
Field Inversion and
Point Halving Revisited

Kenny Fong, Darrel Hankerson, Julio López, and Alfred Menezes

Abstract—We present a careful analysis of elliptic curve point multiplication methods that use the point halving technique of Knudsen

and Schroeppel and compare these methods to traditional algorithms that use point doubling. The performance advantage of halving

methods is clearest in the case of point multiplication kP , where P is not known in advance and smaller field inversion to multiplication

ratios generally favor halving. Although halving essentially operates on affine coordinate representations, we adapt an algorithm of

Knuth to allow efficient use of projective coordinates with halving-based windowing methods for point multiplication.

Index Terms—Public key cryptosystems, computer arithmetic, efficiency.

�

1 INTRODUCTION

Anew method for point multiplication on nonsupersin-
gular elliptic curves over binary fields was proposed

independently by Knudsen [11] and Schroeppel [22]. The
idea is to replace almost all point doublings in double-and-
add methods with a potentially faster operation called point
halving. Knudsen [11] presented some rough analysis
which suggests that halving methods could be 39 percent
faster than doubling methods ([23] claims a 50 percent
improvement), but these claims have not been supported by
experimental evidence or by detailed analysis.

The purpose of this paper is to carefully analyze point

multiplication methods that use halving and to compare

them with traditional methods that use doubling. We

restrict our attention to implementations on software

platforms; some issues with implementing point halving

in hardware are discussed in [26]. Furthermore, we restrict

our attention to elliptic curves over binary fields IF2m , where

m is prime and where the reduction polynomials are

trinomials or pentanomials. Such parameters are recom-

mended or mandated by various cryptographic standards,

including NIST’s FIPS 186-2 [4].
We begin in Section 2 with a description of three variants

of the extended Euclidean algorithm for computing inverses

in IF2m . A careful analysis of the software implementation of

multiplication and inversion is necessary for a fair compar-

ison of halving and doubling methods because a lower

relative inversion cost generally favors halving methods

over doubling methods. Our extensive experiments suggest

that a realistic estimate of the ratio I=M of inversion to

multiplication cost is 8 (or higher) rather than the ratio of 3
that is often quoted in the literature [27], [2], [3]. We also
analyze algorithms for division in IF2m and compare them
with inversion algorithms.

In Section 3, we review point halving and efficient
methods for solving quadratic equations in IF2m . Most of the
material in Sections 3.1, 3.2, and 3.3 is from [11] and [23]
with the exceptions of an improved method for computing
square roots in Section 3.2.3 and an adaptation of an
algorithm in Section 3.3 for point multiplication that allows
halving to efficiently cooperate with projective coordinate
representations. Our analysis of halving methods is pre-
sented in Section 3.4. We compare the best halving and
doubling methods for performing point multiplication kP
in the cases where P is not known in advance and where P
is known in advance. The former situation commonly arises
in variants of the Diffie-Hellman key agreement protocol,
while the latter is encountered in signature generation for
ElGamal signature schemes. We also compare halving and
doubling methods for performing simultaneous multiple
point multiplication kP þ lQ that is encountered in signa-
ture verification for ElGamal signature schemes. Our
analysis suggests that point halving methods are about
29 percent faster than point doubling methods for comput-
ing kP when P is not known in advance. The advantage is
smaller for simultaneous multiple point multiplication. For
point multiplication where P is known in advance,
doubling methods outperform halving methods unless
I=M is small. As a benchmark, it should be noted that the
�-adic methods for Koblitz curves [29] are significantly
faster than halving-based methods, although the latter have
the advantage of wider applicability.

2 FIELD INVERSION AND DIVISION

When implementing elliptic curve methods, the cost of field
inversion to multiplication is of fundamental interest,
driving the selection of affine versus projective representa-
tions of curve points. As an example, on the NIST-
recommended random binary curves over IF2m , the costs
(in terms of field multiplications M and inversions I) for

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 8, AUGUST 2004 1047

. K. Fong is with the Department of Computer Science, Southern Illinois
University, Carbondale, IL 62901. E-mail: kfong@cs.siu.edu.

. D. Hankerson is with the Department of Mathematics, Auburn University,
Auburn, AL 36849. E-mail: hankedr@auburn.edu.

. J. López is with the Institute of Computing, University of Campinas, CP
6176 CEP 13084-971, Campinas/SP, Brazil. E-mail: jlopez@ic.unicamp.br.

. A. Menezes is with the Department of Combinatorics and Optimization,
University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
E-mail: ajmeneze@uwaterloo.ca.

Manuscript received 31 Oct. 2002; revised 6 Jan. 2004; accepted 28 Jan. 2004.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 117693.

0018-9340/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

point addition and doubling are summarized in the

following table.

Consider the case that point multiplication kP is to be

performed using a method based on double-and-add, where

P is not known in advance. The break-even I=M depends on

the method used; however, a rough estimate (e.g., if window

NAFmethodsare employed) is obtainedbyassuming that the

cost for each bit of k is approximately DþA=3, where D

denotes the cost of a point doubling, and A is the cost of a

point addition. Under these assumptions, arithmetic using

projective (andmixed) coordinates is expected to outperform

affine-only arithmetic whenever I > 3M.
Goodman and Chandrakasan [7], Chang Shantz [28], and

Schroeppel [24] noted that the binary Euclidean algorithm,

commonly employed for inversion of field elements, can be

modified to do division. This is of particular interest if

affine arithmetic is in use, provided that division is cheaper

than I þM.

In this section, we are interested in realistic estimates of

I=M under the assumptions that the processor is general-

purpose and can be targeted and that the code may be

optimized for specific fields. Since it appears clear that I=M

is large (e.g., 40 or more) on such processors for prime

fields, the focus will be on binary fields IF2m , where m is

prime (e.g., as specified in the NIST-recommended binary

curves). A polynomial basis representation will be used for

elements of IF2m . Elements of IF2m are the binary poly-

nomials in IF2½z� of degree at most m� 1. The reduction

polynomial is denoted by f .
Section 2.1 gives an overview of three variants of the

Euclidean algorithm for inversion. As noted, the binary

variant can be converted to a division algorithm. Section 2.2

considers computational issues in converting the variants to

perform division. Timings and implementation notes on

two popular platforms are presented in Section 2.3.

2.1 Inversion Based on the Euclidean Algorithm

The inverse of a nonzero element a 2 IF2m is denoted

a�1 mod f or, simply, a�1 if the reduction polynomial f is

understood from context. Inverses can be efficiently

computed by the extended Euclidean algorithm for poly-

nomials, which uses the fact that gcdða; bÞ ¼ gcdðbþ ca; aÞ
for all binary polynomials c.

Algorithm 2.1 is a variant of the classical Euclidean

algorithm. Given invertible a, the algorithm maintains the

invariants

ag1 þ fh1 ¼ u

ag2 þ fh2 ¼ v

for some h1 and h2 not explicitly calculated. The algorithm

terminates when u ¼ 1, in which case, g1 ¼ a�1.

Algorithm 2.1 Extended Euclidean Algorithm (EEA) for
inversion in IF2m

INPUT: a 2 IF2m , a 6¼ 0.

OUTPUT: a�1 mod f .

1. u a, v f , g1 1, g2 0

2. While u 6¼ 1 do

2.1 j degðuÞ � degðvÞ.
2.2 If j < 0 then: u$ v, g1 $ g2, j �j.
2.3 u uþ zjv, g1 g1 þ zjg2

3. Return(g1).

In contrast to Algorithm 2.1 where the bits of u and v are

cleared from left to right (high degree terms to low degree

terms), the binary Euclidean algorithm (BEA) clears bits of u

and v from right to left.

Algorithm 2.2 Binary Euclidean Algorithm (BEA) for

inversion in IF2m

INPUT: a 2 IF2m , a 6¼ 0.

OUTPUT: a�1 mod f .

1. u a, v f , g1 1, g2 0.

2. While z divides u do:

2.1 u u=z.
2.2 If z divides g1 then g1 g1=z; else

g1 ðg1 þ fÞ=z.
3. If u ¼ 1 then return(g1).

4. If degðuÞ < degðvÞ then: u$ v, g1 $ g2.

5. u uþ v, g1 g1 þ g2.

6. Goto Step 2.

The degree calculations in Step 4 may be replaced by a

simpler comparison on the binary representations of the

polynomials. This differs from Algorithm 2.1, where explicit

degree calculations are required.
The almost inverse algorithm (AIA) [27] is a modification of

the binary inversion algorithm in which a polynomial g and

a positive integer k are first computed satisfying

ag � zk ðmod fÞ. A reduction is then applied to obtain

a�1 ¼ z�kgmod f . The invariants maintained are

ag1 þ fh1 ¼ zku

ag2 þ fh2 ¼ zkv

for some h1 and h2 that are not explicitly calculated.

Algorithm 2.3 Almost Inverse Algorithm (AIA) for inver-

sion in IF2m

INPUT: a 2 IF2m , a 6¼ 0.

OUTPUT: a�1 mod f .

1. u a, v f , g1 1, g2 0, k 0.

2. While z divides u do:

2.1 u u=z, g2 zg2, k kþ 1.
3. If u ¼ 1 then return(z�kg1).

4. If degðuÞ < degðvÞ then: u$ v, g1 $ g2.

5. u uþ v, g1 g1 þ g2.

6. Goto Step 2.

A reduction of the form z�kg is required in Step 3 and can

be performed as follows: Let l ¼ minfi � 1 j fi ¼ 1g, where

fðxÞ ¼ fmz
m þ � � � þ f1zþ f0. Let s be the polynomial formed

by the l rightmost bits of g. Then, sf þ g is divisible by zl and

t ¼ ðsf þ gÞ=zl has degree less than m; thus, t ¼ gx�l mod f .

1048 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 8, AUGUST 2004

This process can be repeated to finally obtain z�kgmod f . The

reduction polynomial is said to be suitable if l is above some

threshold (which may depend on the implementation, e.g.,

l � 32 is desirable with 32-bit words) since, then, less effort is

required in the reduction step.
Two strategies can be applied to enlarge the class of

“suitable” polynomials. The method of the preceding

paragraph can be extended to arbitrary l � m at relatively

low cost [12]. Let qðzÞ ¼ fl�1z
l�1 þ � � � þ f1zþ 1 and pre-

compute Q satisfying Qq � 1 ðmod zlÞ with degQ < l. If S �
sQ ðmod zlÞ with degS < l, then Sf þ g is divisible by zl. If

fðzÞ ¼ zm þ qðzÞ, then division by zl requires two l� l

polynomial multiplications. As an alternative, the reduction

in Step 3 can be replaced by pre and postalgorithm

multiplications [25]. The revised method finds c ¼ 1=a via

a0 z2mamod f , c0 zk=a0 mod f , c z2m�kc0 mod f , that

is, the revised algorithm processes z2ma rather than a, and

Step 3 is modified to find z2m�kg.
Step 2 of AIA is simpler than that in Algorithm 2.2. In

addition, the g1 and g2 appearing in these algorithms grow

more slowly in almost inverse. Thus, one can expect AIA to

outperform BEA if the reduction polynomial is suitable and

conversely. As with BEA, the explicit degree calculations

may be replaced with simpler comparisons.

2.2 Division

The binary Euclidean algorithm can be easily modified to

perform division b=a ¼ ba�1 [7], [28], [24]. In cases where

I=M is small, this could be especially significant in elliptic

curve schemes since an affine point operation could use

division rather than an inversion and multiplication.

2.2.1 Division Using BEA

To obtain b=a, Algorithm 2.2 is modified at Step 1, replacing

g1 1 with g1 b. The associated invariants are

ag1 þ fh1 ¼ ub

ag2 þ fh2 ¼ vb:

On termination with u ¼ 1, it follows that g1 ¼ ba�1. The

division algorithm is expected to have the same running

time as BEA since g1 in BEA goes to full-length in a few

iterations at Step 2.2 (i.e., the difference in initialization of g1
does not contribute significantly to the time for division

versus inversion).
If BEA is the inversion method of choice, then affine

point operations would benefit from the use of division

since the cost of a point double or addition changes from

I þ 2M to I þM. If I=M is small, then this represents a

significant improvement, e.g., if I=M is indeed 3, then the

use of a division algorithm variant of BEA provides a

20 percent reduction in the time to perform an affine point

double or addition. However, if I=M > 7, then the savings

is less than 12 percent. Note that, unless I=M is very small,

it is likely that schemes are used which reduce the number

of inversions required (e.g., halving and projective coordi-

nates) so that point multiplication involves relatively few

field inversions, diluting any savings from the use of a

division algorithm.

2.2.2 Division Using EEA

Algorithm 2.1 can be transformed to a division algorithm in
a similar fashion. However, the change in the initialization
step may have significant impact on the implementation of
a division algorithm based on EEA. There are two
performance issues: tracking of the lengths of variables
and implementing the addition to g1 at Step 2.3.

In EEA, it is relatively easy to track the length of u and v
efficiently (the lengths shrink), especially if the number of
words t representing a field element is (roughly) four or
more. In EEA, it is also possible to track the lengths of g1
and g2. However, the change in initialization for division
means that g1 goes to full-length immediately and tracking
the lengths of g1 and g2 is no longer effective.

The second performance issue concerns the addition to
g1 at Step 2.3 of EEA. An implementation of EEA may
assume that the addition may be done as ordinary
polynomial addition with no reduction, i.e., the degrees of
g1 and g2 never exceed m� 1. In adapting for division,
Step 2.3 may be less efficiently implemented since g1 is full-
length on initialization.

2.2.3 Division Using AIA

Although Algorithm 2.3 is similar to the binary Euclidean
algorithm, the ability to efficiently track the lengths of g1
and g2 (in addition to the lengths of u and v) may be an
implementation advantage of AIA over BEA. As with EEA,
this advantage is lost in a division algorithm variant of AIA.

It should be noted that efficient tracking of the lengths of
g1 and g2 (in addition to the lengths of u and v) in AIA may
involve significant code expansion (perhaps t2 fragments
rather than the t fragments in BEA). If this code expansion
cannot be tolerated (because of application constraints or
platform characteristics), then AIA may not be preferable to
the other inversion algorithms (even if the reduction
polynomial is suitable).1

2.3 Timings

Table 1 gives some comparative timings on two popular
platforms: the Intel Pentium III and Sun UltraSPARC. The
example fields are from the NIST recommendations, with
reduction polynomials fðzÞ ¼ z163 þ z7 þ z6 þ z3 þ 1 and
fðzÞ ¼ z233 þ z74 þ 1, respectively. Field multiplication
based on the comb method [17] appears to be fastest on
these platforms. A width-4 comb was used and the times
include reduction. Other than the MMX code and a one-line
assembler fragment for EEA, algorithms were coded
entirely in C.

Some table entries are as expected, e.g., the relatively
good times for almost inverse in IF2233 . Other entries
illustrate the significant differences between platforms or
between compilers on a single platform. To obtain
acceptable multiplication times with gcc on the Sun SPARC,
code was tuned to be more “gcc-friendly.” Limited tuning

FONG ET AL.: FIELD INVERSION AND POINT HALVING REVISITED 1049

1. Most of the performance of AIA can be obtained with modest code
expansion [25]. The lengths of the variables u and v decrease, while the
lengths of g1 and g2 increase. If l ¼ maxflen u; len vg, then AIA can be
expanded under the assumption that the lengths of g1 and g2 are bounded
by tþ 1� l, with a fall back generic inversion routine used in exceptional
cases. Experimentally, we observed a performance penalty of roughly
15 percent compared to the times in Table 1 for IF2233 on the SPARC.

for gcc was also performed on the inversion code.
Optimizing the inversion code is tedious, in part because
rough operation counts at this level often fail to capture
processor or compiler characteristics adequately. There are
apparent inconsistencies remaining in Table 1, but we
believe that the fastest times provide meaningful estimates
of inversion and multiplication costs on these platforms.

The timings do not make a very strong case for division
using a modification of the BEA. Unless EEA or AIA can be
converted to efficiently perform division, then it appears
that division will be fastest via inversion followed by
multiplication. Furthermore, the ratio I=M is at least 8 in
most cases and, hence, the savings from use of a division
algorithm would be less than 10 percent. With such a ratio,
elliptic curve methods will be chosen to reduce the number
of inversions, so the savings on a point multiplication kP
would be significantly less than 10 percent.

On the other hand, if affine-only arithmetic is in use in a
point multiplication method based on double-and-add, then
a fast division would be especially welcomed even if I=M is
significantly larger than 5. If BEA is the algorithm of choice,
then division has essentially the same cost as inversion.

2.3.1 Implementation Notes

In addition to the special tuning required for gcc, there were
other troublesome compiler differences and flaws. A small
code change triggered an apparent optimization flaw in the
Sun Workshop (6U2) compiler, causing shifts to be
processed as multiplication, a much slower operation on
that platform. The only workarounds were to postprocess
the assembler output or use a weaker optimization setting.

We note that the Microsoft compiler (Visual C 6) gives
times comparable to that produced by the Intel compiler (icc,
on Linux in our case). However, the insertion of short inline
assembly fragments is less effective thanwith icc or gcc since
there is only limited ability in the Microsoft product to direct
the cooperation with the surrounding C code. We also found
significant optimization problems with the Microsoft compi-
ler concerning inlining of C code, although this was not an
issue for the algorithms in this section.

Multimedia registers. The Intel Pentium family (all but
the original and the Pentium-Pro) and AMD processors
possess eight 64-bit “multimedia” registers that were
employed for the times in the column marked “mmx” [1],
[9]. Use of these capabilities for field arithmetic is discussed
in [5].

Field multiplication. The GNU C compiler (gcc) is weak
at instruction scheduling on these platforms, but can be
coerced into producing somewhat better sequences by
relatively small changes to the source. The times in the
table for multiplication with gcc on SPARC are for code that
has received such tuning.

We believe that the commonly cited ratio of I=M � 3
[27], [2], [3] is too optimistic for processors such as the
Pentium and SPARC and is due, in part, to use of a
suboptimal field multiplication.

EEA. Algorithm 2.1 requires polynomial degree calcula-
tions. A relatively fast method uses a binary search and
table lookup once the nonzero word of interest is located.
Some processors have instruction sets from which a fast “bit
scan” may be built. As an example, the Intel x86 has single
instructions (bsr and bsf) for finding the position of the most
or least significant bit in a word. A one-line assembler
fragment for bit scan was used for the Intel EEA timings,
resulting in an improvement of approximately 15 percent.
The SPARC has a Hamming weight (population) instruc-
tion which Sun suggests using for building a fast bit scan
from the right; unfortunately, our field representation
needed a bit scan from the left.

The code tracks the lengths of u and v using t fragments
of similar code, each fragment corresponding to the current
“top” of u and v. Here, t was chosen to be the number of
words required to represent field elements.

BEA. Algorithm 2.2 was implemented with a t-fragment
split to track the lengths of u and v efficiently. Rather than
the degree calculation indicated in Step 4, a simpler
comparison on the appropriate words was used.

AIA. Algorithm 2.3 allows efficient tracking of the
lengths of g1 and g2 (in addition to the lengths of u and
v). A total of t2 similar fragments of code were used, a

1050 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 8, AUGUST 2004

TABLE 1
Multiplication and Inversion Times (in � sec) for the Intel Pentium III and Sun UltraSPARC IIe

The compilers are GNU C 2.95 (gcc), Intel 6 (icc), and Sun Workshop 6U2 (cc). The 64-bit “multimedia” registers were employed for the entries
under “mmx.” Inversion to multiplication (I=M) uses the best inversion time.

significant amount of code expansion unless t is small. As
with BEA, a simple comparison replaces the degree
calculations. An optimization flaw in the Sun compiler for
64-bit code was corrected by replacing expensive multi-
plications with shifts in the compiler output.

3 POINT MULTIPLICATION USING POINT HALVING

Let E be an elliptic curve over IF2m defined by the equation
y2 þ xy ¼ x3 þ ax2 þ b, where a; b 2 IF2m , b 6¼ 0. Let P ¼
ðx; yÞ be a point on E with P 6¼ �P . Then, the (affine)
coordinates of Q ¼ 2P ¼ ðu; vÞ can be computed as follows:

� ¼ xþ y=x; ð1Þ

u ¼ �2 þ �þ a; ð2Þ

v ¼ x2 þ uð�þ 1Þ: ð3Þ

Affine point doubling requires one field multiplication and
one field division.With projective coordinates and a 2 f0; 1g,
point doubling can be done in four field multiplications.

Point halving is the following operation: Given
Q ¼ ðu; vÞ, compute P ¼ ðx; yÞ such that Q ¼ 2P . Since
halving is the reverse operation of doubling, the basic idea
for halving is to solve (2) for �, (3) for x, and, finally, (1) for
y. That is, solve �2 þ � ¼ uþ a for � and x2 ¼ vþ uð�þ 1Þ
for x. Finally, compute y ¼ �xþ x2.

Let G be a point of odd order n on E. It can be proven
that point doubling and point halving are automorphisms
of hGi. Therefore, given a point Q 2 hGi, one can always
find a unique point P 2 hGi such that Q ¼ 2P . Sections 3.1
and 3.2 describe an efficient algorithm for point halving in
hGi. In Section 3.3, point halving is used to obtain efficient
halve-and-add methods for point multiplication in crypto-
graphic schemes based on elliptic curves over binary fields.
Section 3.4 compares the point halving methods and the
traditional point doubling methods.

3.1 Point Halving

The notion of trace plays a central role in deriving an
efficient algorithm for point halving. Let Tr : IF2m ! IF2m be
defined by TrðcÞ ¼ cþ c2 þ c2

2 þ � � � þ c2
m�1

.

Lemma 3.1. Let c; d 2 IF2m .

1. TrðcÞ ¼ Trðc2Þ ¼ TrðcÞ2; in particular,

TrðcÞ 2 f0; 1g:

2. Trace is linear, i.e., Trðcþ dÞ ¼ TrðcÞ þ TrðdÞ.
3. The NIST-recommended random curves [4] over

binary fields have TrðaÞ ¼ 1.
4. If ðx; yÞ 2 hGi, then TrðxÞ ¼ TrðaÞ.

Given Q ¼ ðu; vÞ 2 hGi, point halving seeks the unique
point P ¼ ðx; yÞ 2 hGi such that Q ¼ 2P . The first step of
halving is to find � ¼ xþ y=x by solving the equation

�̂�2 þ �̂� ¼ uþ a ð4Þ

for �̂� 2 IF2m . An efficient algorithm for solving (4) is

presented in Section 3.2. Let �̂� denote the solution of (4)

obtained from this algorithm. It is easily verified that �̂� ¼ �

or �̂� ¼ �þ 1. If TrðaÞ ¼ 1, the following result [11] can be

used to identify �.

Theorem 3.2. Let P ¼ ðx; yÞ; Q ¼ ðu; vÞ 2 hGi be such that
Q ¼ 2P and denote � ¼ xþ y=x. Let �̂� be a solution to (4)
and t ¼ vþ u�̂�. Suppose that TrðaÞ ¼ 1. Then, �̂� ¼ � if and
only if TrðtÞ ¼ 0.

Proof. Recall that x2 ¼ vþ uð�þ 1Þ. By Lemma 3.1.4, we get
TrðxÞ ¼ TrðaÞ since P ¼ ðx; yÞ 2 hGi. Thus,

Trðvþ uð�þ 1ÞÞ ¼ Trðx2Þ ¼ TrðxÞ ¼ TrðaÞ ¼ 1:

Hence, if �̂� ¼ �þ 1, then TrðtÞ ¼ Trðvþ uð�þ 1ÞÞ ¼ 1 as
required. Otherwise, we must have �̂� ¼ �, which gives
TrðtÞ ¼ Trðvþ u�Þ ¼ Trðvþ uðð�þ 1Þ þ 1ÞÞ. Since the
trace is linear,

Trðvþ uðð�þ 1Þ þ 1ÞÞ ¼ Trðvþ uð�þ 1ÞÞ þ TrðuÞ
¼ 1þ TrðuÞ ¼ 0:

Hence, we conclude that �̂� ¼ � if and only if TrðtÞ ¼ 0.tu
Theorem 3.2 suggests a simple algorithm for identifying

� in the case that TrðaÞ ¼ 1.2 We can then solve x2 ¼
vþ uð�þ 1Þ for the unique root x. Section 3.2 presents
efficient algorithms for finding traces and square roots in
IF2m . Finally, if needed, y ¼ �xþ x2 may be recovered with
one field multiplication.

Let the �-representation of a point Q ¼ ðu; vÞ be ðu; �QÞ,
where �Q ¼ uþ v=u. Given the �-representation of Q as the
input to point halving, we may compute t in Theorem 3.2
without converting to affine coordinates since

t ¼ vþ u�̂� ¼ u uþ uþ v

u

� �
þ u�̂� ¼ uðuþ �Q þ �̂�Þ:

In point multiplication, repeated halvings may be per-
formed directly on the �-representation of a point, with
conversion to affine coordinates only when a point addition
is required.

Algorithm 3.3 Point halving

INPUT: �-representation ðu; �QÞ or affine representation

ðu; vÞ of Q 2 hGi.
OUTPUT: �-representation ðx; �P Þ of P ¼ ðx; yÞ 2 hGi, where
�P ¼ xþ y=x and Q ¼ 2P .

1. Find a solution �̂� of �̂�2 þ �̂� ¼ uþ a.

2. If the input is in �-representation, then compute

t ¼ uðuþ �Q þ �̂�Þ;
else, compute t ¼ vþ u�̂�.

3. If TrðtÞ ¼ 0, then �P �̂�, x
ffiffiffiffiffiffiffiffiffiffiffi
tþ u
p

;

else �P �̂�þ 1, x
ffiffi
t
p

.

4. Return ðx; �P Þ.

3.2 Performing Point Halving Efficiently

Point halving requires a field multiplication and three main
steps: Computing the trace of t, solving the quadratic
equation (4), and computing a square root. In a normal
basis, field elements are represented in terms of a basis of

FONG ET AL.: FIELD INVERSION AND POINT HALVING REVISITED 1051

2. The algorithm can be modified for binary curves with TrðaÞ ¼ 0;
however, it is comparatively complicated since Trðvþ u�Þ and Trðvþ uð�þ
1ÞÞ may not necessarily be distinct. See [11], [23].

the form f�; �2; . . . ; �2m�1g. The trace of an element c ¼P
ci�

2i ¼ ðcm�1; � � � ; c0Þ is given by TrðcÞ ¼
P

ci. The square

root computation is a right rotation:
ffiffiffi
c
p
¼ ðc0; cm�1; . . . ; c1Þ.

Squaring is a left rotation and x2 þ x ¼ c can be solved
bitwise. These operations are expected to be inexpensive

relative to field multiplication. However, field multiplica-
tion in software for normal basis representations is very

slow in comparison to multiplication with a polynomial
basis [21], [20]. Conversion between polynomial and normal
bases at each halving is likely too slow to give a competitive

method, even if significant storage is used [10]. For these
reasons, we restrict our discussion to computations in a

polynomial basis representation.

3.2.1 Computing the Trace

Let c ¼
Pm�1

i¼0 ciz
i 2 IF2m , with ci 2 f0; 1g, represented as the

vector c ¼ ðcm�1; . . . ; c1; c0Þ. A primitive method for com-

puting TrðcÞ uses the definition of trace, requiring m� 1

field squarings and m� 1 field additions. A much more
efficient method makes use of the property that the trace is

linear: TrðcÞ ¼ Trð
Pm�1

i¼0 ciz
iÞ ¼

Pm�1
i¼0 ciTrðziÞ. The values

TrðziÞ may be precomputed, allowing the trace of an

element to be found efficiently, especially if TrðziÞ ¼ 0 for
most i.

Example 3.4. Consider IF2163 with reduction polynomial

fðzÞ ¼ z163 þ z7 þ z6 þ z3 þ 1. A routine calculation
shows that TrðziÞ ¼ 1 if and only if i 2 f0; 157g. As

examples, Trðz160 þ z46Þ ¼ 0, Trðz157 þ z46Þ ¼ 1, and
Trðz157 þ z46 þ 1Þ ¼ 0. For IF2233 with reduction polyno-
mial fðzÞ ¼ z233 þ z74 þ 1, TrðziÞ ¼ 1 if and only if

i 2 f0; 159g.

3.2.2 Solving the Quadratic Equation

The first step of point halving seeks a solution x of a
quadratic equation of the form x2 þ x ¼ c over IF2m . The

performance of this step is crucial in point halving.

Lemma 3.5. Assume m is odd and let the half-trace H : IF2m !
IF2m be defined by

HðcÞ ¼
Xðm�1Þ=2
i¼0

c2
2i

:

1. Hðcþ dÞ ¼ HðcÞ þHðdÞ for all c; d 2 IF½2m�.
2. HðcÞ is a solution of the equation x2 þ x ¼ cþ TrðcÞ.
3. HðcÞ ¼ Hðc2Þ þ cþ TrðcÞ for all c 2 IF2m .

Let c ¼
Pm�1

i¼0 ciz
i 2 IF2m with TrðcÞ ¼ 0; in particular,

HðcÞ is a solution of x2 þ x ¼ c. A simple method for

finding HðcÞ directly from the definition requires m� 1

squarings and ðm� 1Þ=2 additions. If storage for fHðziÞ :
0 � i < mg is available, then Lemma 3.5.1 may be applied to
obtain

HðcÞ ¼ H
Xm�1
i¼0

ciz
i

 !
¼
Xm�1
i¼0

ciHðziÞ:

However, this requires storage for m field elements and the
associated method requires an average of m=2 field

additions.

Lemma 3.5 can be used to significantly reduce the
storage required as well as the time needed to solve the
quadratic equation. The basic strategy is to write
HðcÞ ¼ Hðc0Þ þ s, where c0 has fewer nonzero coefficients
than c. For even i, note that HðziÞ ¼ Hðzi=2Þ þ zi=2 þ TrðziÞ.
Algorithm 3.6 is based on this observation, eliminating
storage ofHðziÞ for all even i. Precomputation builds a table
of ðm� 1Þ=2 field elements HðziÞ for odd i and the
algorithm is expected to have approximately m=4 field
additions at Step 4. The terms involving TrðziÞ and Hð1Þ
have been discarded since it suffices to produce a solution
s 2 fHðcÞ; HðcÞ þ 1g of x2 þ x ¼ c.

Algorithm 3.6 Solve x2 þ x ¼ c (basic version)
INPUT: c ¼

Pm�1
i¼0 ciz

i 2 IF2m with TrðcÞ ¼ 0.

OUTPUT: A solution s of x2 þ x ¼ c.

1. Precompute HðziÞ for odd i, 1 � i � m� 2.

2. s 0.

3. For i from ðm� 1Þ=2 downto 1 do

3.1 If c2i ¼ 1 then do: c cþ zi, s sþ zi.

4. s sþ
Pðm�1Þ=2
i¼1

c2i�1Hðz2i�1Þ.

5. Return(s).

Further improvements are possible by use of Lemma 3.5
together with the reduction polynomial [11, Appendix B].
Let i be odd and define j and s by m � 2ji ¼ mþ s < 2m.
The basic idea is to apply Lemma 3.5.3 j times, obtaining

HðziÞ ¼ Hðz2jiÞ þ z2
j�1i þ � � � þ z4i þ z2i þ zi þ jTrðziÞ: ð5Þ

Let fðzÞ ¼ zm þ rðzÞ, where rðzÞ ¼ zb‘ þ � � � þ zb1 þ 1 and
0 < b1 < � � � < b‘ < m. Then,

Hðz2jiÞ ¼ HðzsrðzÞÞ
¼ Hðzsþb‘Þ þHðzsþb‘�1Þ þ � � � þHðzsþb1Þ þHðzsÞ:

Thus, storage for HðziÞ may be exchanged for storage of
HðzsþeÞ for e 2 f0; b1; . . . ; b‘g (some of which may be further
reduced). The amount of storage reduction is limited by
dependencies among elements HðziÞ.

If deg r < m=2, the strategy can be applied in an especially
straightforward fashion to eliminate some of the storage for
HðziÞ in Algorithm 3.6. Form=2 < i < m� deg r,

HðziÞ ¼ Hðz2iÞ þ zi þ TrðziÞ
¼ HðrðzÞz2i�mÞ þ zi þ TrðziÞ
¼ Hðz2i�mþb‘ þ � � � þ z2i�mþb1 þ z2i�mÞ þ zi þ TrðziÞ:

Since 2i�mþ deg r < i, the reduction may be applied to
eliminate storage of HðziÞ for odd i, m=2 < i < m� deg r. If
deg r is small, Algorithm 3.7 requires approximately m=4
elements of storage.

Algorithm 3.7 Solve x2 þ x ¼ c

INPUT: c ¼
Pm�1

i¼0 ciz
i 2 IF2m with TrðcÞ ¼ 0 and reduction

polynomial fðzÞ ¼ zm þ rðzÞ.
OUTPUT: A solution s of x2 þ x ¼ c.

1. Precompute HðziÞ for i 2 I0 [I1, where

I0 ¼ ½1; ðm� 1Þ=2� n 2ZZ and

I1 ¼ ½m� deg r;m� 2� n 2ZZ.

1052 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 8, AUGUST 2004

2. s 0.
3. For each odd i 2 ððm� 1Þ=2;m� deg rÞ, processed in

decreasing order, do:

3.1 If ci ¼ 1, then do: c cþ z2i�mþb‘ þ � � � þ z2i�m,

s sþ zi.

4. For i from ðm� 1Þ=2 downto 1 do:

4.1 If c2i ¼ 1, then do: c cþ zi, s sþ zi.

5. s sþ
P

i2I0[I1
ciHðziÞ.

6. Return(s).

The technique may also reduce the time required for
solving the quadratic equation since the cost of reducing
each HðziÞ may be less than the cost of adding a
precomputed value of HðziÞ to the accumulator. Elimina-
tion of the even terms (Step 4) can be implemented
efficiently. Processing odd terms (as in Step 3) is more
involved, but will be less expensive than a field addition if
only a few words must be updated.

Example 3.8. Consider IF2163 with reduction polynomial
fðzÞ ¼ z163 þ z7 þ z6 þ z3 þ 1. Step 3 of Algorithm 3.7
begins with i ¼ 155. By Lemma 3.5,

Hðz155Þ ¼ Hðz310Þ þ z155 þ Trðz155Þ
¼ Hðz147z163Þ þ z155

¼ Hðz147ðz7 þ z6 þ z3 þ 1ÞÞ þ z155:

If c155 ¼ 1, then z154 þ z153 þ z150 þ z147 is added to c and
z155 is added to s. In this fashion, storage for HðziÞ is
eliminated for i 2 f83; 85; � � � ; 155g, the odd integers in
ððm� 1Þ=2;m� deg rÞ.

Algorithm 3.7 uses 44 field elements of precomputa-
tion. While this is roughly half that required by the basic
algorithm, it is not minimal. For example, storage for
Hðz51Þ may be eliminated since

Hðz51Þ ¼ Hðz102Þ þ z51 þ Trðz51Þ
¼ Hðz204Þ þ z102 þ z51 þ Trðz102Þ þ Trðz51Þ
¼ Hðz163z41Þ þ z102 þ z51

¼ Hðz48 þ z47 þ z44 þ z41Þ þ z102 þ z51;

which corresponds to (5) with j ¼ 2. The same technique
eliminates storage for HðziÞ, i 2 f51; 49; . . . ; 41g. Simi-
larly, if (5) is applied with i ¼ 21 and j ¼ 3, then

Hðz21Þ ¼ Hðz12 þ z11 þ z8 þ z5Þ þ z84 þ z42 þ z21:

Note that the odd exponents 11 and 5 are less than 21
and, hence, storage for Hðz21Þ may be eliminated.

In summary, the use of (5) with j 2 f1; 2; 3g eliminates
storage for odd values of i 2 f21; 41; . . . ; 51; 83; . . . ; 155g
and a corresponding algorithm for solving the quadratic
equation requires 37 elements of precomputation.
Further reductions are possible, but there are some
complications since the formula for HðziÞ involves HðzjÞ
for j > i. As an example,

Hðz23Þ ¼ Hðz28 þ z27 þ z24 þ z21Þ þ z92 þ z46 þ z23

and storage for Hðz23Þ may be exchanged for storage on
Hðz27Þ. Our implementation uses these strategies to

reduce the precomputation to 30 field elements, sig-

nificantly less than the 44 used in Algorithm 3.7. In fact,

use of

zn ¼ z157þn þ znþ1 þ zn�3 þ zn�6

together with the previous techniques reduces the

storage to 21 field elements HðziÞ for

i 2f157; 73; 69; 65; 61; 57; 53; 39; 37; 33; 29; 27;
17; 15; 13; 11; 9; 7; 5; 3; 1g:

However, this final reduction comes at a somewhat

higher cost in required code compared with the 30-

element version.

Experimentally, the algorithm for solving the quad-

ratic equation (with 21 or 30 elements of precomputa-

tion) requires approximately 2=3 the time of a field

multiplication. Special care should be given to branch

misprediction factors as this algorithm performs many

bit tests.

Example 3.9. Consider IF2233 with reduction trinomial

fðzÞ ¼ z233 þ rðzÞ ¼ z233 þ z74 þ 1. In comparison with

the reduction polynomial for IF2163 in the preceding

example, deg r is relatively large. Algorithm 3.7 requires

95 field elements of precomputation, significantly more

than the approximately m=4 � 59 elements required by

the algorithm when deg r is small.

The amount of precomputation can be reduced to the

43 elements HðziÞ for i 2 f1; 3; � � � ; 79; 155; 157; 159g by

direct application of the relation zn ¼ znþ159 þ zn�74

together with Lemma 3.5.3. Using a slightly different

order of computation, the entries for i 2 f75; 77; 155; 157g
are eliminated (but at somewhat higher cost) and the

corresponding algorithm uses 39 elements of precompu-

tation. Experimentally, the algorithm solves the quad-

ratic equation in approximately half the time of a field

multiplication.

3.2.3 Computing Square Roots in IF2m

The basic method for computing
ffiffiffi
c
p

, c 2 IF2m , is based on

the little theorem of Fermat: c2
m ¼ c. Then,

ffiffiffi
c
p

can be

computed as
ffiffiffi
c
p ¼ c2

m�1
, requiring m� 1 squarings. A more

efficient method can be obtained from the observation thatffiffiffi
c
p

can be expressed in terms of the square root of the

element z. Let c ¼
Pm�1

i¼0 ciz
i 2 IF2m , ci 2 f0; 1g. Since squar-

ing is a linear operation in IF2m , the square root of c can be

written as

ffiffiffi
c
p
¼

Xm�1
i¼0

ciz
i

 !2m�1

¼
Xm�1
i¼0

ciðz2
m�1Þi:

Splitting c into even and odd powers, we have

FONG ET AL.: FIELD INVERSION AND POINT HALVING REVISITED 1053

ffiffiffi
c
p
¼

Xðm�1Þ=2
i¼0

c2iðz2
m�1Þ2i þ

Xðm�3Þ=2
i¼0

c2iþ1ðz2
m�1Þ2iþ1

¼
Xðm�1Þ=2
i¼0

c2iz
i þ

Xðm�3Þ=2
i¼0

c2iþ1z
2m�1zi

¼
X
i even

ciz
i
2 þ

ffiffiffi
z
p X

i odd

ciz
i�1
2 :

This reveals an efficient method for computing
ffiffiffi
c
p

: Extract
the two half-length vectors ceven ¼ ðcm�1; . . . ; c4; c2; c0Þ and
codd ¼ ðcm�2; . . . ; c5; c3; c1Þ from c (assuming m is odd),
perform a field multiplication of codd of length bm=2c with
the precomputed value

ffiffiffi
z
p

, and, finally, add this result with
ceven. The computation is expected to require approximately
half the time of a field multiplication.

An Improved Method for Trinomials. In the case that
the reduction polynomial f is a trinomial, we can further
speed the computation of

ffiffiffi
c
p

by the observation that an
efficient formula for

ffiffiffi
z
p

can be derived directly from f . Let
fðzÞ ¼ zm þ zk þ 1 be an irreducible trinomial of degree m,
where m > 2 is prime.

Consider the case that k is odd. Note that
1 � zm þ zk ðmod fðzÞÞ. Then, multiplying by z and taking
the square root, we get

ffiffiffi
z
p
� z

mþ1
2 þ z

kþ1
2 ðmod fðzÞÞ:

Thus, the product
ffiffiffi
z
p
� codd requires two shift-left operations

and one modular reduction.
Now, suppose k i s even . Observe that

zm � zk þ 1 ðmod fðzÞÞ. Then, dividing by zm�1 and taking
the square root, we get

ffiffiffi
z
p
� z�

m�1
2 ðzk

2 þ 1Þ ðmod fðzÞÞ:

In order to compute z�s modulo fðzÞ, where s ¼ m�1
2 , one

can use the congruences z�t � zk�t þ zm�t ðmod fðzÞÞ for
1 � t � k for writing z�s as a sum of few positive powers of
z. Hence, the product

ffiffiffi
z
p
� codd can be performed with a few

shift-left operations and one modular reduction.

Example 3.10. The trinomial for the NIST-recommended
finite field IF2409 is fðzÞ ¼ z409 þ z87 þ 1. Then, the new
formula for computing the square root of c 2 IF2409 isffiffiffi

c
p
¼ ceven þ z205 � codd þ z44 � codd mod fðzÞ:

Example 3.11. The trinomial for the NIST-recommended
finite field IF2233 is fðzÞ ¼ z233 þ z74 þ 1. Since k ¼ 74 is
even, we have

ffiffiffi
z
p
¼ z�116 � ðz37 þ 1Þmod fðzÞ. Notice that

z�74 � 1þ z159 ðmod fðzÞÞ and

z�42 � z32 þ z191 ðmod fðzÞÞ:

It follows that z�116 � z32 þ z117 þ z191 ðmod fðzÞÞ. Hence,
the new method for computing the square root of c 2
IF2233 isffiffiffi

c
p
¼ ceven þ ðz32 þ z117 þ z191Þðz37 þ 1Þ � codd mod fðzÞ:

Compared to the standard method of computing square
roots, the proposed technique eliminates the need for
storage and replaces the required field multiplication by a
faster operation. Experimentally, finding a root in

Example 3.11 requires roughly 1=8 the time of a field
multiplication.

3.3 Point Multiplication

Let P ¼ ðx; yÞ 2 hGi and k be an integer with 0 � k < n.
Furthermore, let O denote the point at infinity and
t ¼ blog2 nc þ 1. Point multiplication kP dominates the
execution time of elliptic curve cryptographic schemes.
The basic technique for point multiplication is the double-
and-add method, also known as the binary method, which is
the additive version of the repeated-square-and-multiply
method for exponentiation. The expected number of ones in
the binary representation of k is t=2, whence the expected
running time of this method is approximately ðt=2ÞAþ tD,
where A denotes a point addition and D denotes a point
doubling.

Point subtraction on an elliptic curve is as efficient as
point addition, motivating use of the nonadjacent form of k,
NAFðkÞ ¼

Pl�1
i¼0 ki2

i with ki 2 f0;	1g, which has the prop-
erty that no two consecutive coefficients ki are nonzero [29].
The width-w NAF is a generalization, where each nonzero
coefficient ki is odd, jkij < 2w�1, and at most one of any
consecutive w digits is nonzero. NAFs are used to reduce
the number of point additions required in finding kP and
have the following properties:

1. k has a unique width-w NAF, denoted NAFwðkÞ.
2. NAF2ðkÞ ¼ NAFðkÞ.
3. The length of NAFwðkÞ is at most one more than the

length of the binary representation of k.
4. The average density of nonzero digits among all

width-wNAFs of length l is approximately 1=ðwþ 1Þ.
Algorithm 3.12 modifies the binary method by using

NAFwðkÞ instead of the binary representation of k. The
expected running time is approximately

ððw > 2Þ �Dþ ð2w�2 � 1ÞAÞ þ ðt=ðwþ 1ÞAþ tDÞ;

where ðw > 2Þ is understood to be 1 if w > 2 and 0

otherwise. If P is known a priori, then the 2w�2 points
calculated in Step 1 of Algorithm 3.12 can be precomputed
statically and the expected running time of this algorithm
will then be approximately t=ðwþ 1ÞAþ tD. If affine
coordinates are used, then both point addition and point
doubling cost M þ V , where M denotes a field multi-
plication and V denotes a field division; for w ¼ 2, this
translates to a field operation count of ð4=3ÞtM þ ð4=3ÞtV .
The accumulator Q may be stored in projective coordinates,
in which case a point addition costs 8M and a point
doubling costs 4M. The field operation count in the w ¼ 2

case is then ð20=3ÞtM þ ð2M þ IÞ.

Algorithm 3.12 Window NAF method for point multi-

plication

INPUT: Window width w, NAFwðkÞ ¼
Pl�1

i¼0 ki2
i, P 2 hGi.

OUTPUT: kP .
1. Compute Pi ¼ iP , for i 2 f1; 3; 5; . . . ; 2w�1 � 1g.
2. Q O.
3. For i from l� 1 downto 0 do

3.1 Q 2Q.

3.2 If ki > 0, then Q Qþ Pki

1054 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 8, AUGUST 2004

3.3 If ki < 0, then Q Q� P�ki .
4. ReturnðQÞ.
The halve-and-add method for point multiplication pro-

posed by Knudsen and Schroeppel replaces almost all point
doublings in double-and-add methods with point halvings.
However, it may be necessary (depending on the applica-
tion) to convert the representation of k.

Lemma 3.13. Let
Pt

i¼0 k
0
i2

i be the w-NAF representation of
2tkmod n. Then,

k �
Xt
i¼0

k0t�i
2i
ðmod nÞ:

Proof. We have 2tk �
Pt

i¼0 k
0
i2

i ðmod nÞ. Since n is odd, we
can divide the congruence by 2t to obtain

k �
Xt
i¼0

k0i
2t�i
�
Xt
i¼0

k0t�i
2i
ðmod nÞ:

ut

Algorithm3.14presents a right-to-left version of the halve-
and-add method with the input 2tkmod n in w-NAF
representation. Point halving occurs on the input P rather
than on accumulators. The expected running time is
approximately ðstep 3 costÞ þ ðt=ðwþ 1Þ � 2w�2ÞA0 þ tH,
whereH denotes a point halving and A0 is the cost of a point
addition when one of the inputs is in �-representation. If
projective coordinates are used for Qi, then the additions in
Step 2 are mixed-coordinate. Step 3 may be performed by
conversion of Qi to affine (with cost I þ ð5 � 2w�2 � 3ÞM if
inverses are obtained by a simultaneous method) and then
the sum is obtained by interleaving with appropriate
signed-digit representations of the odd multipliers i. The
cost for 2 � w � 5 is approximately w� 2 point doublings
and 0, 2, 6, or 16 point additions, respectively.3

Algorithm 3.14 Halve-and-add w-NAF (right-to-left)

method for point multiplication

INPUT: Window width w, NAFwð2tkmod nÞ ¼
Pt

i¼0 k
0
i2

i,

P 2 hGi.
OUTPUT: kP . (Note: k ¼ k00=2

t þ � � � þ k0t�1=2þ k0t mod n.)

1. Qi O, i 2 I ¼ f1; 3; . . . ; 2w�1 � 1g.
2. For i from t downto 0 do:

2.1 If k0i > 0, then Qk0i
 Qk0i

þ P .

2.2 If k0i < 0 then Q�k0i Q�k0i � P .

2.3 P P=2.

3. Q
P

i2I iQi.

4. Return(Q).

Consider the case w ¼ 2. The expected running time of
Algorithm 3.14 is then approximately ð1=3ÞtA0 þ tH. If
affine coordinates are used, then a point halving costs
approximately 2M, while a point addition costs 2M þ V
since the �-representation of P must be converted to affine
with one field multiplication. It follows that the field
operation count with affine coordinates is approximately

ð8=3ÞtM þ ð1=3ÞtV . However, if Q is stored in projective
coordinates, then a point addition requires 9M. The field
operation count of a mixed-coordinate Algorithm 3.14 with
w ¼ 2 is then approximately 5tM þ ð2M þ IÞ.

Algorithm 3.15 is a left-to-right method. Point halving
occurs on the accumulator Q, whence projective coordinates
cannot be used. The expected running time is approxi-
mately ðDþ ð2w�2 � 1ÞAÞ þ ðt=ðwþ 1ÞA0 þ tHÞ.

Algorithm 3.15 Halve-and-add w-NAF (left-to-right)
method for point multiplication

INPUT: Window width w, NAFwð2tkmod nÞ ¼
Pt

i¼0 k
0
i2

i,

P 2 hGi.
OUTPUT: kP . (Note: k ¼ k00=2

t þ � � � þ k0t�1=2þ k0t mod n.)

1. Compute Pi ¼ iP , for i 2 f1; 3; 5; . . . ; 2w�1 � 1g.
2. Q O.
3. For i from 0 to t do

3.1 Q Q=2.
3.2 If k0i > 0 then Q Qþ Pk0i

.

3.3 If k0i < 0, then Q Q� P�k0i .

4. ReturnðQÞ.

3.4 Analysis

In comparison to methods based on doubling, point halving
looks best when I=M is small and kP is to be computed for
P not known in advance. In applications, the operations kP
and kP þ lQ with P known in advance are also of interest
and this section provides comparative results. The concrete
examples used are the NIST random curves over IF2163 and
IF2233 (known as B-163 and B-233, respectively), although the
general conclusions apply more widely.

Example 3.16. Table 2 provides an operation count
comparison between double-and-add and halve-and-
add methods for the NIST random curve over IF2163 .
For the field operations, the assumption is that I=M ¼ 8
and that a field division has cost I þM.

The basic NAF halving method is expected to
outperform the w-NAF doubling methods. However,
the halving method has 46 field elements of precomputa-
tion. In contrast, Algorithm 3.12 with w ¼ 4 (which runs
in approximately the same time as with w ¼ 5) requires
only six field elements of extra storage.

The left-to-right w-NAF halving method requires that
the accumulator be in affine coordinates and point
additions have cost 2M þ V (since a conversion from
�-representation is required). For sufficiently large I=M,
the right-to-left algorithm will be preferred; in the
example, Algorithm 3.14 with w ¼ 2 will outperform
Algorithm 3.15 at roughly I=M ¼ 11. Table 3 gives
timings on an Intel Pentium III. Only general-purpose
registers are used and all code is in C except for a one-
line assembler fragment for computing polynomial
degree during inversion. The observed inversion to
multiplication ratio is I=M � 8. On this platform, field
division is fastest by performing an inversion and
multiplication, i.e., V ¼ I þM.

The timing for solving x2 þ x ¼ c in IF2163 is with a
routine that uses an 8-word table to assist in processing zi

for odd i, reducing the number of conditional expressions.
(Branchmisprediction penalties are a significant factor in

FONG ET AL.: FIELD INVERSION AND POINT HALVING REVISITED 1055

3. Knuth [13, Exercise 4.6.3-9] suggests calculating Qi Qi þQiþ2 for i

from 2w�1�3 to 1 and then the result is given by Q1 þ 2
P

i2Inf1gQi. The cost

is comparable in the projective point case. See also [18], [19].

the implementation.) On some platforms, incremental
improvements in halving may be obtained by using a
larger table of precomputation in the square root
routine. Improvements in the routine to solve x2 þ x ¼
c were observed with limited use of assembly-language
coding (essentially to improve on register allocation).
For point multiplication kP where P is not known in

advance, the example case in Table 2 predicts that use of
halving gives roughly 25 percent improvement over a
similar method based on doubling, when I=M ¼ 8. (On the
test platform in Table 3, the observed improvement was 29
percent for B-163.) The improvement is less than the
39 percent estimate in [11], where the comparison was
based on the use of methods similar to Algorithm 3.12 and
Algorithm 3.14 with w ¼ 2 and I=M ¼ 3. The small ratio
favors halving—if Table 2 is modified to use I=M ¼ 3, then
the predicted improvement using Algorithm 3.14 over
Algorithm 3.12 with w ¼ 2 matches that in [11]. The

trinomial in IF2233 also favors halving, in part because the
cost of finding a square root is significantly less than the
estimate used to obtain Table 2.

The comparison is unbalanced in terms of storage
required since halving was permitted 39-46 field elements
of precomputation for solving x2 þ x ¼ c and finding
square roots. The amount of storage in the square root
routine (for IF2163) can be reduced at tolerable cost to
halving; significant storage (e.g., 30 elements) for solving
x2 þ x ¼ c appears to be essential. In addition to the
routines specific to halving, most of the support for
methods based on doubling will be required, giving some
code expansion.

3.4.1 Random Curves versus Koblitz Curves

The �-adic methods on Koblitz curves [29] (curves defined
over IF2) share strategy with halving in the sense that point
doubling is replaced by a less-expensive operation. In the
Koblitz curve case, the replacement is the Frobenius map
� : ðx; yÞ 7! ðx2; y2Þ, an inexpensive operation compared to
field multiplication. Point multiplication on Koblitz curves
using �-adic methods will be faster than those based on
halving, with approximate cost for kP given by

2w�2 � 1þ t

wþ 1

� �
Aþ t � ðcost of �Þ

when using a width-w �-adic NAF in a scheme similar to
that described by Algorithm 3.12. To compare with Table 2,
assume that mixed coordinates are used, w ¼ 5, and that
field squaring has approximate cost M=6. In this case, the
operation count is approximately 379M, significantly less
than the 687M required by the halving method.

3.4.2 Known Point versus Unknown Point

In the case that P is known in advance (e.g., signature
generation in ECDSA) and storage is available for pre-
computation, halving loses some of its performance
advantages. For our case, and for relatively modest
amounts of storage, the single-table comb method [8,
Algorithm 17] is among the fastest and can be used to
obtain meaningful operation count comparisons. The multi-
plier k is split into w � 2 rows and then columns are

1056 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 8, AUGUST 2004

TABLE 2
Point and Field Operation Counts for Point Multiplication for the NIST Random Curve over IF2163

Halving uses 30 field elements of precomputation in solving x2 þ x ¼ c and 16 elements for square root. A0 ¼ AþM, the cost of a point addition
when one of the inputs is in �-representation. Field operation counts assume that a division V costs I þM.

TABLE 3
Curve and Field Timings (in � sec) for the NIST Curves B-163

and B-223 on an 800 MHz Intel Pentium III,
Using General-Purpose Registers Only

Multiple random elements are used to obtain realistic branch-mispredic-
tion penalties in routines such as solve. The Intel compiler version 6 was
used on Linux 2.2.

processed left to right; a total of 2w � 1 points of
precomputation are required. The operation counts for kP

using methods based on doubling and halving are
approximately

t

w
Dþ 2w � 1

2w
A

� �
and

t

w
H þ 2w � 1

2w
A0

� �
;

respectively. In contrast to the random point case, roughly
half the operations are point additions. Note that the
method based on doubling may use mixed-coordinate
arithmetic (in which case, D ¼ 4M, A ¼ 8M, and there is
a final conversion to affine), while the method based on
halving must work in affine coordinates (with H ¼ 2M and
A0 ¼ V þ 2M). If V ¼ I þM, then values of t and w of
practical interest give a threshold I=M between 7 and 8,
above which the method based on doubling is expected to
be superior (e.g., for w ¼ 4 and t ¼ 163, the threshold is
roughly 7:4).

3.4.3 Simultaneous Multiple Point Multiplication

In ECDSA signature verification, the computationally
expensive step is a calculation kP þ lQ where only P is
known in advance. The times in Table 3 for kP þ lQ use an
interleaving method [6], [18] with width-w NAFs. Given
widths w1 and w2, the points iP for odd i < 2w1�1 and iQ for
odd i < 2w2�1 are computed; since P is known in advance,
the precomputation involving P may be stored for repeated
use. The expansions NAFw1

ðkÞ and NAFw2
ðlÞ are processed

jointly, left to right, with a single double or halving of the
accumulator at each stage. The expected operation count for
the method based on doubling is approximately

½ðw2 > 2Þ �Dþ ð2w2�2 � 1ÞA�

þ t Dþ 1

w1 þ 1
þ 1

w2 þ 1

� �
A

� �
;

where the precomputation involving P is not included. (The
expected count for themethodusinghalving canbeestimated
by a similar formula; however, a more precise estimate must
distinguish the case where consecutive additions occur since
the cost is A0 þ V þM rather than 2A0.)

In the example case presented in Table 3, the interleaving
method for kP þ lQ with halving is superior to the method
based on doubling, although the difference is less pro-
nounced than in the case of a random point multiplication
kP due to the larger number of point additions relative to
halvings. Note that the interleaving method cannot be
efficiently converted to a right-to-left algorithm (where
w1 ¼ w2 ¼ 2) since the halving or doubling operation would
be required on two points at each step. For sufficiently large
I=M, the method based on doubling will be superior; in the
example, this occurs at roughly I=M ¼ 11:7.

3.4.4 Constrained Environments

For workstations (e.g., the example platforms based on
the SPARC and Pentium), the memory consumption of
the algorithms and supporting routines described in this
paper is relatively modest. Exceeding processor cache size
may be a serious concern in some routines, but the
memory consumed by a few dozen field elements may be

inconsequential. The analysis is more complicated if there
are significant memory constraints.

Point multiplication methods based on halving require
most of the support used in methods based on doubling
and there are also the routines for solving x2 þ x ¼ c and
finding square roots. It appears that a significant number of
field elements of precomputation (e.g., 21-30 for IF2163) are
necessary for halving to be efficient. In comparison, the
method of Montgomery point multiplication [16] can be
coded compactly, requiring storage for only a few tempor-
ary field elements, and has running time approximately
6tM (which is competitive with Algorithm 3.12 with
optimal w).

For IF2163 , the field-dependent precomputation specific to
halving includes 30 field elements for solving x2 þ x ¼ c,
16 elements for square root, and 8 words to reduce the
number of conditionals in solving x2 þ x ¼ c; there is also a
256-byte table supporting extraction of even and odd bits of
a word. For a fixed field, these tables are static. If dynamic
storage is the principal constraint and the platform provides
(fast) access to a sufficient amount of static data, then
methods based on halving use roughly the same amount of
the scarce resource as methods based on doubling.

Constraints on code and data size for field routines are
likely to affect the inversion to multiplication ratio.
(Squaring would also be affected if the static 8-to-16
expansion table of size 512 bytes must be shortened.) The
scenario of interest here is where static storage is relatively
abundant, but dynamic memory is scarce. If the 15 elements
of data-dependent precomputation in the width-4 comb
method must be reduced, then a reasonable choice is a
right-to-left comb, requiring only a single field element (and
some temporary storage comparable to that in the w ¼ 4
comb), with performance degradation by a factor between 2
and 3. The penalty for inversion in the case that code size is
limited is more difficult to estimate. (On the Pentium, for
example, the Euclidean Algorithm 2.1 with limited code
expansion incurs only a small penalty relative to the times
in Table 1.) Constraints which give a smaller I=M will favor
affine coordinates and halving methods.

In summary, methods based on halving are likely to
retain their advantages in the constrained case over
methods based on doubling, under the assumption that a
threshold amount of static storage is available for solving
x2 þ x ¼ c. The advantages would, in fact, extend to the
known-point case if constraints limit the number of points
of precomputation. However, if processor speed is also
limited, then there is a strong incentive to use Koblitz
curves, provided that the cost of support for �-adic NAFs is
not prohibitive.

4 CONCLUSIONS

Point multiplication methods based on halving are straight-
forward to implement, although some extra static storage
(per field) is required over methods based on doubling. The
performance advantage of halving methods is clearest in
the case of point multiplication kP , where P is not known in
advance, and smaller inversion to multiplication ratios
generally favor halving. Algorithm 3.14 partially addresses
the challenge presented in Knudsen [11] to derive “an

FONG ET AL.: FIELD INVERSION AND POINT HALVING REVISITED 1057

efficient halving algorithm for projective coordinates.”
While the algorithm does not provide halving on a
projective point, it does illustrate an efficient windowing
method with halving and projective coordinates, especially
applicable in the case of larger I=M.

The analysis in [11] gives halving methods a 39 percent
advantage for the unknown point case, under the assump-
tion that I=M � 3. The results in Section 2 suggest that this
ratio is too optimistic on common SPARC and Pentium
platforms, where the fastest times give I=M > 8. The larger
ratio reduces the advantage to approximately 25 percent in
the unknown-point case under a similar analysis; if P is
known in advance and storage for a modest amount of
precomputation is available, then methods based on
halving are inferior. For kP þ lQ, where only P is known
in advance, the differences between methods based on
halving and methods based on doubling are smaller, with
halving methods faster for ratios I=M commonly reported.

Our analysis using windowing methods estimates that
point multiplication with halving is about 29 percent faster
than doubling-based methods, under the assumptions that
a field division costs roughly the same as inversion
followed by multiplication, I � 8M, and H � 2M. In our
experiments on an Intel Pentium III, we obtained H � 2:3M
for B-163 and H � 1:7M for B-233 and the corresponding
observed improvements in point multiplication times were
29 percent and 36 percent, respectively. For simultaneous
point multiplication under similar assumptions, the analy-
sis gives halving-based methods a 15 percent edge over
those based on doubling. Experimentally, we observed
improvements of 19 percent and 24 percent for B-163 and
B-233, respectively.

Our work has focused on methods using relatively
modest amounts of precomputation. However, the routines
for solving quadratic equations benefit from per-field
precomputation and are fundamental to the performance
of halving-based methods. A practical comparison under
more generous memory ceilings would be of interest.

Finally, it should be noted that methods based on
halving will be significantly slower than �-adic methods
for Koblitz curves. However, the halving methods apply to
all curves and finding a �-adic NAF for a given k involves
some extra code [29].

APPENDIX

In the projective coordinates of López-Dahab [15], the
projective point ðX : Y : ZÞ, Z 6¼ 0, corresponds to the affine
point ðX=Z; Y =Z2Þ. The projective form of the elliptic curve
equation y2 þ xy ¼ x3 þ ax2 þ b is

Y 2 þXYZ ¼ X3Z þ aX2Z2 þ bZ4:

The point at infinity corresponds to ð1 : 0 : 0Þ, while the
negative of ðX : Y : ZÞ is ðX : X þ Y : ZÞ. The double ðX3 :
Y3 : Z3Þ of ðX1 : Y1 : Z1Þ is given by

Z3 X2
1 � Z2

1 ; X3 X4
1 þ b � Z4

1 ;

Y3 bZ4
1 � Z3 þX3 � ðaZ3 þ Y 2

1 þ bZ4
1Þ:

The mixed-coordinate sum ðX3 : Y3 : Z3Þ of ðX1 : Y1 : Z1Þ
and ðX2 : Y2 : 1Þ is given by

A Y2 � Z2
1 þ Y1; B X2 � Z1 þX1; C Z1 �B;

D B2 � ðC þ aZ2
1Þ; Z3 C2; E A � C;

X3 A2 þDþ E; F X3 þX2 � Z3;

G ðX2 þ Y2Þ � Z2
3 ; Y3 ðE þ Z3Þ � F þG:

If a 2 f0; 1g, then doubling in projective coordinates

requires four field multiplications and addition (with mixed

coordinates) requires eight multiplications [15], [14].

ACKNOWLEDGMENTS

The authors are indebted to Erik Knudsen, Richard

Schroeppel, and the anonymous referees for numerous

suggestions improving this paper.

REFERENCES

[1] Advanced Micro Devices, AMD-K6 Processor Multimedia Technol-
ogy, Publication 20726, http://www.amd.com, 2000.

[2] E. De Win, A. Bosselaers, S. Vandenberghe, P. De Gersem, and J.
Vandewalle, “A Fast Software Implementation for Arithmetic
Operations in GF ð2nÞ,” Proc. Advances in Cryptology—ASIACRYPT
’96, pp. 65-76, 1996.

[3] E. De Win, S. Mister, B. Preneel, and M. Wiener, “On the
Performance of Signature Schemes Based on Elliptic Curves,”
Proc. Algorithmic Number Theory—ANTS-III, pp. 252-266, 1998.

[4] FIPS 186-2, Digital Signature Standard (DSS), Federal Information
Processing Standards Publication 186-2, Nat’l Inst. Standards and
Technology, 2000.

[5] K. Fong, D. Hankerson, J. López, and A. Menezes, “Field
Inversion and Point Halving Revisited,” Technical Report CORR
2003-18, Dept. of Combinatorics and Optimization, Univ. of
Waterloo, Canada, 2003, http://www.cacr.math.uwaterloo.ca.

[6] R. Gallant, R. Lambert, and S. Vanstone, “Faster Point Multi-
plication on Elliptic Curves with Efficient Endomorphisms,” Proc.
Advances in Cryptology—CRYPTO 2001, pp. 190-200, 2001.

[7] J. Goodman and A. Chandrakasan, “An Energy Efficient
Reconfigurable Public-Key Cryptography Processor Architec-
ture,” Proc. Cryptographic Hardware and Embedded Systems—CHES
2000, pp. 175-190, 2000.

[8] D. Hankerson, J. López, and A. Menezes, “Software Implementa-
tion of Elliptic Curve Cryptography over Binary Fields,” Proc.
Cryptographic Hardware and Embedded Systems—CHES 2000, pp. 1-
24, 2000.

[9] Intel Corp., Intel Pentium 4 and Intel Xeon Processor Optimization
Reference Manual, Number 248966-04, http://developer.intel.com,
2001.

[10] B. Kaliski and Y. Yin, “Storage-Efficient Finite Field Basis
Conversion,” Proc. Selected Areas in Cryptography—SAC ’98,
pp. 81-93, 1999.

[11] E. Knudsen, “Elliptic Scalar Multiplication Using Point Halving,”
Proc. Advances in Cryptology—ASIACRYPT ’99, pp. 135-149, 1999.

[12] E. Knudsen, personal communication, Aug. 2003.
[13] D. Knuth, The Art of Computer Programming—Seminumerical

Algorithms, third ed. Addison-Wesley, 1998.
[14] C. Lim and H. Hwang, “Speeding Up Elliptic Scalar Multi-

plication with Precomputation,” Proc. Information Security and
Cryptology—ICISC ’99, pp. 102-119, 2000.

[15] J. López and R. Dahab, “Improved Algorithms for Elliptic Curve
Arithmetic in GF ð2nÞ,” Proc. Selected Areas in Cryptography—SAC
’98, pp. 201-212, 1999.

[16] J. López and R. Dahab, “Fast Multiplication on Elliptic Curves
over GF ð2mÞ without Precomputation,” Proc. Cryptographic Hard-
ware and Embedded Systems—CHES ’99, pp. 316-327, 1999.

[17] J. López and R. Dahab, “High-Speed Software Multiplication in
IF2m ,” Proc. Progress in Cryptology—INDOCRYPT 2000, pp. 203-
212, 2000.

[18] B. Möller, “Algorithms for Multi-Exponentiation,” Proc. Selected
Areas in Cryptography—SAC 2001, pp. 165-180, 2001.

[19] B. Möller, “Improved Techniques for Fast Exponentiation,” Proc.
Information Security and Cryptology (ICISC) 2002, P. Lee and C. Lim,
eds., pp. 298-312, 2003.

1058 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 8, AUGUST 2004

[20] P. Ning and Y. Yin, “Efficient Software Implementation for Finite
Field Multiplication in Normal Basis,” Proc. Information and Comm.
Security 2001, pp. 177-189, 2001.

[21] A. Reyhani-Masoleh and M.A. Hasan, “Fast Normal Basis Multi-
plication Using General Purpose Processors (extended abstract),”
Proc. Selected Areas in Cryptography—SAC 2001, pp. 230-244, 2001.

[22] R. Schroeppel, “Elliptic Curve Point Halving Wins Big,” Second
Midwest Arithmetical Geometry in Cryptography Workshop, Nov.
2000.

[23] R. Schroeppel, “Elliptic Curve Point Ambiguity Resolution
Apparatus and Method,” Int’l Application Number PCT/US00/
31014, filed 9 Nov. 2000, publication number WO 01/35573 A1,
17 May 2001.

[24] R. Schroeppel, “Automatically Solving Equations in Finite Fields,”
US Patent Application No. 09/834,363, filed 12 Apr. 2001,
publication number US 2002/0055962 A1, 9 May 2002.

[25] R. Schroeppel, personal communication, Oct. 2003.
[26] R. Schroeppel, C. Beaver, R. Gonzales, R. Miller, and T. Draelos,

“A Low-Power Design for an Elliptic Curve Digital Signature
Chip,” Proc. Cryptographic Hardware and Embedded Systems—CHES
2002, pp. 366-380, 2002.

[27] R. Schroeppel, H. Orman, S. O’Malley, and O. Spatscheck, “Fast
Key Exchange with Elliptic Curve Systems,” Proc. Advances in
Cryptology—CRYPTO ’95, pp. 43-56, 1995.

[28] S. Chang Shantz, “From Euclid’s GCD to Montgomery Multi-
plication to the Great Divide,” SML Technical Report SMLI TR-
2001-95, Sun Microsystems Laboratories, 2001.

[29] J. Solinas, “Efficient Arithmetic on Koblitz Curves,” Designs, Codes
and Cryptography, vol. 19, pp. 195-249, 2000.

Kenny Fong received the BMath degree in computer science and
combinatorics and optimization from the University of Waterloo,
Canada, in 2002, and the MS degree in computer science from Harvard
University, in 2003. His area of interest is cryptography and information
security.

Darrel Hankerson is a professor in the Department of Mathematics at
Auburn University. His recent research interests are in cryptography, in
particular, efficient implementation. He is coauthor of the Guide to
Elliptic Curve Cryptography.

Julio López is a professor in the Institute of Computing at the University
of Campinas, Brazil. His research interests are in cryptography, in
particular, implementation of cryptographic algorithms.

Alfred Menezes is a professor in the Department of Combinatorics and
Optimization at the University of Waterloo, Canada. His research
interests are in cryptography and algorithmic number theory. He is
coauthor of Handbook of Applied Cryptography and Guide to Elliptic
Curve Cryptography

. For more information on this or any computing topic, please visit
our Digital Library at www.computer.org/publications/dlib.

FONG ET AL.: FIELD INVERSION AND POINT HALVING REVISITED 1059

