Agenda

1. video conferencing
2. course overview
3. various course details
 - general teaching strategy
 - course web site and Brightspace site
 - video lectures
 - lecture sessions
 - office hours
 - tutorial sessions
 - required textbook and lecture slides
 - computer and software requirements
 - assignments and exams
 - course outline and other handouts
4. advice for succeeding in course
5. questions
users are required to join Zoom meetings using Zoom Single Sign-On (SSO) with their UVic Netlink credentials (i.e., Netlink username and password)

use of SSO allows identity of person to be verified using their UVic Netlink credentials

allowing person to enter meeting anonymously would pose significant security risk (e.g., Zoom-bombing attacks)

if you are placed in waiting room instead of being directly admitted into meeting, you *did not use SSO* correctly

users placed in waiting room *will not be admitted* to meeting

therefore, *anyone who does not use SSO will be blocked from joining meeting*
- **always use real (first and last) name** for your screen name (or you may be removed from meeting)
- always **use headset** in order to minimize feedback when microphone is not muted
- always **mute microphone** when not speaking
- in larger meetings, always **disable video camera** when it is not strictly needed to avoid network bandwidth problems
- unless instructed otherwise, if you have question for meeting host, **raise your virtual hand** (accessible via “Participants” on Zoom), rather than interrupting host
Course Overview

- course studies mathematics of:
 - signals (i.e., functions and sequences); and
 - systems (i.e., aircraft, car, cell phones, MRI machines, and all other useful things that engineers build)

- course provides formal mathematical framework for design and analysis of complex systems

- main topics of course:
 1. complex analysis (mostly review)
 2. continuous-time signals and systems
 3. continuous-time linear time-invariant (LTI) systems
 4. continuous-time Fourier series (CTFS) with applications
 5. continuous-time Fourier transform (CTFT) with applications
 6. partial fraction expansions (PFEs)
 7. bilateral and unilateral Laplace transforms (LT) with applications

- CTFS, CTFT, and LT all essential mathematical tools for analyzing signals and designing and analyzing systems
course employs flipped classroom approach to teaching
students introduced to course materials through prerecorded video lectures prepared by instructor (which are required viewing)
then, students given opportunity to engage with course materials in interactive lecture sessions held by instructor during lecture time slots
Course Web Site and Brightspace Site

- course employs both course web site and Brightspace site
- course web site:
 - https://www.ece.uvic.ca/~mdadams/courses/ece260
- primary information source for course is course web site, which has all handouts and links to other important information/resources for course
- some areas of course web site are password protected
- Brightspace site:
 - https://bright.uvic.ca/d2l/home/311722
- Brightspace site only intended to be used for:
 - posting important course announcements and other information, such as:
 - assignment submission deadlines, exam dates, and username and password required to access password-protected areas of course web site
 - submitting and grading of assignments
 - providing students with means to review their course grades
- students should enable Brightspace notifications (via email) so that course announcements received in timely fashion
Video Lectures

- all core instructional content available as *prerecorded videos* via instructor’s YouTube channel:
 - https://www.youtube.com/iamcanadian1867
- video lectures are required viewing for course
- video lecture information package available that contains:
 - copy of version of slides used in video lectures [PDF]
 - copy of all worked-through examples (including annotations) used in video lectures [PDF]
 - fully-cataloged list of slides covered in lectures, where each slide in list has link to corresponding time offset in YouTube video where slide is covered [PDF] [HTML]
- schedule for viewing video lectures provided [PDF]
- critically important to follow this viewing schedule
- for more information on video lectures, see “Video Lectures” section of course web site
Lecture Sessions

- lecture time slots will be used by instructor to hold interactive lecture sessions to assist students in learning course materials more effectively
- sessions held *face-to-face* with *provision for online attendance* (assuming instructor has computer setup necessary to accommodate online attendance)
- some potential uses of lecture sessions include (but are not limited to):
 - providing brief summary of course materials covered
 - discussing more difficult aspects of course materials and addressing common misunderstandings
 - working through additional examples
 - answering student questions about course materials
 - giving demonstrations to illustrate practical applications of theory covered in course
- students *not required to attend* lecture sessions *unless explicitly indicated* by instructor
- students *strongly encouraged* to participate in at least some of lecture sessions, as this will likely lead to improved understanding of course materials
normally, lecture sessions *will not be recorded* by instructor

some reasons for not recording lecture sessions include:

- main objective of lecture sessions is to provide opportunity for *interactive engagement*, and recording lecture sessions would run completely contrary to this objective
- recording any interactions with students raises many *privacy concerns*, which are best avoided whenever possible
- some students *may feel uncomfortable* to participate if being recorded
- students may take photos/screenshots of materials presented, which reduces need to record these materials for future reference
- all core instructional content for course already available in video format

additional information on lecture sessions available from “Lecture Sessions” section of course web site
office hours will be held by instructor in order to provide extra help with course materials as well as discuss other course-related matters with students

office-hour sessions will be offered *online only*

time slot for office hours will be determined by Brightspace survey and posted on course web site

questions about course materials will be answered in main room so that all students can benefit from questions asked

private/confidential matters will be discussed one-on-one with student in breakout room

student may attend simply to listen to questions from other students or comments from instructor

office hours cancelled during reading break (and on holidays)

more information on office hours available from “Office Hours” section of course web site
Tutorial Sessions

- Tutorial time slots will be used by tutorial TAs to hold sessions in order to help students with course materials.
- Tutorial sessions to be held *face-to-face*.
- TA may additionally allow for online attendance *if this is feasible*.
- Student may attend session for tutorial section different from one in which they registered as long as this does not prevent those registered in section from having a seat in classroom.
- Tutorials start in *second week* of classes.
Required Textbook and Lecture Slides

- textbook:

- lecture slides:

- textbook web site:
 - https://www.ece.uvic.ca/~mdadams/sigsysbook

- available under Creative Commons (i.e., open-access) license

- can be obtained in PDF format from textbook web site (*do not download from Google Play or Google Books* since Google removes all hyperlinks from documents)

- video lectures mentioned in Section G.2 (titled “2020-05 ECE 260 Video Lectures”) of textbook same as ones used for course
need computer to use for viewing video lectures, accessing MATLAB software, and participating in online meetings

Zoom video conferencing software used for all online meetings in course

MATLAB software necessary for most assignments in course

students are required to install MATLAB software on their computer or ensure that they have access to MATLAB through some other means

UVic has site license for MATLAB software so that students can obtain this software free of charge

for information on how to obtain MATLAB software, refer to:

- http://matlab.uvic.ca

might also be possible to access MATLAB via remote login to undergraduate lab machines
Assignments

- All assignments must be submitted using Brightspace site.
- Submissions must be in PDF format (not JPEG, Word, or other formats).
- Nominal submission deadlines for assignments posted on Brightspace site; if any changes necessary, will be announced to class.
- Late assignments will receive grade of zero.
- Assignments will also be graded via Brightspace.
- Most assignments have some MATLAB exercises and MATLAB considered fair game for exams in course.
- Some assignments split into two parts (i.e., Parts A and B).
- Splitting of assignments, mainly intended to:
 - Reduce size of PDF documents being scanned for submission.
 - Allow TAs to return graded assignments more quickly.
- For split assignments, submission deadlines for Parts A and B will often only be couple of days apart.
- Do not wait until after submission deadline for Part A to start work on Part B, as there will not be sufficient time to complete Part B.
- exams held *face-to-face* during *lecture time slot*
- since exams held face-to-face, Brightspace will not be used in writing of exams
- *nominal* exam dates posted on course web site or Brightspace site; if any changes necessary, will be announced as much in advance as possible
some information on course web site includes:

1. course outline [web] [PDF] [annotated PDF]
2. online meetings handout [PDF]
3. video-lecture information package [Zip]
 - lecture examples [PDF]
 - video-lecture catalog [HTML] [PDF]
4. video-lecture schedule handout [PDF]
5. assignments handout [PDF] [annotated PDF]
6. supporting affordable learning resources handout [PDF]
7. course-materials bug-bounty program (CMBBP) handout [PDF]
8. course-materials errata handout [text]
9. optional textbook handout [PDF] [annotated PDF]
- use office hours and/or lecture sessions *(not email)* for questions about course materials (cannot guarantee response to questions asked via email)
- most handouts versioned (i.e., include date on each page) so that newer versions can be distinguished from older ones
- if you downloaded any handouts (including course outline) before day of first lecture, check to ensure that those handouts have not changed since time downloaded
■ avoid falling behind, since easy to reach point where catching up is impossible

■ work ahead to whatever extent is possible so that unexpected problems less likely to result in falling behind

■ watch video lectures with pace that does not fall behind provided schedule

■ avoid binge watching videos as this prevents effective learning

■ when having difficulties with course materials, seek help as soon as possible

■ do not leave assignments until last minute or copy solutions from other students or old solution sets, as this will bypass learning