=0 generate
Is_cell : half_adder port map (a(0), b(0), sum(0), c_in(1));
end generate Isbit;

middle_bit : if i > 0 and i < width-1 generate
middle_cell : full_adder port map (a(i), b(i), c_in(i), sum(i), c_in(i+1));
end generate middle_bit;

ms_bit : if i = width-1 generate
ms_cell : full_adder port map (a(i), b(i), c_in(i), sum(i), carry);
end generate ms_bit;

end generate adder;

Figure 6-2. Generate statement for adder.

the least significant bit, which is consists of a half-adder. A generate statement to achieve
thisis shown in Figure 6-2.

The outer generate statement iterates with i taking on values from O to width-1. For
the least significant bit (i=0), an instance of a half adder component is generated. The
input bits are connected to the least significant bits of a and b, the output bit is connected
to the least significant bit of sum, and the carry bit is connectected to the carry in of the
next stage. For intermediate bits, an instance of afull adder component is generated with
inputs and outputs connected similarly to the first stage. For the most significant bit
(i=width-1), an instance of the half adder is also generated, but its carry output bit is
connected to the signal carry.

6.4. Concurrent Assertionsand Procedure Calls

There are two kinds of concurrent statement which were not covered in previous
chapters: concurrent assertions and concurrent procedure calls. A concurrent assertion
statement is equivalent to a process containing only an assertion statement followed by a
wait statement. The syntax is:

concurrent_assertion_statement ::=[ label : ] assertion_statement
The concurrent signal assertion:
L : assert condition report error_string severity severity value;

is equivalent to the process:
L : process
begin
assert condition report error_string severity severity value,
wait [ sensitivity clause | ;
end process L;

The sengitivity clause includes all the signals which are referred to in the condition
expression. If no signals are referenced, the process is activated once at ssmulation
initialisation, checks the condition, and then suspends indefinitely.

The other concurrent statement, the concurrent procedure call, is equivalent to a
process containing only a procedure call followed by await statement. The syntax is:

concurrent_procedure _call ::=[ label : ] procedure _call_statement



6-4 The VHDL Cookbook

The procedure may not have any formal parameters of classvariable, sinceit is not
possible for avariableto be visible at any place where a concurrent statement may be
used. The sensitivity list of the wait statement in the processincludes al the signals
which are actual parameters of modein or inout in the procedure call. These are the only
signals which can be read by the called procedure.

Concurrent procedure calls are useful for defining process behaviour that may be
reused in several places or in different models. For example, suppose a package
bit_vect_arith declares the procedure:

procedure add(signal a, b : in bit_vector; signal result : out bit_vector);

Then an example of a concurrent procedure call using this procedureis:
adder : bit_vect_arith.add (sample, old_accum, new_accum);

Thiswould be equivalent to the process:
adder : process
begin
bit_vect_arith.add (sample, old_accum, new_accum);
wait on sample, old_accum;
end process adder;

6.5. Entity Statements

In Section 3.1, it was mentioned that an entity declaration may include statements for
monitoring operation of the entity. Recall that the syntax for an entity declaration is:
entity_declaration ::=
entity identifier is
entity header
entity declarative part
[ begin
entity statement_part |
end [ entity_simple_name] ;
The syntax for the statement part is:
entity _statement_part ::={ entity_statement }
entity_statement ::=
concurrent_asser ti on_statement
| passive_concurrent_procedure _call
| passive_process_statement
The concurrent statement that are allowed in an entity declaration must be passive,
that is, they may not contain any signal assignments. (Thisincludes signal assignments
inside nested procedures of aprocess.) A result of thisruleisthat such processes cannot
modify the state of the entity, or any circuit the entity may be used in. However, they can
fully monitor the state, and so may be used to report erroneous operating conditions, or to
trace the behavior of the design.



