ELEC 486/586, Summer 2017 1

Project

1 Purpose

The primary purpose of the course project is to provide the student with the opportunity to use the C++ programming
language in order to solve a particular problem of interest relevant to engineering.

2 Overview

Each student is to complete a project in which they develop software to solve some particular problem of relevance
to engineering. The project is to be done individually (i.e., not in groups). The C++ programming language must be
used. As for the particular problem to be addressed by the project, considerable flexibility is given in this regard. The
student is strongly encouraged to define their own project, in consultation with their supervisor. Should the need arise,
however, the instructor can also make suggestions regarding projects.

The project has two components: 1) a proposal of the software to be developed, and 2) the software itself. Since
the project accounts for a large percentage of the final course mark, the student is expected to spend a significant
amount of time and effort working on the project.

3 Proposal

The proposal is to provide a detailed description of the work that the student plans to undertake for the project. The
proposal is intended to serve the following purposes:

1. To force the student to perform a preliminary investigation in order to determine whether the project being
considered is feasible to undertake, subject to the time (and other) constraints imposed by the course.

2. To force the student to identify all of the methods required for the project and well as any other libraries or
software tools that will be needed.

3. To force the student to formulate a detailed plan as to exactly how they will undertake the work associated with
the project (e.g., decompose the project into work items with a detailed work schedule).

4. To serve as a written contract clearly describing the software that the student promises to deliver.

5. To provide a detailed description as to how the software is to be run (i.e., a complete user’s manual for the
software).

6. To provide the instructor with an opportunity to provide feedback to the student regarding the scope and suit-
ability of the proposed project, before work on the project begins.

7. To give the student an opportunity to practice their written communication skills.

The proposal should:

1. State the title of the project.

2. Identify the problem being addressed by the project, providing references as appropriate.

3. Specify all methods that will be used to solve the problem, providing references as appropriate.

4. Provide a complete description of the planned user interface for the software. This description must include
sufficient detail that someone would know exactly how to run the software, including (but not limited to)
information such as: a full description of any command line interfaces (e.g., command line parameters), a full
description of any graphical user interfaces, and a complete specification of any file/data formats used.

5. Specify any restrictions/limitations imposed by the software (e.g., restrictions on input data).

6. Identify any libraries (other than the C++/C standard library) that will be employed (e.g., OpenGL, GLUT,
CGAL, Boost, SPL), being reasonably specific as to what functionality is required from each library.

7. Clearly distinguish between code that the student will develop entirely on their own and code written by others
(such as libraries) that the student will use.

8. Include a carefully-planned schedule for the completion of the various stages of the proposed work.

The proposal should be single spaced and use 10-point font. An appropriate length for the proposal will vary from
project to project, as some projects will require longer descriptions than others. The goal should be to keep the
proposal as short as possible, subject to the constraint that all of the required information must be provided. Although
no minimum length is specified for the proposal, it is unlikely that all of the required information could be provided
in a proposal that is less than 6 pages in length (single spaced, 10-point font), and many projects are likely to need a
longer proposal.

Instructor: Michael D. Adams Version: 2017-03-31

2 ELEC 486/586, Summer 2017

3.1 Submission

The proposal is to be submitted via e-mail in PDF format. (Please do not submit the document in MS-Word format.)
The student is encouraged to complete (and submit) their project proposal for approval early, as this would increase
the amount of time available to work on the project.

3.2 Changes to Proposal

After the project proposal is approved, any changes to the project definition require permission from the instructor (in
writing).

3.3 Additional Remarks

It is critically important that the schedule for the proposed work be realistic. Otherwise, it is impossible to be confident
that the project can be completed on time. This implies some significant preliminary investigation is required before
starting to write the proposal in order to decide what methods are needed, what libraries are needed, what steps are
needed to complete the project (without overlooking anything that might take a significant amount of time) and an
accurate estimate how much time each step will require.

A project proposal should be well organized, well written, clear and concise. It should present clear evidence that
the student has done sufficient preliminary investigation to be confident that the project is feasible to complete in
the time available. This implies that any relevant methods and any necessary libraries (or other software tools) should
be discussed in sufficient detail to clearly demonstrate that the student has a good appreciation of exactly what work
is needed in the project. Since a proposal requires a significant amount of preliminary investigation, a high-quality
proposal cannot be prepared in only a few days before the submission deadline.

Each student is required to discuss the planned project (in general terms) with the instructor before undertaking
any significant amount of work on the project proposal. By discussing the planned project in this way, the chance of the
proposal later being rejected can be minimized. For example, a proposal might be rejected due to: 1) another student
in the class already having chosen a similar project; 2) being too difficult to complete in the timeframe available for
the project; or 3) not being of sufficient relevance to the course.

4 Software

The software developed for the project must be written in the C++ programming language, and must be capable of
being built and run on the machines in the lab used for the teaching of the course. Note that only libraries that are
available to all users on these machines can be employed. This is necessary in order to ensure that the instructor can
build and run the software. For example, the software may use libraries such as Boost, OpenGL, GLUT, and CGAL.
The software must build with the software development environment used in the teaching of the course.

The project software must be supplemented by a short video presentation about the software (which must have
an audio track). The presentation should briefly introduce the software and provide a short demonstration of its use.
The duration of the presentation must not exceed 3 minutes. A URL that can be used to view the video presentation
is to be submitted along with the project software. The actual video and audio data for the presentation itself, however,
are not to be submitted directly. It is highly recommended that YouTube (http://www.youtube.com) be used to host
video presentations, since YouTube is free to use for this purpose and is a very reliable web site. Aside from being
used to evaluate the project software, the video presentation will also be used to show to the public (including future
students) some of the projects undertaken in the course. For advice on desktop capture software (for making the
presentation), refer to Section 8.

4.1 Submission

The mechanism for submitting the project software is similar to that used for programming assignments in the course.
That is, the software is submitted via a Git repository obtained via GitHub Classroom. An assignment invitation URL
will be sent to each student early in the term. This URL can be used to gain access to a repository to be used for
submission of the project software. For more details on the submission process for programming assignments, please
refer to the programming-assignment handout. When the repository containing the project software is ready for
submission, the student must notify the course instructor of this by email. The project software will not be
deemed received until after the instructor receives such an email from the student.

Version: 2017-03-31 Instructor: Michael D. Adams

http://www.youtube.com

ELEC 486/586, Summer 2017 3

4.2 Repository Organization

The Git repository used to submit the project software has some constraints on its organization. The top-level directory
in the Git repository must contain the following:

1. afile IDENTIFICATION.txt that provides information about the project submitter as well as the project itself.
This file is to follow the same format as the IDENTIFICATION. txt file used in the submission of programming
assignments in the course. The assignment ID specified in this file should be project.

2. afile README. txt that should contain any additional information that might be helpful for building, installing,
and running the software. This file must be in plaintext format.

3. a CMakelLists file CMakeLists.txt that facilitates the building and installation of the software via CMake.
Note that this CMakeLists file must support the installation of the software, not just the building of it.

4. a file demo that is a script that contains an appropriate sequence of commands to run a demonstration of the
software. During installation, this script should be placed in the ${CMAKE_INSTALL_PREFIX}/bin directory
(where ${CMAKE_INSTALL_ PREFIX} denotes the value of the CMAKE_INSTALL_PREFIX variable of CMake).
Any one of the following scripting languages may be used: Bourne Shell, Bash, Python, and Perl.

5. afile presentation.url that contains a URL to be used to view the video presentation for the software. This
file must contain only the URL on a single line. No other characters should appear in the file.

An example of a Git repository for a project can be found at the following URL:
https://github.com/mdadams/uvic_elec586_project_example.git

It is strongly recommended that students review this example, as this is likely to prove quite helpful. The student

should run the assignment_precheck command on their repository before submitting it, as a basic sanity check.

(The assignment_precheck command is described in the programming-assignment handout.)

4.3 Building and Installation Requirements

When the project software is built for evaluation by the course instructor using CMake, an out-of-source build will
always be used (since in-source builds are considered a bad practice). Consequently, it is important that students use
out-of-source builds when testing the build/installation process. The CMAKE_INSTALL_PREFIX variable will be used
to specify an installation directory for the software. Since, for evaluation purposes, the software will be run from the
installation directory, it is important to ensure that the software works correctly when run in this manner.
Let $TOP_DIR denote the top-level directory of the project software. Let SINSTALL_DIR denote the directory into
which the software is to be installed. To build and install the software, a sequence of commands like the following
will be employed:
cd $TOP_DIR
cmake -H. -Btmp_cmake -DCMAKE_INSTALL_PREFIX=$INSTALL_DIR
cmake --build tmp_cmake --clean-first --target install

To run the demonstration script, a command like the following will be used:
S$INSTALL_DIR/bin/demo

4.4 Software Evaluation Criteria

The software developed for the project will be evaluated using such criteria as the following:
1. Difficulty and effort required. The level of difficulty of the project chosen and how much effort is required to
complete the project.
Correctness. The software functions correctly (i.e., has no bugs).
Design quality. The extent to which the overall structure of the software was well planned.
Usability. The software is easy to use.
Style. Good coding style is employed. There are many aspects to good coding style as discussed in the course,
such as: the use of meaningful identifier names, the proper use of const, consistent naming conventions, the
avoidance of unnecessary global variables, making appropriate use of libraries, and so on.
6. Efficiency. The code is reasonably efficient. (The code does not need to be highly optimized, but it should not
be grossly inefficient.)
Code documentation. The code is fully commented, and the comments are concise and understandable.
User documentation. How to run the software is clearly explained. The format of any input or output files used
by the program are clearly specified.
9. Creativity. The extent to which the project is innovative, either in the choice of problem to solve or in the
manner in which the problem is solved.
10. Coolness factor. The extent to which the software makes people say “Wow, that’s cool!”.

nhwn

Sl

Instructor: Michael D. Adams Version: 2017-03-31

https://github.com/mdadams/uvic_elec586_project_example.git

4 ELEC 486/586, Summer 2017

11. Effective demonstration. The software builds properly and the demonstration script runs successfully. The
demonstration video presents the software well.
The correctness of the code is extremely important. The student is expected to test their software well in order
to ensure that it has no bugs. Situations involving bad user input, invalid user requests, and such must be handled
gracefully. Moreover, it should not be assumed that the software will only be run using the demonstration script and/or
datasets provided. For example, other datasets may be used. Code that does not work properly will be penalized.

4.5 Additional Remarks

In order to minimize the amount of written documentation that the student must prepare for the project, no formal
design documents are required for submission. This said, however, the student is very strongly advised to spend
adequate time to plan the overall structure of the software (i.e., the design phase) before starting to write any code. In
the long run, a good design will save significant time later in testing and debugging.

5 Assessment

The grade for the project will be determined as follows:
Weight | Component
10% | Proposal
90% | Software (including video presentation)

6 Late Policy

It is important that the submission deadlines for the various components of the project are met. Marks will be deducted
for late submissions. The submission deadline for the software is very strict. This is due to the fact that this deadline
is quite late during the term. Late submissions will be heavily penalized. Should the software be submitted late, a
percentage d will be deducted according to the formula d = 2/"~1110, where n is the number of days by which the
software is late and [x] denotes the smallest integer not less than x (i.e., the ceiling function). For example, software
that is submitted up to 24 hours late would be penalized 10%, with the penalty growing rapidly thereafter.

7 Important Dates

The submission deadline for the proposal will be approximately during week 9 of the term (but early submission
of the proposal is allowed and is strongly encouraged). The software will be due sometime during the final exam
period. Specific dates will be announced during the term and posted on the course web site.

8 Desktop Capture

Although many software tools are available for performing desktop capture, the use of the FFmpeg software is highly
recommended, as it has many features and supports most mainstream computing platforms. FFmpeg is a popular
cross-platform software tool for recording, converting, and streaming audio and video. This software can be used to
perform desktop capture (with audio), and supports numerous operating systems, including Linux, Mac OS X, and
Microsoft Windows. The FFmpeg software can be obtained from the FFmpeg web site, which has the following URL:
https://www.ffmpeg.org
Some additional information on how to perform desktop capture with the FFmpeg software can be found at the
following URL.:
https://trac.ffmpeg.org/wiki/Capture/Desktop

9 Additional Information

Additional information regarding the project will be made available from the course web site. Such information might
include, for example, a list of ideas for projects.

Version: 2017-03-31 Instructor: Michael D. Adams

https://www.ffmpeg.org
https://trac.ffmpeg.org/wiki/Capture/Desktop

	1 Purpose
	2 Overview
	3 Proposal
	3.1 Submission
	3.2 Changes to Proposal
	3.3 Additional Remarks

	4 Software
	4.1 Submission
	4.2 Repository Organization
	4.3 Building and Installation Requirements
	4.4 Software Evaluation Criteria
	4.5 Additional Remarks

	5 Assessment
	6 Late Policy
	7 Important Dates
	8 Desktop Capture
	9 Additional Information

