
6 ELEC 486/586, Summer 2017

2 Assignment P0 [Assignment ID: tools]

2.1 Preamble (Please Read Carefully)

Before starting work on this assignment, it is critically important that you carefully read Section 1 (titled “General

Information”) which starts on page 1 of this document.

2.2 Topics Covered

This assignment covers material primarily related to the following: software tools, C++ compiler, linker, CMake, Git.

2.3 Exercises

1. In this exercise, you will be creating a “remote” repository and then simulating the effects of two different users

working with this repository by utilizing two (local) cloned versions of the repository. To begin, select an empty

directory for use in this exercise. This directory will be henceforth denoted $TOP_DIR. In this exercise, you need to

perform the tasks listed below (in order). You should assume that the two simulated users involved in this exercise

do not know about the changes that each other is making. This implies that a user must attempt a push operation

(and have it fail) before they can know that their local copy of the repository is out of date with respect to the

remote.

(a) Create an empty bare Git repository in the directory $TOP_DIR/remote_repo.git to be used as a remote in this

exercise. This can be accomplished by typing:

cd $TOP_DIR

git init --bare remote_repo.git

(b) User 1. Clone the repository $TOP_DIR/remote_repo.git to the directory $TOP_DIR/repo_1. In the top-level

directory of the repository $TOP_DIR/repo_1, create a file words.txt with the following three lines of text:

Delta

Echo

Foxtrot

Propagate the changes to the remote repository $TOP_DIR/remote_repo.git. [Hint: You will need to use the

following commands in order: git clone, git add, git commit, and git push.]

(c) User 2. Clone the repository $TOP_DIR/remote_repo.git to the directory $TOP_DIR/repo_2. In the repository

$TOP_DIR/repo_2, modify the file words.txt by inserting the following three lines prior to the first line in the

file:

Alpha

Bravo

Charlie

Propagate the changes to the remote repository $TOP_DIR/remote_repo.git. [Hint: You will need to use the

following commands in order: git clone, git add, git commit, and git push.]

(d) User 1. In the repository $TOP_DIR/repo_1, perform the following. Append the following lines to the file

words.txt:

Golf

Hotel

Propagate the changes to the remote repository $TOP_DIR/remote_repo.git. [Hint: You will need to use

the following commands (some possibly more than once): git add, git commit, git push, and git pull.

Alternatively, git fetch and git merge can be used in place of git pull.]

(e) User 2. In the repository $TOP_DIR/repo_2, append the following line to the file words.txt:

Zulu

Version: 2017-03-29 Instructor: Michael D. Adams

ELEC 486/586, Summer 2017 7

If any merge conflicts arise, keep only the changes from user 1. Propagate the changes to the remote reposi-

tory $TOP_DIR/remote_repo.git. [Hint: You will need to use the following commands (some possibly more

than once): git add, git commit, git push, and git pull. Alternatively, git fetch and git merge can be

used in place of git pull.]

(f) Check that the repository $TOP_DIR/remote_repo.git now contains the desired contents. In particular, the

repository should contain the file words.txt with the following contents:

Alpha

Bravo

Charlie

Delta

Echo

Foxtrot

Golf

Hotel

[Hint: You will need to use the command git clone. Simply clone the remote repository and examine the

contents of the cloned version.]

2. The fibonacci project. Write a CMakeLists file that can be used to build the fibonacci project in the directory

cmake/exercises/fibonacci (in the Git repository for the C++ lecture slides, the URL of which can be found in

Section 1.9). The fibonacci project consists of a single program fibonacci, which is comprised of the source-code

files main.cpp, fibonacci.cpp, and fibonacci.hpp. The only library needed for this program is the C++ standard

library. After building the project, check to ensure that the fibonacci program can be run successfully. (Do not

assume that all is well simply because the program compiles and links.)

3. The boost_timer project. Write a CMakeLists file that can be used to build the boost_timer project in the di-

rectory cmake/exercises/boost_timer (in the Git repository for the C++ lecture slides). This project consists

of a single program timer. The timer program consists of the source-code files timer.cpp, fibonacci.hpp, and

fibonacci.cpp. This program needs to use the timer component of the Boost library in addition to the C++

standard library. The find module for Boost sets numerous variables, of which the following will need to be

utilized: Boost_INCLUDE_DIRS and Boost_LIBRARIES. You can disable multithreading support in Boost by set-

ting Boost_USE_MULTITHREADED to false before locating the Boost package with find_package. After building the

project, check to ensure that the timer program can be run successfully. (Do not assume that all is well simply

because the program compiles and links.)

4. The cgal_in_circle project. Write a CMakeLists file that can be used to build the cgal_in_circle project in

the directory cmake/exercises/cgal_in_circle (in the Git repository for the C++ lecture slides). This project

consists of two programs: in_circle and in_sphere. The in_circle program is comprised of the source-code

files in_circle.cpp, utility.cpp, and utility.hpp. The in_sphere program is comprised of the source-code files

in_sphere.cpp, utility.cpp, and utility.hpp. In addition to the C++ standard library, these programs require

the CGAL library. The find module for CGAL initializes several variables, of which the following will need to be

utilized: CGAL_INCLUDE_DIRS, CGAL_LIBRARY, and GMP_LIBRARIES. On some systems using the GCC compiler, it is

necessary to compile the programs in this project with the -frounding-math option. If this option is not used when

it is needed, the likely result is that the programs will terminate with a failed assertion when run. After building

the project, check to ensure that the in_circle and in_sphere programs can be run successfully. (Do not assume

that all is well simply because the programs compile and link.)

5. Prepare the Git repository for the submission of this assignment. This repository is to contain the work completed

in Exercises 2, 3, and 4, organized in the manner described below. (The preparation of this repository is most

easily accomplished by cloning your empty assignment repository from GitHub, adding content to the resulting

local repository, and then pushing the changes from the local repository to the repository on GitHub.) The top-level

directory of the repository should contain the following:

(a) a file IDENTIFICATION.txt, which provides student and assignment information (as described in Section 1.3).

(b) a directory fibonacci, which contains the CMakeLists and source-code files for the fibonacci project devel-

oped above (in Exercise 2).

(c) a directory boost_timer, which contains the CMakeLists and source-code files for the boost_timer project

developed above (in Exercise 3).

Instructor: Michael D. Adams Version: 2017-03-29

8 ELEC 486/586, Summer 2017

(d) a directory cgal_in_circle which contains the CMakeLists and source-code files for the cgal_in_circle

project developed above (in Exercise 4).

After having prepared the repository, run the assignment_precheck program on the repository to confirm that the

precheck passes.

6. In the local repository created in the previous exercise (i.e., Exercise 5), create a new branch called experimental

and then checkout this branch. In this new branch, introduce various combinations of errors into the files (e.g., by

adding or deleting random characters). Push the resulting buggy version of the files to the experimental branch

of the remote repository. Then, run the assignment_precheck program on the experimental branch of the remote

repository (using the -b option to specify the branch to check). Observe the errors that are obtained. Repeat this

process, each time corrupting different files and observing what type of errors result. This exercise is intended

to help you better understand what various types of errors mean so that you can more effectively troubleshoot

problems in later programming assignments. When doing this exercise, be careful not to accidentally push any of

the buggy files to the master branch.

Version: 2017-03-29 Instructor: Michael D. Adams

