
ELEC 486/586, Summer 2017 3

3 Basics

3.1 Preamble

The exercises below are intended to provide a means to test your understanding of the programming-related material

covered in the course. It is highly recommended that you work through these exercises as you cover the corresponding

topics in the video lectures. By doing this, you will greatly strengthen your understanding of the material in these

video lectures, which will greatly reduce the amount of pain and suffering required to complete the programming

assignments in the course. In exercises that require the building (i.e., compiling and linking) of code, the CMake tool

should be used for this purpose. For additional information about these exercises, refer to Section 1 of this document.

3.2 Topics Covered

These exercises cover language basics, including such things as: objects, types, values, control-flow constructs, func-

tions, parameter passing, pointers, const correctness, default arguments, input/output, and output formatting.

3.3 Exercises

1. [basic input/output, conditional execution]

Write a program that:

(a) prints to standard output a message prompting the user to enter two real numbers;

(b) reads two real numbers from standard input;

(c) prints to standard output whichever one of the following three messages is applicable:

i. The first number is less than the second.

ii. The first number is greater than the second.

iii. The first number is equal to the second.

For example, running the program would look something like the following:

Enter first number: 5.3

Enter second number: -1.4

The first number is greater than the second.

2. [functions, default arguments, multiple source files, declarations]

(a) Write a function called logarithm that takes two double parameters and returns a double. Let x and b denote

the first and second parameters, respectively. The return value of the function should be the logarithm base b

of x. The second parameter should have a default value of 10.0. [Note: The natural logarithm function in the

standard library is called std::log and is declared in the header file called cmath. The logarithm base b of x

can be computed as log(x)/ log(b).]
(b) Write a program to test the logarithm function developed in part (a). The test program should print the values

returned by each of the following:

logarithm (10.0)

logarithm(16.0, 2.0)

(c) Split your program into two separate source code (i.e., .cpp) files as follows: Place the logarithm function

in the file logarithm_func.cpp; and place the main function in the file logarithm_main.cpp. (Ensure that the

resulting code still compiles and links properly.)

3. [conditional execution]

Download the source code for the sinc program contained in the file sinc.cpp from the course web site. In this

program, rewrite the sinc function so that it does not use an if statement. The function must still handle the case

of sinc(0) correctly, of course.

4. [parameter passing]

Write a function called increment that takes a single int parameter and does not return any value. When the

function is called, it should have the effect of incrementing (by one) the value of the variable passed to it. For

example, the following code should print the value 1:

Instructor: Michael D. Adams Version: 2017-03-30

4 ELEC 486/586, Summer 2017

int i = 0;

increment(i);

std::cout << i << "\n";

Write a program to test the increment function.

5. [pointers, const correctness]

Note: A NUL-terminated string is a sequence of characters whose end is explicitly marked by the NUL character

(i.e., ’\0’). For example, the NUL-terminated string "Hi" is stored in memory as the following sequence of

characters: ’H’, ’i’, and ’\0’.

Write a function called findFirst that finds the first occurrence of the specified character c in the given NUL-

terminated string s. The function should take the following two parameters (in order):

(a) a pointer specifying the first character in the NUL-terminated string s; and

(b) the character c for which to search.

The function should return a pointer to the first occurrence of the character c in the string s. If the character is not

contained in the string, the null pointer (i.e., 0) should be returned. The function must not use the array subscripting

operator (i.e., []).

6. [output, output formatting, loop]

(a) Write a program that prints to standard output a table for converting from Fahrenheit to Celsius. The table

should have two columns. The first and second columns should have the headings “Fahrenheit” and “Celsius”,

respectively. Each column in the table should be 10 characters wide. The entries in each column must be

properly aligned. The table should cover Fahrenheit values from 32 to 80 in steps of 0.5. [Note: The Celsius

value c is related to the Fahrenheit value f as given by c = 5
9
(f −32).] [Hint: The following I/O manipulator

may be useful: std::setw. I/O manipulators are declared in the header file called iomanip.] For example, the

output of the program should look something like the following:

Fahrenheit Celsius

32 0

32.5 0.277778

33 0.555556

. .

. .

. .

79 26.1111

79.5 26.3889

80 26.6667

(b) Perform additional output formatting so that each temperature value is displayed with exactly two decimal

places and the columns are right aligned (as shown below). [Hint: The following I/O manipulators may be

useful: std::fixed, std::setprecision.] For example, the output of the program should be formatted exactly

as shown below.

Fahrenheit Celsius

32.00 0.00

32.50 0.28

33.00 0.56

33.50 0.83

. .

. .

. .

79.00 26.11

79.50 26.39

80.00 26.67

Version: 2017-03-30 Instructor: Michael D. Adams

