
SENG 475 & ECE 596C, Summer 2025 1

Project

1 Purpose
The primary purpose of the course project is to provide the student with the opportunity to use the C++ programming
language in order to solve a particular problem of interest relevant to engineering.

2 Overview
Each student is to complete a project in which they develop software to solve some particular problem of relevance
to engineering. The C++ programming language must be used. As for the particular problem to be addressed by
the project, considerable flexibility is given in this regard. For students in ECE 596C, the project must be done
individually (i.e., not in a group). For students in SENG 475, the project may be done individually or in a group with
at most four members.

In the case of a group project, the size of the group is taken into consideration when the project is graded. A
group with n students (where n > 1) is expected to produce a project that requires approximately n times the effort
of a project produced by an individual student. Therefore, if an identical project were produced by both a group and
an individual, the individual would receive a higher grade. In the case of a group project, each student in the group
receives an identical grade.

The project has two components: 1) a proposal of the software to be developed, and 2) the software itself. Since
the project accounts for a significant percentage of the final course mark, the student is expected to spend a fair amount
of time and effort working on the project. The work on the project is undertaken in the following three steps (in order):

1. The student meets with the instructor in order to informally present the idea for the project and obtain permission
to proceed with the preparation of a formal (written) proposal.

2. The student prepares and submits a formal (written) proposal that describes the project in detail in order to
obtain permission to proceed with the development of the project software.

3. The student develops and submits the project software (which includes a brief video presentation).
A written proposal that was not approved during a preliminary project discussion will be rejected outright and not
graded. Any submission of project software that does not correspond to an approved (written) proposal will automat-
ically receive a grade of zero.

Students must allow for the fact that the instructor has limited availability for meetings. Furthermore, students
must allow for the fact that a proposal takes a significant amount of time to review. It would, therefore, not be
unreasonable to have to wait a week for a meeting with the instructor or for the instructor to complete the review of a
(written) proposal.

3 Preliminary Project Discussion
Each student (or group in the case of a group project) is required to meet with the instructor in order to discuss the
planned project with the instructor before starting to write the project proposal. By discussing the planned project in
this way, the chance of the proposal later being rejected can be minimized. For example, a proposal might be rejected
due to:

1. another student in the class already having chosen a similar project;
2. being too difficult to complete in the timeframe available for the project; or
3. not being of sufficient relevance to the course.

4 Proposal
The proposal is to provide a detailed description of the work that the student plans to undertake for the project. The
proposal is intended to serve the following purposes:

Instructor: Michael D. Adams Version: 2025-05-04

2 SENG 475 & ECE 596C, Summer 2025

1. To force the student to conduct a preliminary investigation in order to ensure that the project being considered
is feasible to undertake, subject to the time (and other) constraints imposed by the course.

2. To compel the student to identify all of the methods required for the project as well as any other libraries or
software tools that will be needed.

3. To ensure that the student has a clear plan as to exactly how they will undertake the work associated with the
project (e.g., decompose the project into work items with a detailed work schedule).

4. To serve as a written contract clearly describing the software that the student promises to deliver.
5. To provide a detailed description as to how the software is to be run (i.e., a complete user’s manual for the

software).
6. To provide the instructor with an opportunity to provide feedback to the student regarding the scope and suit-

ability of the proposed project, before work on the project begins.
7. To give the student an opportunity to practice their written communication skills.

The proposal should:

1. State the title of the project.
2. Identify the problem being addressed by the project, providing references as appropriate.
3. Specify all methods that will be used to solve the problem, providing references as appropriate.
4. Provide a complete description of the planned user interface for the software. This description must include

sufficient detail that someone would know exactly how to run the software, including (but not limited to)
information such as: a full description of any command line interfaces (e.g., command line parameters), a full
description of any graphical user interfaces, and a complete specification of any file/data formats used.

5. Specify any restrictions/limitations imposed by the software (e.g., restrictions on input data).
6. Identify any libraries (other than the C++/C standard library) that will be employed (e.g., Boost, OpenGL,

GLFW, GLUT, GLM, CGAL), being reasonably specific as to what functionality is required from each library.
7. Clearly distinguish between code that the student will develop entirely on their own and code written by others

(such as libraries) that the student will use.
8. Include a carefully-planned schedule for the completion of the various stages of the proposed work.

The proposal is a formal technical document. So, all of the good practices for technical writing should be followed
in the proposal (for example: use proper English and avoid overly colloquial language; strive for clarity, conciseness,
and precision; use references to support statements made; and so on). Every page of the document must be numbered
(with the possible exception of a title page), and key structural elements of the document, such as sections, tables, and
figures, must also be numbered. Any equations that need to be referenced at later places in the document should be
numbered and referenced by number. The first page of the proposal must include:

• the title of the project; and
• the full name, student ID, and email address of each student in the team working on the project.

The proposal should be double spaced and use a font size of at least 10-point. An appropriate length for the proposal
will vary from project to project, as some projects will require longer descriptions than others. The goal should be to
keep the proposal as short as possible, subject to the constraint that all of the required information must be provided.
In other words, the length of the proposal must be reasonable for whatever project is being proposed.

It is critically important that the schedule for the proposed work be realistic. Otherwise, it is impossible to be
confident that the project can be completed on time. This implies that some significant preliminary investigation is
required before starting to write the proposal in order to determine what methods are needed, what libraries are
needed, what steps are needed to complete the project (without overlooking anything that might take a significant
amount of time) and an accurate estimate how much time each step will require.

A project proposal should be well organized, well written, clear and concise. Quality of writing is important. A
poorly written or difficult to understand proposal is likely to be penalized significantly during grading. The proposal
should present clear evidence that the student has done sufficient preliminary investigation to be confident that
the project is feasible to complete in the time available. This implies that any relevant methods and any necessary
libraries (or other software tools) should be discussed in sufficient detail to clearly demonstrate that the student has
a good appreciation of exactly what work is needed in the project. Since a proposal requires a significant amount of
preliminary investigation, a high-quality proposal cannot be prepared in only a few days.

Version: 2025-05-04 Instructor: Michael D. Adams

SENG 475 & ECE 596C, Summer 2025 3

4.1 Submission of Proposal
The proposal is to be submitted via e-mail in PDF format. (Any other format will be rejected by the instructor.) It is
very strongly recommended that the student submit their project proposal for approval as early as possible in order
to maximize the amount of time available to work on the project software.

4.2 Approval of Proposal
The instructor will review the submitted proposal and make a decision on whether to approve it. This decision is then
conveyed to the student along with any comments or concerns about the proposal. If the proposal is not approved, the
student is required to submit a revised proposal that addresses the concerns raised by the instructor. If the instructor’s
concerns cannot be addressed, an entirely new proposal would need to be prepared. The grade for the proposal is
always assigned for the initial submission, even if one or more revisions of the proposal are required. The student is
not permitted to start work on the project until the proposal has been approved by the instructor.

4.3 Changes to Proposal Subsequent to Approval
After the project proposal is approved, any change to the project definition requires the written permission of the
instructor.

5 Software (Including Video Presentation)
The software developed for the project must be written in the C++ programming language, and must be capable of
being built and run on the machines in the lab used for the teaching of the course. Note that only libraries that are
available to all users on these machines can be employed. This is necessary in order to ensure that the instructor can
build and run the software. The software must build with the software development environment used in the teaching
of the course.

5.1 Video Presentation
The project software must be supplemented by a short video presentation about the software (which must have
an audio track). The presentation should briefly introduce the software (using some slides) and provide a short
demonstration of its use. The duration of the presentation must not exceed 5 minutes. A URL that can be used to
view the video presentation is to be submitted along with the project software. The actual video and audio data for
the presentation itself, however, are not to be submitted directly. Unless special arrangements are made in advance,
YouTube must be used to host the video for the presentation (i.e., http://www.youtube.com). YouTube is free
to use for this purpose and is a very reliable website for video streaming. (Do not use other mechanisms to provide
access to the presentation video, such as Google Drive.) The video can be posted on YouTube as either a public or
unlisted video, but it must not be made private; otherwise, the instructor will not be able to view it. Aside from
being used to evaluate the project software, the video presentation will also be used to show to the public (including
future students) some of the projects undertaken in the course. For advice on desktop capture software (for making
the presentation), refer to Section 10.

5.2 Submission of Project Software
The mechanism for submitting the project software is similar to that used for programming assignments in the course.
That is, the software is submitted via a Git repository obtained via GitHub Classroom. An assignment invitation URL
will be sent to each student (or group). This URL can be used to gain access to a repository to be used for submission
of the project software. For more details on the submission process for programming assignments, please refer to the
programming-assignment handout. When the repository containing the project software is ready for submission,
the student must notify the course instructor of this by email. The project software will not be deemed received
until after the instructor receives such an email from the student.

Instructor: Michael D. Adams Version: 2025-05-04

http://www.youtube.com

4 SENG 475 & ECE 596C, Summer 2025

5.3 Repository Organization
The Git repository used to submit the project software has some constraints on its organization. The top-level directory
in the Git repository must contain the following:

1. a file IDENTIFICATION.txt that provides information about the project submitter as well as the project itself.
This file is to follow the same format as the IDENTIFICATION.txt file used in the submission of programming
assignments in the course. The assignment ID specified in this file should be cpp_project.

2. a file README.txt that should contain any additional information that might be helpful for building, installing,
and running the software. This file must be in plaintext (i.e., ASCII) format.

3. a CMakeLists file CMakeLists.txt that facilitates the building and installation of the software via CMake.
Note that this CMakeLists file must support the installation of the software, not just the building of it.

4. a file demo that is a script containing an appropriate sequence of commands to run a demonstration of the
software. During installation, this script should be placed in the ${CMAKE_INSTALL_PREFIX}/bin directory
(where ${CMAKE_INSTALL_PREFIX} denotes the value of the CMAKE_INSTALL_PREFIX variable of CMake).
Any one of the following scripting languages may be used: Bourne Shell, Bash, and Python. The script must
be compatible with the version of the applicable interpreter program (e.g., sh, bash, and python) installed on
the lab machines.

5. a file presentation.url that contains a URL to be used to view the video presentation for the software. This
file must contain only the URL on a single line. No other characters should appear in the file.

An example of a Git repository for a project can be found at the following URL:
https://github.com/mdadams/uvic_elec586_project_example.git

It is strongly recommended that students review this example, as this is likely to prove quite helpful. The student
should run the assignment_precheck command on their repository before submitting it, as a basic sanity check.
(The assignment_precheck command is described in the programming-assignment handout.)

5.4 Building and Installation Requirements
When the project software is built for evaluation by the course instructor using CMake, an out-of-source build will
always be used (since in-source builds are considered a bad practice). Consequently, it is important that students use
out-of-source builds when testing the build/installation process. The CMAKE_INSTALL_PREFIX variable will be used
to specify an installation directory for the software. Since, for evaluation purposes, the software will be run from the
installation directory, it is important to ensure that the software works correctly when run in this manner.

Let $TOP_DIR denote the top-level directory of the project software. Let $INSTALL_DIR denote the directory into
which the software is to be installed. To build and install the software, a sequence of commands like the following
will be employed:

cd $TOP_DIR
cmake -H. -Btmp_cmake -DCMAKE_INSTALL_PREFIX=$INSTALL_DIR
cmake --build tmp_cmake --clean -first --target install

To run the demonstration script, a command like the following will be used:
$INSTALL_DIR/bin/demo

The installation process for the project software must not create or access any files/directories except those under
the directory $INSTALL_DIR. The execution of the project software must not create, delete, or modify any files/di-
rectories except those under the directory $INSTALL_DIR. Significant mark penalties will be applied for violations of
this rule, since such violations could corrupt files needed for other projects being graded.

5.5 Software Evaluation Criteria
The software developed for the project will be evaluated using such criteria as the following:

1. Difficulty and effort required. The level of difficulty of the project chosen and how much effort is required to
complete the project (relative to the number of students working on the project).

2. Correctness. The software functions correctly (i.e., has no bugs).
3. Design quality. The extent to which the overall structure of the software was well planned.
4. Usability. The software is easy to use.

Version: 2025-05-04 Instructor: Michael D. Adams

https://github.com/mdadams/uvic_elec586_project_example.git

SENG 475 & ECE 596C, Summer 2025 5

5. Style. Good coding style is employed. There are many aspects to good coding style as discussed in the course,
such as: const correctness, using meaningful identifier names, using consistent naming conventions, avoiding
unnecessary global variables, making appropriate use of libraries, avoiding unnecessary code duplication, and
so on.

6. Efficiency. The code is reasonably efficient. (The code does not need to be highly optimized, but it should not
be grossly inefficient.)

7. Code documentation. The code is fully commented, and the comments are concise and understandable.
8. User documentation. How to run the software is clearly explained. The format of any input or output files used

by the program are clearly specified.
9. Creativity. The extent to which the project is innovative, either in the choice of problem to solve or in the

manner in which the problem is solved.
10. Coolness factor. The extent to which the software makes people say “Wow, that’s cool!”.
11. Effective demonstration. The software builds properly and the demonstration script runs successfully. The

demonstration video presents the software well.
The correctness of the code is extremely important. The student is expected to test their software thoroughly in
order to ensure that it has no bugs. Situations involving bad user input, invalid user requests, and such must be
handled gracefully. Moreover, it should not be assumed that the software will only be run using the demonstration
script and/or datasets provided. For example, other datasets may be used. Code that does not work properly will be
penalized.

5.6 Additional Remarks on Project Software

In order to minimize the amount of written documentation that the student must prepare for the project, no formal
design documents are required for submission. This said, however, the student is very strongly advised to spend
adequate time to plan the overall structure of the software (i.e., the design phase) before starting to write any code. In
the long run, a good design will save significant time later in testing and debugging.

6 Assessment

The grade for the project will be determined as follows:
Weight Component

25% Proposal
75% Software (including video presentation)

7 Late Policy for Project Proposal and Approval of Project Proposal

Project proposals that are submitted late will receive a grade of zero. Any project whose proposal has not been
approved by the deadline for the approval (not submission) of the proposal will result in an automatic grade of zero
for the project software.

8 Late Policy for Project Software

The submission deadline for the software is very strict. This is due to the fact that this deadline is quite late during
the term. Late submissions will be heavily penalized. Should the software be submitted late, a percentage d will be
deducted according to the formula d = 2⌈n−1⌉10, where n is the number of days by which the software is late and ⌈x⌉
denotes the smallest integer not less than x (i.e., the ceiling function). For example, software that is submitted up to
24 hours late would be penalized 10%, with the penalty growing rapidly (i.e., exponentially) thereafter.

Instructor: Michael D. Adams Version: 2025-05-04

6 SENG 475 & ECE 596C, Summer 2025

9 Important Dates
The deadlines for the project proposal and project software will be posted on the course website.

10 Desktop Capture
Although many software tools are available for performing desktop capture, the use of the FFmpeg software is highly
recommended, as it has many features and supports most mainstream computing platforms. FFmpeg is a popular
cross-platform software tool for recording, converting, and streaming audio and video. This software can be used
to perform desktop capture (with audio), and supports numerous operating systems, including Linux, MacOS, and
Microsoft Windows. The FFmpeg software can be obtained from the FFmpeg website, which has the following URL:

https://www.ffmpeg.org
Some additional information on how to perform desktop capture with the FFmpeg software can be found at the
following URL:

https://trac.ffmpeg.org/wiki/Capture/Desktop

Version: 2025-05-04 Instructor: Michael D. Adams

https://www.ffmpeg.org
https://trac.ffmpeg.org/wiki/Capture/Desktop

	1 Purpose
	2 Overview
	3 Preliminary Project Discussion
	4 Proposal
	4.1 Submission of Proposal
	4.2 Approval of Proposal
	4.3 Changes to Proposal Subsequent to Approval

	5 Software (Including Video Presentation)
	5.1 Video Presentation
	5.2 Submission of Project Software
	5.3 Repository Organization
	5.4 Building and Installation Requirements
	5.5 Software Evaluation Criteria
	5.6 Additional Remarks on Project Software

	6 Assessment
	7 Late Policy for Project Proposal and Approval of Project Proposal
	8 Late Policy for Project Software
	9 Important Dates
	10 Desktop Capture

