
M. D. Adams, An Introduction to the C++ Programming Language (Ver-
sion 2015-02-03), University of Victoria, Victoria, BC, Canada, Feb. 2015,
xii+702 slides, ISBN 978-1-55058-537-7 (paperback), ISBN 978-1-55058-538-
4 (PDF).

Please Show Your Support for These Lecture Slides

If you like these lecture slides, please show your support for them by doing one
or more of the following:

1. Post a review of the lecture slides on Google Play Books and/or Google
Books. This is, by far, the most helpful thing that you can do.

2. Rate the lecture slides on Google Play Books and/or Google Books.

3. Give a +1 to the lecture slides on Google Play Books and/or Google Books.

For your convenience, the URLs for the lecture slides on both Google Play Books
and Google Books are given below. Each URL is also given in the form of a QR
code.

• The lecture slides on Google Play Books:
https://play.google.com/store/books/details?id=cqGBBgAAQBAJ

• The lecture slides on Google Books:
http://books.google.com/books?id=cqGBBgAAQBAJ

https://play.google.com/store/books/details?id=cqGBBgAAQBAJ
http://books.google.com/books?id=cqGBBgAAQBAJ

This page is intentionally left blank.

An Introduction to the C++ Programming Language

(Version: 2015-02-03)

Michael D. Adams

Department of Electrical and Computer Engineering

University of Victoria, Victoria, BC, Canada

Copyright c© 2015 Michael D. Adams

For additional information and resources related to these lecture slides, please visit:

http://www.ece.uvic.ca/˜mdadams/cppbook

The author has taken care in the preparation of this document, but makes no expressed or implied warranty of any kind and assumes no

responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use

of the information or programs contained herein.

Copyright c© 2015 Michael D. Adams

Published by the University of Victoria, Victoria, BC, Canada

This document is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) License. A copy

of this license can be found on page iii of this document. For a simple explanation of the rights granted by this license, see:

http://creativecommons.org/licenses/by-nc-nd/3.0/

This document was typeset with LATEX.

ISBN 978-1-55058-537-7 (paperback)

ISBN 978-1-55058-538-4 (PDF)

License I

Creative Commons Legal Code

Attribution-NonCommercial-NoDerivs 3.0 Unported

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR
DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY
COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS
AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE
TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY
BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS
CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND
CONDITIONS.

1. Definitions

a. "Adaptation" means a work based upon the Work, or upon the Work and
other pre-existing works, such as a translation, adaptation,
derivative work, arrangement of music or other alterations of a
literary or artistic work, or phonogram or performance and includes
cinematographic adaptations or any other form in which the Work may be
recast, transformed, or adapted including in any form recognizably
derived from the original, except that a work that constitutes a
Collection will not be considered an Adaptation for the purpose of
this License. For the avoidance of doubt, where the Work is a musical
work, performance or phonogram, the synchronization of the Work in
timed-relation with a moving image ("synching") will be considered an
Adaptation for the purpose of this License.

b. "Collection" means a collection of literary or artistic works, such as
encyclopedias and anthologies, or performances, phonograms or

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 iii

License II

broadcasts, or other works or subject matter other than works listed
in Section 1(f) below, which, by reason of the selection and
arrangement of their contents, constitute intellectual creations, in
which the Work is included in its entirety in unmodified form along
with one or more other contributions, each constituting separate and
independent works in themselves, which together are assembled into a
collective whole. A work that constitutes a Collection will not be
considered an Adaptation (as defined above) for the purposes of this
License.

c. "Distribute" means to make available to the public the original and
copies of the Work through sale or other transfer of ownership.

d. "Licensor" means the individual, individuals, entity or entities that
offer(s) the Work under the terms of this License.

e. "Original Author" means, in the case of a literary or artistic work,
the individual, individuals, entity or entities who created the Work
or if no individual or entity can be identified, the publisher; and in
addition (i) in the case of a performance the actors, singers,
musicians, dancers, and other persons who act, sing, deliver, declaim,
play in, interpret or otherwise perform literary or artistic works or
expressions of folklore; (ii) in the case of a phonogram the producer
being the person or legal entity who first fixes the sounds of a
performance or other sounds; and, (iii) in the case of broadcasts, the
organization that transmits the broadcast.

f. "Work" means the literary and/or artistic work offered under the terms
of this License including without limitation any production in the
literary, scientific and artistic domain, whatever may be the mode or
form of its expression including digital form, such as a book,
pamphlet and other writing; a lecture, address, sermon or other work
of the same nature; a dramatic or dramatico-musical work; a
choreographic work or entertainment in dumb show; a musical
composition with or without words; a cinematographic work to which are
assimilated works expressed by a process analogous to cinematography;
a work of drawing, painting, architecture, sculpture, engraving or
lithography; a photographic work to which are assimilated works
expressed by a process analogous to photography; a work of applied
art; an illustration, map, plan, sketch or three-dimensional work
relative to geography, topography, architecture or science; a
performance; a broadcast; a phonogram; a compilation of data to the
extent it is protected as a copyrightable work; or a work performed by
a variety or circus performer to the extent it is not otherwise
considered a literary or artistic work.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 iv

License III

g. "You" means an individual or entity exercising rights under this
License who has not previously violated the terms of this License with
respect to the Work, or who has received express permission from the
Licensor to exercise rights under this License despite a previous
violation.

h. "Publicly Perform" means to perform public recitations of the Work and
to communicate to the public those public recitations, by any means or
process, including by wire or wireless means or public digital
performances; to make available to the public Works in such a way that
members of the public may access these Works from a place and at a
place individually chosen by them; to perform the Work to the public
by any means or process and the communication to the public of the
performances of the Work, including by public digital performance; to
broadcast and rebroadcast the Work by any means including signs,
sounds or images.

i. "Reproduce" means to make copies of the Work by any means including
without limitation by sound or visual recordings and the right of
fixation and reproducing fixations of the Work, including storage of a
protected performance or phonogram in digital form or other electronic
medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce,
limit, or restrict any uses free from copyright or rights arising from
limitations or exceptions that are provided for in connection with the
copyright protection under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License,
Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
perpetual (for the duration of the applicable copyright) license to
exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more
Collections, and to Reproduce the Work as incorporated in the
Collections; and,

b. to Distribute and Publicly Perform the Work including as incorporated
in Collections.

The above rights may be exercised in all media and formats whether now
known or hereafter devised. The above rights include the right to make
such modifications as are technically necessary to exercise the rights in
other media and formats, but otherwise you have no rights to make

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 v

License IV

Adaptations. Subject to 8(f), all rights not expressly granted by Licensor
are hereby reserved, including but not limited to the rights set forth in
Section 4(d).

4. Restrictions. The license granted in Section 3 above is expressly made
subject to and limited by the following restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms
of this License. You must include a copy of, or the Uniform Resource
Identifier (URI) for, this License with every copy of the Work You
Distribute or Publicly Perform. You may not offer or impose any terms
on the Work that restrict the terms of this License or the ability of
the recipient of the Work to exercise the rights granted to that
recipient under the terms of the License. You may not sublicense the
Work. You must keep intact all notices that refer to this License and
to the disclaimer of warranties with every copy of the Work You
Distribute or Publicly Perform. When You Distribute or Publicly
Perform the Work, You may not impose any effective technological
measures on the Work that restrict the ability of a recipient of the
Work from You to exercise the rights granted to that recipient under
the terms of the License. This Section 4(a) applies to the Work as
incorporated in a Collection, but this does not require the Collection
apart from the Work itself to be made subject to the terms of this
License. If You create a Collection, upon notice from any Licensor You
must, to the extent practicable, remove from the Collection any credit
as required by Section 4(c), as requested.

b. You may not exercise any of the rights granted to You in Section 3
above in any manner that is primarily intended for or directed toward
commercial advantage or private monetary compensation. The exchange of
the Work for other copyrighted works by means of digital file-sharing
or otherwise shall not be considered to be intended for or directed
toward commercial advantage or private monetary compensation, provided
there is no payment of any monetary compensation in connection with
the exchange of copyrighted works.

c. If You Distribute, or Publicly Perform the Work or Collections, You
must, unless a request has been made pursuant to Section 4(a), keep
intact all copyright notices for the Work and provide, reasonable to
the medium or means You are utilizing: (i) the name of the Original
Author (or pseudonym, if applicable) if supplied, and/or if the
Original Author and/or Licensor designate another party or parties
(e.g., a sponsor institute, publishing entity, journal) for

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 vi

License V

attribution ("Attribution Parties") in Licensor’s copyright notice,
terms of service or by other reasonable means, the name of such party
or parties; (ii) the title of the Work if supplied; (iii) to the
extent reasonably practicable, the URI, if any, that Licensor
specifies to be associated with the Work, unless such URI does not
refer to the copyright notice or licensing information for the Work.
The credit required by this Section 4(c) may be implemented in any
reasonable manner; provided, however, that in the case of a
Collection, at a minimum such credit will appear, if a credit for all
contributing authors of Collection appears, then as part of these
credits and in a manner at least as prominent as the credits for the
other contributing authors. For the avoidance of doubt, You may only
use the credit required by this Section for the purpose of attribution
in the manner set out above and, by exercising Your rights under this
License, You may not implicitly or explicitly assert or imply any
connection with, sponsorship or endorsement by the Original Author,
Licensor and/or Attribution Parties, as appropriate, of You or Your
use of the Work, without the separate, express prior written
permission of the Original Author, Licensor and/or Attribution
Parties.

d. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or
compulsory licensing scheme cannot be waived, the Licensor
reserves the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or
compulsory licensing scheme can be waived, the Licensor reserves
the exclusive right to collect such royalties for any exercise by
You of the rights granted under this License if Your exercise of
such rights is for a purpose or use which is otherwise than
noncommercial as permitted under Section 4(b) and otherwise waives
the right to collect royalties through any statutory or compulsory
licensing scheme; and,

iii. Voluntary License Schemes. The Licensor reserves the right to
collect royalties, whether individually or, in the event that the
Licensor is a member of a collecting society that administers
voluntary licensing schemes, via that society, from any exercise
by You of the rights granted under this License that is for a

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 vii

License VI

purpose or use which is otherwise than noncommercial as permitted
under Section 4(b).

e. Except as otherwise agreed in writing by the Licensor or as may be
otherwise permitted by applicable law, if You Reproduce, Distribute or
Publicly Perform the Work either by itself or as part of any
Collections, You must not distort, mutilate, modify or take other
derogatory action in relation to the Work which would be prejudicial
to the Original Author’s honor or reputation.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR
OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY
KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS,
WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION
OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE
LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR
ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate
automatically upon any breach by You of the terms of this License.
Individuals or entities who have received Collections from You under
this License, however, will not have their licenses terminated
provided such individuals or entities remain in full compliance with
those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
termination of this License.

b. Subject to the above terms and conditions, the license granted here is
perpetual (for the duration of the applicable copyright in the Work).
Notwithstanding the above, Licensor reserves the right to release the
Work under different license terms or to stop distributing the Work at
any time; provided, however that any such election will not serve to
withdraw this License (or any other license that has been, or is

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 viii

License VII

required to be, granted under the terms of this License), and this
License will continue in full force and effect unless terminated as
stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection,
the Licensor offers to the recipient a license to the Work on the same
terms and conditions as the license granted to You under this License.

b. If any provision of this License is invalid or unenforceable under
applicable law, it shall not affect the validity or enforceability of
the remainder of the terms of this License, and without further action
by the parties to this agreement, such provision shall be reformed to
the minimum extent necessary to make such provision valid and
enforceable.

c. No term or provision of this License shall be deemed waived and no
breach consented to unless such waiver or consent shall be in writing
and signed by the party to be charged with such waiver or consent.

d. This License constitutes the entire agreement between the parties with
respect to the Work licensed here. There are no understandings,
agreements or representations with respect to the Work not specified
here. Licensor shall not be bound by any additional provisions that
may appear in any communication from You. This License may not be
modified without the mutual written agreement of the Licensor and You.

e. The rights granted under, and the subject matter referenced, in this
License were drafted utilizing the terminology of the Berne Convention
for the Protection of Literary and Artistic Works (as amended on
September 28, 1979), the Rome Convention of 1961, the WIPO Copyright
Treaty of 1996, the WIPO Performances and Phonograms Treaty of 1996
and the Universal Copyright Convention (as revised on July 24, 1971).
These rights and subject matter take effect in the relevant
jurisdiction in which the License terms are sought to be enforced
according to the corresponding provisions of the implementation of
those treaty provisions in the applicable national law. If the
standard suite of rights granted under applicable copyright law
includes additional rights not granted under this License, such
additional rights are deemed to be included in the License; this
License is not intended to restrict the license of any rights under
applicable law.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 ix

License VIII

Creative Commons Notice

Creative Commons is not a party to this License, and makes no warranty
whatsoever in connection with the Work. Creative Commons will not be
liable to You or any party on any legal theory for any damages
whatsoever, including without limitation any general, special,
incidental or consequential damages arising in connection to this
license. Notwithstanding the foregoing two (2) sentences, if Creative
Commons has expressly identified itself as the Licensor hereunder, it
shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the
Work is licensed under the CCPL, Creative Commons does not authorize
the use by either party of the trademark "Creative Commons" or any
related trademark or logo of Creative Commons without the prior
written consent of Creative Commons. Any permitted use will be in
compliance with Creative Commons’ then-current trademark usage
guidelines, as may be published on its website or otherwise made
available upon request from time to time. For the avoidance of doubt,
this trademark restriction does not form part of this License.

Creative Commons may be contacted at http://creativecommons.org/.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 x

Disclaimer

Many code examples are included throughout these slides.

Often, in order to make an example short enough to fit on a slide,

compromises had to be made in terms of good programming style.

These deviations from good style include (but are not limited to) such

things as:

1 frequently formatting source code in unusual ways to conserve vertical

space in listings;
2 not fully documenting source code with comments;
3 using short meaningless identifier names; and
4 engaging other evil behavior such as using many global variables and

employing constructs like “using namespace std;”.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 xi

Acknowledgments

The author would like to thank Robert Leahy for reviewing various drafts of

many of these slides and providing many useful comments that allowed

the quality of these materials to be improved significantly.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 xii

Part 1

Software

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 1

Why Is Software Important?

almost all electronic devices run some software

automobile engine control system, implantable medical devices, remote

controls, office machines (e.g., photocopiers), appliances (e.g.,

televisions, refrigerators, washers/dryers, dishwashers, air conditioner),

power tools, toys, mobile phones, media players, computers, printers,

photocopies, disk drives, scanners, webcams, MRI machines

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 2

Why Software-Based Solutions?

more cost effective to implement functionality in software than hardware

software bugs easy to fix, give customer new software upgrade

hardware bugs extremely costly to repair, customer sends in old device

and manufacturer sends replacement

systems increasingly complex, bugs unavoidable

allows new features to be added later

implement only absolute minimal functionality in hardware, do the rest in

software

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 3

Software-Related Jobs

many more software jobs than hardware jobs

relatively small team of hardware designers produce platform like iPhone

thousands of companies develop applications for platform

only implement directly in hardware when absolutely necessary (e.g., for

performance reasons)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 4

Which Language to Learn?

C, C++, Fortran, Java, MATLAB, C#, Objective C

programming language popularity

http://www.tiobe.com/ TIOBE Software Programming Community

Index Jan 2011 all in top four: Java, C, C++ MATLAB (23rd) Fortran (27th)

Programming Language Popularity Normalized Comparison http://

www.langpop.com/ top three languages: C, Java, C++

international standard

vendor neutral

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 5

C

created by Dennis Ritchie, AT&T Bell Labs in 1970s

international standard ISO/IEC 9899:2011 (informally known as “C11”)

available on wide range of platforms, from microcontrollers to

supercomputers; very few platforms for which C compiler not available

procedural, provides language constructs that map efficiently to machine

instructions

does not directly support object-oriented or generic programming

application domains: system software, device drivers, embedded

applications, application software

greatly influenced development of C++

when something lasts in computer industry for more than 40 years

(outliving its creator), must be good

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 6

C++

created by Bjarne Stroustrup, Bell Labs

originally C with Classes, renamed as C++ in 1983

most recent specification of language in ISO/IEC 14882:2014 (informally

known as “C++14”)

procedural

loosely speaking is superset of C

directly supports object-oriented and generic programming

maintains efficiency of C

application domains: systems software, application software, device

drivers, embedded software, high-performance server and client

applications, entertainment software such as video games, native code for

Android applications

greatly influenced development of C# and Java

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 7

Java

developed in 1990s by James Gosling at Sun Microsystems (later bought

by Oracle Corporation)

de facto standard but not international standard

usually less efficient than C and C++

simplified memory management (with garbage collection)

direct support for object-oriented programming

application domains: web applications, Android applications

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 8

MATLAB

proprietary language, developed by The MathWorks

not general-purpose programming language

application domain: numerical computing

used to design and simulate systems

not used to implement real-world systems

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 9

Fortran

designed by John Backus, IBM, in 1950s

international standard ISO/IEC 1539-1:2010 (informally known as ”Fortran

2008”)

application domain: scientific and engineering applications, intensive

supercomputing tasks such as weather and climate modelling, finite

element analysis, computational fluid dynamics, computational physics,

computational chemistry

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 10

C#

developed by Microsoft, team led by Anders Hejlsberg

ECMA-334 and ISO/IEC 23270:2006

most recent language specifications not standardized by ECMA or

ISO/IEC

intellectual property concerns over Microsoft patents

object oriented

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 11

Objective C

developed by Tom Love and Brad Cox of Stepstone (later bought by NeXT

and subsequently Apple)

used primarily on Apple Mac OS X and iOS

strict superset of C

no official standard that describes Objective C

authoritative manual on Objective-C 2.0 available from Apple

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 12

Why Learn C++?

vendor neutral

international standard

includes C as subset (two languages for price of one) and C is not going

to disappear anytime soon

general purpose

easy to move from C++ to other languages but not in other direction

many other popular languages derived/inspired by C++

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 13

Part 2

C++

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 14

Section 2.1

History of C++

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 15

Motivation

developed by Bjarne Stroustrup starting in 1979 at Computing Science

Research Center of Bell Laboratories, Murray Hill, NJ, USA

doctoral work in Computing Laboratory of University of Cambridge,

Cambridge, UK

study alternatives for organization of system software for distributed

systems

required development of relatively large and detailed simulator

dissertation:

B. Stroustrup. Communication and Control in Distributed Computer

Systems. PhD thesis, University of Cambridge, Cambridge, UK, 1979.

in 1979, joined Bell Laboratories after having finished doctorate

work started with attempt to analyze UNIX kernel to determine to what

extent it could be distributed over network of computers connected by LAN

needed way to model module structure of system and pattern of

communication between modules

no suitable tools available

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 16

Objectives

had bad experiences writing simulator during Ph.D. studies; originally

used Simula for simulator; later forced to rewrite in BCPL for speed; more

low level than C; BCPL was horrible to use

notion of what properties good tool would have motivated by these

experiences

suitable tool for projects like simulator, operating system, other systems

programming tasks should:

support for effective program organization (like in Simula) (i.e., classes,

some form of class hierarchies, some form of support for concurrency,

strong checking of type system based on classes)

produce programs that run fast (like with BCPL)

be able to easily combine separately compilable units into program (like

with BCPL)

have simple linkage convention, essential for combining units written in

languages such as C, Algol68, Fortran, BCPL, assembler into single

program

allow highly portable implementations (only very limited ties to operating

system)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 17

Timeline for C with Classes (1979–1983) I

May 1979 work on C with Classes starts

Oct 1979 initial version of Cpre, preprocessor that added Simula-like

classes to C; language accepted by preprocessor later started

being referred to as C with Classes

Mar 1980 Cpre supported one real project and several experiments (used

on about 16 systems)

Apr 1980 first internal Bell Labs paper on C with Classes published (later

to appear in ACM SIGPLAN Notices in Jan. 1982)

B. Stroustrup. Classes: An abstract data type facility for the

C language. Bell Laboratories Computer Science Technical

Report CSTR-84, Apr. 1980.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 18

Timeline for C with Classes (1979–1983) II

1980 initial 1980 implementation had following features:

classes

derived classes

public/private access control

constructors and destructors

call and return functions (call function implicitly called before

every call of every member function; return function implicitly

called after every return from every member function; can be

used for synchronization)

friend classes

type checking and conversion of function arguments

1981 in 1981, added:

inline functions

default arguments

overloading of assignment operator

Jan 1982 first external paper on C with Classes published

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 19

Timeline for C with Classes (1979–1983) III

B. Stroustrup. Classes: An abstract data type facility for the

C language. ACM SIGPLAN Notices, 17(1):42–51, Jan.

1982.

Feb 1983 more detailed paper on C with Classes published

B. Stroustrup. Adding classes to the C language: An

exercise in language evolution. Software: Practice and

Experience, 13(2):139–161, Feb. 1983.

C with Classes proved very successful; generated considerable interest

first real application of C with Classes was network simulators

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 20

Timeline for C84 to C++98 (1982–1998) I

started to work on cleaned up and extended successor to C with Classes,

initially called C84 and later renamed C++

Spring 1982 started work on Cfront compiler front-end for C84;

initially written in C with Classes and then transcribed to C84;

traditional compiler front-end performing complete check of

syntax and semantics of language, building internal

representation of input, analyzing and rearranging

representation, and finally producing output for some code

generator;

generated C code as output;

difficult to bootstrap on machine without C84 compiler; Cfront

software included special “half-processed” version of C code

resulting from compiling Cfront, which could be compiled with

native C compiler and resulting executable then used to compile

Cfront

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 21

Timeline for C84 to C++98 (1982–1998) II

Dec 1983 C84 (C with Classes) renamed C++;

name used in following paper prepared in Dec. 1983

B. Stroustrup. Data abstraction in C. Bell Labs Technical

Journal, 63(8):1701–1732, Oct. 1984.

(name C++ suggested by Rick Mascitti)

1983 virtual functions added

Note: going from C with Classes to C84 added: virtual functions,

function name and operator overloading, references, constants

(const), user-controlled free-store memory control, improved

type checking

Jan 1984 first C++ manual

B. Stroustrup. The C++ reference manual. AT&T Bell Labs

Computer Science Technical Report No. 108, Jan. 1984.

Sep 1984 paper describing operator overloading published

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 22

Timeline for C84 to C++98 (1982–1998) III

B. Stroustrup. Operator overloading in C++. In Proc. IFIP

WG2.4 Conference on System Implementation Languages:

Experience & Assessment, Sept. 1984.

1984 stream I/O library first implemented and later presented in

B. Stroustrup. An extensible I/O facility for C++. In Proc. of

Summer 1985 USENIX Conference, pages 57–70, June

1985.

Feb 1985 Cfront Release E (first external release); “E” for “Educational”;

available to universities

Oct 1985 Cfront Release 1.0 (first commercial release)

Oct 1985 first edition of C++PL written

B. Stroustrup. The C++ Programming Language. Addison

Wesley, 1986.

(Cfront Release 1.0 corresponded to language as defined in this

book)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 23

Timeline for C84 to C++98 (1982–1998) IV

Oct 1985 tutorial paper on C++

B. Stroustrup. A C++ tutorial. In Proceedings of the ACM

annual conference on the range of computing: mid-80’s

perspective, pages 56–64, Oct. 1985.

Jun 1986 Cfront Release 1.1; mainly bug fix release

Aug 1986 first exposition of set of techniques for which C++ was aiming to

provide support (rather than what features are already

implemented and in use)

B. Stroustrup. What is object-oriented programming? In

Proc. of 14th Association of Simula Users Conference,

Stockholm, Sweden, Aug. 1986.

Sep 1986 first Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA) conference (start of OO hype centered

on Smalltalk)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 24

Timeline for C84 to C++98 (1982–1998) V

Nov 1986 first commercial Cfront PC port (Cfront 1.1, Glockenspiel [in

Ireland])

Feb 1987 Cfront Release 1.2; primarily bug fixes but also added:

pointers to members

protected members

Nov 1987 first conference devoted to C++:

USENIX C++ conference (Santa Fe, NM, USA)

Dec 1987 first GNU C++ release (1.13)

Jan 1988 first Oregon Software (a.k.a. TauMetric) C++ release

Jun 1988 first Zortech C++ release

Oct 1988 first presented templates at USENIX C++ conference (Denver,

CO, USA) in paper:

B. Stroustrup. Parameterized types for C++. In Proc. of

USENIX C++ Conference, pages 1–18, Denver, CO, USA,

Oct. 1988.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 25

Timeline for C84 to C++98 (1982–1998) VI

Oct 1988 first USENIX C++ implementers workshop (Estes Park, CO,

USA)

Jan 1989 first C++ journal “The C++ Report” (from SIGS publications)

started publishing

Jun 1989 Cfront Release 2.0 major cleanup; new features included:

multiple inheritance

type-safe linkage

better resolution of overloaded functions

recursive definition of assignment and initialization

better facilities for user-defined memory management

abstract classes

static member functions

const member functions

protected member functions (first provided in release 1.2)

overloading of operator ->

pointers to members (first provided in release 1.2)

1989 main features of Cfront 2.0 summarized in

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 26

Timeline for C84 to C++98 (1982–1998) VII

B. Stroustrup. The evolution of C++: 1985–1989. USENIX

Computer Systems, 2(3), Summer 1989.

first presented in

B. Stroustrup. The evolution of C++: 1985–1987. In Proc. of

USENIX C++ Conference, pages 1–22, Santa Fe, NM,

USA, Nov. 1987.

Nov 1989 paper describing exceptions published

A. Koenig and B. Stroustrup. Exception handling for C++. In

Proc. of “C++ at Work” Conference, Nov. 1989.

followed up by

A. Koenig and B. Stroustrup. Exception handling for C++. In

Proc. of USENIX C++ Conference, Apr. 1990.

Dec 1989 ANSI X3J16 organizational meeting (Washington, DC, USA)

Mar 1990 first ANSI X3J16 technical meeting (Somerset, NJ, USA)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 27

Timeline for C84 to C++98 (1982–1998) VIII

Apr 1990 Cfront Release 2.1; bug fix release to bring Cfront mostly into

line with ARM

May 1990 annotated reference manual (ARM) published

M. A. Ellis and B. Stroustrup. The Annotated C++

Reference Manual. Addison Wesley, May 1990.

(formed basis for ANSI standardization)

May 1990 first Borland C++ release

Jul 1990 templates accepted (Seattle, WA, USA)

Nov 1990 exceptions accepted (Palo Alto, CA, USA)

Jun 1991 second edition of C++PL published

B. Stroustrup. The C++ Programming Language. Addison

Wesley, 2nd edition, June 1991.

Jun 1991 first ISO WG21 meeting (Lund, Sweden)

Sep 1991 Cfront Release 3.0; added templates (as specified in ARM)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 28

Timeline for C84 to C++98 (1982–1998) IX

Oct 1991 estimated number of C++ users 400,000

Feb 1992 first DEC C++ release (including templates and exceptions)

Mar 1992 run-time type identification (RTTI) described in

B. Stroustrup and D. Lenkov. Run-time type identification for

C++. The C++ Report, Mar. 1992.

(RTTI in C++ based on this paper)

Mar 1992 first Microsoft C++ release (did not support templates or

exceptions)

May 1992 first IBM C++ release (including templates and exceptions)

Mar 1993 RTTI accepted (Portland, OR, USA)

Jul 1993 namespaces accepted (Munich, Germany)

1993 further work on Cfront Release 4.0 abandoned after failed

attempt to add exception support

Aug 1994 ANSI/ISO Committee Draft registered

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 29

Timeline for C84 to C++98 (1982–1998) X

Aug 1994 Standard Template Library (STL) accepted (Waterloo, ON, CA);

described in

A. Stepanov and M. Lee. The standard template library.

Technical Report HPL-94-34 (R.1), HP Labs, Aug. 1994.

Aug 1996 export accepted (Stockholm, Sweden)

1997 third edition of C++PL published

B. Stroustrup. The C++ Programming Language. Addison

Wesley Longman, Reading, MA, USA, 3rd edition, 1997.

Nov 1997 final committee vote on complete standard (Morristown, NJ,

USA)

Jul 1998 Microsoft releases VC++ 6.0, first Microsoft compiler to provide

close-to-complete set of ISO C++

Sep 1998 ISO/IEC 14882:1998 (informally known as C++98) published

ISO/IEC 14882:1998 — programming languages — C++,

Sept. 1998.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 30

Timeline for C84 to C++98 (1982–1998) XI

1998 Beman Dawes starts Boost (provides peer-reviewed portable

C++ source libraries)

Feb 2000 special edition of C++PL published

B. Stroustrup. The C++ Programming Language. Addison

Wesley, Reading, MA, USA, special edition, Feb. 2000.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 31

Timeline After C++98 (1998–Present) I

Apr 2001 motion passed to request new work item: technical report on

libraries (Copenhagen, Denmark); later to become ISO/IEC TR

19768:2007

Oct 2003 ISO/IEC 14882:2003 (informally known as C++03) published;

essentially bug fix release; no changes to language from

programmer’s point of view

ISO/IEC 14882:2003 — programming languages — C++,

Oct. 2003.

2003 work on C++0x (now known as C++11) starts

Oct 2004 estimated number of C++ users 3,270,000

Apr 2005 first votes on features for C++0x (Lillehammer, Norway)

2005 auto, static_assert, and rvalue references accepted in

principle

Apr 2006 first full committee (official) votes on features for C++0x (Berlin,

Germany)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 32

Timeline After C++98 (1998–Present) II

Sep 2006 performance technical report (TR 18015) published:

ISO/IEC TR 18015:2006 — information technology —

programming languages, their environments and system

software interfaces — technical report on C++

performance, Sept. 2006.

work spurred by earlier proposal to standardize subset of C++

for embedded systems called Embedded C++ (or just EC++);

EC++ motivated by performance concerns

Apr 2006 decision to move special mathematical functions to separate ISO

standard (Berlin, Germany); deemed too specialized for most

programmers

Nov 2007 ISO/IEC TR 19768:2007 (informally known as C++TR1)

published;

ISO/IEC TR 19768:2007 — information technology —

programming languages — technical report on C++ library

extensions, Nov. 2007.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 33

Timeline After C++98 (1998–Present) III

specifies series of library extensions to be considered for

adoption later in C++

2009 another particularly notable book on C++ published

B. Stroustrup. Programming: Principles and Practice Using

C++. Addison Wesley, Upper Saddle River, NJ, USA, 2009.

Aug 2011 ISO/IEC 14882:2011 (informally known as C++11) ratified

ISO/IEC 14882:2011 — information technology —

programming languages — C++, Sept. 2011.

2013 fourth edition of C++PL published

B. Stroustrup. The C++ Programming Language. Addison

Wesley, 4th edition, 2013.

2014 ISO/IEC 14882:2014 (informally known as C++14) ratified

ISO/IEC 14882:2014 — information technology —

programming languages — C++, 2014.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 34

Additional Comments

reasons for using C as starting point:

flexibility (can be used for most application areas)

efficiency

availability (C compilers available for most platforms)

portability (source code relatively portable from one platform to another)

main sources for ideas for C++ (aside from C) were Simula, Algol68,

BCPL, Ada, Clu, ML; in particular:

Simula gave classes

Algol68 gave operator overloading, references, ability to declare variables

anywhere in block

BCPL gave // comments

exceptions influenced by ML

templates influenced by generics in Ada and parameterized modules in Clu

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 35

C++ User Population

Time Estimated Number of Users

Oct 1979 1

Oct 1980 16

Oct 1981 38

Oct 1982 85

Oct 1983 ??+2 (no Cpre count)

Oct 1984 ??+50 (no Cpre count)

Oct 1985 500

Oct 1986 2,000

Oct 1987 4,000

Oct 1988 15,000

Oct 1989 50,000

Oct 1990 150,000

Oct 1991 400,000

Oct 2004 over 3,270,000

above numbers are conservative

1979 to 1991: C++ user population doubled approximately every 7.5

months

stable growth thereafter

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 36

Success of C++

C++ very successful programming language

not luck or solely because based on C

efficient, provides low-level access to hardware, but also supports

abstraction

non-proprietary: in 1989, all rights to language transferred to standards

bodies (first ANSI and later ISO) from AT&T

multi-paradigm language, supporting procedural, object-oriented, generic,

and functional (e.g., lambda functions) programming

does not force particular programming style

reasonably portable

has continued to evolve, incorporating new ideas (e.g., templates,

exceptions, STL)

stable: high degree of compatibility with earlier versions of language

very strong bias towards providing general-purpose facilities rather than

more application-specific ones

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 37

Application Areas

banking and financial (funds transfer, financial modelling, teller machines)

classical systems programming (compilers, operating systems, device

drivers, network layers, editors, database systems)

small business applications (inventory systems)

desktop publishing (document viewers/editors, image editing)

embedded systems (cameras, cell phones, airplanes, medical systems,

appliances)

entertainment (games)

GUI

hardware design and verification

scientific and numeric computation (physics, engineering, simulations,

data analysis, geometry processing)

servers (web servers, billing systems)

telecommunication systems (phones, networking, monitoring, billing,

operations systems)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 38

Section 2.1.1

References

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 39

Evolution of C++

B. Stroustrup. A history of C++: 1979–1991. In Proc. of ACM History of

Programming Languages Conference, pages 271–298, Mar. 1993

B. Stroustrup. The Design and Evolution of C++. Addison Wesley, Mar.

1994.

B. Stroustrup. Evolving a language in and for the real world: C++

1991–2006. In Proc. of the ACM SIGPLAN Conference on History of

Programming Languages, pages 4–1–4–59, 2007.

Cfront software available from Computer History Museum’s Software

Preservation Group http://www.softwarepreservation.org.

(See http://www.softwarepreservation.org/projects/c_plus_plus/cfront).

ISO JTC1/SC22/WG21 web site. http://www.open-std.org/jtc1/

sc22/wg21/.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 40

Standards Documents

ISO/IEC 14882:1998 — programming languages — C++, Sept. 1998.

ISO/IEC 14882:2003 — programming languages — C++, Oct. 2003.

ISO/IEC TR 18015:2006 — information technology — programming

languages, their environments and system software interfaces —

technical report on C++ performance, Sept. 2006.

ISO/IEC TR 19768:2007 — information technology — programming

languages — technical report on C++ library extensions, Nov. 2007.

ISO/IEC 14882:2011 — information technology — programming

languages — C++, Sept. 2011.

ISO/IEC 14882:2014 — information technology — programming

languages — C++, 2014.

ISO JTC1/SC22/WG21 web site. http://www.open-std.org/jtc1/

sc22/wg21/.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 41

Section 2.2

Getting Started

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 42

hello Program: hello.cpp

1 #include <iostream >

2

3 int main(int argc , char** argv)

4 {

5 std::cout << "Hello , world!\n";

6 return 0;

7 }

program prints message “Hello, world!” and then exits

starting point for execution of C++ program is function called main; every

C++ program must define function called main

#include preprocessor directive to include complete contents of file

iostream standard header file that defines various types and variables

related to I/O

std::cout is standard output stream (defaults to user’s terminal)

<< is output operator

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 43

Software Build Process

Source Code

File
Compile Link

(.o)

Object File

Compile

Compile

...
...

Object File

(.o)

Object File

(.o)

Executable

Program

...
...

(.cpp, .hpp)

(.cpp, .hpp)

Source Code

File

Source Code

File

(.cpp, .hpp)

start with C++ source code files (.cpp, .hpp)

compile: convert source code to object code

object code stored in object file (.o)

link: combine contents of one or more object files (and possibly some

libraries) to produce executable program

executable program can then be run directly

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 44

GNU Compiler Collection (GCC) C++ Compiler

g++ command provides both compiling and linking functionality

command-line usage:

g++ [options] input file . . .

compile C++ source file file.cpp to produce object code file file.o:

g++ -c file.cpp

link object files file 1.o, file 2.o, . . . to produce executable file executable:

g++ -o executable file 1.o file 2.o . . .

particularly useful g++ command-line options include:
-c compile only (i.e., do not link)

-o file use file file for output

-g include debugging information

-On set optimization level to n (0 almost none; 3 full)

-std=c++14 conform to C++14 standard

-pthread enable concurrency support (via pthreads library)

-Idir specify additional directory dir to search for include files

-Ldir specify additional directory dir to search for libraries

-llib link with library lib

-Wall enable all warning messages

web page: http://www.gnu.org/software/gcc

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 45

Manually Building hello Program

numerous ways in which hello program could be built

often advantageous to compile each source file separately

can compile and link as follows:
1 compile source code file hello.cpp to produce object file hello.o:

g++ -c hello.cpp

2 link object file hello.o to produce executable program hello:

g++ -o hello hello.o

generally, manual building of program is quite tedious, especially when

program consists of multiple source files and additional compiler options

need to be specified

in practice, we use tools to automate build process (e.g., make utility)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 46

Make

make command

controls generation of executables and/or other non-source files from

program’s source files

extremely popular tool for automating build process

available on many platforms (e.g., Unix, Microsoft Windows, Mac OS X);

used extensively on Unix systems

very flexible

can handle building multiple programs consisting of hundreds of source

files or single program consisting of only one source file

can be used to build almost anything (i.e., need not be a program)

for example, all materials for this course typeset using LATEX (e.g.,

coursepack, slides, handouts, exams), and make utility used to compile

LATEX source code into PDF documents

one of most popular implementations of make is GNU Make

GNU Make web page: http://www.gnu.org/software/make

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 47

make Command

target is something that can be built, typically (but not necessarily) file

such as executable file or object file

make command driven by data file called makefile

makefile usually named Makefile or makefile

command-line usage:

make [options] [targets]

targets: one or more targets to be built

by default, looks for makefile called makefile and then Makefile

if no targets are specified, will build first target specified in makefile

only builds files that are out of date

options: additional options (see below)

most common command-line options include:

-n show commands that would be executed but do not actu-

ally execute them

-f makefile use makefile makefile

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 48

Makefile

makefile specifies targets and rules for building targets

each rule in makefile has following form:

targets : prerequisites

commands

. . .

indentation shown above must be with tab character and not spaces

targets: list of one or more targets

prerequisites: files on which targets depend (i.e., files used to produce

targets)

commands: actions that must be carried out to produce target from its

prerequisites

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 49

Makefile for hello Program

1 # CXX: The C++ compiler command.
2 # CXXFLAGS: The C++ compiler options.
3 # LDFLAGS: The linker options (if any)
4 CXX = g++
5 CXXFLAGS = -g -O
6 LDFLAGS =
7

8 # The all target builds all of the programs handled by
9 # the makefile.

10 all: hello
11

12 # The clean target removes all of the executable files
13 # and object files produced by the build process.
14 clean:
15 rm -f hello *.o
16

17 # The hello target builds the hello executable.
18 hello: hello.o
19 $(CXX) $(CXXFLAGS) -o $@ $ˆ $(LDFLAGS)
20

21 # Indicate that the all and clean targets do not
22 # correspond to actual files.
23 .PHONY: all clean

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 50

Commentary on Makefile for hello Program

chain of dependencies: all→ hello→ hello.o→ hello.cpp

all target: builds all of the programs handled by the makefile (e.g.,

hello)

hello target: compiles and links the hello program

clean target: removes all of the executable files and object files produced

by build process (e.g., hello, hello.o)

although all and clean have no special meaning to make, very common

practice to provide targets with these particular names in all makefiles

normally a target is associated with file of the same name

phony target is target that is not associated with any file (e.g., all, clean)

some special make variables:

$@ target of the rule

$< name of the first prerequisite

$ˆ names of all of the prerequisites with spaces between them

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 51

Source-Level Debuggers

unfortunately, software does not always work as intended due to errors in

code (i.e., bugs)

how does one go about fixing bugs in time-efficient manner?

source-level debugger is essential tool

single stepping: step through execution of code, one source-code line at a

time

breakpoints: pause execution at particular points in code

watchpoints: pause execution when the value of variable is changed

print values of variables

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 52

GNU Debugger (GDB)

GNU Debugger (GDB) is powerful source-level debugger

home page: http://www.gnu.org/software/gdb

available on most platforms (e.g., Unix, Microsoft Windows)

most popular source-level debugger on Unix systems

allows one to see what is happening inside program as it executes or what

a program was doing at the moment it crashed

has all of the standard functionality of a source-level debugger (e.g.,

breakpoints, watchpoints, single-stepping)

gdb command

command-line usage:

gdb [options] executable

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 53

gdb Commands

help

Print help information.

quit

Exit debugger.

run [arglist]

Start the program (with arglist if specified).

print expr

Display the value of the expression expr.

bt

Display a stack backtrace.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 54

gdb Commands

list

Type the source code lines in the vicinity of where the program is currently

stopped.

break function.

Set a breakpoint at function.

c

Continue running the program (e.g., after stopping at a breakpoint).

next

Execute the next program line, stepping over any function calls in the line.

step

Execute the next program line, stepping into any function calls in the line.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 55

GNU Data Display Debugger (DDD)

graphical front-end to command-line debuggers such as GDB

has some fancy graphical data display functionality

all gdb commands available in text window, but can use graphical

interface to enter commands as well

home page: http://www.gnu.org/software/ddd

ddd command

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 56

Valgrind

can detect many memory management and threading bugs

can profile programs in detail

home page: http://www.valgrind.org

valgrind command

valkyrie command (GUI for Memcheck and Helgrind tools in Valgrind)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 57

Section 2.3

C++ Basics

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 58

The C++ Programming Language

created by Bjarne Stroustrup of Bell Labs

originally known as C with Classes; renamed as C++ in 1983

most recent specification of language in ISO/IEC 14882:2014 (informally

known as “C++14”)

next version of standard expected in 2017

procedural

loosely speaking is superset of C

directly supports object-oriented and generic programming

maintains efficiency of C

application domains: systems software, application software, device

drivers, embedded software, high-performance server and client

applications, entertainment software such as video games, native code for

Android applications

greatly influenced development of C# and Java

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 59

Comments

two styles of comments provided

comment starts with // and proceeds to end of line

comment starts with /* and proceeds to first */

// This is an example of a comment.
/* This is another example of a comment. */
/* This is an example of a comment that

spans
multiple lines. */

comments of /* · · · */ style do not nest

/*
/* This sentence is part of a comment. */
This sentence is not part of any comment and
will probably cause a compile error.
*/

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 60

Identifiers

identifiers used to name entities such as:

types

objects (i.e., variables)

functions

valid identifier is sequence of one or more letters, digits, and underscore

characters that does not begin with a digit

examples of valid identifiers:

event_counter

eventCounter

sqrt_2

f_o_o_b_a_r_4_2

identifiers are case sensitive (e.g., counter and cOuNtEr are distinct

identifiers)

identifiers cannot be any of reserved keywords (see next slide)

scope of identifier is context in which identifier is valid (e.g., block,

function, global)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 61

Reserved Keywords

alignas
alignof
and
and_eq
asm
auto
bitand
bitor
bool
break
case
catch
char
char16_t
char32_t
class
compl
const
constexpr
const_cast
continue
decltype

default
delete
do
double
dynamic_cast
else
enum
explicit
export
extern
false
float
for
friend
goto
if
inline
int
long
mutable
namespace
new

noexcept
not
not_eq
nullptr
operator
or
or_eq
private
protected
public
register
reinterpret_cast
return
short
signed
sizeof
static
static_assert
static_cast
struct
switch
template

this
thread_local
throw
true
try
typedef
typeid
typename
union
unsigned
using
virtual
void
volatile
wchar_t
while
xor
xor_eq
override∗
final∗

∗Note: context sensitive

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 62

Section 2.3.1

Objects, Types, and Values

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 63

Fundamental Types

boolean type: bool

character types:

char (may be signed or unsigned)
signed char
unsigned char
char16_t
char32_t
wchar_t

char is distinct type from signed char and unsigned char

standard signed integer types:

signed char
signed short int
signed int
signed long int
signed long long int

standard unsigned integer types:

unsigned char
unsigned short int
unsigned int
unsigned long int
unsigned long long int

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 64

Fundamental Types (Continued)

“int” may be omitted from names of (non-character) integer types (e.g.,

“unsigned” equivalent to “unsigned int” and “signed” equivalent

to “signed int”)

“signed” may be omitted from names of signed integer types, excluding

signed char (e.g., “int” equivalent to “signed int”)

boolean, character, and (signed and unsigned) integer types collectively

called integral types

floating-point types:

float
double
long double

void (i.e., incomplete/valueless) type: void

null pointer type: std::nullptr_t

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 65

Literals

literal (a.k.a. literal constant) is value written exactly as it is meant to be

interpreted

examples of literals:

"Hello, world"

"Bjarne"

’a’

’A’

123

-123

123U

1’000’000’000

3.1415

-1.0L

-1.23456789e-10

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 66

Character Literals

character literal consists of optional prefix followed by one or more

characters enclosed in single quotes

type of character literal determined by prefix (or lack thereof) as follows:
Prefix Literal Type

None ordinary normally char (in special cases int)

u8 UTF-8 char16_t

u UCS-2 char16_t

U UCS-4 char32_t

L wide wchar_t

special characters can be represented by escape sequence:
Character Escape Sequence

newline (LF) \n

horizontal tab (HT) \t

vertical tab (VT) \v

backspace (BS) \b

carriage return (CR) \r

form feed (FF) \f

alert (BEL) \a

Character Escape Sequence

backslash (\) \\

question mark (?) \?

single quote (’) \’

double quote (") \"

octal number ooo \ooo

hex number hhh \xhhh

examples of character literals:

’a’ ’1’ ’!’ ’\n’ u’a’ U’a’ L’a’ u8’a’

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 67

Character Literals (Continued)

decimal digit characters guaranteed to be consecutive in value (e.g., ’1’

must equal ’0’ + 1)

alphabetic characters are not guaranteed to be consecutive in value (e.g.,

’b’ is not necessarily ’a’ + 1)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 68

String Literals

string literal consists of optional prefix followed by zero or more characters

enclosed in double quotes

string literal has character array type

type of string literal determined by prefix (or lack thereof) as follows:
Prefix Literal Type

None narrow const char[]

u8 UTF-8 const char[]
u UTF-16 const char16_t[]

U UTF-32 const char32_t[]

L wide const wchar_t[]

examples of string literals:

"Hello, World!\n"

"123"

"ABCDEFG"

adjacent string literals are concatenated (e.g., "Hel" "lo" equivalent to

"Hello")

string literals implicitly terminated by null character (i.e., ’\0’)

so, for example, "Hi" means ’H’ followed by ’i’ followed by ’\0’

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 69

Integer Literals

can be specified in decimal, binary, hexadecimal, and octal

number base indicated by prefix (or lack thereof) as follows:

Prefix Number Base

None decimal
Leading 0 octal
0b or 0B binary
0x or 0X hexadecimal

various suffixes can be specified to control type of literal:

u or U

l or L

both u or U and l or L

ll or LL

both u or U and ll or LL

can use single quote as digit separator (e.g., 1’000’000)

examples of integer literals:

42

-123

1’000’000’000’000ULL

0xdeadU

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 70

Integer Literals (Continued)

Suffix Decimal Literal Non-Decimal Literal

None int int

long int unsigned int

long long int long int

unsigned long int

long long int

unsigned long long int

u or U unsigned int unsigned int

unsigned long int unsigned long int

unsigned long long int unsigned long long int

l or L long int long int

long long int unsigned long int

long long int

unsigned long long int

Both u or U unsigned long int unsigned long int

and l or L unsigned long long int unsigned long long int

ll or LL long long int long long int

unsigned long long int

Both u or U unsigned long long int unsigned long long int

and ll or LL

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 71

Floating-Point Literals

type of literal indicated by suffix (or lack thereof) as follows:

Suffix Type

None double

f or F float

l or L long double

examples of double literals:

-1.5

1.414

1.25e-8

examples of float literals:

-1.5f

1.414F

1.25e-8f

examples of long double literals:

-1.5L

1.25e-20L

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 72

Boolean and Pointer Literals

boolean literals:

true

false

pointer literal:

nullptr

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 73

Declarations and Definitions

declaration introduces identifier for type, object (i.e., variable), or function

(without necessarily providing full information about identifier)

in case of object, specifies type (of object)

in case of function, specifies number of parameters, type of each

parameter, and type of return value

each identifier must be declared before it can be used (i.e., referenced)

definition provides full information about identifier and causes entity

associated with identifier (if any) to be created

in case of type, provides full details about type

in case of object, causes storage to be allocated for object and object to be

created

in case of function, provides code for function body

in case of objects, in most (but not all) contexts, declaring object also

defines it

can declare identifier multiple times but can define only once

above terminology often abused, with “declaration” and “definition” being

used interchangeably

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 74

Examples of Declarations and Definitions

int count; // declare and define count
extern double alpha; // (only) declare alpha

void func() { // declare and define func
int n; // declare and define n
double x = 1.0; // declare and define x
// ...

}

bool isOdd(int); // declare isOdd
bool isOdd(int x); // declare isOdd (x ignored)

bool isOdd(int x) { // declare and define isOdd
return x % 2;

}

struct Thing; // declare Thing

struct Vector2 { // declare and define Vector2
double x;
double y;

};

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 75

Arrays

array is collection of one or more objects of same type that are stored

contiguously in memory

each element in array identified by (unique) integer index, with indices

starting from zero

array denoted by []

example:

double x[10]; // array of 10 doubles
int data[512][512]; // 512 by 512 array of ints

elements of array accessed using subscripting operator []

example:

int x[10];
// elements of arrays are x[0], x[1], ..., x[9]

in C++ rarely ever need to use arrays

use std::array or std::vector type instead (as this has many

practical advantages over array)

will revisit std::array and std::vector types later

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 76

Array Example

1

2

3

4

a[0]

a[1]

a[2]

a[3]

NameAddress

1000

1008

1012

1004

sizeof(int) is 4

array a starts at address 1000

int a[4] = {1, 2, 3, 4};

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 77

Pointers

pointer is object whose value is address in memory where another object

is stored

pointer to object of type T denoted by T*

null pointer is special pointer value that does not refer to any valid

memory location

null pointer value provided by nullptr keyword

accessing object to which pointer refers called dereferencing

if p is pointer, *p is object to which pointer refers (i.e., “*” is dereference

operator)

if x is object of type T, &x is address of object (which has type T*)

example:

char c;
char* cp = nullptr; // cp is pointer to char
char* cp2 = &c; // cp2 is pointer to char

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 78

Pointer Example

42

1000

i

p

NameAddress

1000

1004

&p is ((int**)1004)

&i is ((int*)1000)

sizeof(int*) is 4

sizeof(int) is 4

int* p = &i;

int i = 42;

assert(*p == 42);

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 79

References

reference is alias (i.e., nickname) for already existing object

two kinds of references:

1 lvalue reference
2 rvalue reference

lvalue reference to object of type T denoted by T&

rvalue reference to object of type T denoted by T&&

initializing reference called reference binding

lvalue and rvalue references differ in their binding properties (i.e., to what

kinds of objects reference can be bound)

in most contexts, lvalue references usually needed

rvalue references used in context of move constructors and move

assignment operators (to be discussed later)

example:

int x;
int& y = x; // y is lvalue reference to int
int&& tmp = 3; // tmp is rvalue reference to int

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 80

References Example

42 i, j

NameAddress

sizeof(int) is 4

1000

&i is ((int*)1000)

int& j = i;

assert(j == 42);

int i = 42;

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 81

Addresses, Pointers, and References

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 82

Type Aliases with typedef Keyword

typedef keyword used to create alias for existing type

example:

typedef long long BigInt;
BigInt i; // i has type long long

typedef char* CharPtr;
CharPtr p; // p has type char*

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 83

Type Aliases with using Statement

using statement can be used to create alias for existing type

probably preferable to use using statement over typedef

example:

using BigInt = long long;
BigInt i; // i has type long long

using CharPtr = char*;
CharPtr p; // p has type char*

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 84

The extern Keyword

extern keyword used to declare object/function in separate translation

unit

example:

extern int evil_global_variable;
// declaration only
// actual definition in another file

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 85

The const Qualifier

const qualifier specifies that object has value that is constant (i.e.,

cannot be changed)

following defines x as int with value 42 that cannot be modified:

const int x = 42;

example:

const int x = 42;
x = 13; // ERROR: x is const
const int& x1 = x; // OK
const int* p1 = &x; // OK
int& x2 = x; // ERROR: x const, x2 not const
int* p2 = &x; // ERROR: x const, *p2 not const

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 86

The volatile Qualifier

volatile qualifier used to indicate that object can change due to agent

external to program (e.g., memory-mapped device, signal handler)

compiler cannot cannot optimize away reads and write operations on

volatile objects (e.g., repeated reads without intervening writes

cannot be optimized away)

volatile qualifier typically used when object:

corresponds to register of memory-mapped device

may be modified by signal handler

example:

volatile int x;
volatile unsigned char* deviceStatus;

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 87

The auto Keyword

in various contexts, auto keyword can be used as place holder for type

in most of these contexts, implication is that compiler must deduce type

example:

auto i = 3; // i has type int
auto j = i; // j has type int
auto& k = i; // k has type int&
const auto& n = i; // n has type const int&
auto x = 3.14; // x has type double

very useful in generic programming (covered later) when types not always

easy to determine

can potentially save typing long type names

can lead to more readable code (if well used)

if overused, can lead to bugs (sometimes very subtle ones) and difficult to

read code

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 88

Section 2.3.2

Operators and Expressions

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 89

Operators

Arithmetic Operators

Operator Name Syntax

addition a + b

subtraction a - b

unary plus +a

unary minus -a

multiplication a * b

division a / b

modulo (i.e., remainder) a % b

pre-increment ++a

post-increment a++

pre-decrement --a

post-decrement a--

Bitwise Operators

Operator Name Syntax

bitwise NOT ˜a

bitwise AND a & b

bitwise OR a | b

bitwise XOR a ˆ b

arithmetic left shift a << b

arithmetic right shift a >> b

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 90

Operators (Continued 1)

Assignment and

Compound-Assignment Operators

Operator Name Syntax

assignment a = b

addition assignment a += b

subtraction assignment a -= b

multiplication assignment a *= b

division assignment a /= b

modulo assignment a %= b

bitwise AND assignment a &= b

bitwise OR assignment a |= b

bitwise XOR assignment a ˆ= b

arithmetic left shift assignment a <<= b

arithmetic right shift assignment a >>= b

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 91

Operators (Continued 2)

Logical/Relational Operators

Operator Name Syntax

equal a == b

not equal a != b

greater than a > b

less than a < b

greater than or equal a >= b

less than or equal a <= b

logical negation !a

logical AND a && b

logical OR a || b

Member and Pointer Operators

Operator Name Syntax

array subscript a[b]

indirection *a

address of &a

member selection a.b

member selection a->b

member selection a.*b

member selection a->*b

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 92

Operators (Continued 3)

Other Operators

Operator Name Syntax

function call a(...)

comma a, b

ternary conditional a ? b : c

scope resolution a::b

sizeof sizeof(a)

allocate storage new T

allocate storage (array) new T[a]

deallocate storage delete a

deallocate storage (array) delete[] a

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 93

Operators (Continued 4)

Other Operators (Continued)

Operator Name Syntax

type ID typeid(a)

type cast (T) a

const cast const_cast<T>(a)

static cast static_cast<T>(a)

dynamic cast dynamic_cast<T>(a)

reinterpret cast reinterpret_cast<T>(a)

throw throw a

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 94

Operator Precedence

Precedence Operator Name Associativity

1 :: scope resolution none

2 . member selection (object) left to right

-> member selection (pointer)

[] subscripting

() function call

() value construction

++ postfix increment

-- postfix decrement

typeid() type name

const_cast type cast

dynamic_cast type cast

reinterpret_cast type cast

static_cast type cast

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 95

Operator Precedence (Continued 1)

Precedence Operator Name Associativity

3 sizeof size of object/type right to left

++ prefix increment

-- prefix decrement

˜ bitwise NOT

! logical NOT

- unary minus

+ unary plus

& address of

* indirection

new create object

delete destroy object

() cast

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 96

Operator Precedence (Continued 2)

Precedence Operator Name Associativity

4 .* member selection (objects) left to right

->* member selection (pointers)

5 * multiplication left to right

/ division

% modulus

6 + addition left to right

- subtraction

7 << left shift left to right

>> right shift

8 < less than left to right

<= less than or equal

> greater than

>= greater than or equal

9 == equality left to right

!= inequality

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 97

Operator Precedence (Continued 3)

Precedence Operator Name Associativity

10 & bitwise AND left to right

11 ˆ bitwise XOR left to right

12 | bitwise OR left to right

13 && logical AND left to right

14 || logical OR left to right

15 ? : ternary conditional right to left

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 98

Operator Precedence (Continued 4)

Precedence Operator Name Associativity

16 = assignment right to left

*= multiplication assignment

/= division assignment

%= modulus assignment

+= addition assignment

-= subtraction assignment

<<= left shift assignment

>>= right shift assignment

&= bitwise AND assignment

|= bitwise OR assignment

ˆ= bitwise XOR assignment

17 throw throw exception right to left

18 , comma left to right

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 99

Alternative Tokens

Alternative Primary

and &&

bitor |

or ||

xor ˆ

compl ˜

bitand &

and_eq &=

or_eq |=

xor_eq ˆ=

not !

not_eq !=

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 100

Expressions

An expression is a sequence of operators and operands that specifies a

computation.

An expression has a value and a type.

A constant expression is an expression that can be evaluated at compile

time (e.g., 1 + 1).

Example:

int x = 0;
int y = 0;
int* p = &x;
double d = 0.0;
// Evaluate some
// expressions here.

Expression Type Value

x int 0
y = x int& reference to y
x + 1 int 1
x * x + 2 * x int 0
y = x * x int& reference to y
x == 42 bool false
*p int& reference to x
p == &x bool true
x > 2 * y bool false
std::sin(d) double 0.0

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 101

Short-Circuit Evaluation

logical and operator (i.e., &&) :

groups left-to-right

result true if both operands are true, and false otherwise

second operand is not evaluated if first operand is false

logical or operator (i.e., ||) :

groups left-to-right

result is true if either operand is true, and false otherwise

second operand is not evaluated if first operand is true

Example:

int x = 0;
bool b = (x == 0 || ++x == 1);
// b equals true; x equals 0
b = (x != 0 && ++x == 1);
// b equals false; x equals 0

above behavior referred to as short circuit evaluation

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 102

The sizeof Operator

sizeof operator is used to query size of object or type (i.e., amount of

storage required)

for type T, sizeof(T) yields size of T in bytes (e.g., sizeof(int),

sizeof(int[10]))

for expression e, sizeof e yields size of object required to hold result of

e in bytes (e.g., sizeof(&x) where x is some object)

sizeof(char), sizeof(signed char), and

sizeof(unsigned char) guaranteed to be 1

byte is at least 8 bits (usually exactly 8 bits except on more exotic

platforms)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 103

The constexpr Qualifier for Variables

constexpr qualifier indicates object has value that is constant

expression (i.e., can be evaluated at compile time)

constexpr implies const (but converse not necessarily true)

following defines x as constant expression with type const int and

value 42:
constexpr int x = 42;

example:

constexpr int x = 42;
int y = 1;
x = 0; // ERROR: x is const
const int& x1 = x; // OK
const int* p1 = &x; // OK
int& x2 = x; // ERROR: x const, x2 not const
int* p2 = &x; // ERROR: x const, *p2 not const
int a1[x]; // OK: x is constexpr
int a2[y]; // ERROR: y is not constexpr

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 104

Section 2.3.3

Control-Flow Constructs: Selection and Looping

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 105

The if Statement

allows conditional execution of code

syntax has form:

if (expression)
statement1

else
statement2

if expression expression is true, execute statement statement1; otherwise,

execute statement statement2

else clause can be omitted leading to simpler form:

if (expression)
statement1

conditional execution based on more than one condition can be achieved

using construct like:

if (expression1)
statement1

else if (expression2)
statement2

. . .
else

statementn

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 106

The if Statement (Continued)

to include multiple statements in branch of if, must group statements

into single statement using brace brackets

if (expression) {
statement1,1
statement1,2
statement1,3
. . .

} else {
statement2,1
statement2,2
statement2,3
. . .

}

advisable to always include brace brackets even when not necessary, as

this avoids potential bugs caused by forgetting to include brackets later

when more statements added to branch of if

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 107

The if Statement: Example

example with else clause:

int x = someValue;
if (x % 2 == 0) {

std::cout << "x is even\n";
} else {

std::cout << "x is odd\n";
}

example without else clause:

int x = someValue;
if (x % 2 == 0) {

std::cout << "x is divisible by 2\n";
}

example that tests for more than one condition:

int x = someValue;
if (x > 0) {

std::cout << "x is positive\n";
} else if (x < 0) {

std::cout << "x is negative\n";
} else {

std::cout << "x is zero\n";
}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 108

The switch Statement

allows conditional execution of code based on value of integer expression

syntax has form:

switch (expression) {
case const expr1:

statements1
case const expr2:

statements2
. . .
case const exprn:

statementsn
default:

statements
}

expression is integer expression; const expri is constant integer

expression (e.g., 2, 5+3, 3*5-11)

if expression expression equals const expri, jump to beginning of

statements statementsi;

if expression expr does not equal const expri for any i, jump to beginning

of statements statements;

then, continue executing statements until break statement is

encountered

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 109

The switch Statement: Example

int x = someValue;
switch (x) {
case 0:

// Note that there is no break here.
case 1:

std::cout << "x is 0 or 1\n";
break;

case 2:
std::cout << "x is 2\n";
break;

default:
std::cout << "x is not 0, 1, or 2\n";
break;

}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 110

The while Statement

looping construct

syntax has form:

while (expression)
statement

if expression expression is true, statement statement is executed; this

process repeats until expression expression becomes false

to allow multiple statements to be executed in loop body, must group

multiple statements into single statement with brace brackets

while (expression) {
statement1
statement2
statement3
. . .

}

advisable to always use brace brackets, even when loop body consists of

only one statement

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 111

The while Statement: Example

// print hello 10 times
int n = 10;
while (n > 0) {

std::cout << "hello\n";
--n;

}

// loop forever, printing hello
while (true) {

std::cout << "hello\n";
}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 112

The for Statement

looping construct

has following syntax:

for (statement1; expression; statement2)
statement3

first, execute statement statement1;

then, while expression expression is true, execute statement statement3
followed by statement statement2

to include multiple statements in loop body, must group multiple

statements into single statement using brace brackets; advisable to always

use brace brackets, even when loop body consists of only one statement:

for (statement1; expression; statement2) {
statement3,1
statement3,2
. . .

}

any objects declared in statement1 go out of scope as soon as for loop

ends

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 113

The for Statement (Continued)

consider for loop:

for (statement1; expression; statement2)
statement3

above for loop can be equivalently expressed in terms of while loop

as:

{
statement1;
while (expression) {

statement3
statement2;

}
}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 114

The for Statement: Example

example with single statement in loop body:

// Print the integers from 0 to 9 inclusive.
for (int i = 0; i < 10; ++i)

std::cout << i << "\n";

example with multiple statements in loop body:

int values[10];
// ...
int sum = 0;
for (int i = 0; i < 10; ++i) {

// Stop if value is negative.
if (values[i] < 0) {

break;
}
sum += values[i];

}

example with error in assumption about scoping rules:

for (int i = 0; i < 10; ++i) {
std::cout << i << "\n";

}
++i; // ERROR: i no longer exists

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 115

The Range-Based for Statement

variant of for loop for iterating over elements in range

example:

int array[4] = {1, 2, 3, 4};
// Triple the value of each element in the array.
for (int& x : array) {

x *= 3;
}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 116

The do Statement

looping construct

has following general syntax:

do
statement

while (expression);

statement statement executed;

then, expression expression evaluated;

if expression expression is true, entire process repeats from beginning

to execute multiple statements in body of loop, must group multiple

statements into single statement using brace brackets

do {
statement1
statement2
. . .

} while (expression);

advisable to always use brace brackets, even when loop body consists of

only one statement

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 117

The do Statement: Example

example with single statement in loop body:

// delay by looping 10000 times
int n = 0;
do

++n;
while (n < 10000);

example with multiple statements in loop body:

// print integers from 0 to 9 inclusive
int n = 0;
do {

std::cout << n << "\n";
++n;

} while (n < 10);

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 118

The break Statement

break statement causes enclosing loop or switch to be terminated

immediately

example:

// Read integers from standard input until an
// error or end-of-file is encountered or a
// negative integer is read.
int x;
while (std::cin >> x) {

if (x < 0) {
break;

}
std::cout << x << "\n";

}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 119

The continue Statement

continue statement causes next iteration of enclosing loop to be

started immediately

example:

int values[10];
...
// Print the nonzero elements of the array.
for (int i = 0; i < 10; ++i) {

if (values[i] == 0) {
// Skip over zero elements.
continue;

}
// Print the (nonzero) element.
std::cout << values[i] << "\n";

}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 120

The goto Statement

goto statement transfers control to another statement specified by label

should generally try to avoid use of goto statement

well written code rarely has legitimate use for goto statement

example:

int i = 0;
loop: // label for goto statement
do {

if (i == 3) {
++i;

goto loop;
}
std::cout << i << "\n";
++i;

} while (i < 10);

some restrictions on use of goto (e.g., cannot jump over initialization in

same block as goto)

goto skip; // ERROR
int i = 0;
skip:
++i;

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 121

Section 2.3.4

Functions

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 122

Functions

function has general syntax:
return type function name(argument declarations)
{

statements
}

or, alternatively, can use syntax with trailing return type:
auto function name(argument declarations) -> return type
{

statements
}

return statement exits function, passing specified return value back to

caller

code in function executes until return statement is reached or execution

falls off end of function

if function does not return any value, return type is void

function parameters can be passed by value (i.e., function given copy of

object from caller) or by reference (i.e., function given reference to object

from caller)

to pass parameter by reference, use reference type for parameter

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 123

Functions (Continued)

can also use syntax with automatic deduction of return type:

auto function name(argument declarations)
{

statements
}

if function has no return statement, return type deduced to be void

otherwise, return type deduced to match type in expression of return

statement

if multiple return statements, must use same type for all return

expressions

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 124

Parameters and Arguments

argument (a.k.a. actual parameter): argument is value supplied to

function by caller; appears in parentheses of function-call operator

parameter (a.k.a. formal parameter): parameter is object/reference

declared as part of function that acquires value on entry to function;

appears in function definition/declaration

although abuse of terminology, parameter and argument often used

interchangeably

int square(int i) { // i is parameter
return i * i;

}

void increment(int& n) { // n is parameter
++n;

}

int main() {
int i = 3;
int j = square(i); // i is argument
increment(j); // j is argument

}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 125

Function: Examples

long factorial(long n) {
long result = 1;
while (n > 1) {

result *= n;
--n;

}
return result;

}

void increment(int& x) {
++x;

}

auto square(double x) -> double {
return x * x;

}

auto square(double x) {
return x * x;

}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 126

The main Function

entry point to program is always function called main

has return type of int

can be declared to take either no arguments or two arguments as follows:

int main();

int main(int argc, char* argv[]);

two-argument variant allows arbitrary number of C-style strings to be

passed to program from environment in which program run

argc: number of C-style strings provided to program

argv: array of pointers to C-style strings

argv[0] is name by which program invoked

argv[argc] is guaranteed to be 0 (i.e., null pointer)

argv[1], argv[2], . . ., argv[argc - 1] typically correspond to

command line options

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 127

The main Function (Continued)

suppose that following command line given to shell:

program one two three

main function would be invoked as follows:

int argc = 4;
char* argv[] = {

"program", "one", "two", "three", 0
};
main(argc , argv);

return value of main typically passed back to operating system

can also use function void exit(int) to terminate program, passing

integer return value back to operating system

return statement in main is optional

if control reaches end of main without encountering return statement,

effect is that of executing “return 0;”

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 128

Lifetime

lifetime of object is period of time in which object exists (e.g., block,

function, global)

int x;

void wasteTime()
{

int j = 10000;
while (j > 0) {

--j;
}
for (int i = 0; i < 10000; ++i) {
}

}

in above example: x global scope and lifetime; j function scope and

lifetime; i block scope and lifetime

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 129

Pass-By-Value Versus Pass-By-Reference

pass by value: function is given copy of object from caller

pass by reference: function is given reference to object from caller

if object being passed to function is expensive to copy (e.g., a very large

data type), always faster to pass by reference

if function needs to change value of object in caller, must pass by

reference

example:
void increment0(int x) {

++x; // Increment x by one.
}

void increment(int& x) {
++x; // Increment x by one.

}

void func() {
int i = 0;
increment0(i); // i is passed by value
// i still equals 0 (i was not incremented)
increment(i); // i is passed by reference
// i equals 1 (i was incremented)

}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 130

Pass By Value

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 131

Pass By Reference

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 132

Pass-By-Reference Example

above code is incorrect

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 133

Pass-By-Reference Example (Continued)

code will not compile

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 134

Inline Functions

inline function: function for which compiler copies code from function

definition directly into code of calling function rather than creating

separate set of instructions in memory

since code copied directly into calling function, no need to transfer control

to separate piece of code and back again to caller, eliminating

performance overhead of function call

can request function be made inline by including inline qualifier along

with function return type

inline typically used for very short functions (where overhead of calling

function is large relative to cost of executing code within function itself)

inline function definition must be visible at point of use

example:

inline bool isEven(int x) {
return x % 2 == 0;

}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 135

Inlining of a Function

inlining of isEven function transforms code fragment 1 into code

fragment 2

Code fragment 1:

inline bool isEven(int x) {
return x % 2 == 0;

}

void myFunction() {
int i = 3;
bool result = isEven(i);

}

Code fragment 2:

void myFunction() {
int i = 3;
bool result = (i % 2 == 0);

}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 136

The constexpr Qualifier for Functions

constexpr qualifier indicates return value of function is constant

expression (i.e., can be evaluated at compile time) provided that all

arguments to function are constant expressions

constexpr functions are implicitly inline

constexpr function very restricted in what it can do (e.g., can only call

constexpr functions)

example:

constexpr int factorial(int n) {
return n >= 2 ? (n * factorial(n - 1)) : 1;

}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 137

Function Overloading

function overloading: multiple functions can have same name as long as

they differ in number/type of their arguments

example:

void print(int x) {
std::cout << "int has value " << x << "\n";

}

void print(double x) {
std::cout << "double has value " << x << "\n";

}

void demo() {
int i = 5;
double d = 1.414;
print(i); // calls print(int)
print(d); // calls print(double)
print(42); // calls print(int)
print(3.14); // calls print(double)

}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 138

Default Arguments

can specify default values for arguments to functions

example:

// Compute log base b of x.
double logarithm(double x, double b) {

return std::log(x) / std::log(b);
}

// Declaration of logarithm with a default argument.
double logarithm(double, double = 10.0);

void demo() {
double x =

logarithm (100.0); // calls logarithm(100.0, 10.0)
double y =

logarithm(4.0, 2.0); // calls logarithm(4.0, 2.0)
}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 139

Argument Matching

call of given function name chooses function that best matches actual

arguments

consider all functions in scope for which set of conversions exists so

function could possibly be called

best match is intersection of sets of functions that best match on each

argument

if set of best matches is empty (i.e., no match found), error

if set of best matches has more than one element (i.e., multiple best

matches found), error since call is ambiguous

matches attempted in following order:

1 exact match (only trivial conversions such as T to T&, T& to T, making

const, making volatile)
2 match with promotions (e.g., int to long, float to double)
3 match with standard conversions (e.g., float to int, double to int)
4 match with user-defined conversions
5 match with ellipsis

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 140

Argument Matching: Example

example:

int max(int x, int y) {
return x > y ? x : y;

}
double max(double x, double y) {

return x > y ? x : y;
}

int i, j, k;
double a, b, c;
// ...
k = max(i, j); // calls max(int, int)
c = max(a, b); // calls max(double, double)
c = max(i, b); // ERROR: ambiguous

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 141

Section 2.3.5

Input/Output (I/O)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 142

Basic I/O

#include <iostream>

std::istream: stream from which characters/data can be read (i.e.,

input stream)

std::ostream: stream to which characters/data can be written (i.e.,

output stream)

std::istream std::cin standard input stream

std::ostream std::cout standard output stream

std::ostream std::cerr standard error stream

in most environments, above three streams refer to user’s terminal by

default

output operator (inserter) <<

input operator (extractor) >>

stream can be used as bool expression; converts to true if stream has

not encountered any errors and false otherwise (e.g., if invalid data

read or I/O error occurred)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 143

Basic I/O: Example

example:

std::cout << "Enter an integer: ";
int x;
std::cin >> x;
if (std::cin) {

std::cout << "The integer entered was "
<< x << "\n";

} else {
std::cerr <<

"End-of-file reached or I/O error" << "\n";
}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 144

I/O Manipulators

manipulators provide way to control formatting of data values written to

streams as well as parsing of data values read from streams

include header file iomanip

most manipulators used to control output formatting

focus here on manipulators as they pertain to output

manipulator may have immediate effect (e.g., endl), only affect next data

value output (e.g., setw), or affect all subsequent data values output (e.g.,

setprecision)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 145

I/O Manipulators (Continued)

Name Description

setw set field width

setfill set fill character

endl insert newline and flush

flush flush stream

dec use decimal

hex use hexadecimal

oct use octal

showpos show positive sign

noshowpos do not show positive sign

left left align

right right align

fixed write floating-point values in fixed-point notation

scientific write floating-point values in scientific notation

setprecision for default notation, specify maximum number of mean-

ingful digits to display before and after decimal point; for

fixed and scientific notations, specify exactly how many

digits to display after decimal point (padding with trail-

ing zeros if necessary)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 146

I/O Manipulators Example

example:
#include <iostream >
#include <iomanip >

int main(int argc , char** argv)
{

const double pi = 3.1415926535;
const double big = 123456789.0;

// default notation
std::cout << pi << " " << big << "\n";
// fixed-point notation
std::cout << std::fixed << pi << " " << big << "\n";
// scientific notation
std::cout << std::scientific << pi << " " << big << "\n";
// fixed-point notation with 7 digits after decimal point
std::cout << std::fixed << std::setprecision(7) << pi << " "

<< big << "\n";
// fixed-point notation with precision and width specified
std::cout << std::setw(8) << std::fixed << std::setprecision(2)

<< pi << " " << std::setw(20) << big << "\n";
// fixed-point notation with precision, width, and fill specified
std::cout << std::setw(8) << std::setfill(’x’) << std::fixed

<< std::setprecision(2) << pi << " " << std::setw(20) << big << "\n";

return 0;
}

output:
3.14159 1.23457e+08
3.141593 123456789.000000
3.141593e+00 1.234568e+08
3.1415927 123456789.0000000

3.14 123456789.00
xxxx3.14 xxxxxxxx123456789 .00

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 147

Section 2.3.6

Miscellany

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 148

Namespaces

mechanism for reducing likelihood of naming conflicts (i.e., attempt to use

same identifier to have different meaning in various places in code)

has general syntax:

namespace name {

code

}

all identifiers (e.g., variable names, function names, type names)

declared/defined in code code (i.e., code contained in namespace body)

made to belong to namespace name

identifiers only have to be unique within a single namespace

same identifier can be re-used in different namespaces

scope-resolution operator (i.e., ::) used to specify namespace to which

particular identifier belongs

using statement can be used to make identifiers declared in different

namespaces appear as if they were in current namespace

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 149

Namespaces: Example

using std::cout;

namespace mike {
int someValue;
void initialize() {

cout << "mike::initialize called\n";
someValue = 0;

}
}

namespace fred {
double someValue;
void initialize() {

cout << "fred::initialize called\n";
someValue = 1.0;

}
}

mike::initialize(); // call initialize in namespace mike
fred::initialize(); // call initialize in namespace fred
using mike::initialize;
initialize(); // call initialize in mike namespace

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 150

Memory Allocation: new and delete

to allocate memory, use new statement

to deallocate memory allocated with new statement, use delete

statement

similar to malloc and free in C

two forms of allocation: 1) single object (i.e., nonarray case) and 2) array

of objects

array version of new/delete distinguished by []

example:

char* buffer = new char[64]; // allocate
// array of 64 chars

delete [] buffer; // deallocate array
double* x = new double; // allocate single double
delete x; // deallocate single object

important to match nonarray and array versions of new and delete:

char* buffer = new char[64]; // allocate
delete buffer; // ERROR: nonarray delete to

// delete array
// may compile fine, but crash

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 151

Section 2.4

Classes

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 152

Section 2.4.1

Classes, Members, and Access Specifiers

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 153

Classes

class is user-defined type

class specifies:

1 how objects of class are represented
2 operations that can be performed on objects of class

class consists of zero or more members

members can be of various types: data member, function member, and

others (e.g., type member)

data members define representation of object of class

function members (also called member functions) provide operations on

such objects

interface is part of class that is directly accessible to its users

implementation is part of class that its users access only indirectly

through interface

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 154

Access Specifiers (Public and Private)

can control level of access that users of class have to its members

three levels of access: private, protected, and public

private: member can only be accessed by other members of class and

friends of class

public: member can be accessed by any code

protected: relates to inheritance (discussion deferred until later)

public members constitute class interface

private members constitute class implementation

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 155

Class Example

class typically has form:

class MyClass // The class is named MyClass.
{
public:

// public members
// (i.e., the interface to users)
// usually functions and types (but not data)

private:
// private members
// (i.e., the implementation details only
// accessible by members of class)
// usually functions, types, and data

};

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 156

Default Member Access

class members are private by default

two code examples below are exactly equivalent:

class MyClass {
// ...

};

class MyClass {
private:

// ...
};

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 157

The struct Keyword

struct is class where members public by default

two code examples below are exactly equivalent:

struct MyClass {
// ...

};

class MyClass {
public:

// ...
};

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 158

Data Members

class example:

class Vector_2 { // Two-dimensional vector class.
public:

double x; // The x component of the vector.
double y; // The y component of the vector.

};

Vector_2 v;
v.x = 1.0; // Set data member x to 1.0
v.y = 2.0; // Set data member y to 2.0

above class has data members x and y

members accessed by member-selection operator (i.e., “.”)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 159

Function Members

class example:

class Vector_2 { // Two-dimensional vector class.
public:

double x; // The x component of the vector.
double y; // The y component of the vector.
void initialize(double x_, double y_);

};

void Vector_2::initialize(double x_, double y_) {
x = x_;
y = y_;

}

Vector_2 v; // Create Vector_2 called v.
v.initialize(1.0, 2.0); // Initialize v to (1.0, 2.0).

above class has member function initialize

to refer to member of class outside of class body must use

scope-resolution operator (i.e., ::)

for example, in case of initialize function, we use

Vector_2::initialize

member function always has object of class as implicit parameter

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 160

The this Keyword

member function always has object of class as implicit parameter

implicit parameter passed in form of pointer using special variable called

this

normally, we do not explicitly write “this”, however

example:

class MyClass {
public:

int updateValue(int newValue) {
int oldValue = value;
value = newValue; // "value" means "this->value"
return oldValue;

}
private:

int value;
};

MyClass x;
x.updateValue (5);
// in MyClass::updateValue, variable this equals &x

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 161

Definition of Function Members in Class Body

member function whose definition is provided in body of class is

automatically inline

two code examples below are exactly equivalent:
class MyInteger {

public:

// Set the value of the integer and return the old value.

int setValue(int newValue) {

int oldValue = value;

value = newValue;

return oldValue;

}

private:

int value;

};

class MyInteger {

public:

// Set the value of the integer and return the old value.

int setValue(int newValue);

private:

int value;

};

inline int MyInteger::setValue(int newValue) {

int oldValue = value;

value = newValue;

return oldValue;

}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 162

Type Members

example:

class Point_2 { // Two-dimensional point class.
public:

typedef double Coordinate; // Coordinate type.
Coordinate x; // The x coordinate of the point.
Coordinate y; // The y coordinate of the point.

};

Point_2 p;
// ...
Point_2::Coordinate x = p.x;
// Point_2::Coordinate same as double

above class has type member Coordinate

to refer to type member outside of class body, we must use

scope-resolution operator (i.e., ::)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 163

Friends

normally, only class has access to its private members

sometimes, necessary to allow another class or function to have access to

private members of class

friend of class is function/class that is allowed to access private members

of class

to make function or class friend of another class, use friend statement

example:

class SomeClass; // forward declaration of SomeClass

class MyClass {
// ...
friend void myFunc(); // function myFunc is

// friend of MyClass
friend class SomeClass; // class SomeClass is

// friend of MyClass
// ...

};

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 164

Class Example

class MyClass {
public:

int setValue(int newValue) { // member function
int oldValue = value; // save old value
value = newValue; // change value to new value
return oldValue; // return old value

}
private:

friend void wasteTime();
void doNothing() {}
int value; // data member

};

void wasteTime() {
MyClass x;
x.doNothing(); // OK: friend
x.value = 5; // OK: friend

}

MyClass x; // x is object of type MyClass
x.setValue(5); // call MyClass’s setValue member

// (sets x.value to 5)
x.value = 5; // ERROR: value is private
x.doNothing(); // ERROR: doNothing is private

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 165

const Member Functions

need way to indicate if member function can change value of object

const member function cannot change value of object

class Counter {
public:

int getCount() const {
return count;

}
void setCount(int newCount) {

count = newCount;
}
void incrementCount() {

++count;
}

private:
int count;

};

Counter ctr;
ctr.setCount(0);
int count = ctr.getCount();
const Counter& ctr2 = ctr;
count = ctr2.getCount(); // getCount better be const!

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 166

Propagating Values: Copying and Moving

Suppose that we have two objects of the same type and we want to

propagate the value of one object (i.e., the source) to the other object (i.e.,

the destination).

This can be accomplished in one of two ways: 1) copying or 2) moving.

Copying propagates the value of the source object to the destination

object without modifying the source object.

Moving propagates the value of the source object to the destination

object and is permitted to modify the source object.

Moving is always at least as efficient as copying, and for many types,

moving is more efficient than copying.

For some types, copying does not make sense, while moving does (e.g.,

std::ostream, std::istream).

C++ has always supported copying via copy constructors and copy

assignment operators.

C++11 adds formal support for moving (e.g., move constructors, move

assignment operators).

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 167

Section 2.4.2

Constructors and Destructors

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 168

Constructors

when new object created usually desirable to immediately initialize it to

some known state

prevents object from accidentally being used before it is initialized

constructor is member function that is called automatically when object

created in order to initialize its value

constructor has same name as class (i.e., constructor for class T is

function T::T)

constructor has no return type (not even void)

normally, constructor not called explicitly (exception is placement new)

constructor can be overloaded

before constructor body is entered, all data members of class type are first

constructed

in certain circumstances, constructors may be automatically provided

sometimes, automatically provided constructors will not have correct

behavior

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 169

Default Constructor

constructor that can be called with no parameters known as default

constructor

if no constructors specified, default constructor automatically provided

that calls default constructor for each data member

“default constructor” for built-in type does nothing

class Vector { // Two-dimensional vector class.
public:

Vector() { // Default constructor.
x_ = 0.0; y_ = 0.0;

}
// ...

private:
double x_; // The x component of the vector.
double y_; // The y component of the vector.

};

Vector u; // calls Vector(); u set to (0,0)
Vector x(); // declares function x that returns Vector

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 170

Copy Constructor

constructor taking lvalue reference to object as first parameter that can be

called with one parameter known as copy constructor

used to create object by copying from already-existing object

copy constructor for class T typically is of form T(const T&)

if no copy constructor specified, one is automatically provided that

copies each data member using the data member’s copy constructor

“copy constructor” for built-in type does bitwise copy

class Vector { // Two-dimensional vector class.
public:

// ...
Vector(const Vector& v) { // Copy constructor.

x_ = v.x_; y_ = v.y_;
}
// ...

private:
double x_; // The x component of the vector.
double y_; // The y component of the vector.

};

Vector w(v); // calls Vector(const Vector&)
Vector z = u; // calls Vector(const Vector&)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 171

Move Constructor

constructor taking rvalue reference to object as first parameter that can be

called with one parameter known as move constructor

used to create object by moving from already-existing object

move constructor for class T typically is of form T(T&&)

if no move constructor specified and certain conditions are satisfied, a

move constructor is automatically provided that moves each data member

using the data member’s move constructor

class Vector { // Two-dimensional vector class.
public:

// ...
Vector(Vector&& v) { // Move constructor.

x_ = v.x_; y_ = v.y_;
}
// ...

private:
double x_; // The x component of the vector.
double y_; // The y component of the vector.

};

Vector x(); // declares function x that returns Vector
Vector y = x(); // calls Vector(Vector&&) if move not elided

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 172

Constructor Example

class Vector { // Two-dimensional vector class.
public:

Vector() { // Default constructor.
x_ = 0.0; y_ = 0.0;

}
Vector(const Vector& v) { // Copy constructor.

x_ = v.x_; y_ = v.y_;
}
Vector(Vector&& v) { // Move constructor.

x_ = v.x_; y_ = v.y_;
}
Vector(double x, double y) { // Another constructor.

x_ = x; y_ = y;
}
// ...

private:
double x_; // The x component of the vector.
double y_; // The y component of the vector.

};

Vector u; // calls Vector(); u set to (0,0)
Vector v(1.0, 2.0); // calls Vector(double, double)
Vector w(v); // calls Vector(const Vector&)
Vector z = u; // calls Vector(const Vector&)
Vector x(); // declares function x that returns Vector
Vector y = x(); // calls Vector(Vector&&) if move not elided

four constructors provided

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 173

Initializer Lists

in constructor of class, often we want to control which constructor is used

to initialize each data member

since all data members are constructed before body of constructor is

entered, this cannot be controlled inside body of constructor

to allow control over which constructors are used to initialize individual

data members, mechanism called initializer lists provided

initializer list forces specific constructors to be used to initialize individual

data members before body of constructor is entered

example:
class ArrayDouble { // array of doubles class
public:

ArrayDouble(); // create empty array
ArrayDouble(int size); // create array of specified size
// ...

private:
// ...

};

class Vector { // n-dimensional real vector class
public:

Vector(int size) : data_(size) {}
// force data_ to be constructed with
// ArrayDouble::ArrayDouble(int)

// ...
private:

ArrayDouble data_; // elements of vector
};

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 174

Destructors

when object reaches end of lifetime, typically some cleanup required

before object passes out of existence

destructor is member function that is automatically called when object

reaches end of lifetime in order to perform any necessary cleanup

often object may have allocated resources associated with it (e.g.,

memory, files, devices, network connections, processes/threads)

when object destroyed, must ensure that any resources associated with

object are released

destructors often serve to release resources associated with object

destructor for class T always has name T::˜T

destructor has no return type (not even void)

destructor cannot be overloaded

destructor always takes no parameters

if no destructor is specified, destructor automatically provided that calls

destructor for each data member

sometimes, automatically provided destructor will not have correct

behavior

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 175

Destructor Example

example:

class MyClass {
public:

MyClass(int bufferSize) { // Constructor.
// allocate some memory for buffer
bufferPtr = new char[bufferSize];

}
˜MyClass() { // Destructor.

// free memory previously allocated
delete [] bufferPtr;

}
// copy constructor, assignment operator, ...

private:
char* bufferPtr; // pointer to start of buffer

};

without explicitly-provided destructor (i.e., with destructor automatically

provided by compiler), memory associated with bufferPtr would not be

freed

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 176

Section 2.4.3

Operator Overloading

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 177

Operator Overloading

can specify the meaning of operator whose operands are one or more

user-defined types through process known as operator overloading

operators that can be overloaded:

arithmetic + - * / %

bitwise ˆ & | ˜ << >>

logical ! && ||

relational < > <= >= == !=

assignment =

compound assignment += -= *= /= %= ˆ= &= |= <<= >>=

increment/decrement ++ --

subscript []

function call ()

address, indirection & *

others ->* , -> new delete

not possible to change precedence/associativity or syntax of operators

meaning of operator specified by operator function, where name of

function is operator followed by operator itself (e.g., operator+)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 178

Operator Overloading (Continued 1)

binary operator can be defined either by: 1) member function taking one

argument, or 2) global function taking two arguments

for any binary operator @, a@b can be interpreted as a.operator@(b) or

operator@(a, b)

unary operator can be defined either by: 1) member function taking no

arguments, or 2) global function taking one argument

for any unary operator @, @a can be interpreted as a.operator@() or

operator@(a)

for any postfix unary operator @, a@ can be interpreted as

a.operator@(int) or operator@(a, int) (where second argument

only exists to distinguish postfix operators from prefix ones)

if member and global functions both defined, argument matching rules

determine which is called

assignment, function-call, subscript, and member-selection operators

must be overloaded as member functions

if first operand of overloaded operator not object of class type, must use

global function

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 179

Operator Overloading (Continued 2)

for most part, operators can be defined quite arbitrarily for user-defined

types

for example, no requirement that “++x”, “x += 1”, and “x = x + 1” be

equivalent

of course, probably not advisable to define operators in very

counterintuitive ways, as will inevitably lead to bugs in code

some examples showing how expressions translated into function calls

are as follows:
Expression Member Function Global Function

y = x y.operator=(x) —

y += x y.operator+=(x) operator+=(y, x)

x + y x.operator+(y) operator+(x, y)

++x x.operator++() operator++(x)

x++ x.operator++(int) operator++(x, int)

x == y x.operator==(y) operator==(x, y)

x < y x.operator<(y) operator<(x, y)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 180

Operator Overloading Example: Vector

class Vector { // Two-dimensional vector class
public:

Vector() : x_(0.0), y_(0.0) {}
Vector(double x, double y) : x_(x), y_(y) {}
double x() const { return x_; }
double y() const { return y_; }

private:
double x_; // The x component
double y_; // The y component

};

// Vector addition
Vector operator+(const Vector& u, const Vector& v) {

return Vector(u.x() + v.x(), u.y() + v.y());
}

// Dot product
double operator*(const Vector& u, const Vector& v) {

return u.x() * v.x() + u.y() * v.y();
}

Vector u(1.0, 2.0);
Vector v(u);
Vector w;
w = u + v; // w.operator=(operator+(u, v))
double c = u * v; // calls operator*(u, v)

// since c is built-in type, assignment operator
// does not require function call

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 181

Operator Overloading Example: Array10

class Array10 { // Ten-element real array class
public:

Array10() {
for (int i = 0; i < 10; ++i) { // Zero array

data_[i] = 0;
}

}
const double& operator[](int index) const {

return data_[index];
}
double& operator[](int index) {

return data_[index];
}

private:
double data_[10]; // array data

};

Array10 v;
v[1] = 3.5; // calls Array10::operator[](int)
double c = v[1]; // calls Array10::operator[](int)
const Array10 u;
u[1] = 2.5; // ERROR: u[1] is const
double d = u[1]; // calls Array10::operator[](int) const

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 182

Operator Overloading: Global Versus Member Functions

some considerations: access to private data; whether first operand has

class type

class Complex { // Complex number type.
public:

Complex(double re, double im) : re_(re), im_(im) {}
double real() const { return re_; }
double imag() const { return im_; }
Complex operator+(const double&);

private:
double re_; // The real part.
double im_; // The imaginary part.

};

// Overload as global function.
Complex operator+(const Complex& a, const double& b) {

return Complex(a.real() + b, a.imag());
}

// Overload as member function.
Complex Complex::operator+(const double& b) {

return Complex(real() + b, imag());
}

// This can only be accomplished with global function.
Complex operator+(const double& b, const Complex& a) {

return Complex(b + a.real(), a.imag());
}

void myFunc() {
Complex a(1.0, 2.0);
Complex b(1.0, -2.0);
double r = 2.0;
Complex c = a + r; // could use global or member function

// operator+(a, r) or a.operator+(r)
Complex d = r + a; // must use global function

// operator+(r, a)
// since r.operator+(a) will not work

}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 183

Copy Assignment Operator

for class T, T::operator= having exactly one parameter that is lvalue

reference to T known as copy assignment operator

used to assign, to already-existing object, value of another object by

copying

if no copy assignment operator specified, one automatically provided that

assigns to each data member using the data member’s assignment

operator

copy assignment operator for class T typically is of form

T& operator=(const T&) (returning reference to *this)

copy assignment operator returns (nonconstant) reference in order to

allow for statements like following to be valid (where x, y, and z are of

type T and T::modify is a non-const member function):

x = y = z; // x.operator=(y.operator=(z))
(x = y) = z; // (x.operator=(y)).operator=(z)
(x = y).modify(); // (x.operator=(y)).modify()

be careful to correctly consider case of self-assignment

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 184

Self-Assignment Example

in practice, self assignment typically occurs when references (or pointers)

are involved

example:

void doSomething(SomeType& x, SomeType& y) {
x = y; // self assignment if &x == &y
// ...

}

void myFunc() {
SomeType z;
// ...
doSomething(z, z); // results in self assignment
// ...

}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 185

Move Assignment Operator

for class T, T::operator= having exactly one parameter that is rvalue

reference to T known as move assignment operator

used to assign, to already-existing object, value of another object by

moving

move assignment operator for class T typically is of form

T& operator=(T&&) (returning reference to *this)

move assignment operator returns (nonconstant) reference for same

reason as in case of copy assignment operator

self-assignment should probably not occur in move case (but might be

prudent to protect against “insane” code with assertion) (library effectively

forbids self-assignment for move)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 186

Copy/Move Assignment Operator Example: Complex

class Complex {
public:

Complex(double re = 0.0, double im = 0.0) :
re_(re), im_(im) {}

Complex(const Complex& a) : re_(a.re_), im_(a.im_) {}
Complex(Complex&& a) : re_(a.re_), im_(a.im_) {}
Complex& operator=(const Complex& a) { // Copy assign

if (this != &a) {
re_ = a.re_; im_ = a.im_;

}
return *this;

}
Complex& operator=(Complex&& a) { // Move assign

re_ = a.re_; im_ = a.im_;
return *this;

}
private:

double re_; // The real part.
double im_; // The imaginary part.

};

int main() {
Complex z(1.0, 2.0);
Complex v(1.5, 2.5);
v = z; // v.operator=(z)
v = Complex(0.0, 1.0); // v.operator=(Complex(0.0, 1.0))

}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 187

Section 2.4.4

Miscellany

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 188

Explicitly Deleted/Defaulted Special Member Functions

can explicitly default or delete special member functions (i.e., default

constructor, copy constructor, move constructor, destructor, copy

assignment operator, and move assignment operator)

example:

class Thing {
public:

Thing() = default;

// Prevent copying.
Thing(const Thing&) = delete;
Thing& operator=(const Thing&) = delete;

Thing(Thing&&) = default;
Thing& operator=(Thing&&) = default;
˜Thing() = default;
// ...

};
// Thing is movable but not copyable.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 189

Assignment Operator Example: Buffer

example:
class Buffer { // Character buffer class.
public:

Buffer(int bufferSize) { // Constructor.
bufSize_ = bufferSize;
bufPtr_ = new char[bufferSize];

}
Buffer(const Buffer& buffer) { // Copy constructor.

bufSize_ = buffer.bufSize_;
bufPtr_ = new char[bufSize_];
for (int i = 0; i < bufSize_; ++i)

bufPtr_[i] = buffer.bufPtr_[i];
}
˜Buffer() { // Destructor.

delete [] bufPtr_;
}
Buffer& operator=(const Buffer& buffer) { // Copy assignment operator.

if (this != &buffer) {
delete [] bufPtr_;
bufSize_ = buffer.bufSize_;
bufPtr_ = new char[bufSize_];
for (int i = 0; i < bufSize_; ++i)

bufPtr_[i] = buffer.bufPtr_[i];
}
return *this;

}
// ...

private:
int bufSize_; // buffer size
char* bufPtr_; // pointer to start of buffer

};

without explicitly-provided assignment operator (i.e., with assignment

operator automatically provided by compiler), memory leaks and memory

corruption would result

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 190

Static Data Members

sometimes want to have object that is shared by all objects of class

data member that is shared by all objects of class is called static data

member

to make data member static, declare using static qualifier

static data member must (in most cases) be defined outside body of class

example:

class MyClass {
public:

MyClass() {
++count; // one more object in existence

}
˜MyClass() {

--count; // one less object in existence
}

private:
static int count; // total number of MyClass

// objects in existence
};

// Define (and initialize) count member.
int MyClass::count = 0;

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 191

Static Member Functions

sometimes want to have member function that does not operate on

objects of class

member function of class that does not operate on object of class (i.e.,

has no this variable) called static member function

to make member function static, declare using static qualifier

example:

class MyClass {
public:

// ...
// convert degrees to radians
static double degToRad(double deg) {

return (M_PI / 180.0) * deg;
}

private:
// ...

};

double rad;
rad = MyClass::degToRad (45.0);
rad = x.degToRad (45.0); // x is ignored

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 192

constexpr Member Functions

like non-member functions, member functions can also be qualified as

constexpr to indicate function can be computed at compile time

provided that all arguments to function are constant expressions

some additional restrictions on constexpr member functions relative to

nonmember case (e.g., cannot be virtual)

constexpr member function implicitly inline

constexpr member function not implicitly const (as of C++14)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 193

constexpr Constructors

constructors can also be qualified as constexpr to indicate object

construction can be performed at compile time provided that all

arguments to constructor are constant expressions

constexpr constructor implicitly inline

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 194

Example: Constexpr Constructors and Member Functions

// Two-dimensional vector class.
class Vector {
public:

constexpr Vector() : x_(0), y_(0) {}
constexpr Vector(double x, double y) : x_(x), y_(y) {}
constexpr Vector(const Vector& v) : x_(v.x_), y_(v.y_) {}
constexpr Vector(Vector&& v) : x_(v.x_), y_(v.y_) {}
Vector& operator=(const Vector& v) {

if (this != &v) {
x_ = v.x_; y_ = v.y_;

}
return *this;

}
constexpr double x() const {return x_;}
constexpr double y() const {return y_;}
constexpr double squaredLength() const {
return x_ * x_ + y_ * y_;

}
// ...

private:
double x_; // The x component of the vector.
double y_; // The y component of the vector.

};

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 195

The mutable Qualifier

type for data member can be qualified as mutable meaning that

member does not affect externally visible state of class

mutable data member can be modified in const member function

mutable qualifier often used for mutexes, condition variables, cached

values, statistical information for performance analysis or debugging

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 196

Example: Mutable Qualifier for Statistical Information

#include <iostream >
#include <string >

class Employee {
public:

Employee(int id, std::string& name , double salary) :
id_(id), name_(name), salary_(salary), accessCount_(0) {}

int getId() const {
++accessCount_; return id_;

}
std::string getName() const {

++accessCount_; return name_;
}
double getSalary() const {

++accessCount_; return salary_;
}
// ...
// for debugging
void outputDebugInfo(std::ostream& out) const {

out << accessCount_ << "\n";
}

private:
int id_; // employee ID
std::string name_; // employee name
double salary_; // employee salary
mutable unsigned long accessCount_; // for debugging

};

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 197

Stream Inserters

stream inserters write data to output stream

overload operator<<

have general form

std::ostream& operator<<(std::ostream&, T) where type T is

typically const lvalue reference type

example:

std::ostream& operator<<(std::ostream& outStream ,
const Complex& a)

{
outStream << a.real() << " " << a.imag();
return outStream;

}

inserter and extractor should use compatible formats (i.e., what is written

by extractor should be readable by inserter)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 198

Stream Extractors

stream extractors read data from input stream

overload operator>>

have general form

std::istream& operator>>(std::istream&, T) where type T is

typically non-const lvalue reference type

example:

std::istream& operator>>(std::istream& inStream ,
Complex& a)

{
double real = 0.0;
double imag = 0.0;
inStream >> real >> imag;
a = Complex(real , imag);
return inStream;

}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 199

Section 2.4.5

Temporary Objects

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 200

Temporary Objects

A temporary object is an unnamed object introduced by the compiler.

Temporary objects are used during:

evaluation of expressions

argument passing

function returns (that return by value)

reference initialization

It is important to understand when temporary objects can be introduced,

since the introduction of temporaries impacts performance.

Evaluation of expression:
std::string s1("Hello ");
std::string s2("World");
std::string s;
s = s1 + s2; // must create temporary
// std::string _tmp(s1 + s2);
// s = _tmp;

Argument passing:

double func(const double& x);
func(3); // must create temporary
// double _tmp = 3;
// func(_tmp);

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 201

Temporary Objects (Continued)

Reference initialization:

int i = 2;
const double& d = i; // must create temporary
// double _tmp = i;
// const double& d = _tmp;

Function return:

std::string getMessage();
std::string s;
s = getMessage(); // must create temporary
// std::string _tmp(getMessage());
// s = _tmp;

In most (but not all) circumstances, a temporary object is destroyed as the

last step in evaluating the full expression that contains the point where the

temporary object was created .

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 202

Temporary Objects Example

1 class Complex {
2 public:
3 Complex(double re = 0.0, double im = 0.0) : re_(re),
4 im_(im) {}
5 Complex(const Complex& a) = default;
6 Complex(Complex&& a) = default;
7 Complex& operator=(const Complex& a) = default;
8 Complex& operator=(Complex&& a) = default;
9 ˜Complex() = default;

10 double real() const {return re_;}
11 double imag() const {return im_;}
12 private:
13 double re_; // The real part.
14 double im_; // The imaginary part.
15 };
16

17 Complex operator+(const Complex& a, const Complex& b) {
18 return Complex(a.real() + b.real(), a.imag() + b.imag());
19 }
20

21 int main() {
22 Complex a(1.0, 2.0);
23 Complex b(a + a);
24 b = a + b;
25 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 203

Temporary Objects Example (Continued)

Original code:
int main() {

Complex a(1.0, 2.0);
Complex b(a + a);
b = a + b;

}

Code showing temporaries (assuming no optimization):
int main() {

Complex a(1.0, 2.0);
Complex _tmp1(a + a);
Complex b(_tmp1);
Complex _tmp2(a + b);
b = _tmp2;

}

Original code:
Complex operator+(const Complex& a, const Complex& b) {

return Complex(a.real() + b.real(), a.imag() + b.imag());
}

Code showing temporaries:
Complex operator+(const Complex& a, const Complex& b) {

Complex _tmp(a.real() + b.real(), a.imag() + b.imag());
return _tmp;

}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 204

Prefix Versus Postfix Increment/Decrement

1 class Counter {
2 public:
3 Counter() : count_(0) {}
4 int getCount() const {return count_;}
5 Counter& operator++() { // prefix increment
6 ++count_;
7 return *this;
8 }
9 Counter operator++(int) { // postfix increment

10 Counter old(*this);
11 ++count_;
12 return old;
13 }
14 private:
15 int count_; // counter value
16 };
17

18 int main() {
19 Counter x;
20 Counter y;
21 y = ++x; // no temporaries, int increment, operator=
22 y = x++; // 1 temporary, 1 named, 2 constructors,
23 // 2 destructors, int increment, operator=
24 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 205

Compound Assignment Versus Separate Assignment

1 #include <complex >
2 using std::complex;
3

4 int main() {
5 complex <double> a(1.0, 1.0);
6 complex <double> b(1.0, -1.0);
7 complex <double> z(0.0, 0.0);
8

9 // 2 temporary objects
10 // 2 constructors, 2 destructors
11 // 1 operator=, 1 operator+, 1 operator*
12 z = b * (z + a);
13

14 // no temporary objects
15 // only 1 operator+= and 1 operator*=
16 z += a;
17 z *= b;
18 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 206

Return Value Optimization (RVO)

return value optimization (RVO) is compiler optimization technique that

eliminates copy of return value from local object in function to object in caller

example:

SomeType function() {
return SomeType(); // returns temporary object

}

void caller() {
SomeType x = function(); // copy construction

}

without RVO: return value of function (which is local to function) is copied to new

temporary object (so return value not lost when function returns); then, value of

new temporary object copied to object that is to hold return value

with RVO: return value of function is placed directly in object (in caller) that is to

hold return value

by avoiding need for temporary object to hold return value, eliminates one copy

constructor and destructor call

any good compiler should support RVO, although RVO cannot always be applied

in all circumstances
Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 207

Named Return Value Optimization (NRVO)

named return value optimization (NRVO) is variation on RVO where

return value is named object (i.e., not temporary object)

example:

SomeType function() {
SomeType result;
// ...
return result; // returns named object

}

void caller() {
SomeType x = function(); // copy construction

}

compiler optimizes away result in function and return value

constructed directly in x

effectively, result becomes reference to x

code with NRVO more efficient (i.e., copy constructor and destructor calls

eliminated)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 208

Section 2.4.6

Functors

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 209

Functors

function object (also known as functor) is object that can be invoked or

called as if it were ordinary function

class that provides member function that overloads operator() is

called functor class and object of that class is functor

functors more flexible than functions as functors are objects and can

therefore carry arbitrary state information

functors are extremely useful, especially in generic programming

as we will see later, standard library makes heavy use of functors

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 210

Functor Example: Less Than

struct LessThan { // Functor class
bool operator()(double x, double y) {

return x < y;
}

};

void myFunc() {
double a = 1.0;
double b = 2.0;
LessThan lessThan; // Functor
bool result = lessThan(a, b);
// calls LessThan::operator()(double, double)
// lessThan is functor, not function

// result == true
}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 211

Functor Example With State

class IsGreater { // Functor class
public:

IsGreater(int threshold) : threshold_(threshold) {}
bool operator()(int x) const {

return x > threshold_;
}

private:
// state information for functor
int threshold_; // threshold for comparison

};

void myFunc() {
IsGreater isGreater(5); // functor
int x = 3;
bool result = isGreater(x);
// calls IsGreater::operator()(int)

// result == false
}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 212

Section 2.5

Templates

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 213

Templates

generic programming: algorithms written in terms of types to be

specified later (i.e., algorithms are generic in sense of being applicable to

any type that meets only some very basic constraints)

templates facilitate generic programming

extremely important language feature

avoids code duplication

leads to highly efficient and customizable code

promotes code reuse

C++ standard library makes very heavy use of templates (actually, most of

standard library consists of templates)

many other libraries make heavy use of templates (e.g., CGAL, Boost)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 214

Section 2.5.1

Function Templates

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 215

Motivation for Function Templates

consider following functions:

int max(int x, int y) {
return x > y ? x : y;

}

double max(double x, double y) {
return x > y ? x : y;

}

// more similar-looking max functions...

each of above functions has same general form; that is, for some type T,

we have:

T max(T x, T y) {
return x > y ? x : y;

}

would be nice if we did not have to repeatedly type, debug, test, and

maintain nearly identical code

in effect, would like code to be parameterized on type T

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 216

Function Templates

function template is function parameterized by type

syntax for template function has general form:

template <parameter list> function

parameter list: parameters on which template function depends; each

parameter can be type (designated by class or typename keyword) or

constant

function: function declaration or definition

example:

template <class T> T max(T x, T y); // declaration

template <class T> T max(T x, T y) { // definition
return x > y ? x : y;

}

to explicitly identify particular instance of template, use syntax:

function<parameters>

example:

max<int> refers to int max(int, int)

max<double> refers to double max(double, double)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 217

Template Functions (Continued)

compiler only creates code for template function when it is instantiated

(i.e., used)

therefore, definition of template function must be visible in place where it

is instantiated

consequently, template function definitions usually appear in header file

template code only needs to pass basic syntax checks, unless actually

instantiated

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 218

Template Function: Example

example:

// compute minimum of two values
template <class T> T min (T x, T y) {

return x < y ? x : y;
}

// compute square of value
template <class T> T sqr(T x) {

return x * x;
}

// swap two values
template <class T> void swap(T& x, T& y) {

T tmp = x;
x = y;
y = tmp;

}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 219

Template Function Overloading Resolution

overload resolution proceeds (in order) as follows:

1 look for an exact match on (nontemplate) functions; if found call it
2 look for function template from which function that can be called with exact

match can be generated; if found, call it
3 try ordinary overloading resolution for functions; if function found, call it;

otherwise, call is error

in each step, if more than one match found, call is ambiguous and is error

template function only used in case of exact match (unless explicitly forced)

example:

template <class T> T max(T x, T y) {
return x > y ? x : y;

}

double x, y, z;
int i, j, k;
// ...
z = max(x, y); // calls max<double>
k = max(i, j); // calls max<int>
z = max(i, x); // ERROR: no match
z = max<double>(i, x); // calls max<double>

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 220

Section 2.5.2

Class Templates

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 221

Motivation for Class Templates

consider almost identical complex number classes:
1 class ComplexDouble {
2 ComplexDouble(double re = 0.0, double im = 0.0) : re_(re), im_(im) {}
3 double real() const { return re_; }
4 double imag() const { return im_; }
5 // ...
6 private:
7 double re_; // real part
8 double im_; // imaginary part
9 };

10
11 class ComplexFloat {
12 ComplexFloat(float re = 0.0, float im = 0.0) : re_(re), im_(im) {}
13 float real() const { return re_; }
14 float imag() const { return im_; }
15 // ...
16 private:
17 float re_; // real part
18 float im_; // imaginary part
19 };

both of above classes are special cases of following class parameterized

on type T:
1 class Complex {
2 Complex(T re = T(0), T im = T(0)) : re_(re), im_(im) {}
3 T real() const { return re_; }
4 T imag() const { return im_; }
5 // ...
6 private:
7 T re_; // real part
8 T im_; // imaginary part
9 };

again, would be nice if we did not have to repeatedly type, debug, test,

and maintain nearly identical code
Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 222

Class Templates

class template is class parameterized on types and/or constants

syntax has general form:

template <parameter list> class

parameter list: parameter list for class

class: class declaration or definition

example:

template <class T, unsigned int size >
class MyArray; // declaration

template <class T, unsigned int size >
class MyArray { // definition

// ...
T array_[size];

};

MyArray <double, 100> x;

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 223

Class Templates (Continued)

compiler only generates code for class template when it is instantiated

(i.e., used)

since compiler only generates code for class template when it is

instantiated, definition of template must be visible at point where

instantiated

consequently, class template code usually placed in header file

template code only needs to pass basic syntax checks, unless actually

instantiated

compile errors related to class templates can often be very long and

difficult to parse (especially, when template class has parameters that are

template classes which, in turn, have parameters that are template

classes, and so on)

be careful when nesting angle brackets, since << and >> may be parsed

as left shift and right shift operators in some contexts (e.g., prior to C++11

std::vector<std::complex<double>> would lead to parsing error)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 224

Class Template: Example

example:

1 template <class T>
2 class Complex { // complex number class template
3 public:
4 Complex(T re = T(0), T im = T(0)) :
5 re_(re), im_(im) {}
6 T real() const {
7 return re_;
8 }
9 T imag() const {

10 return im_;
11 }
12 // ...
13 private:
14 T re_; // real part
15 T im_; // imaginary part
16 };
17

18 Complex <int> zi;
19 Complex <double> zd;

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 225

Class-Template Default Parameters

class template parameters can have default values

example:

template <class T = int, unsigned int size = 2>
struct MyArray {

T data[size];
};

MyArray <> a; // MyArray<int, 2>
MyArray <double> b; // MyArray<double, 2>
MyArray <double, 10> b; // MyArray<double, 10>

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 226

Qualified Names

qualified name is name that specifies scope

example:

#include <iostream >
int main(int argc , char** argv)
{

for (int i = 0; i < 10; ++i)
std::cout << "Hello , world!" << std::endl;

return 0;
}

in above example, names std::cout and std::endl are qualified, while

names main, argc, argv, and i, are not qualified

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 227

Dependent Names

dependent name is name that depends on template parameter

example:

template <class T>
class MyClass
{
public:

struct Thing {
T array[3];

};
Thing x;
typedef T* Pointer;
int i;

};

names Thing and Pointer are dependent

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 228

Qualified Dependent Names

to avoid any potential ambiguities, compiler will automatically assume

qualified dependent name does not name type unless typename

keyword is used

must precede qualified dependent name that names type by typename

following code is invalid and will cause compile error:

template <class T>
class MyClass {

std::vector <T> vec; // ERROR?
std::vector <T>::iterator iter; // ERROR
std::vector <T>::value_type val; // ERROR
// ...

};

must use code like following instead:

template <class T>
class MyClass {

typename std::vector <T> vec;
typename std::vector <T>::iterator iter;
typename std::vector <T>::value_type val;
// ...

};

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 229

Section 2.6

C++ Standard Library

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 230

C++ Standard Library

C++ standard library provides huge amount of functionality (orders of

magnitude more than C standard library)

uses std namespace (to avoid naming conflicts)

well worth effort to familiarize yourself with all functionality in library in

order to avoid writing code unnecessarily

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 231

C++ Standard Library (Continued)

functionality can be grouped into following sublibraries:

1 language support library (e.g., exceptions, memory management)
2 diagnostics library (e.g., assertions, exceptions, error codes)
3 general utilities library (e.g., functors, date/time)
4 strings library (e.g., C++ and C-style strings)
5 localization library (e.g., date/time formatting and parsing, character

classification)
6 containers library (e.g., sequence containers and associative containers)
7 iterators library (e.g., stream iterators)
8 algorithms library (e.g., searching, sorting, merging, set operations, heap

operations, minimum/maximum)
9 numerics library (e.g., complex numbers, math functions)

10 input/output (I/O) library (e.g., streams)
11 regular expressions library (e.g., regular expression matching)
12 atomic operations library (e.g., atomic types, fences)
13 thread support library (e.g., threads, mutexes, condition variables, futures)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 232

Commonly-Used Header Files

Language-Support Library

Header File Description

cstdlib runtime support, similar to stdlib.h from C (e.g.,

exit)

limits properties of fundamental types (e.g.,

numeric_limits)

exception exception handling support (e.g.,

set_terminate, current_exception)

initializer_list initializer_list class template

Diagnostics Library

Header File Description

cassert assertions (e.g., assert)

stdexcept predefined exception types (e.g., invalid_argument,

domain_error, out_of_range)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 233

Commonly-Used Header Files (Continued 1)

General-Utilities Library

Header File Description

utility basic function and class templates (e.g., swap, move,

pair)

memory memory management (e.g., unique_ptr, shared_ptr,

addressof)

functional functors (e.g., less, greater)

type_traits type traits (e.g., is_integral, is_reference)

chrono clocks (e.g., system_clock, steady_clock,

high_resolution_clock)

Strings Library

Header File Description

string C++ string classes (e.g., string)

cstring C-style strings, similar to string.h from C (e.g., strlen)

cctype character classification, similar to ctype.h from C (e.g.,

isdigit, isalpha)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 234

Commonly-Used Header Files (Continued 2)

Containers, Iterators, and Algorithms Libraries

Header File Description

array array class

vector vector class

deque deque class

list list class

set set classes (i.e., set, multiset)

map map classes (i.e., map, multimap)

unordered_set unordered set classes (i.e., unordered_set,

unordered_multiset)

unordered_map unordered map classes (i.e., unordered_map,

unordered_multimap)

iterator iterators (e.g., reverse_iterator,

back_inserter)

algorithm algorithms (e.g., min, max, sort)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 235

Commonly-Used Header Files (Continued 3)

Numerics Library

Header File Description

cmath C math library, similar to math.h from C (e.g., M_PI on

POSIX-compliant systems, sin, cos)

complex complex numbers (e.g., complex)

random random number generation (e.g.,

uniform_int_distribution,

uniform_real_distribution,

normal_distribution)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 236

Commonly-Used Header Files (Continued 4)

I/O Library

Header File Description

iostream iostream objects (e.g., cin, cout, cerr)

istream input streams (e.g., istream)

ostream output streams (e.g., ostream)

fstream file streams (e.g., fstream)

sstream string streams (e.g., stringstream)

iomanip manipulators (e.g., setw, dec)

Regular-Expressions Library

Header File Description

regexp regular expressions (e.g., basic_regex)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 237

Commonly-Used Header Files (Continued 5)

Atomic-Operations and Thread-Support Libraries

Header File Description

atomic atomics (e.g., atomic)

thread threads (e.g., thread)

mutex mutexes (e.g., mutex, recursive_mutex,

timed_mutex)

condition_variable condition variables (e.g., condition_variable)

future futures (e.g., future, shared_future, promise)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 238

Section 2.6.1

Containers, Iterators, and Algorithms

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 239

Standard Template Library (STL)

large part of C++ standard library is collection of class/function templates

known as standard template library (STL)

STL comprised of three basic building blocks:

1 containers
2 iterators
3 algorithms

containers store elements for processing (e.g., vector)

iterators allow access to elements for processing (which are often, but not

necessarily, in containers)

algorithms perform actual processing (e.g., search, sort)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 240

Containers

container: class that represents collection/sequence of elements

usually container classes are template classes

sequence container: collection in which every element has certain

position that depends on time and place of insertion

three sequence containers provided:

1 vector (one-dimensional array)
2 deque (double-ended queue)
3 list (doubly-linked list)

associative container: collection in which position of element in depends

on its value or associated key and some predefined sorting criterion

four associative containers provided:

1 set (collection sorted by value, duplicate values not allowed)
2 multiset (collection sorted by value, duplicate values allowed)
3 map (collection of key/value pairs, sorted by key, duplicate keys not allowed)
4 multimap (collection of key/value pairs, sorted by key, duplicate keys

allowed)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 241

Containers (Continued)

some member functions typically provided by container classes listed

below (where T denotes name of container class)

Function Description

T() create empty container (default constructor)

T(const T&) copy container (copy constructor)

˜T destroy container (including its elements)

empty test if container empty

size get number of elements in container

push_back insert element at end of container

clear remove all elements from container

operator= assign all elements of one container to other

operator[] access element in container

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 242

Container Example

example:

1 #include <iostream >
2 #include <vector >
3

4 int main(int argc , char** argv) {
5 std::vector <int> values;
6

7 // append elements with values 0 to 9
8 for (int i = 0; i < 10; ++i)
9 values.push_back(i);

10

11 // print each element followed by space
12 for (int i = 0; i < values.size(); ++i)
13 std::cout << values[i] << " ";
14 std::cout << "\n";
15

16 return 0;
17 }

program will produce output:

0 1 2 3 4 5 6 7 8 9

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 243

Motivation for Iterators

different containers organize elements (of container) differently in memory

want uniform manner in which to access elements in any arbitrary

container

organization of elements in array/vector container:

organization of elements in doubly-linked list container:

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 244

Motivation for Iterators (Continued)

consider array/vector container with int elements:

suppose we want to set all elements in container to zero

we could use code like:

// int* begin; int* end;
for (int* iter = begin; iter != end; ++iter)

*iter = 0;

could we make similar-looking code work for more complicated

organization like doubly-linked list?

yes, create user-defined type that provides all pointer operations used

above (e.g., dereference, increment, comparison, assignment)

this leads to notion of iterator

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 245

Iterators

iterator: object that allows iteration over collection of elements, where

elements are often (but not necessarily) in container

iterators support many of same operations as pointers

in some cases, iterator may actually be pointer; more frequently, iterator is

user-defined type

five different categories of iterators: 1) input, 2) output, 3) forward,

4) bidirectional, and 5) random access

iterator has particular level of functionality, depending on category

one of three possibilities of access order:
1 forward (i.e., one direction only)
2 forward and backward
3 any order (i.e., random access)

one of three possibilities in terms of read/write access:
1 can only read referenced element (once or multiple times)
2 can only write referenced element (once or multiple times)
3 can read and write referenced element (once or multiple times)

const and mutable (i.e., non-const) variants (i.e., read-only or read/write

access, respectively)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 246

Abilities of Iterator Categories

Category Ability Providers

Input Reads (once only)

forward

istream

(istream_iterator)

Output Writes (once only)

forward

ostream

(ostream_iterator),

inserter_iterator

Forward Reads and writes

forward

forward_list,

unordered_set,

unordered_map

Bidirectional Reads and writes

forward and backward

list, set, multiset,

map, multimap

Random access Reads and writes

with random access

array, vector, deque,

string

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 247

Input Iterators

Expression Effect

T(a) copies iterator (copy constructor)

*a

a->m

dereference as rvalue (i.e., read only);

can only be dereferenced once

++a steps forward (returns new position)

a++ steps forward (returns old position)

a == b test for equality

a != b test for inequality

not assignable (i.e., no assignment operator)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 248

Output Iterators

Expression Effect

T(a) copies iterator (copy constructor)

*a

a->m

dereference as lvalue (i.e., write only);

can only be dereferenced once

++a steps forward (returns new position)

a++ steps forward (returns old position)

not assignable (i.e., no assignment operator)

no comparison operators (i.e., operator==, operator!=)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 249

Forward Iterators

Expression Effect

T() default constructor

T(a) copy constructor

a = b assignment

*a

a->m

dereference as lvalue (i.e., write only);

can only be dereferenced once

++a steps forward (returns new position)

a++ steps forward (returns old position)

a == b test for equality

a != b test for inequality

must ensure that valid to dereference iterator before doing so

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 250

Bidirectional Iterators

bidirectional iterators are forward iterators that provide additional

functionality of being able to iterate backward over elements

bidirectional iterators have all functionality of forward iterators as well as

those listed in table below

Expression Effect

--a steps backward (returns new position)

a-- steps backward (returns old position)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 251

Random-Access Iterators

random access iterators provide all functionality of bidirectional iterators

as well as providing random access to elements

random access iterators provide all functionality of bidirectional iterators

as well as those listed in table below

Expression Effect

a[n] deference element at index n (where n can be negative)

a += n steps n elements forward (where n can be negative)

a -= n steps n elements backward (where n can be negative)

a + n iterator for nth next element

n + a iterator for nth next element

a - n iterator for nth previous element

a - b distance from a to b

a < b test if a before b

a > b test if a after b

a <= b test if a not after b

a >= b test if a not before b

pointers (built into language) are examples of random-access iterators

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 252

Iterator Example

1 #include <iostream >
2 #include <vector >
3

4 int main(int argc , char** argv) {
5 std::vector <int> values(10);
6

7 std::cout << "number of elements: " <<
8 (values.end() - values.begin()) << "\n";
9

10 // initialize elements of vector to 0, 1, 2, ...
11 for (std::vector <int>::iterator i = values.begin();
12 i != values.end(); ++i) {
13 *i = i - values.begin();
14 }
15

16 // print elements of vector
17 for (std::vector <int>::const_iterator i =
18 values.begin(); i != values.end(); ++i) {
19 std::cout << *i << " ";
20 }
21 std::cout << "\n";
22

23 return 0;
24 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 253

Iterator Gotchas

do not dereference iterator unless it is known to validly reference some

object

some operations on container can invalidate some or all iterators

referencing elements in container

critically important to know which operations invalidate iterators in order

to avoid using iterator that has been invalidated

incrementing iterator past end of container or decrementing iterator before

beginning of container results in undefined behavior

input and output iterators can only be dereferenced once at each position

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 254

Algorithms

algorithm: sequence of computations applied to some generic type

algorithms use iterators to access elements involved in computation

often pair of iterators used to specify range of elements on which to

perform some computation

what follows only provides brief summary of algorithms

for more details on algorithms, see http://www.cplusplus.com/

reference/algorithm

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 255

Functions (Part 1)

Non-modifying Sequence Operations

Name Description

for_each apply function to range

find find values in range

find_if find element in range

find_end find last subsequence in range

find_first_of find element from set in range

adjacent_find find equal adjacent elements in range

count count appearances of value in range

count_if count number of elements in range satisfying

condition

mismatch get first position where two ranges differ

equal test whether elements in two ranges differ

search find subsequence in range

search_n find succession of equal values in range

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 256

Functions (Part 2)

Modifying Sequence Operations

Name Description

copy copy range of elements

copy_backward copy range of elements backwards

swap exchange values of two objects

swap_ranges exchange values of two ranges

iter_swap exchange values of objects referenced by two

iterators

transform apply function to range

replace replace value in range

replace_copy copy range replacing value

replace_copy_if copy range replacing value

fill fill range with value

fill_n fill sequence with value

generate generate values for range with function

generate_n generate values for sequence with function

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 257

Functions (Part 3)

Modifying Sequence Operations (Continued)

Name Description

remove remove value from range

remove_if remove elements from range

remove_copy copy range removing value

remove_copy_if copy range removing values

unique remove consecutive duplicates in range

unique_copy copy range removing duplicates

reverse reverse range

reverse_copy copy range reversed

rotate rotate elements in range

random_shuffle randomly permute elements in range

partition partition range in two

stable_partition partition range in two (stable ordering)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 258

Functions (Part 4)

Sorting

Name Description

sort sort elements in range

stable_sort sort elements in range, preserving order of

equivalents

partial_sort partially sort elements in range

partial_sort_copy copy and partially sort range

nth_element sort element in range

Binary Search (operating on sorted ranges)

Name Description

lower_bound get iterator to lower bound

upper_bound get iterator to upper bound

equal_range get subrange of equal elements

binary_search test if value exists in sorted range

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 259

Functions (Part 5)

Merge (operating on sorted ranges)

Name Description

merge merge sorted ranges

inplace_merge merge consecutive sorted ranges

includes test whether sorted range includes another

sorted range

set_union union of two sorted ranges

set_intersection intersection of two sorted ranges

set_difference difference of two sorted ranges

set_symmetric_difference symmetric difference of two sorted ranges

Heap

Name Description

push_heap push element into heap range

pop_heap pop element from heap range

make_heap make heap from range

sort_heap sort elements of heap

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 260

Functions (Part 6)

Minimum/Maximum
Name Description

min get minimum of two values

max get maximum of two values

min_element get smallest element in range

max_element get largest element in range

lexicographic_compare lexicographic less-than comparison

next_permutation transform range to next permutation

prev_permutation transform range to previous permutation

Numeric Operations

Name Description

accumulate accumulate values in range

adjacent_difference compute adjacent difference of range

inner_product compute inner product of range

partial_sum compute partial sums of range

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 261

Algorithms Example

1 #include <iostream >
2 #include <vector >
3 #include <algorithm >
4

5 int main(int argc , char** argv) {
6 std::vector <int> values;
7 int x;
8 while (std::cin >> x)
9 values.push_back(x);

10 std::cout << "zero count: " << std::count(
11 values.begin(), values.end(), 0) << "\n";
12 std::random_shuffle(values.begin(), values.end());
13 std::cout << "random order: ";
14 for (std::vector <int>::const_iterator i =
15 values.begin(); i != values.end(); ++i)
16 std::cout << *i << " ";
17 std::cout << "\n";
18 std::sort(values.begin(), values.end());
19 std::cout << "sorted order: ";
20 for (std::vector <int>::const_iterator i =
21 values.begin(); i != values.end(); ++i)
22 std::cout << *i << " ";
23 std::cout << "\n";
24 return 0;
25 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 262

Prelude to Functor Example

consider std::transform function template:
template <class InputIterator , class OutputIterator ,

class UnaryOperator >
OutputIterator transform(InputIterator first ,
InputIterator last , OutputIterator result ,
UnaryOperator op);

applies op to each element in range [first,last) and stores each

returned value in range beginning at result

std::transform might be written as:
template <class InputIterator , class OutputIterator ,

class UnaryOperator >
OutputIterator transform(InputIterator first ,
InputIterator last , OutputIterator result ,
UnaryOperator op) {
while (first != last) {

*result = op(*first);
++first;
++result;

}
return result;

}

op is object of type that can be used with function call syntax (i.e., function

or functor)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 263

Functor Example

1 #include <iostream >
2 #include <vector >
3 #include <algorithm >
4

5 struct MultiplyBy { // Functor class
6 MultiplyBy(double factor) : factor_(factor) {}
7 double operator()(double x) const {
8 return factor_ * x;
9 }

10 private:
11 // state information
12 double factor_; // multiplicative factor
13 };
14

15 int main() {
16 MultiplyBy mb(2.0);
17 std::vector <double> v;
18 v.push_back(1);
19 v.push_back(2);
20 v.push_back(3);
21 // v contains 1 2 3
22 std::transform(v.begin(), v.end(), v.begin(), mb);
23 // v contains 2 4 6
24 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 264

Section 2.6.2

The vector Class Template

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 265

The vector Class Template

one-dimensional array, where type of array elements and storage allocator

specified by template parameters

vector declared as:

template < class T, class Allocator = allocator <T> >
class vector;

T: type of elements in vector

Allocator: type of object used to handle storage allocation (unless using

custom storage allocator, use default allocator<T>)

what follows only intended to provide overview of vector

for additional details on vector, see http://www.cplusplus.com/

reference/stl/vector

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 266

Member Types

Member Type Description

reference Allocator::reference

const_reference Allocator::const_reference

iterator
random-access iterator type

const_iterator const random-access iterator type

size_type type used for measuring size (typically un-

signed integer type)

difference_type type used to measure distance (typically

signed integer type)

value_type element type

allocator_type Allocator

pointer Allocator::pointer

const_pointer Allocator::const_pointer

reverse_iterator reverse iterator type

(reverse_iterator<iterator>)

const_reverse_iterator const reverse iterator type

(reverse_iterator<const_iterator>)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 267

Member Functions (Part 1)

Construction, Destruction, and Assignment

Member Name Description

constructor construct vector (overloaded)

destructor destroy vector

operator= assign vector

assign assign vector content

get_allocator get allocator used by vector

Iterators
Member Name Description

begin return iterator to beginning

end return iterator to end

rbegin return reverse iterator to beginning

rend return reverse iterator to end

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 268

Member Functions (Part 2)

Capacity

Member Name Description

size return size

max_size return maximum size

resize change size

capacity return allocated storage capacity

empty test if vector is empty

reserve request change in capacity

Element Access
Member Name Description

operator[] access element (no bounds checking)

at access element (with bounds checking)

front access first element

back access last element

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 269

Member Functions (Part 3)

Modifiers
Member Name Description

push_back add element at end

pop_back delete last element

insert insert elements

erase erase elements

swap swap content of two vectors

clear clear content

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 270

Invalidation of References, Iterators, and Pointers

capacity: total number of elements that vector could hold without

requiring reallocation of memory

any operation that causes reallocation of memory used to hold elements

of vector invalidates all iterators, references, and pointers referring to

elements in vector

any operation that changes capacity of vector causes reallocation of

memory

any operation that adds or deletes elements can invalidate references,

iterators, and pointers

operations that can potentially invalidate references, iterators, and

pointers to elements in vector include: insert, erase, push_back,

pop_back, resize, reserve, operator=, assign, clear (swap?)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 271

Iterator Invalidation Example

start denotes pointer to first element in array holding vector elements

i is iterator for vector (e.g., vector<T>::const_iterator, vector<T>::iterator)

initial vector with three elements and capacity of three:

push_back(d) results in new larger array being allocated, contents of old array

copied to new one, and then new element added:

old array is deallocated, iterator i is now invalid:

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 272

vector Example: Constructors

std::vector <double> v0;
// empty vector

std::vector <double> v1(10);
// vector with 10 elements, default constructed
// (which for double means uninitialized)

std::vector <double> v2(10, 5.0);
// vector with 10 elements, each initialized to 5.0

std::vector <int> v3{1, 2, 3};
// vector with 3 elements: 1, 2, 3
// std::initializer_list (note brace brackets)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 273

vector Example

1 std::vector <double> values;
2 // ...
3

4 // Erase all elements and then read elements from
5 // standard input
6 values.clear();
7 double x;
8 while (std::cin >> x)
9 values.push_back(x);

10 std::cout << "number of values read: " <<
11 values.size() << "\n";
12

13 // Loop over all elements and print the number of
14 // zero elements found.
15 int count = 0;
16 for (std::vector <double>::const_iterator i =
17 values.begin(); i != values.end(); ++i) {
18 if (*i == 0.0)
19 ++count;
20 }
21 std::cout << "number of zero values: " << count <<
22 "\n";

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 274

Section 2.6.3

The basic_string Class Template

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 275

The basic_string Class Template

character string type, parameterized on character type, character traits,

and storage allocator

basic_string declared as:

template < class charT ,
class traits = char_traits <charT >,
class Allocator = allocator <charT > >
class basic_string;

charT: type of characters in string

traits: class that describes certain properties of charT (normally, use

default char_traits<T>)

Allocator: type of object used to handle storage allocation (unless using

custom storage allocator, use default allocator<T>)

string is simply abbreviation for basic_string<char>

what follows is only intended to provide overview of basic_string

template class (and string class)

for more details on string, see http://www.cplusplus.com/

reference/string/string

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 276

Member Types

Member Type Description

traits_type traits

value_type character type (i.e., traits::char_type)

allocator_type Allocator

size_type type used for measuring size (typically un-

signed integer type)

difference_type type used to measure distance (typically

signed integer type)

reference Allocator::reference

const_reference Allocator::const_reference

pointer Allocator::pointer

const_pointer Allocator::const_pointer

iterator
random-access iterator type

const_iterator const random-access iterator type

reverse_iterator reverse iterator type

(reverse_iterator<iterator>)

const_reverse_iterator const reverse iterator type

(reverse_iterator<const_iterator>)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 277

Member Functions (Part 1)

Construction, Destruction, and Assignment

Member Name Description

constructor construct

destructor destroy

operator= assign

Iterators
Member Name Description

begin return iterator to beginning

end return iterator to end

rbegin return reverse iterator to reverse beginning

rend return reverse iterator to reverse end

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 278

Member Functions (Part 2)

Capacity

Member Name Description

size get length of string

length same as size

max_size get maximum size of string

resize resize string

capacity get size of allocated storage

reserve change capacity

clear clear string

empty test if string empty

Element Access
Member Name Description

operator[] access character in string (no bounds checking)

at access character in string (with bounds checking)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 279

Member Functions (Part 3)

Modifiers
Member Name Description

operator+= append to string

append append to string

assign assign content to string

insert insert into string

erase erase characters from string

replace replace part of string

copy copy sequence of characters from string

swap swap contents with another string

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 280

Member Functions (Part 4)

String Operations

Member Name Description

c_str get C-string equivalent

data get string data

get_allocator get allocator

find find content in string

rfind find last occurrence of content in string

find_first_of find character in string

find_last_of find character in string from end

find_first_not_of find absence of character in string

find_last_not_of find absence of character in string from end

substr generate substring

compare compare strings

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 281

std::string Example

1 #include <iostream >
2 #include <string >
3

4 int main() {
5 std::string s;
6 if (!(std::cin >> s)) {
7 s.clear();
8 }
9 std::cout << "string: " << s << "\n";

10 std::cout << "length: " << s.size() << "\n";
11 std::string b;
12 for (std::string::const_reverse_iterator i = s.rbegin();
13 i != s.rend(); ++i) {
14 b.push_back(*i);
15 }
16 std::cout << "backwards: " << b << "\n";
17

18 std::string msg = "Hello";
19 msg += ", World!"; // append ", World!"
20 std::cout << msg << "\n";
21

22 const char *cstr = s.c_str();
23 std::cout << "C-style string: " << cstr << "\n";
24 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 282

Section 2.6.4

Time Measurement

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 283

std::chrono Example: Measuring Elapsed Time

1 #include <iostream >
2 #include <chrono >
3 #include <cmath >
4

5 double get_result() {
6 double sum = 0.0;
7 for (long i = 0L; i < 1000000L; ++i) {
8 sum += std::sin(i) * std::cos(i);
9 }

10 return sum;
11 }
12

13 int main() {
14 // Get the start time.
15 auto start_time =
16 std::chrono::high_resolution_clock::now();
17 // Do some computation.
18 double result = get_result();
19 // Get the end time.
20 auto end_time = std::chrono::high_resolution_clock::now();
21 // Compute elapsed time in seconds.
22 double elapsed_time = std::chrono::duration <double>(
23 end_time - start_time).count();
24 // Print result and elapsed time.
25 std::cout << "result " << result << "\n";
26 std::cout << "time (in seconds) " << elapsed_time << "\n";
27 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 284

std::chrono Example: Determining Clock Resolution

1 #include <iostream >
2 #include <chrono >
3

4 // Get the granularity of a clock in seconds.
5 template <class C>
6 double granularity() {
7 return std::chrono::duration <double>(
8 typename C::duration (1)).count();
9 }

10

11 int main() {
12 std::cout << "system clock:\n" << "period "
13 << granularity <std::chrono::system_clock >() << "\n"
14 << "steady "
15 << std::chrono::system_clock::is_steady << "\n";
16 std::cout << "high resolution clock:\n" << "period "
17 << granularity <std::chrono::high_resolution_clock >()
18 << "\n" << "steady "
19 << std::chrono::high_resolution_clock::is_steady << "\n";
20 std::cout << "steady clock:\n" << "period "
21 << granularity <std::chrono::steady_clock >() << "\n"
22 << "steady "
23 << std::chrono::steady_clock::is_steady << "\n";
24 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 285

Part 3

More C++

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 286

Section 3.1

Exceptions

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 287

Section 3.1.1

Preliminaries

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 288

Exceptions

exceptions are language mechanism for handling exceptional (i.e.,

abnormal) situations

exceptional situation perhaps best thought of as case when code could

not do what it was asked to do and usually (but not always) corresponds

to error condition

exceptions often employed for error handling

exceptions propagate information from point where error detected to point

where error handled

code that encounters error that it is unable to handle throws exception

code that wants to handle error catches exception and performs

processing necessary to handle error

exceptions provide convenient way in which to separate error detection

from error handling

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 289

The Problem

main

...

High-Level

Code

Low-Level

Code

error detected in low-level code

want to handle error in high-level

code

must propagate error information

up call chain

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 290

Traditional Error Handling

if any error occurs, terminate program

overly draconian

pass error code back from function (via return value, reference parameter,

or global object) and have caller check error code

errors are ignored by default (i.e., explicit action required to check for error

condition)

caller may forget to check error code allowing error to go undetected

code can become cluttered with many checks of error codes, which can

adversely affect code readability and maintainability

call error handler if error detected

may not be possible or practical for handler to recover from particular error

(e.g., handler may not have access to all information required to recover

from error)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 291

Example: Traditional Error Handling

1 #include <iostream >
2

3 bool func3() {
4 bool success = false;
5 // ...
6 return success;
7 }
8

9 bool func2() {
10 if (!func3()) {return false;}
11 // ...
12 return true;
13 }
14

15 bool func1() {
16 if (!func2()) {return false;}
17 // ...
18 return true;
19 }
20

21 int main() {
22 if (!func1()) {
23 std::cout << "failed\n";
24 return 1;
25 }
26 // ...
27 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 292

Error Handling With Exceptions

when error condition detected, signalled by throwing exception (with

throw statement)

exception is object that describes error condition

thrown exception caught by handler (in catch clause of try statement),

which takes appropriate action to handle error condition associated with

exception

handler can be in different function from where exception thrown

error-free code path tends to be relatively simple, since no need to

explicitly check for error conditions

error condition less likely to go undetected, since uncaught exception

terminates program

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 293

Example: Exceptions

1 #include <iostream >
2 #include <stdexcept >
3

4 void func3() {
5 bool success = false;
6 // ...
7 if (!success) {throw std::runtime_error("Yikes!");}
8 }
9

10 void func2() {
11 func3();
12 // ...
13 }
14

15 void func1() {
16 func2();
17 // ...
18 }
19

20 int main() {
21 try {func1();}
22 catch (...) {
23 std::cout << "failed\n";
24 return 1;
25 }
26 // ...
27 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 294

safe_divide Example: Traditional Error Handling

1 #include <iostream >
2 #include <vector >
3 #include <utility >
4

5 std::pair <bool, int> safe_divide(int x, int y) {
6 if (!y) {
7 return std::make_pair(false, 0);
8 }
9 return std::make_pair(true, x / y);

10 }
11

12 int main() {
13 std::vector <std::pair <int, int>> v = {{10, 2}, {10, 0}};
14 for (auto p : v) {
15 auto result = safe_divide(p.first , p.second);
16 if (result.first) {
17 int quotient = result.second;
18 std::cout << quotient << "\n";
19 } else {
20 std::cerr << "division by zero\n";
21 }
22 }
23 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 295

safe_divide Example: Exceptions

1 #include <iostream >
2 #include <vector >
3 #include <utility >
4

5 class divide_by_zero {};
6

7 int safe_divide(int x, int y) {
8 if (!y) {
9 throw divide_by_zero();

10 }
11 return x / y;
12 }
13

14 int main() {
15 std::vector <std::pair <int, int>> v = {{10, 2}, {10, 0}};
16 for (auto p : v) {
17 try {
18 std::cout << safe_divide(p.first , p.second) <<
19 "\n";
20 }
21 catch(const divide_by_zero& e) {
22 std::cerr << "division by zero\n";
23 }
24 }
25 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 296

Exceptions Versus Traditional Error Handling

advantages of exceptions:

exceptions allow for error handling code to be easily separated from code

that detects error

exceptions can easily pass error information many levels up call chain

passing of error information up call chain managed by language (no explicit

code required)

disadvantages of exceptions:

writing code that always behaves correctly in presence of exceptions

requires great care (as we shall see)

although possible to have no execution-time cost when exceptions not

thrown, still have memory cost (to store information needed for stack

unwinding for case when exception is thrown)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 297

Section 3.1.2

Exceptions

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 298

Exceptions

exceptions are objects

type of object used to indicate kind of error

value of object used to provide details about particular occurrence of error

exception object can have any type (built-in or class type)

for convenience, standard library provides some basic exception types

all exception classes in standard library derived (directly or indirectly) from

std::exception class

exception object is propagated from one part of code to another by

throwing and catching

exception processing disrupts normal control flow

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 299

Standard Exception Classes

Exception Classes Derived from exception Class

Type Description

logic_error faulty logic in program

runtime_error error caused by circumstances beyond scope of

program

bad_typeid invalid operand for typeid operator

bad_cast invalid expression for dynamic_cast

bad_weak_ptr bad weak_ptr given

bad_function_call function has no target

bad_alloc storage allocation failure

bad_exception use of invalid exception type in certain contexts

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 300

Standard Exception Classes (Continued)

Exception Classes Derived from logic_error Class

Type Description

domain_error domain error (e.g., square root of negative number)

invalid_argument invalid argument

length_error length too great (e.g., resize vector beyond

max_size)

out_of_range out of range argument (e.g., subscripting error in

vector::at)

future_error invalid operations on future objects

Exception Classes Derived from runtime_error Class

Type Description

range_error range error

overflow_error arithmetic overflow error

underflow_error arithmetic underflow error

regex_error error in regular expressions library

system_error operating-system or other low-level error

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 301

Section 3.1.3

Throwing and Catching Exceptions

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 302

Throwing Exceptions

throwing exception accomplished by throw statement

throwing exception transfers control to handler

object is passed

type of object determines which handlers can catch it

handlers specified with catch clause of try block

for example

throw "OMG!";

can be caught by handler of const char* type, as in:

try {
// ...

}
catch (const char* p) {

// handle character string exceptions here
}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 303

Throwing Exceptions (Continued)

advisable for type of exception object to be user defined to reduce

likelihood of different parts of code using type in conflicting ways

if thrown object is class object, copy/move constructor and destructor

must be accessible

throw x; initializes temporary of type of x with x

temporary may be moved/copied several times before caught

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 304

Catching Exceptions

exception can be caught by catch clause of try-catch block

code that might throw exception placed in try block

code to handle exception placed in catch block

try-catch block can have multiple catch clauses

catch clauses checked for match in order specified and only first match

used

catch (...) can be used to catch any exception

example:

try {
// code that might throw exception

}
catch (const std::logic_error& e) {

// handle logic_error exception
}
catch (const std::runtime_error& e) {

// handle runtime_error exception
}
catch (...) {

// handle other exception types
}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 305

Catching Exceptions (Continued)

catch exceptions by reference in order to:

avoid copying, which might throw

allow exception object to be modified and then rethrown

avoid slicing

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 306

Exception During Exception: Catching By Value

1 #include <iostream >
2 #include <stdexcept >
3

4 class Error {
5 public:
6 Error(int value) : value_(value) {}
7 Error(Error&& e) : value_(e.value_) {}
8 Error(const Error&) {throw std::runtime_error("copy");}
9 int get() const {return value_;}

10 private:
11 int value_; // error code
12 };
13

14 void func2() {throw Error(42);} // might move
15

16 void func1() {
17 try {func2();}
18 // catch by value (copy throws)
19 catch (Error e) {
20 std::cerr << "yikes\n";
21 }
22 }
23

24 int main() {
25 try {func1();}
26 catch (...) {std::cerr << "exception\n";}
27 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 307

Rethrowing Exceptions

caught exception can be rethrown by throw statement with no operand

example:

try {
// code that may throw exception

}
catch (...) {

throw; // rethrow caught exception
}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 308

Transfer of Control from Throw Site to Handler

when exception is thrown, control is transferred to nearest handler (in

catch clause) with matching type, where “nearest” means handler for try

block most recently entered (by thread) and not yet exited

if no matching handler found, std::terminate() is called

as control passes from throw expression to handler, destructors are

invoked for all automatic objects constructed since try block entered,

where automatic objects destroyed in reverse order of construction

process of calling destructors for automatic objects constructed on path

from try block to throw expression called stack unwinding

object not deemed to be constructed if constructor exits due to exception

(in which case destructor will not be invoked)

do not throw exception in destructor since destructors called during

exception processing and throwing exception during exception processing

will terminate program

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 309

Stack Unwinding Example

1 void func1() {
2 std::string dave("dave");
3 try {
4 std::string bye("bye");
5 func2();
6 }
7 catch (const std::runtime_error& e) { // Handler
8 std::cerr << e.what() << "\n";
9 }

10 }
11

12 void func2() {
13 std::string world("world");
14 func3(0);
15 }
16

17 void func3(int x) {
18 std::string hello("hello");
19 if (x == 0) {
20 std::string first("first");
21 std::string second("second");
22 throw std::runtime_error("yikes"); // Throw site
23 }
24 }

calling func1 will result in exception being thrown in func3

during stack unwinding, destructors called in order for second, first, hello,

world, and bye (i.e., reverse order of construction); dave unaffected

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 310

Function Try Blocks

function try blocks allow entire function to be wrapped in try block

function returns when control flow reaches end of catch block (return

statement needed for non-void function)

example:

1 #include <iostream >
2 #include <stdexcept >
3

4 int main()
5 try {
6 throw std::runtime_error("yikes");
7 }
8 catch (const std::runtime_error& e) {
9 std::cerr << "runtime error " << e.what() << "\n";

10 }

although function try blocks can be used for any function, most important

use cases are for constructors and destructors

function try block only way to catch exceptions thrown during construction

of data members or base objects (which happens before constructor body

is entered) or during destruction of data members or base objects (which

happens after destructor body exited)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 311

Exceptions and Construction/Destruction

order of construction:
1 base class objects as listed in type definition left to right
2 data members as listed in type definition top to bottom
3 constructor body

order of destruction is exact reverse of order of construction, namely:
1 destructor body
2 data members as listed in type definition bottom to top
3 base class objects as listed in type definition right to left

lifetime of object begins when constructor completes

constructor might throw in:

constructor of base class object

constructor of data member

constructor body

need to perform cleanup for constructor body

will assume destructors do not throw (since very bad idea to throw in

destructor)

any exception caught in function try block of constructor or destructor

rethrown implicitly (at end of catch block)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 312

Construction/Destruction Example

1 #include <string >
2 #include <iostream >
3

4 struct Base {
5 Base() {}
6 ˜Base() {};
7 };
8

9 class Widget : public Base {
10 public:
11 Widget() {}
12 ˜Widget() {}
13 // ...
14 private:
15 std::string s_;
16 std::string t_;
17 };
18

19 int main() {
20 Widget w;
21 // ...
22 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 313

Function Try Block Example

1 #include <iostream >
2 #include <stdexcept >
3

4 class Gadget {
5 public:
6 Gadget() {throw std::runtime_error("ctor");}
7 ˜Gadget() {}
8 };
9

10 class Widget {
11 public:
12 // constructor uses function try block
13 Widget()
14 try {std::cerr << "ctor body\n";}
15 catch (...) {std::cerr << "exception in ctor\n";}
16 ˜Widget() {std::cerr << "dtor body\n";}
17 private:
18 Gadget g_;
19 };
20

21 int main()
22 try {Widget w;}
23 catch (...) {
24 std::cerr << "terminating due to exception\n";
25 return 1;
26 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 314

Section 3.1.4

Exception Specifications

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 315

noexcept Specifier

noexcept specifier in function declaration indicates whether or not

function can throw exceptions

two forms for noexcept specifier

noexcept specifier with bool constant expression argument indicates

function does not throw exceptions if expression true (otherwise, may

throw)

noexcept without argument equivalent to noexcept(true)

except for destructors, not providing noexcept specifier equivalent to

noexcept(false)

if noexcept specifier not provided for destructor, specifier identical to

that of implicit declaration (which is, in practice, usually noexcept)

example:

void func1(); // may throw anything
void func2() noexcept(false); // may throw anything
void func3() noexcept(true); // does not throw
void func4() noexcept; // does not throw
template <class T>
void func5(T) noexcept(sizeof(T) <= 4);

// does not throw if sizeof(T) <= 4

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 316

noexcept Specifier (Continued 1)

nontrivial bool expression for noexcept specifier often useful in

templates

example (swap function):

1 #include <type_traits >
2 #include <utility >
3

4 // swap two values
5 template <class T>
6 void exchange(T& a, T& b) noexcept(
7 std::is_nothrow_move_constructible <T>::value &&
8 std::is_nothrow_move_assignable <T>::value) {
9 T tmp(std::move(a)); // move construction

10 a = std::move(b); // move assignment
11 b = std::move(tmp); // move assignment
12 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 317

noexcept Specifier (Continued 2)

if function with noexcept(true) specifier throws exception,

std::terminate is called immediately

example:

// This function will terminate the program.
void die_die_die() noexcept {

throw 0;
}

advisable not to use noexcept(true) specifier unless clear that no

reasonable usage of function can throw (in current or any future version

of code)

in practice, can often be difficult to guarantee that function will never throw

exception (especially when considering all future versions of code)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 318

Exceptions and Function Calls

for some (nonreference) class type T and some constant bool

expression expr, consider code such as:
T func(T) noexcept(expr);
T x;
T y = func(x); // function call

function call can throw exception as result of:
1 parameter passing (if pass by value)
2 function execution including return statement

in parameter passing, construction and destruction of each parameter

happens in context of calling function

consequently, invocation of noexcept function can still result in

exception being thrown due to parameter passing

in case of return by value, construction of temporary (if not elided) to hold

return value happens in context of called function

if exception due to parameter passing must be avoided, pass by reference

or ensure noexcept move and/or copy constructor as appropriate

if exception due to return by value must be avoided, ensure noexcept

move or copy constructor as appropriate

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 319

noexcept Operator

noexcept operator takes expression and returns bool indicating if

expression can throw exception

does not actually evaluate expression

in determining result, only considers noexcept specifications for

functions involved

example:
1 #include <cstdlib >
2 #include <cassert >
3 #include <utility >
4

5 void increment(int&) noexcept;
6 char* memAlloc(std::size_t);
7

8 // does not throw exception, but not declared noexcept
9 void doesNotThrow() {};

10

11 int main() {
12 assert(noexcept(1 + 1) == true);
13 assert(noexcept(memAlloc(0)) == false);
14 // Note: does not evaluate expression
15 assert(noexcept(increment(*((int*)0))) == true);
16 assert(noexcept(increment(std::declval <int&>())) ==
17 true);
18 // Note: only uses noexcept specifiers
19 assert(noexcept(doesNotThrow()) == false);
20 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 320

noexcept Operator (Continued)

noexcept operator particularly useful for templates

example:

1 #include <iostream >
2

3 class Int256 { /* ... */ }; // 256-bit integer
4 class BigInt { /* ... */ }; // arbitrary-precision integer
5

6 // function will not throw exception
7 Int256 operator+(const Int256& x, const Int256& y)
8 noexcept;
9

10 // function may throw exception
11 BigInt operator+(const BigInt& x, const BigInt& y);
12

13 // whether function may throw exception depends on T
14 template <class T>
15 T add(const T& x, const T& y) noexcept(noexcept(x + y) &&
16 std::is_nothrow_move_constructible <T>::value)
17 {return x + y;}
18

19 int main() {
20 Int256 i1, i2;
21 BigInt b1, b2;
22 std::cout << "int " << noexcept(add(1, 1)) << "\n"
23 << "Int256 " << noexcept(add(i1, i2)) << "\n"
24 << "BigInt " << noexcept(add(b1, b2)) << "\n";
25 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 321

Dynamic Exception Specifications

language offers another mechanism for stating exception specifications

known as dynamic exception specifications

dynamic exception specifications are deprecated and should not be used

provide exception specification for function using throw specifier

used to specify list of all types of exceptions that can be thrown

in practice, such a list more of hindrance than help

if list of all allowable exceptions specified, must check if thrown exception

of expected type, which is unnecessary cost

in terms of compiler optimization, what matters most is whether any

exception (regardless of type) can be thrown at all

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 322

Section 3.1.5

Storing and Retrieving Exceptions

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 323

Storing and Retrieving Exceptions

might want to store exception and then later retrieve and rethrow it

exception can be stored using std::exception_ptr type

current exception can be retrieved with std::current_exception

rethrow exception stored in exception_ptr object using

std::rethrow_exception

provides mechanism for moving exceptions between threads:

store exception on one thread

then retrieve and rethrow stored exception on another thread

std::make_exception_ptr can be used to make exception_ptr

object

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 324

Example: Storing and Retrieving Exceptions

1 #include <exception >
2 #include <stdexcept >
3

4 void yikes() {
5 throw std::runtime_error("Yikes!");
6 }
7

8 std::exception_ptr getException() {
9 try {

10 yikes();
11 }
12 catch (...) {
13 return std::current_exception();
14 }
15 return nullptr;
16 }
17

18 int main() {
19 std::exception_ptr e = getException();
20 std::rethrow_exception(e);
21 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 325

Section 3.1.6

Exception Safety

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 326

Resource Management

resource: physical or virtual component of limited availability within

computer system

examples of resources include: memory, files, devices, network

connections, processes, threads, and locks

essential that acquired resource properly released when no longer needed

when resource not properly released when no longer needed, resource

leak said to occur

exceptions have important implications in terms of resource management

must be careful to avoid resource leaks

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 327

Resource Leak Example

1 void useBuffer(char* buf) { /* ... */ }
2

3 void doWork() {
4 char* buf = new char[1024];
5 useBuffer(buf);
6 delete[] buf;
7 }

if useBuffer throws exception, code that deletes buf is never reached

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 328

Cleanup

cleanup operations should always be performed in destructors

following structure for code is fundamentally flawed:

void func()
{

initialize();
do_work();
cleanup();

}

code with preceding structure not exception safe

if do_work throws, cleanup never called and cleanup operation not

performed

in best case, not performing cleanup will probably cause resource leak

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 329

Exception Safety and Exception Guarantees

in order for exception mechanism to be useful, must know what can be

assumed about state of program when exception thrown

operation said to be exception safe if it leaves program in valid state when

operation is terminated by exception

several levels of exception safety: basic, strong, nothrow

basic guarantee: all invariants preserved and no resources leaked

with basic guarantee, partial execution of failed operation may cause side

effects

strong guarantee: in addition to basic guarantee, failed operation

guaranteed to have no side effects (i.e., commit semantics)

with strong guarantee, operation can still fail causing exception to be

thrown

nothrow guarantee: in addition to basic guarantee, promises not to emit

exception (i.e., operation guaranteed to succeed even in presence of

exceptional circumstances)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 330

Exception Guarantees

assume all functions throw if not known otherwise

code must always provide basic guarantee

nothrow guarantee should be provided by:

destructors

move operations (i.e., move constructors and move assignment operators)

swap operations

provide strong guarantee when natural to do so and not more costly than

basic guarantee

examples of strong guarantee:

push_back for container (provided container element type has nonthrowing

move)

insert on list

examples of nothrow guarantee:

swap of two containers

pop_back for container

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 331

Resource Acquisition Is Initialization (RAII)

resource acquisition is initialization (RAII) is programming idiom used to

avoid resource leaks and provide exception safety

associate resource with owning object (i.e., RAII object)

period of time over which resource held is tied to lifetime of RAII object

resource acquired during creation of RAII object

resource released during destruction of RAII object

provided RAII object properly destroyed, resource leak cannot occur

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 332

Resource Leak Example Revisited

implementation 1 (not exception safe; has memory leak):

1 void useBuffer(char* buf) { /* ... */ }
2

3 void doWork() {
4 char* buf = new char[1024];
5 useBuffer(buf);
6 delete[] buf;
7 }

implementation 2 (exception safe):

1 template <class T>
2 class SmartPtr {
3 public:
4 SmartPtr(int size) : ptr_(new T[size]) {}
5 ˜SmartPtr() {delete[] ptr_;}
6 operator T*() {return ptr_;}
7 // ...
8 private:
9 T* ptr_;

10 };
11

12 void useBuffer(char* buf) { /* ... */ }
13

14 void doWork() {
15 SmartPtr <char> buf(1024);
16 useBuffer(buf);
17 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 333

Section 3.1.7

Exceptions: Implementation, Cost, and Usage

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 334

Implementation of Exception Handling

standard does not specify how exception handling is to be implemented;

only specifies behavior of exception handling

consider typical implementation here

potentially significant memory overhead for storing exception object and

information required for stack unwinding

possible to have zero time overhead if no exception thrown

time overhead significant when exception thrown

not practical to create exception object on stack, since object frequently

needs to be propagated numerous levels up call chain

exception objects tend to be small

exception object can be stored in small fixed-size buffer falling back on

heap if buffer not big enough

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 335

Implementation of Exception Handling (Continued)

memory required to maintain sufficient information to unwind stack when

exception thrown

two common strategies for maintaining information for stack unwinding:

stack-based and table-based strategies

stack-based strategy:

information for stack unwinding is saved on call stack, including list of

destructors to execute and exception handlers that might catch exception

when exception is thrown, walk stack executing destructors until matching

catch found

table-based strategy:

store information to assist in stack unwinding in static tables outside stack

call stack used to determine which scopes entered but not exited

use look-up operation on static tables to determine where thrown exception

will be handled and which destructors to execute

table-based strategy uses less space on stack but potentially requires

considerable storage for tables

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 336

Appropriateness of Using Exceptions

use of exceptions not appropriate in all circumstances

in practice, exceptions can sometimes (depending on C++

implementation) have prohibitive memory cost for systems with very

limited memory (e.g., some embedded systems)

since throwing exception has significant time overhead only use for

infrequently occurring situations (not common case)

in code where exceptions can occur, often much more difficult to bound

how long code path will take to execute

since difficult to predict response time of code in presence of exceptions,

exceptions often cannot be used in time critical component of real-time

system (where operation must be guaranteed to complete in specific

maximum time)

considerable amount of code in existence that is not exception safe,

especially legacy code

cannot use exceptions in code that is not exception safe

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 337

Enforcing Invariants: Exceptions Versus Assertions

whether invariants should be enforced by exceptions or assertions

somewhat controversial

would recommend only using exceptions for errors from which recovery is

likely to be possible

if error condition detected is indicative of serious programming error,

program state may already be sufficiently invalid (e.g., stack trampled,

heap corrupted) that exception handling will not work correctly anyhow

tendency amongst novice programmers is to use exceptions in places

where their use is either highly questionable or clearly inappropriate

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 338

Section 3.1.8

Smart Pointers and Other RAII Classes

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 339

The std::unique_ptr Template Class

std::unique_ptr is smart pointer that retains exclusive ownership of

object through pointer

declaration:
template <class T, class Deleter = std::default_delete <T>>

class unique_ptr;

T is type of object to be managed (i.e., owned object)

Deleter is callable entity used to delete owned object

also correctly handles array types via partial specialization (e.g., T could

be array of char)

owned object destroyed when unique_ptr object goes out of scope

no two unique_ptr objects can own same object

unique_ptr object is movable; move operation transfers ownership

unique_ptr object is not copyable, as copying would create additional

owners

std::make_unique template function often used to create unique_ptr

objects (for both efficiency and exception-safety reasons)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 340

The std::unique_ptr Template Class (Continued)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 341

Example: Resource Leak

1 #include <cstddef >
2 #include <limits >
3

4 class TwoBufs {
5 public:
6 TwoBufs(std::size_t aSize , std::size_t bSize) :
7 a_(nullptr), b_(nullptr) {
8 a_ = new char[aSize];
9 // If new throws, a_ will be leaked.

10 b_ = new char[bSize];
11 }
12 ˜TwoBufs() {
13 delete[] a_;
14 delete[] b_;
15 }
16 // ...
17 private:
18 char* a_;
19 char* b_;
20 };
21

22 void doWork() {
23 // This may leak memory.
24 TwoBufs x(1000000,
25 std::numeric_limits <std::size_t >::max());
26 // ...
27 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 342

Example: std::unique_ptr

1 #include <cstddef >
2 #include <limits >
3 #include <memory >
4

5 class TwoBufs {
6 public:
7 TwoBufs(std::size_t aSize , std::size_t bSize) :
8 a_(std::make_unique <char[]>(aSize)),
9 b_(std::make_unique <char[]>(bSize)) {}

10 ˜TwoBufs() {}
11 // ...
12 private:
13 std::unique_ptr <char[]> a_;
14 std::unique_ptr <char[]> b_;
15 };
16

17 void doWork() {
18 // This will not leak memory.
19 TwoBufs x(1000000,
20 std::numeric_limits <std::size_t >::max());
21 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 343

The std::shared_ptr Template Class

std::shared_ptr is smart pointer that retains shared ownership of

object through pointer

declaration:
template <class T> class shared_ptr;

T is type of object to be managed (i.e., owned object)

multiple shared_ptr objects may own same object

owned object is deleted when last remaining owning shared_ptr object

is destroyed or last remaining owning shared_ptr object assigned

another pointer via assignment or reset

shared_ptr object is movable, where move transfers ownership

shared_ptr object is copyable, where copy creates additional owner

thread safety guaranteed for shared_ptr object itself but not owned

object

std::make_shared often used to create shared_ptr objects (for both

efficiency and exception-safety reasons)

shared_ptr has more overhead than unique_ptr so unique_ptr

should be preferred unless shared ownership required

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 344

The std::shared_ptr Template Class (Continued)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 345

Example: std::shared_ptr

1 #include <memory >
2 #include <vector >
3 #include <string >
4 #include <iostream >
5

6 using namespace std::literals;
7

8 int main() {
9 std::vector <std::shared_ptr <std::string >> all;

10 all.emplace_back(
11 std::make_shared <std::string >("apple"s));
12 all.emplace_back(
13 std::make_shared <std::string >("orange"s));
14 all.emplace_back(
15 std::make_shared <std::string >("banana"s));
16

17 std::vector <std::shared_ptr <std::string >> some(
18 all.begin(), all.begin() + 2);
19

20 for (auto& x : all) {
21 std::cout << *x << " " << x.use_count() << "\n";
22 }
23 }
24

25 /* output:
26 apple 2
27 orange 2
28 banana 1
29 */

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 346

Example: std::shared_ptr

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 347

RAII Example: Stream Formatting Flags

1 #include <iostream >
2 #include <ios>
3 #include <boost/io/ios_state.hpp>
4

5 // not exception safe
6 void unsafeOutput(std::ostream& out, unsigned int x) {
7 auto flags = out.flags();
8 // if exception thrown during output of x, old
9 // formatting flags will not be restored

10 out << std::hex << std::showbase << x << "\n";
11 out.flags(flags);
12 }
13

14 // exception safe
15 void safeOutput(std::ostream& out, unsigned int x) {
16 boost::io::ios_flags_saver ifs(out);
17 out << std::hex << std::showbase << x << "\n";
18 }

RAII objects can be used to save and restore state

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 348

Section 3.1.9

Exception Gotchas

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 349

shared_ptr Example: Not Exception Safe

1 #include <memory >
2

3 class T1 { /* ... */ };
4 class T2 { /* ... */ };
5

6 void func(std::shared_ptr <T1> p, std::shared_ptr <T2> q)
7 { /* ... */ }
8

9 void doWork() {
10 // potential memory leak
11 func(std::shared_ptr <T1>(new T1),
12 std::shared_ptr <T2>(new T2));
13 // ...
14 }

one problematic order:

1 allocate memory for T1
2 construct T1
3 allocate memory for T2
4 construct T2
5 construct shared_ptr<T1>
6 construct shared_ptr<T2>
7 call func

if step 3 or 4 throws, memory leaked

another problematic order:

1 allocate memory for T1
2 allocate memory for T2
3 construct T1
4 construct T2
5 construct shared_ptr<T1>
6 construct shared_ptr<T2>
7 call func

if step 3 or 4 throws, memory leaked

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 350

shared_ptr Example: Exception Safe

1 #include <memory >
2

3 class T1 { /* ... */ };
4 class T2 { /* ... */ };
5

6 void func(std::shared_ptr <T1> p, std::shared_ptr <T2> q)
7 { /* ... */ }
8

9 void doWork() {
10 func(std::make_shared <T1>(), std::make_shared <T2 >());
11 // ...
12 }

previously problematic line of code now does following:
1 perform following operations in any order:

construct shared_ptr<T1> via make_shared<T1>

construct shared_ptr<T2> via make_shared<T2>

2 call func

each of T1 and T2 objects managed by shared_ptr at all times so no

memory leak possible if exception thrown

similar issue arises in context of std::unique_ptr and can be resolved

by using std::make_unique in similar way as above

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 351

Stack Example

stack class template parameterized on element type T

1 template <class T>
2 class Stack
3 {
4 public:
5 // ...
6 // Pop the top element from the stack.
7 T pop() {
8 // If the stack is empty...
9 if (top_ == start_)

10 throw "stack is empty";
11 // Remove the last element and return it.
12 return *(--top_);
13 }
14 private:
15 T* start_; // start of array of stack elements
16 T* end_; // one past end of array
17 T* top_; // one past current top element
18 };

what is potentially problematic about this code with respect to exceptions?

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 352

Section 3.1.10

Miscellany

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 353

safe_add Example: Traditional Error Handling

1 #include <limits >
2 #include <vector >
3 #include <iostream >
4

5 std::pair <bool, int> safe_add(int x, int y) {
6 return ((y > 0 && x > std::numeric_limits <int>::max() - y)
7 || (y < 0 && x < std::numeric_limits <int>::min() - y)) ?
8 std::make_pair(false, 0) : std::make_pair(true, x + y);
9 }

10

11 int main() {
12 constexpr int int_min = std::numeric_limits <int>::min();
13 constexpr int int_max = std::numeric_limits <int>::max();
14 std::vector <std::pair <int, int>> v{
15 {int_max , int_max}, {1, 2}, {int_min , int_min},
16 {int_max , int_min}, {int_min , int_max}
17 };
18 for (auto x : v) {
19 auto result = safe_add(x.first , x.second);
20 if (result.first) {
21 std::cout << result.second << "\n";
22 } else {
23 std::cout << "overflow\n";
24 }
25 }
26 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 354

safe_add Example: Exceptions

1 #include <limits >
2 #include <vector >
3 #include <iostream >
4 #include <stdexcept >
5

6 int safe_add(int x, int y) {
7 return ((y > 0 && x > std::numeric_limits <int>::max() - y)
8 || (y < 0 && x < std::numeric_limits <int>::min() - y)) ?
9 throw std::overflow_error("addition") : x + y;

10 }
11

12 int main() {
13 constexpr int int_min = std::numeric_limits <int>::min();
14 constexpr int int_max = std::numeric_limits <int>::max();
15 std::vector <std::pair <int, int>> v{
16 {int_max , int_max}, {1, 2}, {int_min , int_min},
17 {int_max , int_min}, {int_min , int_max}
18 };
19 for (auto x : v) {
20 try {
21 int result = safe_add(x.first , x.second);
22 std::cout << result << "\n";
23 }
24 catch (const std::overflow_error&) {
25 std::cout << "overflow\n";
26 }
27 }
28 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 355

Section 3.1.11

References

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 356

References I

1 D. Abrahams. Exception-safety in generic components. In Lecture Notes

in Computer Science, volume 1766, pages 69–79. Springer, 2000.

A good tutorial on exception safety by an expert on the subject.

2 T. Cargill. Exception handling: A false sense of security. C++ Report, 6(9),

Nov. 1994. Available online at http://ptgmedia.pearsoncmg.com/

images/020163371x/supplements/Exception_Handling_Article.

html.

An early paper that first drew attention to some of the difficulties in writing

exception-safe code.

3 Exception-Safe Coding in C++, http://exceptionsafecode.com,

2014.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 357

Talks I

1 Jon Kalb. Exception-Safe Code, CppCon, Bellevue, WA, USA, Sep 7–12,

2014. (This talk is in three parts.)

2 Jon Kalb. Exception-Safe Coding in C++Now, Aspen, CO, USA, May

13–18, 2012. (This talk is in two parts.)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 358

Section 3.2

Rvalue References

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 359

Section 3.2.1

Preliminaries

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 360

Terminology: Named and Cv-Qualified

A type that includes one or both of the qualifiers const and volatile

is called a cv-qualified type.

A type that is not cv-qualified is called cv-unqualified.

Example:

The types const int and volatile char are cv-qualified.

The types int and char are cv-unqualified.

An object or function that is named by an identifier is said to be named.

An object or function that cannot be referred to by name is said to be

unnamed.

Example:

std::vector <int> v = {1, 2, 3, 4};
std::vector <int> w;
w = v; // w and v are named
w = std::vector <int>(2, 0);
// w is named
// std::vector<int>(2, 0) is unnamed

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 361

Motivation Behind Rvalue References

new language feature in C++11

provide move semantics (i.e., mechanism for moving objects as opposed

to copying them)

allow for perfect forwarding

perfect forwarding: passing a generic function’s actual arguments to a

second function without rejecting any arguments that can be passed to

that second function, without losing any information about the arguments’

cv-qualifications or lvalue/rvalue-ness, and without overloading

in C++03, best approximations turn all rvalues into lvalues and require two

overloads

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 362

Section 3.2.2

Copying and Moving

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 363

Propagating Values: Copying and Moving

Suppose that we have two objects of the same type and we want to

propagate the value of one object (i.e., the source) to the other object (i.e.,

the destination).

This can be accomplished in one of two ways: 1) copying or 2) moving.

Copying propagates the value of the source object to the destination

object without modifying the source object.

Moving propagates the value of the source object to the destination

object and is permitted to modify the source object.

Moving is always at least as efficient as copying, and for many types,

moving is more efficient than copying.

For some types, copying does not make sense, while moving does (e.g.,

std::ostream, std::istream).

C++ has always supported copying via copy constructors and copy

assignment operators.

C++11 adds formal support for moving (e.g., move constructors, move

assignment operators, std::move).

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 364

Vector Example: Moving Versus Copying

Consider a class that represents a one-dimensional array.

template <class T>
class Vector {
public:

// ...
private:

T* data_; // pointer to element data
// (allocated with new)

unsigned int size_; // number of elements
};

Pictorially, the data structure looks like the following:

data_

size_

dn−1

...

d1

d0
n

object

How would copying be implemented?

How would moving be implemented?

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 365

Vector Example: Copying

code for copying from source src to destination dst (not self assignment):
delete [] dst.data_;
dst.data_ = new T[src.size_];
dst.size_ = src.size_;
std::copy_n(src.data_ , src.size_ , dst.data_);

copying requires: one array delete (destruction, memory deallocation),

one array new (memory allocation, construction), copying of element data

(copy assignment, etc.), and updating data_ and size_ data members

copying proceeds as follows:

data_

size_

sn−1

...

s1

s0
n

src

data_

size_

dm−1

...

d1

d0

dst

m

data_

size_

sn−1

...

s1

s0
n

src

data_

size_

sn−1

...

s1

s0

dst

n

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 366

Vector Example: Moving

code for moving from source src to destination dst:

std::swap(src.data_ , dst.data_);
std::swap(src.size_ , dst.size_);

moving only requires updating data_ and size_ data members

although not considered here, could also free data array associated with

src if desirable to release memory as soon as possible

moving proceeds as follows:

data_

size_

sn−1

...

s1

s0
n

src

data_

size_

dm−1

...

d1

d0

dst

m

data_

size_

sn−1

...

s1

s0
m

src

data_

size_

dm−1

...

d1

d0

dst

n

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 367

Moving Versus Copying

moving usually more efficient than copying, often by very large margin

prefer moving to copying

can safely replace copy by move when subsequent code does not depend

on value of source object

would be convenient if language could provide some way to automatically

move (instead of copy) in situations where always guaranteed to be safe

to do so

for reasons of efficiency, desirable to provide mechanism whereby

programmer can override normal behavior and force move (instead of

copy) in situations where might not normally be safe but is safe due to

additional knowledge of program behavior

rvalues references provide this mechanism

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 368

Section 3.2.3

References and Expressions

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 369

References

From the beginning, C++ has always had lvalue references (which used to

be simply called references).

An lvalue reference is denoted by & (often read as “ref”).

int i = 5;
int& j = i; // j is lvalue reference to int
const int& k = i; k is lvalue reference to const int

C++11 added the notion of rvalue references.

An rvalue reference is denoted by && (often read as “ref ref”).

int&& i = 5; // i is rvalue reference to int
const int&& j = 17; // j is rvalue reference to const int

Lvalue and rvalue references are similar in that they are references (i.e.,

aliases).

Lvalue and rvalues references differ only in their properties relating to

reference binding and overload resolution.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 370

Expressions

An expression is a sequence of operators and operands that specifies a

computation.

An expression has a value and a type.

Example:

int x = 0;
int y = 0;
int* p = &x;
double d = 0.0;
// Evaluate some
// expressions here.

Expression Type Value

x int 0
y = x int& reference to y
x + 1 int 1
x * x + 2 * x int 0
y = x * x int& reference to y
x == 42 bool false
*p int& reference to x
p == &x bool true
x > 2 * y bool false
std::sin(d) double 0.0

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 371

Categories of Expressions

expression

lvalue xvalue prvalue

glvalue
rvalue

Every expression can be classified into exactly one of the three following

categories:
1 lvalue
2 prvalue (pure rvalue)
3 xvalue (expiring value)

An expression that is an lvalue or xvalue is called a glvalue (generalized

lvalue).

An expression that is a prvalue or an xvalue is called an rvalue.

Every expression is either an lvalue or an rvalue (but not both).

Whether or not it is safe to move (instead of copy) depends on whether an

lvalue or rvalue is involved.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 372

Lvalues

An lvalue is an expression that:

designates a function or object ; and

has an identity (i.e., occupies some identifiable location in memory and

therefore, in principle, can have its address taken).

Named objects and named functions are lvalues. Example:

int getValue();
int i = 0;
const int j = 1;
i = j + 1; // i and j are lvalues
getValue(); // getValue is lvalue [Note: not getValue()]

Dereferenced pointer. If e is an expression of pointer type, then *e is an

lvalue. Example:

char buffer[] = "Hello";
char* s = buffer;
*s = ’a’; // *s is lvalue
*(s + 1) = ’b’; // *(s + 1) is lvalue

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 373

Lvalues (Continued)

The result of calling a function whose return type is an lvalue reference

type is an lvalue. Example:

std::vector <int> v = {{1, 2, 3}};
// int& std::vector<int>::operator[](int);
int i = v[0]; // v[0] is lvalue

A string literal is an lvalue. Example: "Hello World"

Named rvalue references are lvalues. Example:

int&& i = 1 + 3;
int j = i; // i is lvalue

Rvalue references to functions (both named and unnamed) are lvalues.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 374

Moving and Lvalues

Using a move (instead of a copy) is not guaranteed to be safe when the

source is an lvalue (since other code can access the associated object by

name or through a pointer or reference).

Therefore, the language should never automatically move (instead of

copy) when the source is an lvalue.

Example:

Vector <int> x;
Vector <int> y(x);
// can we construct by moving (instead of copying)?
// source x is lvalue
// not safe to move x to y since value of x
// might be used below

y = x;
// can we assign by moving (instead of copying)?
// source x is lvalue
// not safe to move x to y since value of x
// might be used below

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 375

Prvalues

A prvalue (pure rvalue) is an expression that:

is a temporary object or subobject thereof, or a value that is not associated

with an object; and

does not have an identity.

A prvalue is a kind of rvalue.

Temporary objects are prvalues. Example:

std::vector <int> v;
v = std::vector <int>(10, 2);

// std::vector<int>(10, 2) is prvalue
std::complex <double> u;
u = std::complex <double>(1, 2);

// std::complex<double>(1, 2) is prvalue

A function call whose return type is not a reference type is a prvalue.

Example:

int func();
int i = func(); // func() is prvalue

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 376

Prvalues (Continued)

All literals other than string literals are prvalues. Examples:

double pi = 3.1415; // 3.1415 is prvalue
int i = 42; // 42 is prvalue
i = 2 * i + 1; // 2 and 1 are prvalues
char c = ’A’; // ’A’ is prvalue

The result yielded by certain built-in operators (e.g., +, -) is a prvalue.

Example:

int i, j;
i = 3 + 5; // 3 + 5 is prvalue
j = i * i; // i * i is prvalue

The this keyword is a prvalue expression.

Prvalues need not have any storage associated with them.

Not requiring prvalue expressions to have storage gives the compiler

more freedom in generating code for such expressions.

int i = 2;
// 2 is prvalue and need not ever be stored in memory

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 377

Moving and Prvalues

Using a move (instead of a copy) is always safe when the source is a

prvalue (since the prvalue cannot correspond to an object with an identity).

Example (move from temporary object):

Vector <int> getVector();
Vector <int> x;
Vector <int> y(getVector());
// can we construct by moving (instead of copying)?
// source getVector() is prvalue
// safe to move since temporary object could not be
// used below

x = getVector();
// can we assign by moving (instead of copying)?
// source getVector() is prvalue
// safe to move since temporary object could not be
// used below

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 378

Xvalues

An xvalue (expiring value) is an expression that:

refers to an object (usually near the end of its lifetime);

has an identity; and

is deemed to be safe to use as the source for a move.

An xvalue is a kind of rvalue.

An xvalue is the result of certain kinds of expressions involving rvalue

references.

The result of calling a function whose return type is an rvalue reference

type is an xvalue. Example:

std::string s("Hello");
std::string t = std::move(s); // std::move(s) is xvalue

In the above example, the template function std::move converts its

argument to an xvalue (since it returns an rvalue reference type).

Unnamed rvalue references to objects are xvalues.

std::string s("Hello");
std::string t;
t = static_cast<std::string&&>(s);
// static_cast<std::string&&>(s) is xvalue

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 379

Moving and Xvalues

Using a move (instead of a copy) is deemed to be safe when the source is

an xvalue.

Example (forced move):

Vector <int> v(100, 5);
Vector <int> u(200, -1);
for (auto i : v) std::cout << i << "\n";
for (auto i : u) std::cout << i << "\n";
v = std::move(u);

// std::move(u) is xvalue
// safe to force move since later code does
// not to use value of u

for (auto i : v) std::cout << i << "\n";
// later code known not to use value of u

The function std::move only allows for an object to be treated as if it

were safe to use as source of a move, but does not perform a move.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 380

Moving and Lvalues and Rvalues

if source is rvalue (i.e., prvalue or xvalue), using move instead of copy is

safe

if source is lvalue, using move instead of copy is not guaranteed to be safe

want language to automatically use move in rvalue case and copy

otherwise

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 381

More on Lvalues and Rvalues

Lvalues and rvalues can be either modifiable or nonmodifiable.

Example:

int i = 0;
const int j = 2;
i = j + 3;
// i is modifiable lvalue
// j is nonmodifiable lvalue
// j + 3 is modifiable rvalue

const std::string getString();
std::string s = getString();
// getString() is nonmodifiable rvalue

Class rvalues have cv-qualified types, while non-class rvalues always

have cv-unqualified types . Example:

const int getConstInt(); // const is ignored
const std::string getConstString();
int i = getConstInt ();
// getConstInt() is modifiable rvalue of type int
// (not const int)

std::string s = getConstString();
// getConstString() is nonmodifiable rvalue

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 382

Exercise: Expressions

1 #include <iostream >
2 #include <string >
3 #include <utility >
4

5 std::string&& func1(std::string& x) {
6 return std::move(x);
7 // x? std::move(x)?
8 }
9

10 int main() {
11 const std::string hello("Hello");
12 std::string a;
13 std::string b;
14

15 a = hello + "!";
16 // hello? hello + "!"? a = hello + "!"?
17 std::cout << a << "\n";
18 // std::cout? std::cout << a?
19

20 a = std::string("");
21 // std::string("")? a = std::string("")?
22 ((a += hello) += "!");
23 // a += hello?
24 b = func1(a);
25 // func1(a)? b = func1(a)?
26 std::cout << b << "\n";
27 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 383

Exercise: Expressions

1 #include <iostream >
2 #include <vector >
3 #include <utility >
4

5 std::vector <int>&& func1(std::vector <int>& x) {
6 return static_cast<std::vector <int>&&>(x);
7 // x?
8 // static_cast<std::vector<int>&&>(x)?
9 }

10

11 int main() {
12 std::vector <int> x = {1, 2, 3};
13 std::vector <int> y;
14 int a;
15

16 for (auto i = x.begin(); i != x.end(); ++i) {
17 // x.begin()? ++i?
18 *i += 5;
19 // i? *i? *i += 5?
20 }
21

22 a = x[0];
23 // x[0]?
24 ++a; a++;
25 // ++a? a++?
26

27 y = func1(x);
28 // func1(x)? y = func1(x)?
29 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 384

Built-In Operators, Rvalues, and Lvalues

Aside from the exceptions noted below, all of the built-in operators require

operands that are rvalues.

The operand of each of the following built-in operators must be an lvalue:

address of (i.e., unary &),

prefix and postfix increment (i.e., ++),

prefix and postfix decrement (i.e., --)

The left operand of the following built-in operators must be an lvalue:

assignment (i.e., =)

compound assignment (e.g., +=, -=, *=, /=, etc.)

Aside from the exceptions noted below, all of the built-in operators yield a

result that is an rvalue.

The following operators yield a result that is an lvalue:

subscript (i.e., [])

dereference (i.e., unary *)

assignment (i.e., =) and compound assignment (e.g., +=, -=, etc.)

prefix increment (i.e., ++) and prefix decrement (i.e., --)

function call (i.e., ()) invoking a function that returns a reference type

cast to reference type

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 385

Operators, Lvalues, and Rvalues

Whether an operator for a class type require operands that are lvalues or

rvalues or yield lvalues or rvalues is determined by the parameter types

and return types of the operator function.

member selection operator and lvalues/rvalues

ternary conditional operator rvalue/lvalue and type of expression

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 386

Implicit Lvalue-to-Rvalue Conversion

An implicit conversion from lvalues to rvalues is provided, which can be

used in most (but not all) circumstances.

Example:

int i = 1;
int j = 2;
int k = i + j;
// operands of + must be rvalues
// i and j converted to rvalues

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 387

Section 3.2.4

Reference Binding and Overload Resolution

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 388

References: Binding and Overload Resolution

The kinds of expressions, to which lvalue and rvalue references can bind,

differ.

For a nonreference type T (such as int or const int), what kinds of

expressions can validly be placed in each of the boxes in the example

below?

T&& r = ;

T& r = ;

Lvalue and rvalue references also behave differently with respect to

overload resolution.

Let T be a cv-unqualified nonreference type. Which overloads of func will

be called in the example below?

T operator+(const T&, const T&);
void func(const T&);
void func(T&&);
T x;
func(x); // calls which version of func?
func(x + x); // calls which version of func?

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 389

Reference Binding

Implicit lvalue-to-rvalue conversion is disabled when binding to references

.

An lvalue reference can bind to an lvalue as long as doing so would not

result in the loss of any cv qualifiers.

const int i = 0;
int& r1 = i; // ERROR: drops const
const int& r2 = i; // OK
const volatile int& r3 = i; // OK

The loss of cv qualifiers must be avoided for const and volatile

correctness.

Similarly, an rvalue reference can bind to an rvalue as long as doing so

would not result in the loss of any cv qualifiers.

const string getValue();
string&& r1 = getValue(); // ERROR: drops const
const string&& r2 = getValue(); // OK

Again, the loss of cv qualifiers must be avoided for const and volatile

correctness.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 390

Reference Binding (Continued)

An lvalue reference can be bound to an rvalue only if doing so would not

result in the loss of any cv qualifier and the lvalue reference is const.

const string getConstValue ();
string& r1 = getConstValue (); // ERROR: drops const
const string& r2 = getValue(); // OK
int& ri1 = 42; // ERROR: not const reference
const int& ri2 = 42; // OK

The requirement that the lvalue reference be const is to prevent temporary

objects from being modified in a very uncontrolled manner, which can lead

to subtle bugs.

An rvalue reference can never be bound to an lvalue.

int i = 0;
int&& r = i; // ERROR: cannot bind to lvalue

Allowing rvalue reference to bind to lvalues would violate the principle of

type-safe overloading , which can lead to subtle bugs.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 391

Why Rvalue References Cannot Bind to Lvalues

In effect, rvalue references were introduced into the language to allow a

function to know if one of its reference parameters is bound to an object

whose value is safe to change without impacting other code, namely, an

rvalue (i.e., a temporary object or xvalue).

Since an rvalue reference can only bind to an rvalue, any rvalue reference

parameter to a function is guaranteed to be bound to a temporary object

or xvalue.

Example:
class Thing {
public:

// Move constructor
// parameter x known to be safe to use as source for move
Thing(Thing&& x);
// Move assignment operator
// parameter x known to be safe to use as source for move
Thing& operator=(Thing&& x);
// ...

};
// parameter x known to be safe to modify
void func(Thing&& x);

If rvalue references could bind to lvalues, the above guarantee could not

be made, as an rvalue reference could then refer to an object whose value

cannot be changed safely, namely, an lvalue.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 392

Why Non-Const Lvalue References Cannot Bind to Rvalues

If non-const lvalue references could bind to rvalues, temporary objects

could be modified in many undesirable circumstances.

void func(int& x) {
// ...

}

int main() {
int i = 1;
int j = 2;
func(i + j);
// ERROR: cannot bind non-const lvalue
// reference to rvalue
// What would be consequence if allowed?

}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 393

Reference Binding Summary

Rvalue Lvalue

T
const

T

volatile

T

const

volatile

T

T
const

T

volatile

T

const

volatile

T
T&& ✓ C V C,V ✗ ✗ ✗ ✗

const

T&&
✓ ✓ V V ✗ ✗ ✗ ✗

volatile

T&&
✓ ✗ ✓ C ✗ ✗ ✗ ✗

const

volatile

T&&

✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

T& ✗ ✗ ✗ ✗ ✓ C V C,V
const T& ✓ ✓ V V ✓ ✓ V V
volatile

T&
✗ ✗ ✗ ✗ ✓ C ✓ C

const

volatile

T&

✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

✓: allowed C: strips const V: strips volatile ✗: other

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 394

Reference Binding Example

1 #include <string >
2 using std::string;
3
4 string value() {
5 return string("Hello");
6 }
7
8 const string constValue() {
9 return string("World");

10 }
11
12 int main() {
13 string i("mutable");
14 const string j("const");
15
16 string& r01 = i;
17 string& r02 = j; // ERROR: drops const
18 string& r03 = value(); // ERROR: non-const lvalue reference from rvalue
19 string& r04 = constValue(); // ERROR: non-const lvalue reference from rvalue
20
21 const string& r05 = i;
22 const string& r06 = j;
23 const string& r07 = value();
24 const string& r08 = constValue();
25
26 string&& r09 = i; // ERROR: rvalue reference from lvalue
27 string&& r10 = j; // ERROR: rvalue reference from lvalue
28 string&& r11 = value();
29 string&& r12 = constValue(); // ERROR: drops const
30
31 const string&& r13 = i; // ERROR: rvalue reference from lvalue
32 const string&& r14 = j; // ERROR: rvalue reference from lvalue
33 const string&& r15 = value();
34 const string&& r16 = constValue();
35 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 395

Overload Resolution

Lvalues strongly prefer binding to lvalue references.

Rvalues strongly prefer binding to rvalue references.

Modifiable lvalues and rvalues weakly prefer binding to non-const

references.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 396

Overload Resolution Summary

Priority
Rvalue Lvalue

T
const

T

volatile

T

const

volatile

T

T
const

T

volatile

T

const

volatile

T
T&& 1

const

T&&
2 1

volatile

T&&
2 1

const

volatile

T&&

3 2 2 1

T& 1
const T& 4 3 2 1
volatile

T&
2 1

const

volatile

T&

3 2 2 1

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 397

Overloading Example 1

1 #include <iostream >
2 #include <string >
3
4 void func(std::string& x) {
5 std::cout << "func(std::string&) called\n";
6 }
7
8 void func(const std::string& x) {
9 std::cout << "func(const std::string&) called\n";

10 }
11
12 void func(std::string&& x) {
13 std::cout << "func(std::string&&) called\n";
14 }
15
16 void func(const std::string&& x) {
17 std::cout << "func(const std::string&&) called\n";
18 }
19
20 const std::string&& constValue(const std::string&& x) {
21 return static_cast<const std::string&&>(x);
22 }
23
24 int main() {
25 const std::string cs("hello");
26 std::string s("world");
27 func(s);
28 func(cs);
29 func(cs + s);
30 func(constValue(cs + s));
31 }
32
33 /* Output:
34 func(std::string&) called
35 func(const std::string&) called
36 func(std::string&&) called
37 func(const std::string&&) called
38 */

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 398

Overloading Example 2

1 #include <iostream >
2 #include <string >
3
4 void func(const std::string& x) {
5 std::cout << "func(const std::string&) called\n";
6 }
7
8 void func(std::string&& x) {
9 std::cout << "func(std::string&&) called\n";

10 }
11
12 const std::string&& constValue(const std::string&& x) {
13 return static_cast<const std::string&&>(x);
14 }
15
16 int main() {
17 const std::string cs("hello");
18 std::string s("world");
19 func(s);
20 func(cs);
21 func(cs + s);
22 func(constValue(cs + s));
23 }
24
25 /* Output:
26 func(const std::string&) called
27 func(const std::string&) called
28 func(std::string&&) called
29 func(const std::string&) called
30 */

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 399

Exercise: Overloading

1 #include <complex >
2 #include <iostream >
3

4 typedef std::complex <double> Complex;
5 const Complex getConst() {return Complex(1.0, 2.0);}
6

7 void func1(const Complex& a) {std::cout << "1a\n";}
8 void func1(Complex& a) {std::cout << "1b\n";}
9 void func1(Complex&& a) {std::cout << "1c\n";}

10

11 void func2(const Complex& a) {std::cout << "2a\n";}
12 void func2(const Complex&& a) {std::cout << "2b\n";}
13

14 int main() {
15 const Complex j(0.0, 1.0);
16 Complex a(1.0, 1.0);
17 const Complex* p = &j;
18 func1(a);
19 func1(j);
20 func1(a * a);
21 func1(getConst());
22 func1(*p);
23 func2(a + a);
24 func2(j);
25 func2(getConst());
26 }

What output will this program produce when run?

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 400

Section 3.2.5

Moving

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 401

Move Constructors

A non-template constructor for class T is a move constructor if it can be

called with one parameter that is of type T&&, const T&&,

volatile T&&, or const volatile T&&.

Example (assuming no optimization):

struct T {
T();
T(const T&); // copy constructor
T(T&&); // move constructor

};
T func(int);

T a(func(1)); // calls T::T(T&&)
T b = a; // calls T::T(const T&)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 402

Move Assignment Operators

A move assignment operator T::operator= is a non-static

non-template member function of class T with exactly one parameter of

type T&&, const T&&, volatile T&&, or const volatile T&&.

Example (assuming no optimization):

class T {
public:

T();
T(const T&); // copy constructor
T(T&&); // move constructor
T& operator=(const T&); // copy assignment operator
T& operator=(T&&); // move assignment operator
// ...

};
T func(int);

T a;
T b;
a = func(1); // calls T::operator=(T&&)
b = a; // calls T::operator=(const T&)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 403

Why Rvalue References Cannot Bind to Lvalues (Revisited)

If an rvalue reference could bind to an lvalue, this would violate the

principle of type-safe overloading.

1 #include <iostream >
2 #include <string >
3

4 using namespace std;
5

6 template <class T>
7 class Container {
8 public:
9 // ...

10 // Forget to provide the following function:
11 // void push_back(const T& value); // Copy semantics
12 void push_back(T&& value); // Move semantics
13 private:
14 // ...
15 };
16

17 int main() {
18 string s("Hello");
19 Container <string > c;
20 // What would happen here if lvalues
21 // could bind to rvalue references?
22 c.push_back(s);
23 cout << s << "\n";
24 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 404

Vector Example Revisited

Recall the class from earlier that represents a one-dimensional array.

template <class T>
class Vector {
public:

// ...
private:

T* data_; // pointer to element data
// (allocated with new)

unsigned int size_; // number of elements
};

Pictorially, the data structure looks like the following:

data_

size_

dn−1

...

d1

d0
n

object

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 405

Example Without Move Construction/Assignment

1 #include <algorithm >
2 #include <complex >
3
4 template <class T>
5 class Vector {
6 public:
7 Vector(unsigned int size , T value = 0) : data_(new T[size]), size_(size)
8 {std::fill_n(data_ , size , value);}
9 Vector(const Vector& a) : data_(new T[a.size_]), size_(a.size_)

10 {std::copy_n(a.data_ , a.size_ , data_);}
11 Vector& operator=(const Vector& a) {
12 if (this != &a) {
13 delete[] data_; size_ = a.size_; data_ = new T[a.size_];
14 std::copy_n(a.data_ , a.size_ , data_);
15 }
16 return *this;
17 }
18 ˜Vector() {delete[] data_;}
19 // ...
20 private:
21 T* data_; // pointer to element data
22 unsigned int size_; // number of elements
23 };
24 typedef Vector <std::complex <double>> Vec;
25 Vec getVector() {return Vec(1000, {0.0, 1.0});}
26
27 int main() {
28 Vec v(0);
29 Vec w = getVector(); // construct from temporary object
30 v = Vec(2000, {1.0, 2.0}); // assign from temporary object
31 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 406

Example With Move Construction/Assignment

1 #include <algorithm >
2 #include <complex >
3
4 template <class T>
5 class Vector {
6 public:
7 Vector(unsigned int size , T value = 0) : data_(new T[size]), size_(size)
8 {std::fill_n(data_ , size , value);}
9 Vector(const Vector& a) : data_(new T[a.size_]), size_(a.size_)

10 {std::copy_n(a.data_ , a.size_ , data_);}
11 Vector& operator=(const Vector& a) {
12 if (this != &a) {
13 delete[] data_; size_ = a.size_; data_ = new T[a.size_];
14 std::copy_n(a.data_ , a.size_ , data_);
15 }
16 return *this;
17 }
18 // Move constructor
19 Vector(Vector&& a) : data_(a.data_), size_(a.size_)
20 {a.size_ = 0; a.data_ = nullptr;}
21 // Move assignment operator
22 Vector& operator=(Vector&& a) {
23 std::swap(size_ , a.size_); std::swap(data_ , a.data_);
24 return *this;
25 }
26 ˜Vector() {delete[] data_;}
27 // ...
28 private:
29 T* data_; // pointer to element data
30 unsigned int size_; // number of elements
31 };
32 typedef Vector <std::complex <double>> Vec;
33 Vec getVector() {return Vec(1000, {0.0, 1.0});}
34
35 int main() {
36 Vec v(0);
37 Vec w = getVector(); // construct from temporary object
38 v = Vec(2000, {1.0, 2.0}); // assign from temporary object
39 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 407

Allowing Move Semantics in Other Contexts

As we have seen, a reference parameter of a function that is bound to

modifiable rvalue can be modified safely (i.e., no observable change in

behavior outside of function).

Sometimes may want to allow a move to be used instead of a copy, when

this would not normally be permitted.

We can allow moves by casting to a non-const rvalue reference.

This casting can be accomplished by std::move, which is declared (in

the header file utility) as:

template <class T>
typename std::remove_reference <T>::type&& move(T&&)

noexcept;

For an object x of type T, std::move(x) is similar to

static_cast<T&&>(x) but saves typing and still works correctly when

T is a reference type (a technicality yet to be discussed).

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 408

Old-Style Swap

Prior to C++11, a swap function (such as std::swap) would typically look

like this:

1 template <class T>
2 void swap(T& x, T& y) {
3 T tmp(x); // copy x to tmp
4 x = y; // copy y to a
5 y = tmp; // copy tmp to y
6 }

In the above code, a swap requires three copy operations (namely, one

copy constructor call and two copy assignment operator calls).

For many types T, this use of copying is very inefficient.

Furthermore, the above code requires that T must be copyable (i.e., T has

a copy constructor and copy assignment operator).

In C++11, we can write a much better swap function.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 409

Improved Swap

As of C++11, a swap function would typically look like this:

1 template <class T>
2 void swap(T& x, T& y) {
3 T tmp(std::move(x)); // move x to tmp
4 x = std::move(y); // move y to x
5 y = std::move(tmp); // move tmp to y
6 }

The function std::move casts its argument to an rvalue reference.

Assuming that T provides a move constructor and move assignment

operator, a swap requires three move operations (i.e., one move

constructor call and two move assignment operator calls) and no copying.

The use of std::move above is essential in order for copying to be

avoided.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 410

Section 3.2.6

Miscellany

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 411

References to References

A reference to a reference is not allowed, since such a construct clearly

makes no sense.
int i = 0;
int& & j = i; // ILLEGAL: reference to reference

Although one cannot directly create a reference to a reference, a

reference to a reference can arise indirectly in several contexts.

typedef name

typedef int& RefToInt;
typedef RefToInt& T; // reference to reference

template function parameters

template <class T> T func(const T& x) {return x;}
int x = 1;
func <int&>(x); // reference to reference

decltype specifier

int i = 1;
decltype((i))& j = i; // reference to reference

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 412

References to References (Continued)

auto specifier

int i = 0;
int& j = i;
auto& k = j; // reference to reference

class templates

template <class T>
struct Thing {

void func(T&&) {} // reference to reference
// if T is reference type

};
Thing <int&> x;

If, during type analysis, a reference to a reference type is obtained, the

reference to reference is converted to a simple reference via a process

called reference collapsing.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 413

Reference Collapsing Rules

Let TR denote a type that is a reference to type T (where T may be cv

qualified). The effect of reference collapsing is summarized below .

Before Collapse After Collapse

TR& T&

const TR& T&

volatile TR& T&

const volatile TR& T&

TR&& TR

const TR&& TR

volatile TR&& TR

const volatile TR&& TR

An lvalue reference to any reference yields an lvalue reference.

An rvalue reference to an lvalue reference yields an lvalue reference.

An rvalue reference to an rvalue reference yields rvalue reference.

Any cv qualifiers applied to a reference type are discarded (since cv

qualifiers cannot be applied to a reference).

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 414

Reference Collapsing Examples

Due to reference collapsing, T&& syntax may not always be an rvalue

reference. Example:

typedef int& IntRef;
int i = 0;
IntRef&& r = i; // r is int& (i.e., lvalue reference)

Example:
typedef int& IntRef;
typedef int&& IntRefRef;
typedef const int&& ConstIntRefRef;
typedef const int& ConstIntRef;
typedef const IntRef& T1; // T1 is int&
typedef const IntRefRef& T2; // T2 is int&
typedef IntRefRef&& T3; // T3 is int&&
typedef ConstIntRef&& T4; // T4 is const int&
typedef ConstIntRefRef&& T5; // T5 is const int&&

Example:
int i = 0;
int& j = i;
auto&& k = j;
// j cannot be inferred to have type int
// since rvalue reference cannot be bound to lvalue
// j inferred to have type int&
// reference collapsing of int& && yields int&

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 415

Lifetime of Temporary Objects

Normally, a temporary object is destroyed as the last step in evaluating the

full expression that contains point where temporary object was created.

First exception: When a default constructor with one or more default

arguments is called to initialize an element of an array.

Second exception: When a reference is bound to a temporary (or a

subobject of a temporary), the lifetime of the temporary is extended to

match the lifetime of the reference, with following exceptions:

A temporary bound to a reference member in a constructor initializer list

persists until the constructor exits.

A temporary bound to a reference parameter in a function call persists until

the completion of the full expression containing the call.

A temporary bound to the return value of a function in a return statement is

not extended, and is destroyed at end of the full expression in the return

statement.

A temporary bound to a reference in an initializer used in a new-expression

persists until the end of the full expression containing that new-expression.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 416

Lifetime of Temporary Objects Examples

Example:

void func() {
std::string s1("Hello");
std::string s2(" ");
std::string s3("World!\n");
const std::string& s = s1 + s2 + s3;
std::cout << s; // OK?

}

Example:

const std::string& getString() {
return std::string("Hello");

}
void func() {

std::cout << getString(); // OK?
}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 417

Why Distinguish Between Lvalues and Rvalues

By distinguishing between lvalues and rvalues, we can write more efficient

code.

Scenario 1:
void doSomething(std::complex <double>& z) {

// can the caller detect a change in z?
}

std::complex <double> z(1.0, 0.0);
doSomething(z);

Scenario 2:
void doSomething(std::complex <double>&& z) {

// can the caller detect a change in z?
}

doSomething(std::complex <double>(1.0, 2.0));

A function parameter that is bound to a modifiable rvalue can be changed

without any observable effect outside the function.

This gives us more freedom in how we deal with the object whose change

in value cannot be observed.

For example, this freedom can be used to replace some copies by moves.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 418

Section 3.3

Lambda Expressions

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 419

Motivation for Lambda Expressions

functor classes extremely useful, especially for generic programming

writing definitions of functor classes somewhat tedious, especially if many

such classes

functor classes all have same general structure (i.e., constructor,

function-call operator, zero or more data members)

would be nice if functor could be created without need to explicitly write

functor-class definition

lambda expressions provide compact notation for creating functors

convenience feature (not fundamentally anything new that can be done

with lambda expressions that could not already have been done without

them)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 420

Lambda Expressions

lambda expression consists of:
1 introducer: capture list in square brackets
2 declarator: parameter list in parentheses followed by return type using

trailing return-type syntax
3 compound statement in brace brackets

capture list specifies objects to be captured as data members

declarator specifies parameter list and return type of function-call operator

compound statement specifies body of function-call operator

if no declarator specified, defaults to ()

if no return type specified, defaults to type of expression in return

statement, or void if no return statement

when evaluated, lambda expression yields object called closure (which is

essentially a functor)

examples:

[](double x)->int{return floor(x);}

[](int x, int y){return x < y;}

[]{std::cout << "Hello , World!\n";}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 421

Lambda Expressions (Continued)

closure object is unnamed (temporary object)

closure type is unnamed

operator() is always inline

operator() is const member function unless mutable keyword used

if no capture, closure type provides conversion function to pointer to

function having same parameter and return types as closure type’s

function call operator; value returned is address of function that, when

invoked, has same effect as invoking closure type’s function call operator

(function pointer not tied to lifetime of closure object)

although operator() in closure very similar to case of normal functor,

not everything same (e.g., operator() member in closure type cannot

access this pointer for closure type)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 422

Hello World Program Revisited

1 #include <iostream >

2

3 int main() {

4 []{std::cout << "Hello , World!\n";}();

5 }

1 #include <iostream >

2

3 struct Hello {

4 void operator()() const {

5 std::cout << "Hello , World!\n";

6 }

7 };

8

9 int main() {

10 Hello hello;

11 hello();

12 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 423

Comparison Functor Example

1 #include <iostream >
2 #include <algorithm >
3 #include <cstdlib >
4

5 int main() {
6 std::vector <int> v{-3, 3, 4, 0, -2, -1, 2, 1, -4};
7 std::sort(v.begin(), v.end(),
8 [](int x, int y) {return abs(x) < abs(y);});
9 for (auto x : v) std::cout << x << "\n";

10 }

1 #include <iostream >
2 #include <algorithm >
3 #include <cstdlib >
4

5 struct abs_less {
6 bool operator()(int x, int y) const
7 {return abs(x) < abs(y);}
8 };
9

10 int main() {
11 std::vector <int> v{-3, 3, 4, 0, -2, -1, 2, 1, -4};
12 std::sort(v.begin(), v.end(), abs_less());
13 for (auto x : v) std::cout << x << "\n";
14 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 424

Capturing Objects

locals only available if captured; non-locals always available

can capture by value or by reference

different locals can be captured differently

can specify default capture mode

can explicitly list objects to be captured or not

personally I recommend explicitly listing all objects to be captured to avoid

capturing objects accidentally (e.g., due to typos)

to capture class members within member function, capture this

capture of this probably best done by value (since likely to yield more

efficient code)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 425

std::transform

(unary version of) std::transform applies given (unary) operator to

each element in range specified by pair of iterators and writes result to

location specified by another iterator

definition of std::transform would typically resemble:

template <class InputIterator , class OutputIterator ,
class UnaryOperator >
OutputIterator transform(InputIterator first ,
InputIterator last , OutputIterator result ,
UnaryOperator op) {
while (first != last) {

*result = op(*first);
++result;
++first;

}
return result;

}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 426

Modulus Example

1 #include <iostream >
2 #include <vector >
3 #include <algorithm >
4

5 int main() {
6 int m = 2;
7 std::vector <int> v{0, 1, 2, 3};
8 std::transform(v.begin(), v.end(), v.begin(),
9 [m](int x){return x % m;});

10 for (auto x : v) std::cout << x << "\n";
11 }

1 #include <iostream >
2 #include <vector >
3 #include <algorithm >
4

5 class mod {
6 public:
7 mod(int m_) : m(m_) {}
8 int operator()(int x) const {return x % m;}
9 private:

10 int m;
11 };
12

13 int main() {
14 int m = 2;
15 std::vector <int> v{0, 1, 2, 3};
16 std::transform(v.begin(), v.end(), v.begin(), mod(m));
17 for (auto x : v) std::cout << x << "\n";
18 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 427

Modulus Example: Without Lambda Expression

1 #include <iostream >
2 #include <vector >
3 #include <algorithm >
4

5 class mod {
6 public:
7 mod(int m_) : m(m_) {}
8 int operator()(int x) const {return x % m;}
9 private:

10 int m;
11 };
12

13 int main() {
14 int m = 2;
15 std::vector <int> v{0, 1, 2, 3};
16 std::transform(v.begin(), v.end(), v.begin(), mod(m));
17 for (auto x : v) std::cout << x << "\n";
18 }

approximately 8.5 lines of code to generate functor

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 428

Modulus Example: With Lambda Expression

1 #include <iostream >
2 #include <vector >
3 #include <algorithm >
4

5 int main() {
6 int m = 2;
7 std::vector <int> v{0, 1, 2, 3};
8 std::transform(v.begin(), v.end(), v.begin(),
9 [m](int x){return x % m;});

10 for (auto x : v) std::cout << x << "\n";
11 }

m captured by value

approximately 0.5 lines of code to generate functor

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 429

std::for_each

std::for_each applies given function/functor to each element in range

specified by pair of iterators

definition of std::for_each would typically resemble:

template<class InputIterator , class Function >
Function for_each(InputIterator first ,
InputIterator last , Function func) {
while (first != last) {

func(*first);
++first;

}
return move(func);

}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 430

Product Example

1 #include <iostream >
2 #include <vector >
3 #include <algorithm >
4

5 int main() {
6 std::vector <int> v{2, 3, 4};
7 int prod = 1;
8 std::for_each(v.begin(), v.end(),
9 [&prod](int x)->void{prod *= x;});

10 std::cout << prod << "\n";
11 }

1 #include <iostream >
2 #include <vector >
3 #include <algorithm >
4

5 class cum_prod {
6 public:
7 cum_prod(int& prod_) : prod(prod_) {}
8 void operator()(int x) const {prod *= x;}
9 private:

10 int& prod;
11 };
12

13 int main() {
14 std::vector <int> v{2, 3, 4};
15 int prod = 1;
16 std::for_each(v.begin(), v.end(), cum_prod(prod));
17 std::cout << prod << "\n";
18 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 431

Product Example: Without Lambda Expression

1 #include <iostream >
2 #include <vector >
3 #include <algorithm >
4

5 class cum_prod {
6 public:
7 cum_prod(int& prod_) : prod(prod_) {}
8 void operator()(int x) const {prod *= x;}
9 private:

10 int& prod;
11 };
12

13 int main() {
14 std::vector <int> v{2, 3, 4};
15 int prod = 1;
16 std::for_each(v.begin(), v.end(), cum_prod(prod));
17 std::cout << prod << "\n";
18 }

approximately 8.5 lines of code to generate functor

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 432

Product Example: With Lambda Expression

1 #include <iostream >
2 #include <vector >
3 #include <algorithm >
4

5 int main() {
6 std::vector <int> v{2, 3, 4};
7 int prod = 1;
8 std::for_each(v.begin(), v.end(),
9 [&prod](int x)->void{prod *= x;});

10 std::cout << prod << "\n";
11 }

prod captured by reference

approximately 1 line of code to generate functor

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 433

More Variations on Capture

double a = 2.14;

double b = 3.14;

double c = 42.0;

// capture all objects by reference (i.e., a, b, and c)

[&](double x, double y){return a * x + b * y + c;}

// capture all objects by value (i.e., a, b, and c)

[=](double x, double y){return a * x + b * y + c;}

// capture all objects by value, except a

// which is captured by reference

[=,&a](double x, double y){return a * x + b * y + c;}

// capture all objects by reference, except a

// which is captured by value

[&,a](double x, double y){return a * x + b * y + c;}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 434

Dealing With Unnamed Types

fact that closure types unnamed causes complications when need arises

to refer to closure type

helpful language features: auto, decltype

helpful library features: std::function

closures can be stored using auto or std::function

closures that do not capture can be “stored” by assigning to function

pointer

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 435

Using auto, decltype, and std::function

1 #include <iostream >
2 #include <functional >
3

4 std::function <double(double)> linear(double a, double b) {
5 return [=](double x){return a * x + b;};
6 }
7

8 int main() {
9 // type of f is std::function<double(double)>

10 auto f = linear(2.0, -1.0);
11 // g has closure type
12 auto g = [](double x){return 2.0 * x - 1.0;};
13 double (*u)(double) = [](double x){return 2.0 * x - 1.0;};
14 // h has same type as g
15 decltype(g) h = g;
16 for (double x = 0.0; x < 10.0; x += 1.0) {
17 std::cout << x << " " << f(x) << " " << g(x) <<
18 " " << h(x) << (*u)(x) << "\n";
19 }
20 }

applying function-call operator to f much slower than in case of g and h

when std::function used, inlining of called function probably not

possible

when functor used directly (via function-call operator) inlining is very likely

prefer auto over std::function for storing closures

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 436

operator() as Non-const Member

1 #include <iostream >
2

3 int main()
4 {
5 int count = 5;
6 // Must use mutable in order to be able to
7 // modify count member.
8 auto get_count = [count]() mutable -> int {
9 return count++;

10 };
11

12 int c;
13 while ((c = get_count()) < 10) {
14 std::cout << c << "\n";
15 }
16 }

operator() is declared as const member function unless mutable

keyword used

const member function cannot change (non-static) data members

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 437

Comparison Functors for Containers

1 #include <iostream >
2 #include <vector >
3 #include <set>
4

5 int main() {
6 // The following two lines are the only important ones:
7 auto cmp = [](int* x, int* y){return *x < *y;};
8 std::set<int*, decltype(cmp)> s(cmp);
9

10 // Just for something to do:
11 // Print the elements of v in sorted order with
12 // duplicates removed.
13 std::vector <int> v = {4, 1, 3, 2, 1, 1, 1, 1};
14 for (auto& x : v) {
15 s.insert(&x);
16 }
17 for (auto x : s) {
18 std::cout << *x << "\n";
19 }
20 }

note that s is not default constructed

since closure types not default constructible, following would fail:

std::set<int*, decltype(cmp)> s;

note use of decltype in order to specify type of functor

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 438

What Could Possibly Go Wrong?

1 #include <iostream >
2 #include <vector >
3 #include <functional >
4

5 std::vector <int> vec{2000, 4000, 6000, 8000, 10000};
6 std::function <int(int)> func;
7

8 void do_stuff()
9 {

10 int modulus = 10000;
11 func = [&](int x){return x % modulus;};
12 for (auto x : vec) {
13 std::cout << func(x) << "\n";
14 }
15 }
16

17 int main()
18 {
19 do_stuff();
20 for (auto x : vec) {
21 std::cout << func(x) << "\n";
22 }
23 }

above code has very serious bug; what is it?

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 439

Dangling References

if some objects captured by reference, closure can hold dangling

references

responsibility of programmer to avoid such problems

if will not cause performance issues, may be advisable to capture by value

(to avoid problem of dangling references)

dangling-reference example:

1 #include <iostream >
2 #include <functional >
3

4 std::function <double(double)> linear(double a, double b) {
5 return [&](double x){return a * x + b;};
6 }
7

8 int main() {
9 auto f = linear(2.0, -1.0);

10 // bad things will happen here
11 std::cout << f(1.0) << "\n";
12 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 440

Triangle Scan Conversion

in SPLEL software, triangle scan conversion performed by

scan_triangle template function

declaration:

template <class T, class F>

void scan_triangle(T a_x, T a_y, T b_x, T b_y,

T c_x, T c_y, unsigned mask , F scan_line);

scan_line is functor to handle single horizontal scan within triangle

scan_line has signature:

void scan_line(T y, T x_min , T x_max ,

unsigned left_mask , unsigned right_mask ,

unsigned mid_mask);

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 441

Section 3.4

Concurrency

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 442

Section 3.4.1

Preliminaries

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 443

Processors

Core 1

Processor

Core nCore 2 · · ·

A core is an independent processing unit that reads and executes

program instructions, and consists of registers, an arithmetic logic unit

(ALU), a control unit, and usually a cache.

A processor is a computing element that consists of one or more cores,

an external bus interface, and possibly a shared cache.

A thread is a sequence of instructions (which can be executed by a core).

At any given time, a core can execute one thread or, if the core supports

simultaneous multithreading (such as hyperthreading), multiple threads.

In the simultaneous multithreading case, the threads share the resources

of the core.

A processor with more than one core is said to be multicore.

Most modern processors are multicore.

Multicore processors can simultaneously execute multiple threads.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 444

Processors (Continued)

A multicore processor said to be homogeneous if all of its cores are

identical.

A multicore processor said to be heterogeneous if its has more than one

type of core.

Different types of cores might be used in order to:

provide different types of functionality (e.g., CPU and GPU)

provide different levels of performance (e.g., high-performance CPU and

energy-efficient CPU)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 445

Memory Hierarchy

Core

Cache Cache

L1 L2

Cache
Excluding · · · LL

Cache

Bulk

Storage

Main

Memory

The component of a system that stores program instructions and data is

called main memory.

A cache is fast memory used to store copies of instructions and/or data

from main memory.

Main memory is very slow compared to the speed of a processor core.

Due to the latency of main memory, caches are essential for good

performance.

Instruction and data caches may be separate or unified (i.e., combined).

A cache may be local to single core or shared between two or more cores.

The lowest-level (i.e., L1) cache is usually on the core and local to the

core.

The higher-level (i.e., L2, L3,. . . , LL [last level]) caches are usually shared

between some or all of the cores.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 446

Examples of Multicore Processors

Intel Core i7-3820QM Processor (Q2 2012)

used in Lenovo W530 notebook

64 bit, 2.7 GHz

128/128 KB L1 cache, 1 MB L2 cache, 8 MB L3 cache

4 cores

8 threads (2 threads/core)

Intel Core i7-5960X Processor Extreme Edition (Q3 2014)

targets desktops/notebooks

64 bit, 3 GHz

256/256 KB L1 cache, 2 MB L2 cache, 20 MB L3 cache

8 cores

16 threads (2 threads/core)

Intel Xeon Processor E7-8890 v2 (Q1 2014)

targets servers

64 bit, 2.8 GHz

480/480 KB L1 cache, 3.5 MB L2 cache, 37.5 MB L3 cache

15 cores

30 threads (2 threads/core)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 447

Examples of Multicore SoCs

Qualcomm Snapdragon 805 SoC (Q1 2014)

used in Google Nexus 6

32-bit 2.7 GHz quad-core Qualcomm Krait 450 (ARMv7-A)

16/16 KB L1 cache (per core), 2 MB L2 cache (shared)

600 MHz Qualcomm Adreno 420 GPU

Samsung Exynos 5 Octa 5433 SoC

used in Samsung Galaxy Note 4

high-performance 1.9 GHz quad-core ARM Cortex-A57 paired with

energy-efficient 1.3 GHz quad-core ARM Cortex-A53 (big.LITTLE); both

32-bit (64-bit capable but disabled) (ARMv8-A)

Cortex-A57: 48/32 KB L1 cache, 512 KB to 2 MB L2 cache?

700 MHz Mali-T760MP6 GPU

Apple A8 SoC (2014)

used in Apple iPhone 6, Apple iPhone 6 Plus

64-bit 1.4 GHz dual-core CPU (ARMv8-A)

64/64 KB L1 cache (per core), 1 MB L2 cache (shared), 4 MB L3 cache

PowerVR Series 6XT GX6450 (quad-core) GPU

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 448

Why Multicore Processors?

in past, greater processing power obtained through higher clock rates

clock rates have stopped rising, topping out at about 5 GHz (little change

since about 2005)

power consumption is linear in clock frequency and quadratic in voltage,

but higher frequency typically requires higher voltage; so, considering

effect of frequency and voltage together, power consumption grows

approximately with cube of frequency

greater power consumption translates into increased heat production

higher clock rates would result in processors overheating

transistor counts still increasing (Moore’s law: since 1960s, transistor

count has doubled approximately every 18 months)

instead of increasing processing power by raising clock rate of processor

core, simply add more processor cores

n cores running at clock rate f use significantly less power and generate

less heat than single core at clock rate n f

going multicore allows for greater processing power with lower power

consumption and less heat production

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 449

Section 3.4.2

Multithreaded Programming

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 450

Concurrency

A thread is a sequence of instructions that can be independently

managed by the operating-system scheduler.

A process provides the resources that program needs to execute (e.g.,

address space, files, and devices) and at least one thread of execution.

All threads of a process share the same address space.

Concurrency is the situation where multiple threads execute over time

periods (i.e., from start of execution to end) that overlap (but no threads

are required to run simultaneously).

Parallelism refers to the situation where multiple threads execute

simultaneously.

Concurrency can be achieved with:
1 multiple single-threaded processes; or
2 a single multithreaded process.

A single multithreaded process is usually preferable, since data can be

shared more easily between threads in a single process, due to the

threads having a common address space.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 451

Why Multithreading?

Keep all of the processor cores busy (i.e., fully utilize all cores).

Most modern systems have multiple processor cores, due to having either

multiple processors or a single processor that is multicore.

A single thread cannot fully utilize the computational resources available in

such systems.

Keep processes responsive.

In graphics applications, keep the GUI responsive while the application is

performing slow operations such as I/O.

In network server applications, keep the server responsive to new

connections while handling already established ones.

Simplify the coding of cooperating tasks.

Some programs consist of several logically distinct tasks.

Instead of having the program manage when the computation associated

with different tasks is performed, each task can be placed in a separate

thread and the operating system can perform scheduling.

For certain types of applications, multithreading can significantly reduce the

conceptual complexity of the program.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 452

Section 3.4.3

Multithreaded Programming Models

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 453

Memory Model

A memory model (also known as a memory-consistency model) is a

formal specification of the effect of read and write operations on the

memory system, which in effect describes how memory appears to

programs.

A memory model is essential in order for the semantics of a multithreaded

program to be well defined.

The memory model must address issues such as:

ordering

atomicity

The memory model affects:

programmability (i.e., ease of programming)

performance

portability

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 454

Sequential Consistency (SC)

The environment in which a multithreaded program is run is said to have

sequential consistency (SC) if the result of any execution of the program

is the same as if the operations of all threads are executed in some

sequential order, and the operations of each individual thread appear in

this sequence in the order specified by the program.

In other words, in a sequentially-consistent execution of a multithreaded

program, threads behave as if their operations were simply interleaved.

Consider the multithreaded program (with two threads) shown below,

where x, y, a, and b are all integer variables and initially zero.

Thread 1 Code

x = 1;
a = y;

Thread 2 Code

y = 1;
b = x;

Some sequentially-consistent executions of this program include:

x = 1; y = 1; b = x; a = y;

y = 1; x = 1; a = y; b = x;

x = 1; a = y; y = 1; b = x;

y = 1; b = x; x = 1; a = y;

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 455

Sequential-Consistency (SC) Memory Model

Since SC implies that memory must behave in a particular manner, SC

implicitly defines a memory model, known as the SC memory model.

In particular, SC implies that each write operation is atomic and becomes

visible to all threads simultaneously.

Thus, with the SC model, all threads see write operations on memory

occur atomically in the same order, leading to all threads having a

consistent view of memory.

The SC model precludes (or makes extremely difficult) many hardware

optimizations, such as:

store buffers

caches

out-of-order instruction execution

The SC model also precludes many compiler optimizations, including:

reordering of loads and stores

Although the SC model very is intuitive, it comes at a very high cost in

terms of performance.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 456

Load/Store Reordering Example: Single Thread

Consider the program with the code below, where x and y are integer

variables, all initially zero.

Original Thread 1 Code

x = 1;
y = 1;
// ...

Suppose that, during optimization, the compiler transforms the preceding

code to that shown below, effectively reordering two stores.

Optimized Thread 1 Code

y = 1;
x = 1;
// ...

The execution of the optimized code is indistinguishable from a

sequentially-consistent execution of the original code.

The optimized program runs as if it were the original program.

In a single-threaded program, loads and stores can be reordered without

invalidating the SC model (if data dependencies are correctly considered).

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 457

Load/Store Reordering Example: Multiple Threads

Consider the addition of a second thread to the program to yield the code

below.

Original Thread 1 Code

x = 1;
y = 1;
// ...

Thread 2 Code

if (y == 1) {
assert(x == 1);

}

Suppose that the compiler makes the same optimization to the code for

thread 1 as on the previous slide, yielding the code below.

Optimized Thread 1 Code

y = 1;
x = 1;
// ...

(Unchanged) Thread 2 Code

if (y == 1) {
assert(x == 1);

}

Thread 2 can observe x and y being modified in the wrong order (i.e., an

order that is inconsistent with SC execution).

The assertion in thread 2 can never fail in the original program, but can

sometimes fail in the optimized program.

In a multithreaded program, the reordering of loads and stores must be

avoided if SC is to be maintained.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 458

Store-Buffer Example: Without Store Buffer

Consider the program below, where x, y, a, and b are integer variables, all

initially zero.

Thread 1 Code

x = 1;
a = y;

Thread 2 Code

y = 1;
b = x;

Some possible sequentially-consistent executions of the program include:

x = 1; y = 1; b = x; a = y; (a is 1, b is 1)

y = 1; x = 1; a = y; b = x; (a is 1, b is 1)

x = 1; a = y; y = 1; b = x; (a is 0, b is 1)

y = 1; b = x; x = 1; a = y; (a is 1, b is 0)

In every sequentially-consistent execution of the program, one of

“x = 1;” or “y = 1;” must execute first.

If “x = 1;” executes first, then b cannot be assigned 0.

If “y = 1;” executes first, then a cannot be assigned 0.

No sequentially-consistent execution can result in a and b both being 0.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 459

Store-Buffer Example: Store Buffer

write r to x

(1) Store Buffer

Register

Processor

(2)

Memory

x

(2) flush store buffer to memory

(1) transfer data from register to store buffer

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 460

Store-Buffer Example: With Store Buffer (Not SC)

Core 1 Core 2 Memory
Code Store Buffer Code Store Buffer x y

x = 1; write 1 to x

pending

0 0

no change y = 1; write 1 to y

pending

0 0

a = y;

//a = 0;

no change no change 0 0

no change b = x;

//b = 0;

no change 0 0

write 1 to x

completed

no change 1 0

write 1 to y

completed

1 1

The execution of the program results in a and b both being 0, which

violates SC.

The program behaves as if the lines of code in each thread were

reordered (i.e., reversed), yielding: a = y; b = x; x = 1; y = 1;.

A store buffer (or cache) must be avoided, if SC is to be maintained.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 461

Atomicity of Memory Operations

A fundamental property of SC is that all memory operations are atomic.

Atomic memory operations require synchronization between processor

cores.

This synchronization greatly increases the time required to access

memory, as a result of the time needed by processor cores to

communicate and coordinate access to memory.

Therefore, requiring all memory operations to be atomic is not desirable.

Allowing non-atomic memory operations, however, would be inconsistent

with a fundamental property of SC.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 462

Data Races

If memory operations are not all atomic, the possibility exists for

something known as a data race.

Two memory operations are said to conflict if they access the same

memory location and at least one of the operations is a write.

Two conflicting memory operations form a data race if they are from

different threads and can be executed at the same time.

A program with data races usually has unpredictable behavior (e.g., due

to torn reads, torn writes, or worse).

Example (data race):

Consider the multithreaded program listed below, where x, y, and z are

(nonatomic) integer variables shared between threads and are initially zero.

Thread 1 Code

x = 1;
a = y + z;

Thread 2 Code

y = 1;
b = x + z;

The program has data races on both x and y.

Since z is not modified by any thread, z cannot participate in a data race.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 463

Torn Reads

A torn read is a read operation that (due to lack of atomicity) has only

partially read its value when another (concurrent) write operation on the

same location is performed.

Consider a two-byte unsigned (big-endian) integer variable x, which is

initially 1234 (hexadecimal).

Suppose that the following (nonatomic) memory operations overlap in

time:

thread 1 reads x; and

thread 2 writes 5678 (hexadecimal) to x.

Initially, x is 1234: Byte 0 Byte 1

12 34

Thread 1 reads 12 from the first byte of x.

Thread 2 writes 56 and 78 to the first and seconds bytes of x, respectively,

yielding: Byte 0 Byte 1

56 78

Thread 1 reads the second byte of x to obtain the value 78.

The value read by thread 1 (i.e., 1278) is neither the value of x prior to the

write by thread 2 (i.e., 1234) nor the value of x after the write by thread 2

(i.e., 5678).

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 464

Torn Writes

A torn write is a write operation that (due to lack of atomicity) has only

partially written its value when another (concurrent) read or write

operation on the same location is performed.

Consider a two-byte unsigned (big-endian) integer variable x, which is

initially 0.

Suppose that the following (nonatomic) memory operations overlap in

time:

thread 1 writes 1234 (hexadecimal) to x; and

thread 2 writes 5678 (hexadecimal) to x.

Initially, x is 0: Byte 0 Byte 1

00 00

Thread 1 writes 12 to the first byte of x, yielding: Byte 0 Byte 1

12 00

Thread 2 writes 56 and 78 to the first and second bytes of x, respectively,

yielding: Byte 0 Byte 1

56 78

Thread 1 writes 34 to the second byte of x, yielding: Byte 0 Byte 1

56 34

The resulting value in x (i.e., 5634) is neither the value written by thread 1

(i.e., 1234) nor the value written by thread 2 (i.e., 5678).

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 465

SC Data-Race Free (SC-DRF) Memory Model

From a programmability standpoint, SC is extremely desirable, as it allows

one to reason easily about the behavior of a multithreaded program.

Unfortunately, as we saw earlier, SC precludes almost all useful compiler

optimizations and hardware optimizations.

As it turns out, if we drop the requirement that all memory operations be

atomic and then restrict programs to be data-race free, SC can be

provided while still allowing most compiler and hardware optimizations.

This observation is the motivation behind the so called SC-DRF memory

model.

The sequential-consistency for data-race free programs (SC-DRF)

model provides SC only for programs that are data-race free.

The data-race free constraint is not overly burdensome, since data races

will likely result in bugs anyhow.

Several programming languages have used SC-DRF as the basis for their

memory model, including C++, C, and Java.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 466

C++ Memory Model

The C++ programming language employs, at its default memory model,

the SC-DRF model.

Again, with the SC-DRF model, a program behaves as if its execution is

sequentially consistent, provided that the program is data-race free.

Support is also provided for other (more relaxed) memory models.

For certain memory accesses, it is possible to override the default (i.e.,

SC-DRF) memory model, if desired.

The execution of a program that is not data-race free results in undefined

behavior.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 467

Section 3.4.4

Thread Management

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 468

The std::thread Class

std::thread class provides means to create new thread of execution,

wait for thread to complete, and perform other operations to manage and

query state of thread

thread object may or may not be associated with thread (of execution)

thread object that is associated with thread said to be joinable

default constructor creates thread object that is unjoinable

can also construct thread object by providing callable entity (e.g.,

function or functor) and arguments (if any), resulting in new thread

invoking callable entity

thread function provided with copies of arguments so must use reference

wrapper class like std::reference_wrapper for reference semantics

thread class is movable but not copyable

each thread object has ID, and IDs are unique for all joinable thread

objects and same for all unjoinable ones

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 469

The std::thread Class (Continued)

join operation waits for thread object’s thread to complete execution

and results in object becoming unjoinable

detach operation dissociates thread from thread object (allowing thread

to continue to execute independently) and results in object becoming

unjoinable

using thread object as source for move operation results in object

becoming unjoinable

if thread object joinable when destructor called, exception is thrown

hardware_concurrency member function returns number of hardware

threads that can run simultaneously (or zero if not well defined)

thread creation and join operations establish synchronizes-with

relationship (to be discussed later)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 470

std::thread Members

Member Types

Member Name Description

id thread ID type

native_handle_type system-dependent handle type for under-

lying thread entity

Construction, Destruction, and Assignment

Member Name Description

constructor construct thread (overloaded)

destructor destroy thread

operator= move assign thread

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 471

std::thread Members

Member Functions
Member Name Description

joinable check if thread joinable

get_id get ID of thread

native_handle get native handle for thread

hardware_concurrency (static) get number of concurrent threads

supported by hardware

join wait for thread to finish executing

detach permit thread to execute indepen-

dently

swap swap threads

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 472

Example: Hello World With Threads

1 #include <iostream >
2 #include <thread >
3

4 void hello()
5 {
6 std::cout << "Hello World!\n";
7 }
8

9 int main()
10 {
11 std::thread t(hello);
12 t.join();
13 }

1 #include <iostream >
2 #include <thread >
3

4 int main()
5 {
6 std::thread t([](){
7 std::cout << "Hello World!\n";
8 });
9 t.join();

10 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 473

Example: Thread-Function Argument Passing (Copy Semantics)

1 #include <iostream >
2 #include <thread >
3

4 void doWork(int i, int j)
5 {
6 std::cout << i << " " << j << "\n";
7 }
8

9 int main()
10 {
11 int i = 42;
12 std::thread t1(doWork , i, 1);
13 t1.join();
14 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 474

Example: Thread-Function Argument Passing (Reference Semantics)

1 #include <iostream >
2 #include <vector >
3 #include <functional >
4 #include <thread >
5

6 void doWork(const std::vector <int>& v)
7 {
8 for (auto i : v) {
9 std::cout << i << "\n";

10 }
11 }
12

13 int main()
14 {
15 std::vector <int> v{1, 2, 3, 4};
16

17 // copy semantics
18 std::thread t1(doWork , v);
19 t1.join();
20

21 // reference semantics
22 std::thread t2(doWork , std::ref(v));
23 t2.join();
24 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 475

Example: Thread-Function Argument Passing (Move Semantics)

1 #include <iostream >
2 #include <vector >
3 #include <utility >
4 #include <thread >
5

6 void doWork(std::vector <int>&& v)
7 {
8 for (auto i : v) {
9 std::cout << i << "\n";

10 }
11 }
12

13 int main()
14 {
15 std::vector <int> v{1, 2, 3, 4};
16

17 // move semantics
18 std::thread t1(doWork , std::move(v));
19 t1.join();
20 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 476

Example: Moving Threads

1 #include <thread >
2 #include <iostream >
3 #include <utility >
4

5 // Return a thread that prints a greeting message.
6 std::thread makeThread() {
7 return std::thread ([](){
8 std::cout << "Hello World!\n";
9 });

10 }
11

12 // Return the same thread that was passed as an argument.
13 std::thread identity(std::thread t) {
14 return t;
15 }
16

17 int main() {
18 std::thread t1(makeThread());
19 std::thread t2(std::move(t1));
20 t1 = std::move(t2);
21 t1 = identity(std::move(t1));
22 t1.join();
23 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 477

Example: Lifetime Bug

1 #include <iostream >
2 #include <vector >
3 #include <algorithm >
4 #include <chrono >
5 #include <thread >
6

7 void threadFunc(const std::vector <int>* v) {
8 std::cout << std::accumulate(v->begin(), v->end(), 0)
9 << "\n";

10 }
11

12 void startThread() {
13 std::vector <int> v(1000000, 1);
14 std::thread t(threadFunc , &v);
15 t.detach();
16 // v is destroyed here but detached thread
17 // may still be using v
18 }
19

20 int main() {
21 startThread();
22 // Give the thread started by startThread
23 // sufficient time to complete its work.
24 std::this_thread::sleep_for(std::chrono::seconds (5));
25 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 478

The std::this_thread Namespace

Name Description

get_id get ID of current thread

yield suggest rescheduling current thread so as to allow

other threads to run

sleep_for blocks execution of current thread for at least

specified duration

sleep_until blocks execution of current thread until specified

time reached

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 479

Example: Identifying Threads

1 #include <thread >
2 #include <iostream >
3

4 // main thread ID
5 std::thread::id mainThread;
6

7 void func() {
8 if (std::this_thread::get_id() == mainThread) {
9 std::cout << "called by main thread\n";

10 } else {
11 std::cout << "called by secondary thread\n";
12 }
13 }
14

15 int main() {
16 mainThread = std::this_thread::get_id();
17 std::thread t([](){
18 // call func from secondary thread
19 func();
20 });
21 // call func from main thread
22 func();
23 t.join();
24 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 480

Thread Local Storage

thread storage duration: object allocated when thread begins and

deallocated when thread ends

each thread has its own instance of object

only objects declared thread_local have this storage duration

thread_local implies static for variable of block scope

thread_local can appear together with static or extern to

adjust linkage

example:

thread_local int counter = 0;
static thread_local int x = 0;
thread_local int y;

void func() {
thread_local counter = 0;
// equivalent to:
// static thread_local counter = 0;

}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 481

Example: Thread Local Storage

1 #include <iostream >
2 #include <vector >
3 #include <thread >
4

5 thread_local int counter = 0;
6

7 void doWork(int id) {
8 static const char letters[] = "abcd";
9 for (int i = 0; i < 10; ++i) {

10 std::cout << letters[id] << counter << "\n";
11 ++counter;
12 }
13 }
14

15 int main() {
16 std::vector <std::thread > workers;
17 for (int i = 1; i <= 3; ++i) {
18 // invoke doWork in new thread
19 workers.emplace_back(doWork , i);
20 }
21 // invoke doWork in main thread
22 doWork(0);
23 for (auto& t : workers) {t.join();}
24 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 482

Section 3.4.5

Sharing Data Between Threads

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 483

Shared Data

In multithreaded programs, it is often necessary to share resources

between threads.

Shared resources might include such things as variables, memory, files,

devices, and so on.

The sharing of resources, however, can lead to various problems when

multiple threads want access to the same resource simultaneously.

The most commonly shared resource is variables.

When variables are shared between threads, the possibility exists that one

thread may attempt to access a variable while another thread is modifying

the same variable.

Such conflicting accesses to variables can lead to data corruption and

other problems.

More generally, when any resource is shared, the potential for problems

exists.

Therefore, mechanisms are needed for ensuring that shared resources

can be accessed safely.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 484

Race Conditions

A race condition is a behavior where the outcome depends on the

relative ordering of the execution of operations on two or more threads.

Sometimes, a race condition may be benign (i.e., does not cause any

problem).

Usually, the term “race condition” used to refer to a race condition that is

not benign (i.e., breaks invariants or results in undefined behavior).

A data race is a particularly evil type of race condition.

A deadlock is a situation in which two or more threads are unable to make

progress due to being blocked waiting for resources held by each other.

A livelock is a situation in which two or more threads are not blocked but

are unable to make progress due to needing resources held by each

other.

Often, race conditions can lead to deadlocks, livelocks, crashes, and other

unpredictable behavior.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 485

Critical Sections

A critical section is a piece of code that accesses a shared resource

(e.g., data structure) that must not be simultaneously accessed by more

than one thread.

A synchronization mechanism is needed at the entry to and exit from a

critical section.

The mechanism needs to provide mutual exclusion (i.e., prevent critical

sections in multiple threads from executing simultaneously).

Example (FIFO queue):

One thread is adding an element to a queue while another thread is

removing an element from the same queue.

Since both threads modify the queue at the same time, they could corrupt

the queue data structure.

Synchronization must be employed so that the execution of the parts of the

code that add and remove elements are executed in a mutually exclusive

manner (i.e., cannot run at the same time).

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 486

Data-Race Example

Shared (Global) Data

double balance = 100.00; // bank account balance

double credit = 50.00; // amount to deposit

double debit = 10.00; // amount to withdraw

Thread 1 Code

// double tmp = balance;

// tmp = tmp + credit;

// balance = tmp;

balance += credit;

Thread 2 Code

// double tmp = balance;

// tmp = tmp - debit;

// balance = tmp;

balance -= debit;

above code has data race on balance object (i.e., more than one thread

may access balance at same time with at least one thread writing)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 487

Example: Data Race (Counter)

1 #include <iostream >
2 #include <thread >
3

4 unsigned long long counter = 0;
5

6 void func() {
7 for (int i = 0; i < 1000000; ++i) {
8 ++counter;
9 }

10 }
11

12 int main() {
13 std::thread t1(func);
14 std::thread t2(func);
15 t1.join();
16 t2.join();
17 std::cout << counter << "\n";
18 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 488

Example: Data Race and/or Race Condition (IntSet)

1 #include <thread >
2 #include <iostream >
3 #include <set>
4

5 class IntSet {
6 public:
7 bool contains(int i) const
8 {return s_.find(i) != s_.end();}
9 void add(int i)

10 {s_.insert(i);}
11 private:
12 std::set<int> s_;
13 };
14

15 IntSet s;
16

17 int main() {
18 std::thread t1([](){
19 for (int i = 0; i < 1000; ++i) s.add(2 * i);
20 });
21 std::thread t2([](){
22 for (int i = 0; i < 1000; ++i) s.add(2 * i + 1);
23 });
24 t1.join(); t2.join();
25 std::cout << s.contains (1000) << "\n";
26 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 489

Section 3.4.6

Mutexes

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 490

Mutexes

A mutex is a locking mechanism used to synchronize access to a shared

resource by providing mutual exclusion.

A mutex has two basic operations:

acquire: lock (i.e., hold) the mutex

release: unlock (i.e., relinquish) the mutex

A mutex can be held by only one thread at any given time.

If a thread attempts to acquire a mutex that is already held by another

thread, the operation will either block until the mutex can be acquired or

fail with an error.

A thread holding a mutex cannot relock the mutex.

A thread acquires the mutex before accessing the shared resource and

releases the mutex when finished accessing the resource.

Since only one thread can hold a mutex at any given time and the shared

resource is only accessed by the thread holding the mutex,

mutually-exclusive access is guaranteed.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 491

The std::mutex Class

std::mutex class provides mutex functionality

not movable and not copyable

lock member function acquires mutex (blocking as necessary)

unlock member function releases mutex

thread that owns mutex should not attempt to lock mutex again

all prior unlock operations on given mutex synchronize with lock

operation (on same mutex) (synchronizes-with relationship to be

discussed later)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 492

std::mutex Members

Member Types

Name Description

native_handle_type system-dependent handle type for underlying mu-

tex entity

Construction, Destruction, and Assignment

Name Description

constructor construct mutex

destructor destroy mutex

Other Member Functions
Name Description

lock acquire mutex, blocking if not available

try_lock try to lock mutex without blocking

unlock release mutex

native_handle get handle for underlying thread entity

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 493

Example: Avoiding Data Race Using Mutex (Counter) (mutex)

1 #include <iostream >
2 #include <thread >
3 #include <mutex >
4

5 std::mutex m;
6 unsigned long long counter = 0;
7

8 void func() {
9 for (int i = 0; i < 1000000; ++i) {

10 m.lock(); // acquire mutex
11 ++counter;
12 m.unlock(); // release mutex
13 }
14 }
15

16 int main() {
17 std::thread t1(func);
18 std::thread t2(func);
19 t1.join();
20 t2.join();
21 std::cout << counter << "\n";
22 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 494

The std::lock_guard Template Class

std::lock_guard is RAII class for mutexes

declaration:

template <class T> class lock_guard;

template parameter T specifies type of mutex (e.g., std::mutex,

std::recursive_mutex)

avoids problem of inadvertently forgetting to release mutex (e.g., due to

exception or forgetting unlock call)

constructor takes mutex as argument

not movable and not copyable

acquires mutex in constructor

releases mutex in destructor

since language ensures that all objects destroyed at end of lifetime,

release of mutex guaranteed (even if some code skipped due to thrown

exception)

advisable to use lock_guard instead of calling lock and unlock

explicitly

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 495

std::lock_guard Members

Member Types

Name Description

mutex_type underlying mutex type

Construction, Destruction, and Assignment

Name Description

constructor construct mutex

destructor destroy mutex

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 496

Example: Avoiding Data Race Using Mutex (Counter) (lock_guard)

1 #include <iostream >
2 #include <thread >
3 #include <mutex >
4

5 std::mutex m;
6 unsigned long long counter = 0;
7

8 void func() {
9 for (int i = 0; i < 1000000; ++i) {

10 // lock_guard constructor acquires mutex
11 std::lock_guard <std::mutex > lock(m);
12 ++counter;
13 // lock_guard destructor releases mutex
14 }
15 }
16

17 int main() {
18 std::thread t1(func);
19 std::thread t2(func);
20 t1.join();
21 t2.join();
22 std::cout << counter << "\n";
23 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 497

Example: Avoiding Data Race Using Mutex (IntSet) (lock_guard)

1 #include <thread >
2 #include <iostream >
3 #include <set>
4 #include <mutex >
5
6 class IntSet {
7 public:
8 bool contains(int i) const {
9 std::lock_guard <std::mutex > lg(m_);

10 return s_.find(i) != s_.end();
11 }
12 void add(int i) {
13 std::lock_guard <std::mutex > lg(m_);
14 s_.insert(i);
15 }
16 private:
17 std::set<int> s_;
18 mutable std::mutex m_;
19 };
20
21 IntSet s;
22
23 int main() {
24 std::thread t1([](){
25 for (int i = 0; i < 1000; ++i) s.add(2 * i);
26 });
27 std::thread t2([](){
28 for (int i = 0; i < 1000; ++i) s.add(2 * i + 1);
29 });
30 t1.join(); t2.join();
31 std::cout << s.contains (1000) << "\n";
32 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 498

The std::unique_lock Template Class

std::unique_lock is another RAII class for mutexes

declaration:

template <class T> class unique_lock;

template parameter T specifies type of mutex (e.g., std::mutex,

std::recursive_mutex)

unlike case of std::lock_guard, in case of unique_lock do not have to

hold mutex over entire lifetime of RAII object

have choice of whether to acquire mutex upon construction

also can acquire and release mutex many times throughout lifetime of

unique_lock object

upon destruction, if mutex is held, it is released

since mutex is always guaranteed to be released by destructor, cannot

forget to release mutex

unique_lock is used in situations when RAII object needed for mutex but

do not want to hold mutex over entire lifetime of RAII object

movable but not copyable

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 499

std::unique_lock Members

Member Types

Name Description

mutex_type underlying mutex type

Construction, Destruction, and Assignment

Name Description

constructor construct mutex

destructor destroy mutex

operator= move assign

Locking Functions

Name Description

lock acquire mutex, blocking if not available

try_lock try to lock mutex without blocking

try_lock_for try to lock mutex without blocking

try_lock_until try to lock mutex without blocking

unlock release mutex

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 500

std::unique_lock Members (Continued)

Observer Functions
Name Description

owns_lock tests if lock owns associated mutex

operator bool tests if lock owns associated mutex

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 501

Example: Avoiding Data Race Using Mutex (Counter) (unique_lock)

1 #include <iostream >
2 #include <thread >
3 #include <mutex >
4

5 std::mutex m;
6 unsigned long long counter = 0;
7

8 void func() {
9 for (int i = 0; i < 1000000; ++i) {

10 // Create a lock object without locking the mutex.
11 std::unique_lock <std::mutex > lock(m, std::defer_lock);
12 // ...
13 // Lock the mutex.
14 lock.lock();
15 ++counter;
16 // The unique_lock destructor releases the mutex.
17 }
18 }
19

20 int main() {
21 std::thread t1(func);
22 std::thread t2(func);
23 t1.join();
24 t2.join();
25 std::cout << counter << "\n";
26 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 502

The std::lock Template Function

std::lock variadic template function that can acquire multiple locks

simultaneously without risk of deadlock

declaration:

template <class T1, class T2, class... TN>
void lock(T1&, T2&, TN& ...);

takes as arguments one or more locks to be acquired

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 503

Example: Acquiring Two Locks for Swap

1 #include <thread >
2 #include <vector >
3 #include <mutex >
4
5 class BigBuf // A Big Buffer
6 {
7 public:
8 static constexpr int size() {return 16 * 1024 * 1024;}
9 BigBuf() : data_(size()) {}

10 BigBuf& operator=(const BigBuf&) = delete;
11 BigBuf& operator=(BigBuf&&) = delete;
12 void swap(BigBuf& other) {
13 if (this == &other)
14 return;
15 std::unique_lock <std::mutex > lock1(m_, std::defer_lock);
16 std::unique_lock <std::mutex > lock2(other.m_, std::defer_lock);
17 std::lock(lock1 , lock2);
18 std::swap(data_ , other.data_);
19 }
20 // ...
21 private:
22 std::vector <char> data_;
23 mutable std::mutex m_;
24 };
25
26 BigBuf a;
27 BigBuf b;
28
29 int main()
30 {
31 std::thread t1([](){
32 for (int i = 0; i < 100000; ++i) a.swap(b);
33 });
34 std::thread t2([](){
35 for (int i = 0; i < 100000; ++i) a.swap(b);
36 });
37 t1.join(); t2.join();
38 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 504

The std::timed_mutex Class

std::timed_mutex class provides mutex that allows timeout to be

specified when acquiring mutex

if mutex cannot be acquired in time specified, acquire operation fails (i.e.,

does not lock mutex) and error returned

adds try_lock_for and try_lock_until member functions to try to

lock mutex with timeout

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 505

Example: Acquiring Mutex With Timeout (std::timed_mutex)

1 #include <vector >
2 #include <iostream >
3 #include <thread >
4 #include <mutex >
5 #include <chrono >
6

7 std::timed_mutex m;
8

9 void doWork() {
10 for (int i = 0; i < 10000; ++i) {
11 std::unique_lock <std::timed_mutex > lock(m,
12 std::defer_lock);
13 int count = 0;
14 while (!lock.try_lock_for(
15 std::chrono::microseconds (1))) {++count;}
16 std::cout << count << "\n";
17 }
18 }
19

20 int main() {
21 std::vector <std::thread > workers;
22 for (int i = 0; i < 16; ++i) {
23 workers.emplace_back(doWork);
24 }
25 for (auto& t : workers) {t.join();}
26 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 506

Recursive Mutexes

A recursive mutex is a mutex for which a thread may own multiple locks

at the same time.

After a mutex is first locked by thread A, thread A can acquire additional

locks on the mutex (without releasing the lock already held).

The mutex is not available to other threads until thread A releases all of its

locks on the mutex.

A recursive mutex is typically used when code that locks a mutex must call

other code that locks the same mutex (in order to avoid deadlock).

For example, a function that acquires a mutex and recursively calls itself

(resulting in the mutex being relocked) would need to employ a recursive

mutex.

A recursive mutex has more overhead than a nonrecursive mutex.

Code that uses recursive mutexes can often be more difficult to

understand and therefore more prone to bugs.

Consequently, the use of recursive mutexes should be avoided if possible.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 507

Recursive Mutex Classes

recursive mutexes provided by classes std::recursive_mutex and

std::recursive_timed_mutex

recursive_mutex class similar to std::mutex class except allows

relocking

recursive_timed_mutex class similar to std::timed_mutex class

except allows relocking

implementation-defined limit to number of levels of locking allowed by

recursive mutex

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 508

Shared Mutexes

A shared mutex (also known as a multiple-reader/single-writer mutex)

is a mutex that allows both shared and exclusive access.

A shared mutex has two types of locks: shared and exclusive.

Exclusive lock:

Only one thread can hold an exclusive lock on a mutex.

While a thread holds an exclusive lock on a mutex, no other thread can hold

any type of lock on the mutex.

Shared lock:

Any number of threads (within implementation limits) can take a shared

lock on a mutex.

While any thread holds a shared lock on a mutex, no thread may take an

exclusive lock on the mutex.

A shared mutex would typically be used to protect shared data that is

seldom updated but cannot be safely updated if any thread is reading it.

A thread takes a shared lock for reading, thus allowing multiple readers.

A thread takes an exclusive lock for writing, thus allowing only one writer

with no readers.

A shared mutex need not be fair in its granting of locks (e.g., readers

could starve writers).
Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 509

The std::shared_timed_mutex Class

std::shared_timed_mutex class provides shared mutex

shared_timed_mutex also allows timeout for acquiring mutex

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 510

std::shared_timed_mutex Members

Construction, Destruction, and Assignment

Name Description

constructor construct mutex

destructor destroy mutex

operator= [deleted] not movable or copyable

Exclusive Locking Functions

Name Description

lock acquire exclusive ownership of mutex, blocking if

not available

try_lock try to acquire exclusive ownership of mutex with-

out blocking

try_lock_for try to acquire exclusive ownership of mutex with-

out blocking

try_lock_until try to acquire exclusive ownership of mutex with-

out blocking

unlock release exclusive ownership of mutex

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 511

std::shared_timed_mutex Members (Continued)

Shared Locking Functions

Name Description

lock_shared acquire shared ownership of mutex,

blocking if not available

try_lock_shared try to acquire shared ownership of mutex

without blocking

try_lock_shared_for try to acquire shared ownership of mutex

without blocking

try_lock_shared_until try to acquire shared ownership of mutex

without blocking

unlock_shared release shared ownership of mutex

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 512

The std::shared_lock Template Class

std::shared_lock is RAII class for shared mutexes

declaration:

template <class T> class shared_lock;

template parameter T specifies type of mutex (e.g.,

std::shared_timed_mutex)

similar interface as std::unique_lock but uses shared locking

constructor may optionally acquire mutex

may acquire and release mutex many times throughout lifetime of object

destructor releases mutex if held

all operations mapped onto shared locking primitives (e.g., lock mapped

to lock_shared, unlock mapped to unlock_shared)

for exclusive locking with shared mutexes, std::unique_lock can be

used

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 513

Example: std::shared_timed_mutex

1 #include <thread >
2 #include <mutex >
3 #include <iostream >
4 #include <vector >
5 #include <shared_mutex >
6
7 std::mutex coutMutex;
8 int counter = 0;
9 std::shared_timed_mutex counterMutex;

10
11 void writer() {
12 for (int i = 0; i < 10; ++i) {
13 {
14 std::lock_guard <std::shared_timed_mutex > lock(counterMutex);
15 ++counter;
16 }
17 std::this_thread::sleep_for(std::chrono::milliseconds (100));
18 }
19 }
20
21 void reader() {
22 for (int i = 0; i < 100; ++i) {
23 int c;
24 {
25 std::shared_lock <std::shared_timed_mutex > lock(counterMutex);
26 c = counter;
27 }
28 {
29 std::lock_guard <std::mutex > lock(coutMutex);
30 std::cout << std::this_thread::get_id() << " " << c << "\n";
31 }
32 std::this_thread::sleep_for(std::chrono::milliseconds (10));
33 }
34 }
35
36 int main() {
37 std::vector <std::thread > threads;
38 threads.emplace_back(writer);
39 for (int i = 0; i < 16; ++i) threads.emplace_back(reader);
40 for (auto& t : threads) t.join();
41 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 514

std::once_flag and std::call_once

sometimes may want to perform action only once in code executed in

multiple threads

std::once_flag class represents flag used to track if action performed

std::call_once template function calls function only once based on

value of std::once_flag object

useful for one-time initialization

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 515

Example: One-Time Action

1 #include <iostream >
2 #include <vector >
3 #include <thread >
4 #include <mutex >
5

6 std::once_flag flag;
7

8 void worker(int id) {
9 std::call_once(flag , [id](){

10 // This code will be invoked only once.
11 std::cout << "first: " << id << "\n";
12 });
13 }
14

15 int main() {
16 std::vector <std::thread > threads;
17 for (int i = 0; i < 16; ++i) {
18 threads.emplace_back(worker , i);
19 }
20 for (auto& t : threads) {
21 t.join();
22 }
23 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 516

Example: One-Time Initialization

1 #include <vector >
2 #include <thread >
3 #include <mutex >
4 #include <cassert >
5 #include <memory >
6

7 std::unique_ptr <int> value;
8 std::once_flag initFlag;
9

10 void initValue() {value = std::make_unique <int>(42);}
11

12 const int& getValue() {
13 std::call_once(initFlag , initValue);
14 return *value.get();
15 }
16

17 void doWork() {
18 const int& v = getValue();
19 assert(v == 42);
20 // ...
21 }
22

23 int main() {
24 std::vector <std::thread > threads;
25 for (int i = 0; i < 4; ++i) {threads.emplace_back(doWork);}
26 for (auto& t : threads) {t.join();}
27 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 517

Static Local Variable Initialization and Thread Safety

initialization of static local object is thread safe

object is initialized first time control passes through its declaration

object deemed initialized upon completion of initialization

if control enters declaration concurrently while object being initialized,

concurrent execution waits for completion of initialization

code like following is thread safe:

const std::string& meaningOfLife() {
static const std::string x("42");
return x;

}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 518

Section 3.4.7

Condition Variables

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 519

Condition Variables

In concurrent programs, the need often arises for a thread to wait until a

particular event occurs (e.g., I/O has completed or data is available).

Having a thread repeatedly check for the occurrence of an event can be

inefficient (i.e., can waste processor resources).

It is often better to have the thread block and then only resume execution

after the event of interest has occurred.

A condition variable is a synchronization primitive that allows threads to

wait (by blocking) until a particular condition occurs.

A condition variable corresponds to some event of interest.

A thread that wants to wait for an event, performs a wait operation on the

condition variable.

A thread that wants to notify one or more waiting threads of an event

performs a signal operation on the condition variable.

When a signalled thread resumes, however, the signalled condition is not

guaranteed to be true (and must be rechecked), since another thread may

have caused condition to change.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 520

The std::condition_variable Class

std::condition_variable class provides condition variable

not movable and not copyable

wait, wait_for, and wait_until member functions used to wait for

condition

notify_one and notify_all used to signal waiting thread(s) of

condition

must re-check condition when awaking from wait since:

spurious awakenings are permitted

between time thread is signalled and time it awakens and locks mutex,

another thread could cause condition to change

concurrent invocation is allowed for notify_one, notify_all, wait,

wait_for, wait_until

each of wait, wait_for, and wait_until atomically releases mutex and

blocks

notify_one and notify_all are atomic

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 521

std::condition_variable Members

Member Types

Name Description

native_handle_type system-dependent handle type for underlying con-

dition variable entity

Construction, Destruction, and Assignment

Name Description

constructor construct object

destructor destroy object

operator= [deleted] not movable or copyable

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 522

std::condition_variable Members (Continued)

Notification and Waiting Member Functions

Name Description

notify_one notify one waiting thread

notify_all notify all waiting threads

wait blocks current thread until notified

wait_for blocks current thread until notified or specified duration

passed

wait_until blocks current thread until notified or specified time point

reached

Native Handle Member Functions
Name Description

native_handle get native handle associated with condition vari-

able

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 523

Example: Condition Variable (IntStack)

1 #include <iostream >
2 #include <vector >
3 #include <thread >
4 #include <mutex >
5 #include <condition_variable >
6
7 class IntStack {
8 public:
9 IntStack() {};

10 IntStack(const IntStack&) = delete;
11 IntStack& operator=(const IntStack&) = delete;
12 int pop() {
13 std::unique_lock <std::mutex > lock(m_);
14 c_.wait(lock , [this](){return !v_.empty();});
15 int x = v_.back();
16 v_.pop_back();
17 return x;
18 }
19 void push(int x) {
20 std::lock_guard <std::mutex > lock(m_);
21 v_.push_back(x);
22 c_.notify_one();
23 }
24 private:
25 std::vector <int> v_;
26 mutable std::mutex m_;
27 mutable std::condition_variable c_; // not empty
28 };
29
30 constexpr int numIters = 1000;
31 IntStack s;
32
33 int main() {
34 std::thread t1([](){
35 for (int i = 0; i < numIters; ++i) s.push(2 * i + 1);
36 });
37 std::thread t2([](){
38 for (int i = 0; i < numIters; ++i) std::cout << s.pop() << "\n";
39 });
40 t1.join(); t2.join();
41 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 524

The std::condition_variable_any Class

with std::condition_variable class,

std::unique_lock<std::mutex> class must be used for wait operation

std::condition_variable_any class allows any mutex type (meeting

certain basic requirements) to be used

interface of std::condition_variable_any class similar to that of

std::condition_variable class

prefer condition_variable to condition_variable_any since former

may be more efficient

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 525

Section 3.4.8

Promises and Futures

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 526

Promises and Futures

promise and future together form one-time communication channel for

passing result (i.e., value or exception) of computation from one thread to

same or another thread

promise: object associated with promised result (i.e., value or exception)

to be produced

future: object through which promised result later made available

shared state: holds promised result for access through future object

(shared by promise object and corresponding future object)

producer of result uses promise object to store result in shared state

consumer uses future object (corresponding to promise) to retrieve result

from shared state

Promise Future

Producer Consumer

State
Shared

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 527

Promises and Futures (Continued)

promises and futures useful in both single-threaded and multithreaded

programs

in single-threaded programs, might be used to propagate exception to

another part of program

in multithreaded program, often need arises to do some computation

asynchronously and then later get result when ready

requires synchronization between threads producing and consuming

result

thread consuming result must wait until result is available

must avoid data races when accessing result shared between threads

this type of synchronization can be accomplished via promise and future

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 528

The std::promise Template Class

std::promise provides access to promise-future shared state for writing

result

declaration:

template <class T> class promise;

T is type of result associated with promise (which can be void)

movable but not copyable

set_value member function sets result to particular value

set_exception member function sets result to exception

can set result only once

get_future member function retrieves future associated with promise

get_future may be called only once

if promise object is destroyed before its associated result is set,

std::future_error exception will be thrown if attempt made to retrieve

result from corresponding future object

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 529

std::promise Members

Construction, Destruction, and Assignment

Name Description

constructor construct object

destructor destroy object

operator= move assignment

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 530

std::promise Members (Continued)

Other Functions
Name Description

swap swap two promise objects

get_future get future associated with promised

result

set_value set result to specified value

set_value_at_thread_exit set result to specified value while de-

livering notification only at thread exit

set_exception set result to specified exception

set_exception_at_thread_exit set result to specified exception while

delivering notification only at thread

exit

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 531

The std::future Template Class

std::future provides access to promise-future shared state for reading

result

declaration:

template <class T> class future;

T is type of result associated with future (which can be void)

movable but not copyable

get member function retrieves result, blocking if result not yet available

get may be called only once

wait member function waits for result to become available without

actually retrieving result

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 532

std::future Members

Construction, Destruction, and Assignment

Name Description

constructor construct object

destructor destroy object

operator= move assignment

Other Functions
Name Description

share transfer shared state to shared_future object

get get result

valid check if future object refers to shared state

wait wait for result to become available

wait_for wait for result to become available or time duration to expire

wait_until wait for result to become available or time point to be

reached

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 533

Example: Promises and Futures (Without std::async)

1 #include <future >
2 #include <thread >
3 #include <iostream >
4 #include <utility >
5

6 double computeValue() {
7 return 42.0;
8 }
9

10 void produce(std::promise <double> p) {
11 // write result to promise
12 p.set_value(computeValue ());
13 }
14

15 int main() {
16 std::promise <double> p;
17 auto f = p.get_future(); // save future before move
18 std::thread producer(produce , std::move(p));
19 std::cout << f.get() << "\n";
20 producer.join();
21 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 534

The std::shared_future Template Class

std::shared_future similar to future except object can be copied

shared_future object can be obtained by using share member function

of future class to transfer contents of future object into

shared_future object

shared_future is copyable (unlike future)

allows multiple threads to wait for same result (associated with

shared_future object)

get member can be called multiple times

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 535

Example: std::shared_future

1 #include <iostream >
2 #include <vector >
3 #include <thread >
4 #include <future >
5

6 void consume(std::shared_future <int> f) {
7 std::cout << f.get() << "\n";
8 }
9

10 int main() {
11 std::promise <int> p;
12 std::shared_future <int> f = p.get_future().share();
13 std::vector <std::thread > consumers;
14 for (int i = 0; i < 16; ++i) {
15 consumers.emplace_back(consume , f);
16 }
17 p.set_value (42);
18 for (auto& i : consumers) {
19 i.join();
20 }
21 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 536

The std::async Template Function

std::async template function used to launch callable entity (e.g.,

function or functor) asynchronously

declaration (uses default launch policy):

template <class Func , class... Args >
future <typename result_of <typename decay <Func >::type(
typename decay <Args >::type...)>::type >
async(Func&& f, Args&&... args);

declaration (with launch policy parameter):

template <class Func , class... Args >
future <typename result_of <typename decay <Func >::type(
typename decay <Args >::type...)>::type >
async(launch policy , Func&& f, Args&&... args);

numerous launch policies supported via bitmask std::launch

if async bit set, execute on new thread

if deferred bit set, execute on calling thread when result needed

if multiple bits set, implementation free to choose between them

in asynchronous execution case, essentially creates promise to hold result

and returns associated future; launches thread to execute function/functor

and sets promise when function/functor returns

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 537

The std::async Template Function (Continued)

future (i.e., future and shared_future) objects created by async

function have slightly different behavior than future objects created in

other ways

in case of future object created by async function: if future object is last

future object referencing its shared state, destructor for future object will

block until result associated with future object becomes ready

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 538

Example: Promises and Futures (With std::async)

1 #include <future >
2 #include <iostream >
3

4 double computeValue() {
5 return 42.0;
6 }
7

8 int main() {
9 // invoke computeValue function asynchronously in

10 // separate thread
11 auto f = std::async(std::launch::async , computeValue);
12 std::cout << f.get() << "\n";
13 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 539

Example: Futures and Exceptions

1 #include <iostream >
2 #include <vector >
3 #include <cmath >
4 #include <future >
5 #include <stdexcept >
6

7 double squareRoot(double x) {
8 if (x < 0.0) {
9 throw std::domain_error(

10 "square root of negative number");
11 }
12 return std::sqrt(x);
13 }
14

15 int main() {
16 std::vector <double> values{1.0, 2.0, -1.0};
17 std::vector <std::future <double>> results;
18 for (auto x : values) {
19 results.push_back(std::async(squareRoot , x));
20 }
21 for (auto& x : results) {
22 try {
23 std::cout << x.get() << "\n";
24 } catch (const std::domain_error&) {
25 std::cout << "error\n";
26 }
27 }
28 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 540

The std::packaged_task Template Class

std::packaged_task template class provides wrapper for callable entity

(e.g., function or functor) that makes return value available via future

declaration:

template <class R, class... Args >
class packaged_task <R(Args...)>;

template parameters R and Args specify return type and arguments for

callable entity

similar to std::function except return value of wrapped function made

available via future

packaged task often used as thread function

movable but not copyable

get_future member retrieves future associated with packaged task

get_future can be called only once

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 541

std::packaged_task Members

Construction, Destruction, and Assignment

Name Description

constructor construct object

destructor destroy object

operator= move assignment

Other Functions
Name Description

valid check if task object currently associated

with shared state

swap swap two task objects

get_future get future associated with promised result

operator() invoke function

make_ready_at_thread_exit invoke function ensuring result ready only

once current thread exits

reset reset shared state, abandoning any previ-

ously stored result

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 542

Example: Packaged Task

1 #include <iostream >
2 #include <thread >
3 #include <future >
4 #include <utility >
5 #include <chrono >
6

7 int getMeaningOfLife() {
8 // Let the suspense build before providing the answer.
9 std::this_thread::sleep_for(std::chrono::milliseconds(

10 1000));
11 // Return the answer.
12 return 42;
13 }
14

15 int main() {
16 std::packaged_task <int()> pt(getMeaningOfLife);
17 // Save the future.
18 auto f = pt.get_future();
19 // Start a thread running the task and detach the thread.
20 std::thread t(std::move(pt));
21 t.detach();
22 // Get the result via the future.
23 int result = f.get();
24 std::cout << "The meaning of life is " << result << "\n";
25 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 543

Example: Packaged Task With Arguments

1 #include <iostream >
2 #include <cmath >
3 #include <thread >
4 #include <future >
5

6 double power(double x, double y) {
7 return std::pow(x, y);
8 }
9

10 int main() {
11 // invoke task in main thread
12 std::packaged_task <double(double, double)> task(power);
13 task(0.5, 2.0);
14 std::cout << task.get_future().get() << "\n";
15 // reset shared state
16 task.reset();
17 // invoke task in new thread
18 auto f = task.get_future();
19 std::thread t(std::move(task), 2.0, 0.5);
20 t.detach();
21 std::cout << f.get() << "\n";
22 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 544

Section 3.4.9

Atomics

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 545

Atomics

To avoid data races when sharing data between threads, it is often

necessary to employ synchronization (e.g., by using mutexes).

Atomic types are another mechanism for providing synchronized access

to data.

An operation that is indivisible is said to be atomic (i.e., no parts of any

other operations can interleave with any part of an atomic operation).

Most processors support atomic memory operations via special machine

instructions.

Atomic memory operations cannot result in torn reads or torn writes.

The standard library offers the following types in order to provide support

for atomic memory operations:

std::atomic_flag

std::atomic

These types provide a uniform interface for accessing the atomic memory

operations of the underlying hardware.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 546

Atomics (Continued)

An atomic type provides guarantees regarding:

1 atomicity; and
2 ordering.

An ordering guarantee specifies the manner in which memory operations

can become visible to threads.

Several memory ordering schemes are supported by atomic types.

The default memory order is sequentially consistent

(std::memory_order_seq_cst).

Initially, only this default will be considered.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 547

The std::atomic_flag Class

std::atomic_flag provides flag with basic atomic operations

flag can be in one of two states: set (i.e., true) or clear (i.e., false)

two operations for flag:

test and set: set state to true and query previous state

clear: set state to false

default constructor initializes flag to unspecified state

not movable and not copyable

implementation-defined macro ATOMIC_FLAG_INIT can be used to set

flag to clear state in (static or automatic) initialization using statement of

the form “std::atomic_flag f = ATOMIC_FLAG_INIT;”

guaranteed to be lock free

intended to be used as building block for higher-level synchronization

primitives, such as spinlock mutex

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 548

std::atomic_flag Members

Member Functions
Member Name Description

constructor constructs object

clear atomically sets flag to false

test_and_set atomically sets flag to true and obtains its pre-

vious value

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 549

Example: Suboptimal Spinlock Mutex

1 #include <iostream >
2 #include <thread >
3 #include <atomic >
4 #include <mutex >
5

6 class SpinLockMutex {
7 public:
8 SpinLockMutex() {f_.clear();}
9 void lock() {while (f_.test_and_set()) {}}

10 void unlock() {f_.clear();}
11 private:
12 std::atomic_flag f_; // true if thread holds mutex
13 };
14

15 SpinLockMutex m;
16 unsigned long long counter = 0;
17

18 void doWork() {
19 for (unsigned long long i = 0; i < 100000ULL; ++i)
20 {std::lock_guard <SpinLockMutex > lock(m); ++counter;}
21 }
22

23 int main() {
24 std::thread t1(doWork), t2(doWork);
25 t1.join(); t2.join();
26 std::cout << counter << "\n";
27 }

default memory order is suboptimal (and will be revisited later)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 550

Example: One-Time Wait

1 #include <iostream >
2 #include <atomic >
3 #include <thread >
4 #include <chrono >
5

6 // notReady flag initially not set
7 std::atomic_flag notReady = ATOMIC_FLAG_INIT;
8 int result = 0;
9

10 int main() {
11 notReady.test_and_set(); // indicate result not ready
12 std::thread producer ([](){
13 std::this_thread::sleep_for(std::chrono::seconds (1));
14 result = -42;
15 notReady.clear(); // indicate result ready
16 });
17 std::thread consumer ([](){
18 // loop until result ready
19 while (notReady.test_and_set()) {}
20 std::cout << result << "\n";
21 });
22 producer.join();
23 consumer.join();
24 }

This is not a particularly good use of atomic_flag.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 551

The std::atomic Template Class

std::atomic class provides types with atomic operations

declaration:

template <class T> struct atomic;

provides object of type T with atomic operations

has partial specializations for integral types and pointer types

full specializations for all fundamental types

in order to use class type for T, T must be trivially copyable and bitwise

equality comparable

not required to be lock free

on most popular platforms atomic is lock free when T is built-in type

not move constructible and not copy constructible

assignable but assignment operator returns value not reference

most operations have memory order argument

default memory order is SC (std::memory_order_seq_cst)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 552

std::atomic Members

Basic
Member Name Description

constructor constructs object

operator= atomically store value into atomic object

is_lock_free check if atomic object is lock free

store atomically replaces value of atomic object

with given value

load atomically reads value of atomic object

operator T obtain result of load

exchange atomically replaces value of atomic object

with given value and obtain value of previ-

ous value

compare_exchange_weak similar to exchange_strong but may fail

spuriously

compare_exchange_strong atomically compare value of atomic object

to given value and perform exchange if

equal or load otherwise

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 553

std::atomic Members (Continued 1)

Fetch
Member Name Description

fetch_add atomically adds given value to value stored in atomic

object and obtains value held previously

fetch_sub atomically subtracts given value from value stored in

atomic object and obtains value held previously

fetch_and atomically replaces value of atomic object with bitwise

AND of atomic object’s value and given value, and ob-

tains value held previously

fetch_or atomically replaces value of atomic object with bitwise

OR of atomic object’s value and given value, and ob-

tains value held previously

fetch_xor atomically replaces value of atomic object with bitwise

XOR of atomic object’s value and given value, and ob-

tains value held previously

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 554

std::atomic Members (Continued 2)

Increment and Decrement
Member Name Description

operator++ atomically increment the value of atomic object by

one and obtain value after incrementing

operator++(int) atomically increment the value of atomic object by

one and obtain value before incrementing

operator-- atomically decrement the value of atomic object by

one and obtain value after decrementing

operator--(int) atomically decrement the value of atomic object by

one and obtain value after decrementing

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 555

std::atomic Members (Continued 3)

Compound Assignment

Member Name Description

operator+= atomically adds given value to value stored in

atomic object

operator-= atomically subtracts given value from value stored

in atomic object

operator&= atomically performs bitwise AND of given value

with value stored in atomic object

operator|= atomically performs bitwise OR of given value with

value stored in atomic object

operatorˆ= atomically performs bitwise XOR of given value

with value stored in atomic object

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 556

Example: Atomic Counter

1 #include <iostream >
2 #include <vector >
3 #include <thread >
4 #include <atomic >
5

6 class AtomicCounter {
7 public:
8 AtomicCounter() : c_(0) {}
9 int operator++() {return ++c_;}

10 int get() const {return c_.load();}
11 private:
12 std::atomic <int> c_;
13 };
14

15 AtomicCounter counter;
16

17 void doWork() {
18 for (int i = 0; i < 10000; ++i) {++counter;}
19 }
20

21 int main() {
22 std::vector <std::thread > v;
23 for (int i = 0; i < 10; ++i)
24 {v.emplace_back(doWork);}
25 for (auto& t : v) {t.join();}
26 std::cout << counter.get() << "\n";
27 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 557

Example: Atomic Increment With Compare and Swap

1 #include <atomic >
2

3 template <class T>
4 void atomicIncrement(std::atomic <T>& x) {
5 T curValue = x;
6 while (!x.compare_exchange_weak(curValue ,
7 curValue + 1)) {}
8 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 558

Example: Counting Contest

1 #include <iostream >
2 #include <vector >
3 #include <atomic >
4 #include <thread >
5

6 constexpr int numThreads = 10;
7 std::atomic <bool> ready(false);
8 std::atomic <bool> done(false);
9 std::atomic <int> startCount(0);

10

11 void doCounting(int id) {
12 ++startCount;
13 while (!ready) {}
14 for (volatile int i = 0; i < 20000; i++) {}
15 bool expected = false;
16 if (done.compare_exchange_strong(expected , true))
17 {std::cout << "winner: " << id << "\n";}
18 }
19

20 int main() {
21 std::vector <std::thread > threads;
22 for (int i = 0; i < numThreads; ++i)
23 {threads.emplace_back(doCounting , i);}
24 while (startCount != numThreads) {}
25 ready = true;
26 for (auto& t : threads) {t.join();}
27 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 559

An Obligatory Note on volatile

volatile qualifier not useful for multithreaded programming

volatile qualifier makes no guarantee of atomicity

can create object of volatile-qualified type whose size is sufficiently

large that no current processor can access object atomically

some platforms may happen to guarantee memory operations on

(suitably-aligned) int object to be atomic, but in such cases this is

normally true even without volatile qualifier

volatile qualifier does not adequately address issue of memory

consistency

volatile qualifier does not imply use of memory barriers or other

mechanisms needed for memory consistency

optimizer and hardware might reorder operations (on non-volatile

objects) across operations on volatile objects

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 560

Section 3.4.10

Atomics and the Memory Model

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 561

Semantics of Multithreaded Programs

To be able to reason about the behavior of a program, we must know:

the order in which the operations of the program are performed; and

when the effects of each operation become visible to other operations in

the program, which may be performed in different threads.

In a single-threaded program, the ordering of operations and when the

effects of operations become visible is quite intuitive.

In a multi-threaded program, this matter becomes considerably more

complicated.

In what follows, we examine the above matter more closely (which

essentially relates to the memory model).

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 562

Happens-Before Relationships

For two operations A and B performed in the same or different threads, A

is said to happen before B if the effects of A become visible to the thread

performing B before B is performed.

The happens-before relationship is not equivalent to “happens earlier in

time”.

If operation A happens earlier in time than operation B, this does not imply

that the effects of A must be visible to the thread performing B before B is

performed, due to the effects of caches, store buffers, and so on, which

delay the visibility of results.

Happening earlier in time is only a necessary but not sufficient condition

for a happens-before relationship to exist.

Happens-before relationships are not always transitive.

In the absence of something known as a dependency-ordered-before

relationship (to be discussed later), which arise relatively less frequently,

happens-before relationships are transitive (i.e., if A happens before B

and B happens before C then A happens before C).

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 563

“Earlier In Time” Versus Happens Before

Consider the multithreaded program (with two threads) shown below,

where x and y are integer variables, initially zero.

Thread 1 Code

x = 1; // A

Thread 2 Code

y = x; // B

Suppose that the run-time platform is such that memory operations on x

are atomic so the program is data-race free.

Consider what happens when the program executes with the particular

timing shown below, where operation A occurs earlier in time than

operation B.

Time

y

Thread 1 (on Core 1) Thread 2 (on Core 2)

x = 1; //A

y = x; //B

The value read for x in operation B will not necessarily be 1.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 564

Sequenced-Before Relationships

Given two operations A and B performed in the same thread, the

operation A is sequenced before B if A precedes B in program order (i.e.,

source-code order).

Sequenced-before relationships are transitive (i.e., if A is sequenced

before B, and B is sequenced before C, then A is sequenced before C).

Example: In the code below, statement A is sequenced before

statement B; B is sequenced before statement C; and, by transitivity, A is

sequenced before C.

x = 1; // A
y = 2; // B
z = x + 1; // C

Example:

Consider the line of code below, which performs (in order) the following

operations: 1) multiplication, 2) addition, and 3) assignment.

y = a * x + b; // (y = ((a * x) + b);

Multiplication is sequenced before addition.

Addition is sequenced before assignment.

Thus, by transitivity, multiplication is sequenced before assignment.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 565

Sequenced-Before Relationships (Continued)

For two operations A and B in the same thread, if A is sequenced before B

then A happens before B.

In other words, program order establishes happens-before relationships

for operations within a single thread.

A sequenced-before relationship is essentially an intra-thread

happens-before relationship. (Note that “intra” means “within”.)

Example: In the code below, statement A is sequenced before

statement B. Therefore, A happens before B. Similarly, B happens before

statement C, and A happens before C.

x = 1; // A
y = 2; // B
z = x + 1; // C

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 566

Inter-Thread Happens-Before Relationships

Establishing whether a happens-before relationship exists between

operations in different threads is somewhat more complicated than the

same-thread case.

Inter-thread happens-before relationships establish happens-before

relationships for operations in different threads.

For two operations A and B in different threads, if A inter-thread

happens before B then A happens before B.

Inter-thread happens-before relationships are transitive (i.e., if A

inter-thread happens before B and B inter-thread happens before C then

A inter-thread happens before C).

Some form of synchronization is required to establish an inter-thread

happens-before relationship.

The various forms that this synchronization may take will be introduced on

later slides.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 567

Summary of Happens-Before Relationships

For two operations A and B in either the same or different threads, A
happens before B if:

1 A and B are in the same thread and A is sequenced before (i.e., intra-thread

happens before) B; or
2 A and B are in different threads and A inter-thread happens before B.

In other words, A happens before B if A either intra-thread happens before

or inter-thread happens before B.

Intra-thread happens-before (i.e., sequenced-before) relationships are

transitive.

Inter-thread happens-before relationships are transitive.

Happens-before relationships are mostly but not always transitive.

A happens-before relationship is important because it tells us if the result

of one operation can be seen by the thread performing another operation.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 568

Synchronizes-With Relationships

A variety of relationships can imply an inter-thread happens-before

relationship, with one being the synchronizes-with relationship.

For two operations A and B in different threads, if A synchronizes with B

then A inter-thread happens before B.

Example:

Consider the two-threaded program shown below, with the shared variable

x of type int, where x is initially zero.

Thread 1 Code

1 x = 1;
2 // A (call of foo)
3 foo();

Thread 2 Code

1 bar();
2 // B (return from bar)
3 assert(x == 1);

Suppose that the call of the function foo is known to synchronize with the

return from the function bar, which implies that A synchronizes with B.

Since A synchronizes with B, A must inter-thread happen before B, which

implies that A happens before B.

Therefore, the assertion in thread 2 can never fail.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 569

Examples of Synchronizes-With Relationships

Thread creation. The completion of the constructor for a thread object T

synchronizes with the start of the invocation of the thread function for T .

Thread join. The completion of the execution of a thread function for a

thread object T synchronizes with (the return of) a join operation on T .

Mutex unlock/lock. All prior unlock operations on a mutex M

synchronize with (the return of) a lock operation on M.

Atomic. A suitably tagged atomic write operation W on a variable x

synchronizes with a suitably tagged atomic read operation on x that reads

the value stored by W (where the meaning of “suitably tagged” will be

discussed later).

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 570

Synchronizes-With Relationship: Thread Create and Join

1 #include <thread >
2 #include <cassert >
3

4 int x = 0;
5

6 void doWork() {
7 // A1 (start of thread execution)
8 assert(x == 1); // OK: M1 synchronizes with A1
9 x = 2;

10 // A2 (end of thread execution)
11 }
12

13 int main() {
14 x = 1;
15 std::thread t(doWork); // M1 (completion of constructor)
16 t.join(); // M2 (return from join)
17 assert(x == 2); // OK: A2 synchronizes with M2
18 }

since construction of thread (M1) synchronizes with start of thread function

execution (A1), M1 happens before A1 implying that assertion in doWork

cannot fail

since completion of execution of thread function (A2) synchronizes with

join operation (M2), A2 happens before M2 implying that assertion in

main cannot fail

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 571

Synchronizes-With Relationship: Mutex Lock/Unlock

Shared Data

std::mutex m;
int x = 0;
int y = 0;

Thread 1 Code

m.lock();
x = 1;
m.unlock();

Thread 2 Code

m.lock();
y = x;
m.unlock();

Thread 1 Execution Thread 2 Execution

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 572

Memory Orders

Most operations on atomic types allow a memory order to be specified.

Example:

std::atomic <int> x = 0;
x.store(42, std::memory_order_seq_cst);
int y = x.load(std::memory_order_seq_cst);

The following memory orders are supported:

sequentially consistent (std::memory_order_seq_cst)

acquire-release (std::memory_order_acq_rel)

acquire (std::memory_order_acquire)

release (std::memory_order_release)

consume (std::memory_order_consume)

relaxed (std::memory_order_relaxed)

Read operations can use the orders:

sequentially consistent, acquire, consume, and relaxed.

Write operations can use the orders:

sequentially consistent, release, and relaxed.

Read-modify-write operations can use:

all of the orders allowed for read and write operations; and

acquire-release.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 573

Memory Orders (Continued 1)

Although several memory orders can be employed for operations on

atomic types, these orders support four basic models:
1 sequentially consistent,
2 acquire release,
3 consume release, and
4 relaxed.

These models differ in the guarantees that they make regarding:

1 whether all writes to atomic objects become visible to all threads

simultaneously; and
2 whether operations on atomic objects in different threads can establish a

synchronization relationship (namely, a synchronizes-with or

dependency-ordered-before [discussed later] relationship).

The models listed from strongest (i.e., makes the most guarantees) to

weakest (i.e., makes the least guarantees) are:

1 sequentially consistent,
2 acquire release,
3 consume release, and
4 relaxed.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 574

Memory Orders (Continued 2)

These models are hierarchical in the sense that each model makes at

least all of the same guarantees as its weaker counterparts.

As we proceed from stronger to weaker models, more guarantees are lost.

A stronger model may require additional synchronization by hardware,

which can degrade performance.

A weaker model may not provide sufficient guarantees for the correct

functioning of code.

Using a model that fails to provide sufficient guarantees for correct code

behavior will result in bugs.

Also, as the model is weakened, it becomes more difficult to reason about

the behavior of code, leading to incomprehensible code and an increased

likelihood of (often very subtle) bugs.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 575

Sequentially-Consistent Model

The sequentially-consistent model simply corresponds to the default

memory model for the language, namely, SC-DRF. (Since data races

cannot occur on atomic objects, SC-DRF degenerates into SC for such

objects.)

For the sequentially-consistent model, all memory operations (i.e., read,

write, and read-modify-write) must use the sequentially-consistent

memory order (std::memory_order_seq_cst).

A total ordering is guaranteed on all sequentially-consistent writes to all

atomic objects.

All sequentially-consistent writes to atomic objects must become visible

to all threads simultaneously.

A sequentially-consistent write operation W on the variable x (in one

thread) synchronizes with a sequentially-consistent operation on x (in

another thread) that reads the value written by W .

This model allows for relatively easy reasoning about code behavior.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 576

Example: Sequentially-Consistent Order

1 #include <atomic >
2 #include <thread >
3 #include <cassert >
4

5 std::atomic <int> x, y, c;
6

7 void w_x() {x.store(1, std::memory_order_seq_cst);}
8

9 void w_y() {y.store(1, std::memory_order_seq_cst);}
10

11 void r_xy() {
12 while (!x.load(std::memory_order_seq_cst)) {}
13 if (y.load(std::memory_order_seq_cst)) {++c;}
14 }
15

16 void r_yx() {
17 while (!y.load(std::memory_order_seq_cst)) {}
18 if (x.load(std::memory_order_seq_cst)) {++c;}
19 }
20

21 int main() {
22 x = 0; y = 0; c = 0;
23 std::thread t1(w_x), t2(w_y), t3(r_xy), t4(r_yx);
24 t1.join(); t2.join(); t3.join(); t4.join();
25 assert(c != 0); // assertion cannot fail
26 }

assertion cannot fail: when while loop in r_xy terminates, all threads must see x as nonzero; when while loop in r_yx terminates,

all threads must see y as nonzero; at least one of these must happen before if statements in both r_xy and r_yx executed

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 577

Acquire-Release Model

For the acquire-release model, the memory order is chosen as follows:

a read operation uses the acquire order (std::memory_order_acquire)

a write operation uses the release order (std::memory_order_release)

a read-modify-write operation uses one of the orders allowed for read and

write operations, or the acquire-release order

(std::memory_order_acq_rel), which results in read acquire and write

release.

No total ordering exists on all writes to all atomic objects (unlike in the

sequentially-consistent model).

Consequently, threads do not necessarily have to agree on the relative

order in which different atomics objects are modified.

A write-release operation W synchronizes with a read-acquire operation

that reads the value stored by W .

The acquire-release model is useful for situations that involve pairwise

synchronization of threads, such as with mutexes.

With the acquire-release model, it is often still possible to reason about

code behavior without too much difficulty.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 578

Example: Acquire-Release Model

shared data:

x and y are of type std::atomic<int> and both are initially zero

thread 1 code (writes x):

x.store(1, std::memory_order_release);

thread 2 code (writes y):

y.store(1, std::memory_order_release);

thread 3 code (reads x then y):

int x1 = x.load(std::memory_order_acquire);
int y1 = y.load(std::memory_order_acquire);

thread 4 code (reads y then x):

int y2 = y.load(std::memory_order_acquire);
int x2 = x.load(std::memory_order_acquire);

no ordering relationship between stores to x and y

so, thread 3 and thread 4 do not need to agree about order in which x and

y are modified

possible to see x1 == 1 and y1 == 0 in thread 3 and x2 == 0 and

y2 == 1 in thread 4

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 579

Example: Acquire-Release Model

1 #include <atomic >
2 #include <thread >
3 #include <cassert >
4

5 std::atomic <int> x, y, c;
6

7 void w_x() {x.store(1, std::memory_order_release);}
8

9 void w_y() {y.store(1, std::memory_order_release);}
10

11 void r_xy() {
12 while (!x.load(std::memory_order_acquire)) {}
13 if (y.load(std::memory_order_acquire)) {++c;}
14 }
15

16 void r_yx() {
17 while (!y.load(std::memory_order_acquire)) {}
18 if (x.load(std::memory_order_acquire)) {++c;}
19 }
20

21 int main() {
22 x = 0; y = 0; c = 0;
23 std::thread t1(w_x), t2(w_y), t3(r_xy), t4(r_yx);
24 t1.join(); t2.join(); t3.join(); t4.join();
25 assert(c != 0); // assertion can fail
26 }

assertion can fail: one thread seeing x or y being nonzero does not imply

other thread sees same
Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 580

Example: Spinlock Mutex Using std::atomic_flag

1 #include <iostream >
2 #include <thread >
3 #include <atomic >
4

5 class SpinLockMutex {
6 public:
7 SpinLockMutex() {f_.clear();}
8 void lock() {
9 while (f_.test_and_set(std::memory_order_acquire)) {}

10 }
11 void unlock() {f_.clear(std::memory_order_release);}
12 private:
13 std::atomic_flag f_; // true if thread holds mutex
14 };
15

16 SpinLockMutex m;
17 unsigned long long counter = 0;
18

19 void doWork() {
20 for (unsigned long long i = 0; i < 100000ULL; ++i)
21 {m.lock(); ++counter; m.unlock();}
22 }
23

24 int main() {
25 std::thread t1(doWork), t2(doWork);
26 t1.join(); t2.join();
27 std::cout << counter << "\n";
28 }

uses acquire-release model

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 581

Example: Spinlock Mutex and std::lock_guard

1 #include <iostream >
2 #include <thread >
3 #include <atomic >
4 #include <mutex >
5

6 class SpinLockMutex {
7 public:
8 SpinLockMutex() {f_.clear();}
9 void lock() {

10 while (f_.test_and_set(std::memory_order_acquire)) {}
11 }
12 void unlock() {f_.clear(std::memory_order_release);}
13 private:
14 std::atomic_flag f_; // true if thread holds mutex
15 };
16

17 SpinLockMutex m;
18 unsigned long long counter = 0;
19

20 void doWork() {
21 for (unsigned long long i = 0; i < 100000ULL; ++i)
22 {std::lock_guard <SpinLockMutex > lg(m); ++counter;}
23 }
24

25 int main() {
26 std::thread t1(doWork), t2(doWork);
27 t1.join(); t2.join();
28 std::cout << counter << "\n";
29 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 582

Carries-A-Dependency Relationships

For two operations A and B performed in the same thread, A is said to

carry a dependency to B if the result of A is used as an operand for B.

Example: In the code below, statement A carries a dependency to

statement B but not statement C.
x = 42; // A
y = x + 1; // B
z = 0; // C

Note that “carries a dependency to” is a subset of “is sequenced before”

(i.e., the former implies the latter).

The carries-a-dependency-to relationship is transitive (i.e., if A carries a

dependency to B and B carries a dependency to C then A carries a

dependency to C).

Example: In the code below, statement A carries a dependency to

statement B; and B carries a dependency to statement C. Therefore,

transitively, A carries a dependency to C.

x = 42; // A
y = x + 1; // B
z = 2 * y; // C

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 583

Dependency-Ordered-Before Relationships

Another type of synchronization relationship is known as a

dependency-ordered-before relationship.

A write-release operation A is dependency ordered before a

read-consume operation B if B reads the value written by A.

For two operations A and B performed in different threads, if A is

dependency ordered before B then A inter-thread happens before B.

Thus, dependency-ordered-before relationships can also establish

happens-before relationships.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 584

Inter-Thread Happens-Before Relationships Revisited

The inter-thread happens before relation describes an arbitrary
concatenation of sequenced-before, synchronizes-with, and

dependency-ordered-before relations, with two exceptions:
1 a concatenation is not permitted to end with dependency ordered before

followed by (one or more) sequenced before; and
2 a concatenation is not permitted to consist entirely of sequenced-before

relations.

The first restriction is required since a dependency-ordered-before

relationship synchronizes only data dependencies.

The second restriction is required since inter-thread happens-before

relationship must (by definition) involve operations in different threads.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 585

Consume-Release Model

For the consume-release model, the memory order is chosen as follows:

a write operation uses release order (std::memory_order_release)

a read operation uses the consume order (std::memory_order_consume)

The consume-release model is identical to the acquire-release model with

one important difference, namely the type of synchronization relationship

established.

A write-release operation W is dependency ordered before a

read-consume operation that reads the value stored by W .

In other words, the consume-release model establishes a

dependency-ordered-before relationship, whereas the acquire-release

model establishes a synchronizes-with relationship.

In this sense, the consume-release model is weaker than the

acquire-release model (i.e., less data is synchronized).

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 586

Example: Consume-Release Model

1 #include <thread >
2 #include <atomic >
3 #include <cassert >
4

5 int x = 0;
6 std::atomic <int> y(0);
7

8 void producer() {
9 x = 42;

10 y.store(1, std::memory_order_release);
11 }
12

13 void consumer() {
14 int a;
15 while (!(a = y.load(std::memory_order_consume))) {}
16 assert(x == 42); // data race
17 }
18

19 int main() {
20 std::thread t1(producer);
21 std::thread t2(consumer);
22 t1.join();
23 t2.join();
24 }

program has data race on x; a does not carry dependency to x so x = 42

does not necessarily happen before x used in assertion

if consume changed to acquire, no data race and assertion cannot fail

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 587

Example: Publishing Data Via Pointer

1 #include <thread >
2 #include <atomic >
3 #include <cassert >
4 #include <string >
5

6 std::atomic <std::string*> p(nullptr);
7 int x = 0;
8

9 void producer() {
10 std::string* s = new std::string("Hello");
11 x = 42;
12 p.store(s, std::memory_order_release);
13 }
14

15 void consumer() {
16 std::string* s;
17 while (!(s = p.load(std::memory_order_consume))) {}
18 assert(*s == "Hello");
19 // assert(x == 42); would result in data race
20 }
21

22 int main() {
23 std::thread t1(producer), t2(consumer);
24 t1.join(); t2.join();
25 }

assertion cannot fail; store to p is dependency ordered before load and

load carries dependency to *s in assertion

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 588

Relaxed Model

For the relaxed model, all memory operations use the relaxed order

(std::memory_order_relaxed).

Like in the acquire-release model, no total order exists on updates to all

atomic objects (collectively).

Operations on the same variable within a single thread satisfy a

happens-before relationship (i.e., within a single thread, accesses to a

single atomic variable must follow program order).

Unlike in the acquire-release model, no inter-thread synchronization

relationship is established.

No requirement exists on the ordering relative to other threads.

The relaxed order is sometime suitable for updating counters (e.g., blind

event counters).

Except in very trivial cases, it can be extremely difficult to reason about

the meaning and/or correctness of code that uses relaxed order.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 589

Behavior of Relaxed Model

consider atomic memory operations with relaxed order

for each individual atomic object, all threads have view of updates that is

consistent with single modification sequence

read operation (e.g., load):

if current position not set, return any element in sequence and set current

position to that of returned element

otherwise, either leave current position unchanged or move later in

sequence and return value at current position

write operation (e.g., store):

append value to end of sequence

set current position to correspond to appended value

read-modify-write operation (e.g., increment, decrement, exchange,

compare_exchange):

read last value from sequence

modify read value as appropriate to obtain new value

append new value to end of sequence

set current position to correspond to that of appended value

considerable flexibility in value returned by read

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 590

Example: Relaxed Model

1 #include <atomic >
2 #include <thread >
3 #include <cassert >
4

5 std::atomic <int> x, y, c;
6

7 void w_x() {x.store(1, std::memory_order_relaxed);}
8

9 void w_y() {y.store(1, std::memory_order_relaxed);}
10

11 void r_xy() {
12 while (!x.load(std::memory_order_relaxed)) {}
13 if (y.load(std::memory_order_relaxed)) {++c;}
14 }
15

16 void r_yx() {
17 while (!y.load(std::memory_order_relaxed)) {}
18 if (x.load(std::memory_order_relaxed)) {++c;}
19 }
20

21 int main() {
22 x = 0; y = 0; c = 0;
23 std::thread t1(w_x), t2(w_y), t3(r_xy), t4(r_yx);
24 t1.join(); t2.join(); t3.join(); t4.join();
25 assert(c != 0); // assertion can fail
26 }

assertion can fail: one thread seeing x or y being nonzero does not imply

other thread sees same
Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 591

Example: Blind Event Counters

1 #include <vector >
2 #include <iostream >
3 #include <thread >
4 #include <atomic >
5

6 std::atomic <unsigned long long> counter (0);
7

8 void doWork() {
9 for (long i = 0; i < 100’000L; ++i) {

10 counter.fetch_add(1, std::memory_order_relaxed);
11 }
12 }
13

14 int main() {
15 std::vector <std::thread > workers;
16 for (int i = 0; i < 10; ++i) {
17 workers.emplace_back(doWork);
18 }
19 for (auto& t : workers) {
20 t.join();
21 }
22 std::cout << "counter " << counter << "\n";
23 }

fetch_add can use relaxed order since only incrementing counter blindly

(i.e., not using value of counter)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 592

Example: Done Flag

1 #include <vector >
2 #include <thread >
3 #include <atomic >
4 #include <chrono >
5

6 std::atomic <bool> done;
7

8 void doWork() {
9 while (!done.load(std::memory_order_relaxed)) {

10 // do something here
11 }
12 }
13

14 int main() {
15 std::vector <std::thread > workers;
16 done.store(false, std::memory_order_relaxed); // I hope? ;)
17 for (int i = 0; i < 16; ++i) {
18 workers.emplace_back(doWork);
19 }
20 std::this_thread::sleep_for(std::chrono::seconds (5));
21 done = true; // not relaxed
22 for (auto& t : workers) {
23 t.join();
24 }
25 }

done.store can be relaxed due to synchronization from thread create

done.load can be relaxed since order not important; different order as if other threads ran at different speeds

assign to done must be sequentially-consistent to prevent assign from floating past join (due to single-thread optimization)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 593

Example: std::shared_ptr Reference Counting

The copy constructor for shared_ptr (which increments a reference

count) would look something like:

// ...
controlBlockPtr = other ->controlBlockPtr;
controlBlockPtr ->refCount.fetch_add(1,

std::memory_order_relaxed);
// ...

The destructor for shared_ptr (which decrements a reference count)

would look something like:

// ...
if (!controlBlockPtr ->refCount.fetch_sub(1,

std::memory_order_acq_rel)) {
delete controlBlockPtr;

}
// ...

The increment operation can use relaxed order, since no action is taken

based on the reference count value.

The decrement operation needs to use acquire-release order so that the

decrement cannot float and the correct view of the data is seen by the

thread doing the delete (all decrements form a synchronization chain).

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 594

Memory Orders: The Bottom Line

Use sequentially-consistent order unless there is a compelling case to do

otherwise.

In situations where semantics dictate a clear pairwise synchronization

between threads, consider the use of acquire-release order if it can be

easily seen to yield correct code.

Only consider relaxed order in situations where the performance penalty

of using a stronger order would be unacceptable.

Be very weary of using relaxed order. Even world experts on the C++

memory model acknowledge that this can be tricky.

Always have any code using relaxed order thoroughly reviewed by people

who are extremely knowledgeable about memory models.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 595

Section 3.4.11

References

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 596

References I

1 A. Williams. C++ Concurrency in Action. Manning Publications, Shelter

Island, NY, USA, 2012.

This is a fairly comprehensive book on concurrency and multithreaded

programming in C++. It is arguably the best book available for those who want to

learn how to write multithreaded code using C++. Excellent

2 M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan

Kaufmann, Burlington, MA, USA, 2008.

A good reference for concurrent programming.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 597

Talks I

1 Herb Sutter. atomic<> Weapons: The C++11 Memory Model and

Modern Hardware, C++ and Beyond, Asheville, NC, USA, Aug. 5–8, 2012.

(This talk is in two parts.)

2 Herb Sutter. C++ Concurrency, C++ and Beyond, Asheville, NC, USA,

Aug. 5–8, 2012.

3 Herb Sutter. Lock-Free Programming (Or, Juggling Razor Blades),

CppCon, 2014. (This talk is in two parts.)

4 Hans-J. Boehm. Threads and Shared Variables in C++11. Going Native,

Redmond, WA, USA, Feb. 2–3, 2012.

5 Mike Long. Introducing the C++ Memory Model. Norwegian Developers

Conference, Oslo, Norway, Jun. 15–19, 2014.

6 Herb Sutter. Machine Architecture and You: Things Your Programming

Language Never Told You. Northwest C++ Users’ Group, Redmond, WA,

USA, Sept. 19. 2007. http://nwcpp.org/september-2007.html.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 598

Talks II

7 Pablo Halpern. Overview of Parallel Programming in C++, CppCon,

Bellevue, WA, USA, Sept. 8, 2014.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 599

Section 3.5

C Compatibility

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 600

C Compatibility

Although C++ attempted to maintain compatibility with C where possible,

there are numerous incompatibilities between the languages.

Unfortunately, as C++ and C continue to evolve, the number of

incompatibilities between these languages continue to grow.

In practice, many C programs are valid C++ programs and can therefore

be compiled with a C++ compiler.

Some C programs, however, may require a significant number of changes

to be valid C++.

A few examples of incompatibilities between C++ and C are given in what

follows.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 601

Conflicts with New Keywords

1 #include <stdio.h>
2 #include <unistd.h>
3

4 /* Delete a file. */
5 int delete(const char* filename) { /* note function name */
6 return unlink(filename);
7 }
8

9 int main(int argc , char** argv) {
10 if (argc >= 2) {
11 if (delete(argv[1])) {
12 printf("cannot delete file\n");
13 return 1;
14 }
15 }
16 return 0;
17 }

C++ introduces many new keywords.

Some C programs might use some of these keywords as identifiers (e.g.,

new, delete).

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 602

Function Declarations Without Arguments

1 #include <stdio.h>
2

3 int plusOne(); /* no arguments specified */
4

5 int main(int argc , char** argv) {
6 printf("%d\n", plusOne (0));
7 return 0;
8 }
9

10 int plusOne(int i) {
11 return i + 1;
12 }

In C, a function declaration without arguments implies that the arguments

are unspecified.

In C++, a function declaration without arguments implies that the function

takes no arguments.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 603

Implicit Return Type

1 #include <stdio.h>
2

3 myfunc() { /* implicit return type */
4 return 3;
5 }
6

7 int main(int argc , char **argv) {
8 int i;
9 i = myfunc();

10 printf("%d\n", i);
11 return 0;
12 }

In C, if the return type of a function is not specified, it is treated as int.

In C++, the return type of a function must always be explicitly specified.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 604

More Restrictive Conversions Involving void*

1 int main(int argc , char** argv) {
2 int i;
3 int* ip;
4 void* vp;
5 ip = &i;
6 vp = ip;
7 ip = vp; /* problematic */
8 return 0;
9 }

C provides an implicit conversion from void* to any pointer type, while

C++ does not.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 605

Scoping Rules for Nested Structs

1 struct outer {
2 struct inner {
3 int i;
4 };
5 int j;
6 };
7

8 struct inner a = {1}; /* inner vs. outer::inner */
9

10 int main(int argc , char** argv) {
11 return 0;
12 }

C and C++ both allow nested struct types, but the scoping rules differ.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 606

Section 3.6

C++11 Overview

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 607

ISO/IEC 14882:2011 (C++11)

ISO/IEC 14882:2011 (informally known as C++11) most recent version of

C++

adds numerous new features language features

adds many new features to library

not fully supported by all C++ implementations

would not advise using C++11 features yet (due to lack of widespread

support for all features and possible compiler/library bugs)

nevertheless good to know about C++11 for when support is more

widespread

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 608

Rvalue References

new reference type: rvalue reference (denoted by &&)

int&& i = 0;
const int&& j = 1;

rvalue references added to solve two problems:

1 provide move semantics
2 allow for perfect forwarding

move constructors (create new object by move operation)

for type T, looks something like T::T(T&&)

move assignment operators (assignment by move operation)

for type T, looks something like T& T::operator=(T&&)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 609

Generalized Constant Expressions

1 #include <iostream >
2

3 constexpr int getTen() {return 10;}
4

5 // The size of the array must be a constant expression.
6 int array[getTen() + 20];
7

8 int main() {
9 // Print the number of elements in the array.

10 std::cerr << "array size " <<
11 sizeof(array) / sizeof(int) << "\n";
12 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 610

Initializer Lists

1 #include <iostream >
2 #include <vector >
3

4 class Sequence {
5 public:
6 Sequence(std::initializer_list <int> list) {
7 for (std::initializer_list <int>::const_iterator i =
8 list.begin(); i != list.end(); ++i)
9 elements_.push_back(*i);

10 }
11 void print() const {
12 for (std::vector <int>::const_iterator i =
13 elements_.begin(); i != elements_.end(); ++i)
14 std::cout << *i << "\n";
15 }
16 private:
17 std::vector <int> elements_;
18 };
19

20 int main() {
21 Sequence seq = {1, 2, 3, 4, 5, 6};
22 seq.print();
23 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 611

Initializer Lists

1 #include <iostream >
2 #include <vector >
3

4 int main() {
5

6 // Pre-C++11
7 // int a[] = {1, 2, 3};
8 // std::vector<int> v1(
9 // a, a + sizeof(a) / sizeof(int));

10

11 // C++11
12 std::vector <int> v1 = {1, 2, 3};
13

14 for (std::vector <int>::const_iterator i =
15 v1.begin(); i != v1.end(); ++i) {
16 std::cout << *i << "\n";
17 }
18 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 612

Type Inference

1 #include <iostream >
2 #include <vector >
3

4 int main() {
5 std::vector <int> v;
6 for (int i = 0; i < 10; ++i) {
7 v.push_back(i);
8 }
9 for (auto i = v.begin(); i != v.end(); ++i) {

10 std::cout << *i << "\n";
11 }
12

13 auto i = 0; // i has type int
14 auto j = i; // j has type int
15 decltype(i) k = 3; // k has type int
16 decltype((i)) m = k; // m has type int&
17 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 613

Range-Based For Loop

1 #include <iostream >
2

3 int main() {
4 int array[4] = {1, 2, 3, 4};
5 // Double the value of each element in the array.
6 for (int& x : array) {
7 x *= 2;
8 }
9 // Print the elements of the array.

10 for (const int& x : array) {
11 std::cout << x << "\n";
12 }
13 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 614

Range-Based For Loop

1 #include <iostream >
2 #include <vector >
3

4 int main() {
5 // Create a vector.
6 int array[4] = {1, 2, 3, 4};
7 std::vector <int> values(array , array + 4);
8 // Double the value of each element in the vector.
9 for (int& x : values) {

10 x *= 2;
11 }
12 // Print the elements of the vector.
13 for (const int& x : values) {
14 std::cout << x << "\n";
15 }
16 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 615

Lambda Expressions and Closures

1 #include <iostream >
2 #include <algorithm >
3

4 int main() {
5 int array[] = {9, -2, 4 -1, 0, 1};
6 const int n = sizeof(array) / sizeof(int);
7 // Sort the data by the magnitude of the elements.
8 std::sort(array , array + n,
9 [](int x, int y){return abs(x) < abs(y);});

10 // Print the sorted array.
11 for (int i = 0; i < n; ++i) {
12 std::cout << array[i] << "\n";
13 }
14 }

struct __FunctorClass {
bool operator()(int x, int y) {

return abs(x) < abs(y);
}

};

std::sort(array , array + n, __FunctorClass());

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 616

Suffix Return-Type Syntax

1 #include <iostream >
2

3 auto isEven(int n) -> int {
4 return !(n % 2);
5 }
6

7 int main() {
8 std::cout << (isEven(4) ? "even" : "odd") << "\n";
9 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 617

Suffix Return-Type Syntax

1 #include <iostream >
2

3 /* Not legal C++11
4 template<class Lhs, class Rhs>
5 decltype(lhs + rhs) addingFunc(const Lhs& lhs,
6 const Rhs& rhs) {
7 return lhs + rhs;
8 }
9 */

10

11 template<class Lhs, class Rhs>
12 auto addingFunc(const Lhs& lhs, const Rhs& rhs) ->
13 decltype(lhs + rhs) {
14 return lhs + rhs;
15 }
16

17 int main()
18 {
19 int x = 1;
20 int y = 2;
21 int z = addingFunc(x, y);
22 std::cout << z << "\n";
23 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 618

Null Pointer Constant

1 #include <iostream >
2

3 int main() {
4 char* pc = nullptr; // OK
5 int* pi = nullptr; // OK
6 bool b = nullptr; // OK. b is false.
7 // int i = nullptr; // ERROR
8 }

nullptr: null pointer

nullptr_t: null pointer type

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 619

Strongly-Typed Enumerations

1 #include <iostream >
2

3 // Enumeration values have class scope.
4 // (apple versus Fruit:apple)
5 // Integral type for enumeration can
6 // be specified and defaults to int.
7 enum class Fruit : char {
8 apple ,
9 orange ,

10 grape
11 };
12

13 int main() {
14 Fruit f = Fruit::apple;
15 Fruit g = Fruit::grape;
16 std::cout << ((f == g) ? "same" : "different") <<
17 "\n";
18 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 620

Right Angle Bracket

1 #include <vector >
2

3 int main() {
4 // With a pre-C++11 compiler, the line
5 // immediately following this comment
6 // will generate an error, since
7 // the ">>" is parsed as operator>>.
8 std::vector <std::vector <int>> v;
9 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 621

Alias Templates

1 #include <iostream >
2
3 // typedef double Real;
4 using Real = double;
5
6 template <class Type1 , class Type2 , int N>
7 class MyClass {
8 public:
9 void print() { std::cout << N << "\n"; }

10 };
11
12 // Illegal: typedef must be fully specified type.
13 // template<class T>
14 // typedef MyClass<int, T, 15> MyClass3;
15
16 template <class T>
17 using MyClass2 = MyClass <int, T, 15>;
18
19 int main() {
20 Real x = 3.14;
21
22 MyClass <int, int, 5> a;
23 a.print();
24
25 MyClass2 <int> b;
26 b.print();
27 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 622

Variadic Templates

1 #include <iostream >
2

3 // Compute the maximum of one element (trivial).
4 int maximum(int n) {
5 return n;
6 }
7

8 // Compute the maximum of two or more elements.
9 template<typename... Args >

10 int maximum(int n, Args... args) {
11 return std::max(n, maximum(args...));
12 }
13

14 int main() {
15 std::cout << maximum(7, 2, 1, 3, 6) << "\n";
16 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 623

New String Literals

1 #include <iostream >
2

3 int main() {
4 // UTF-8
5 const char s1[] = u8"Hello , World.";
6 // UTF-16
7 const char16_t s2[] = u"Hello , World.";
8 // UTF-32
9 const char32_t s3[] = U"Hello , World.";

10 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 624

User-Defined Literals

1 #include <iostream >
2 #include <complex >
3

4 std::complex <long double> operator "" _i(long double d) {
5 return std::complex <long double>(0.0, d);
6 }
7

8 int main() {
9 auto z = 3.14_i;

10 std::cout << z << "\n";
11 }
12

13 // Program output:
14 // (0,3.14)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 625

Explicitly Defaulted and Deleted Special Member Functions

1 class Thing {
2 public:
3 Thing() = default;
4 Thing(const Thing&) = delete;
5 Thing& operator=(const Thing&) = delete;
6 ˜Thing() = default;
7 void doSomething(int) { /* ... */ }
8 void doSomething(double) = delete;
9 };

10
11 int main() {
12 Thing first;
13 Thing second;
14
15 // The following line will produce an error.
16 // Thing third(first);
17
18 // The following line will generate an error.
19 // second = first;
20
21 first.doSomething(0);
22
23 // The following line will generate an error:
24 // first.doSomething(0.0);
25 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 626

Other C++11 Language Changes

modification to the definition of plain old data

extern templates

object construction improvement

explicit overrides final

explicit conversion operators

unrestricted unions

standardized support for multithreading

thread-local storage

long long int (long long int); at least 64 bits

static assertions (static_assert)

allow sizeof to work on members of classes without an explicit object

attributes

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 627

Multithreading Issues

assume x and flag both initially zero

processor 1:

while (flag == 0)
;

print(x); // What value is printed here?

processor 2:

x = 42;
flag = 1;

might (incorrectly) believe that value of x printed will always be 42, but this

is not the case

instructions can be executed out of order due to:
1 reordering of instructions by compiler’s optimizer
2 out-of-order instruction execution on processor

processor 2 may execute store operations out of order so that flag is

written before writing x, in which case 0 is printed

processor 1 may execute loads operations out of order so that x is read

before flag is checked, in which case 0 may be printed

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 628

C++11 Library Changes

many library changes

most changes from C++TR1 adopted

special mathematical functions from C++TR1 not included

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 629

Fixed-Size Array (std::array)

1 #include <array >
2 #include <iostream >
3 #include <algorithm >
4

5 int main() {
6 // Fixed-size array with 4 elements.
7 std::array <int, 4> a = {{2, 4, 3, 1}};
8

9 // Print elements of array.
10 for (auto i = a.cbegin(); i != a.cend(); ++i) {
11 std::cout << " " << *i;
12 }
13 std::cout << "\n";
14

15 // Sort elements of array.
16 std::sort(a.begin(), a.end());
17

18 // Print elements of array.
19 for (auto i = a.cbegin(); i != a.cend(); ++i) {
20 std::cout << " " << *i;
21 }
22 std::cout << "\n";
23 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 630

Other Library Changes

threading facilities (e.g., thread class)

tuple types

hash tables (unordered associative containers) (e.g.,

std::unordered_set, std::unordered_multiset,

std::unordered_map, std::unordered_multimap)

regular expressions (std::regex, std::match_results,

std::regex_search, std::regex_replace)

general-purpose smart pointers (i.e., std::unique_ptr)

pseudorandom number generation

wrapper reference

polymorphic wrappers for function objects

type traits for metaprogramming

method for computing the return type of function objects (e.g.,

std::result_of)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 631

References: Miscellany

Standard C++ Foundation. http://isocpp.org

Comp.lang.c++.moderated Newsgroup. http://groups-beta.google.

com/group/comp.lang.c++.moderated

ACCU Overload Journal. http://accu.org/index.php/journals/

c78/

Artima Developer: The C++ Source. http://www.artima.com/

cppsource

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 632

Part 4

Even More C++

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 633

Section 4.1

Undefined Behavior and Other Evil Stuff

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 634

Undefined, Unspecified, and Implementation-Defined

Behavior

undefined behavior: behavior for which standard imposes no

requirements (i.e., anything could happen)

unspecified behavior: behavior, for a well-formed program construct and

correct data, that depends on the implementation; implementation is not

required to document which behavior occurs; range of possible behaviors

usually specified in standard

implementation-defined behavior: behavior, for a well-formed program

construct and correct data, that depends on the implementation and that

each implementation documents (i.e., only know what will happen for a

particular implementation)

always avoid undefined behavior and do not rely on unspecified

behavior; otherwise cannot guarantee correct behavior of program

try to avoid relying on implementation-defined behavior; otherwise

cannot guarantee correct behavior of program across all language

implementations (i.e., code will not be portable)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 635

Examples of Undefined Behavior

dereferencing a null pointer (e.g., char* p = 0; *p;)

attempting to modify a string literal or any other const object (excluding

mutable data members)

signed integer overflow

evaluating an expression that is not mathematically defined (e.g.,

double z = 0.0; double x = 1.0 / z;)

not returning a value from a value-returning function (other than main)

multiple definitions of the same entity

performing pointer arithmetic that yields a result outside the boundaries of

an array (e.g., int v[10]; int* p = &v[0]; --p;)

using pointers to objects whose lifetime has ended

left-shifting values by a negative amount (e.g.,

int i = 1; i << (-3);)

shifting values by an amount greater than or equal to the number of bits in

the number (e.g., int i = 1; i << 10000;)

using an automatic variable whose value has not been initialized (e.g.,

int i; i++;)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 636

Examples of Unspecified Behavior

order in which arguments to a function are evaluated; Example:

1 #include <iostream >
2

3 int count() {
4 static int c = 0;
5 return c++;
6 }
7

8 void func(int x, int y) {
9 std::cout << x << " " << y << "\n";

10 }
11

12 int main() {
13 func(count(), count());
14 // what values are passed to func?
15 // 0, 1; or 1, 0?
16 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 637

Examples of Implementation-Defined Behavior

meaning of #pragma directive

nesting limit for #include directives

search locations for "" and <> headers

sequence of places searched for header

signedness of char

sizeof built-in types other than char, signed char,

unsigned char

type of size_t, ptrdiff_t

parameters to main function

alignment (i.e., restrictions on the addresses at which an object of a

particular type can be placed)

result of right shift of negative value

precise types used in various parts of C++ standard library (e.g., actual

type named by vector<T>::iterator)

meaning of asm declaration

for more examples, see “Index of implementation-defined behavior”

section in C++11 standard

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 638

Section 4.2

Best Practices, Tips, and Common Pitfalls

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 639

Use of std::istream::eof

do not use std::istream::eof to determine if earlier input operation

has failed, as this will not always work

eof simply returns end-of-file (EOF) flag for stream

EOF flag for stream can be set during successful input operation (when

input operation takes places just before end of file)

when stream extractors (i.e., operator>>) used, fields normally

delimited by whitespace

to read all data in whitespace-delimited field, must read one character

beyond field in order to know that end of field has been reached

if field followed immediately by EOF without any intervening whitespace

characters, reading one character beyond field will cause EOF to be

encountered and EOF bit for stream to be set

in preceding case, however, EOF being set does not mean that input

operation failed, only that stream data ended immediately after field that

was read

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 640

Example: Incorrect Use of eof

example of incorrect use of eof:

1 #include <iostream >
2

3 int main() {
4 while (true) {
5 int x;
6 std::cin >> x;
7 // std::cin may not be in a failed state.
8 if (std::cin.eof()) {
9 // Above input operation may have succeeded.

10 std::cout << "EOF encountered\n";
11 break;
12 }
13 std::cout << x << "\n";
14 }
15 }

code incorrectly assumes that eof will only return true if preceding input

operation has failed

last field in stream will be incorrectly ignored if not followed by at least one

whitespace character; for example, if input stream consists of three

character sequence ’1’, space, ’2’, program will output:

1
EOF encountered

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 641

Example: Correct Use of eof

to determine if input operation failed, simply check if stream in failed state

if stream already known to be in failed state and need to determine

specifically if failure due to EOF being encountered, then use eof

example of correct use of eof:

1 #include <iostream >
2

3 int main() {
4 int x;
5 // Loop while std::cin not in a failed state.
6 while (std::cin >> x) {
7 std::cout << x << "\n";
8 }
9 // Now std::cin must be in a failed state.

10 // Use eof to determine the specific reason
11 // for failure.
12 if (std::cin.eof()) {
13 std::cout << "EOF encountered\n";
14 } else {
15 std::cout << "input error (excluding EOF)\n";
16 }
17 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 642

Use of std::endl

std::endl is not some kind of string constant

std::endl is stream manipulator and declared as

std::ostream& std::endl(std::ostream&)

inserting endl to stream always (regardless of operating system)

equivalent to outputting single newline character ’\n’ followed by flushing

stream

flushing of stream can incur very substantial overhead; so only flush when

strictly necessary

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 643

Use of std::endl (Continued)

some operating systems terminate lines with single linefeed character

(i.e., ’\n’), while other operating systems use carriage-return and

linefeed pair (i.e., ’\r’ plus ’\n’)

existence of endl has nothing to do with dealing with handling new lines

in operating-system independent manner

when stream opened in text mode, translation between newline characters

and whatever character(s) operating system uses to terminate lines is

performed automatically (both for input and output)

above translation done for all characters input and output and has nothing

to do with endl

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 644

Stream Extraction Failure

for built-in types, if stream extraction fails, value of target for stream

extraction depends on reason for failure

in following example, what is value of x if stream extraction fails:

int x;
std::cin >> x;
if (!std::cin) {

// what is value of x?
}

in above example, x may be uninitialized upon stream extraction failure

if failure due to I/O error or EOF, target of extraction is not modified

if failure due to badly formatted data, target of extraction is zero

if failure due to overflow, target of extraction is closest

machine-representable value

common error: incorrectly assume that target of extraction will always be

initialized if extraction fails

for class types, also dangerous to assume target of extraction always

written upon failure

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 645

Stream Extraction Failure (Continued)

1 #include <iostream >
2 #include <sstream >
3 #include <limits >
4 #include <cassert >
5

6 int main() {
7 int x;
8

9 std::stringstream s0("");
10 x = -1;
11 s0 >> x;
12 // No data; x is not set by extraction.
13 assert(s0.fail() && x == -1);
14

15 std::stringstream s1("A");
16 x = -1;
17 s1 >> x;
18 // Badly formatted data; x is zeroed.
19 assert(s1.fail() && x == 0);
20

21 std::stringstream
22 s2("99 ");
23 x = -1;
24 s2 >> x;
25 // Overflow; x set to closest machine-representable value.
26 assert(s2.fail() && x == std::numeric_limits <int>::max());
27 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 646

Types of Literals

When specifying a literal, be careful to use a literal of the correct type, as

the type can often be quite important.

For example, what value will be printed by the following code and (more

importantly) why:

std::vector <double> values;
values.push_back (0.5);
values.push_back (0.5);
// Compute the sum of the elements in the vector values.
double sum = std::accumulate(values.begin(),

values.end(), 0);
std::cout << sum << "\n";

Hint: The value printed for sum is not 1.

In order to determine what values will be printed, look carefully at the

definition of std::accumulate.

Answer: The value printed for sum is 0.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 647

Testing Failure State of Streams

consider istream or ostream object s

(s == false) is equivalent to s.fail()

(s == true) is not equivalent to s.good()

s.good() is not the same as !s.fail()

do not use good as opposite of fail since this is wrong

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 648

Member Initialization Order

data members are initialized in order in which declared

Example:

1 #include <cassert >
2

3 class Widget {
4 public:
5 Widget() : y_(42), x_(y_ + 1) {assert(x_ == 43);}
6 int x_;
7 int y_;
8 };
9

10 int main() {
11 Widget w;
12 }

what will above code do when run?

in constructor, x_ initialized before y_, which results in use of y_ before its

initialization

strictly speaking, undefined behavior

in practice, likely x_ will simply have garbage value when body of

constructor executes and assertion will fail

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 649

Global Object Initialization Order

be careful about initialization order of global objects

Example (program with three source files):

1 int main() {
2 }

1 #include <vector >
2 std::vector <int> v = {1, 2, 3, 4};

1 #include <vector >
2 extern std::vector <int> v;
3 std::vector <int> w = {v[0], v[1]};

no guarantee that v will be constructed before w

bad things will happen if w is constructed before v

no guarantee about order of initialization between translation units (i.e.,

source files)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 650

Implement Postfix Increment/Decrement via Prefix

implement postfix increment/decrement in terms of prefix

increment/decrement

ensures that prefix and postfix versions always consistent

Example:

1 class Counter {
2 public:
3 Counter(int count = 0) : count_(count) {}
4 Counter& operator++() {
5 ++count_;
6 return *this;
7 }
8 Counter operator++(int) {
9 Counter old(*this);

10 ++(*this);
11 return old;
12 }
13 // similarly for prefix/postfix decrement
14 private:
15 int count_;
16 };

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 651

Sizeof Class Versus Sum of Member Sizes

compilers can (and do) add padding to classes/structs

Example:

1 #include <iostream >
2

3 class Widget {
4 // ...
5 private:
6 char c;
7 int i;
8 };
9

10 int main() {
11 // two numbers printed not necessarily the same
12 std::cout << sizeof(char) + sizeof(int) << " " <<
13 sizeof(Widget) << "\n";
14 std::cout << alignof(int) << " " <<
15 alignof(Widget) << "\n";
16 }

many processors place alignment restrictions on data (e.g., data type of

size n must be aligned to start on address that is multiple of n)

other factors can also add to size of class/struct (e.g., virtual function table

pointer)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 652

Sizeof Class Versus Sum of Member Sizes (Continued)

struct Thing { char c; int i; };

suppose sizeof(int) is 4 and alignof(int) is 4

implementation adds padding to structure so that int data member is

suitably aligned (i.e., offset is multiple of 4)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 653

Division/Modulus Operator and Negative Numbers

for integral operands, division operator yields algebraic quotient with any

fractional part discarded (i.e., round towards zero)

if quotient a / b is representable in type of result,

(a / b) * b + a % b is equal to a

so, assuming b is not zero and no overflow, a % b equals

a - (a / b) * b

result of modulus operator not necessarily nonnegative

Example:

1 #include <cassert >
2

3 int main() {
4 assert(5 % 3 == 2);
5 assert(5 % (-3) == 2);
6 assert((-5) % 3 == -2);
7 assert((-5) % (-3) == -2);
8 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 654

std::string Concatenation

What is wrong with the following code?

void func(const std::string&);
std::string s("one");
const char* p = "two";
func(std::string(s) + std::string(", ") + std::string(p));
func(std::string(p) + std::string(", ") + std::string(s));

Unnecessary temporaries!

Fix:

func(s + ", " + p);
func(p + ", "s + s);

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 655

std::vector<std::string> Insertion

What is wrong with the following code?

std::vector <std::string > v;
std::string s("one");
v.push_back(std::string(s));
v.push_back(std::string(s + ", two"));
v.push_back(std::string("three"));
v.push_back(std::string());

Again, unnecessary temporaries.

Fix:

v.push_back(s);
v.push_back(s + ", two")
v.emplace_back("three");
v.emplace_back();

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 656

Classes Holding Multiple Resources

What is wrong with this code?

class TwoResources {
public:

TwoResources() : x_(nullptr) : y_(nullptr) {
x_ = new X;
y_ = new Y;

}
˜TwoResources() {

delete x_;
delete y_;

}
private:

X* x_;
Y* y_;

};

If an exception is thrown in a constructor, the object being constructed is

deemed not to have started its lifetime and no destructor will ever be

called for the object.

So, for example, if new Y throws, x_ will be leaked.

Fix:
class TwoResources {
public:

TwoResources() : x_(make_unique <X>()),
y_(make_unique <Y>()) {}

private:
unique_ptr <X> x_;
unique_ptr <Y> y_;

};

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 657

Avoid Returning By Const Value

What is wrong with the following code?

const std::string getMessage() {
return "Hello";

}

The const return value will interact poorly with move semantics, as the

returned object cannot be used as the source for a move operation (since

the source for a move operation must be modifiable).

Fix:

std::string getMessage() {
return "Hello";

}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 658

Normally Avoid Using std::move When Returning By Value

What is wrong with the following code?

std::vector <int> getVector() {
std::vector <int> v;
// calculate v
return std::move(v);

}

Due to the use of std::move, the type of the expression in the return

statement does not match the function return type (i.e.,

std::vector<int> versus std::vector<int>&&).

RVO/NRVO can only be applied if the type of the expression in the return

statement matches the function return type.

So, RVO/NRVO cannot be applied in this case.

If the types would not have matched anyways (e.g., a two-element

std::tuple and a std::pair), std::move would be reasonable to

employ.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 659

No Explicit Template Arguments to std::make_pair

Never provide explicit template arguments to std::make_pair.

Let x and y be objects of type X and Y, respectively.

What is wrong with the following code?

std::make_pair <X, Y>(x, y)

make_pair declared as:

template <class T1, class T2>
pair <V1, V2> make_pair(T1&& x, T2&& y);

where V1 and V2 are (except in special case) std::decay_t<T1> and

std::decay_t<T2>, respectively

If, for example, X and Y are int, then make_pair has two rvalue

reference parameters which cannot bind to the lvalues x and y.

Use make_pair(x, y) or sometimes pair<X, Y>(x, y).

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 660

Prefer Use of std::make_shared

when creating std::shared_ptr objects, prefer to use

std::make_shared (as opposed to explicit use of new with shared_ptr)

more efficient

control block and owned object can be allocated together

one memory allocation instead of two; better cache efficiency

better exception safety (avoid resource leaks)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 661

Section 4.3

Idioms

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 662

Proxy Classes

proxy class provides modified interface to another class

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 663

Proxy Class Example

1 #include <iostream >
2 #include <utility >
3
4 class BoolVector;
5
6 class Proxy {
7 public:
8 ˜Proxy() = default;
9 Proxy& operator=(const Proxy&) = default;

10 operator bool() const;
11 void operator=(bool b);
12 private:
13 friend class BoolVector;
14 Proxy(const Proxy&) = default;
15 Proxy(BoolVector* v, int i) : v_(v), i_(i) {}
16 BoolVector* v_;
17 int i_;
18 };
19
20 class BoolVector {
21 public:
22 BoolVector(int n) : n_(n), d_(new unsigned char[(n + 7) / 8]) {
23 std::fill_n(d_, (n + 7) / 8, 0);
24 }
25 ˜BoolVector() {delete [] d_;}
26 int size() const {return n_;}
27 bool operator[](int i) const {return getElem(i);}
28 Proxy operator[](int i) {return Proxy(this, i);}
29 private:
30 friend class Proxy;
31 bool getElem(int i) const {return (d_[i / 8] >> (i % 8)) & 1;}
32 void setElem(int i, bool b) {
33 (d_[i / 8] &= ˜(1 << (i % 8))) |= (b << (i % 8));
34 }
35 int n_;
36 unsigned char* d_;
37 };
38
39 inline void Proxy::operator=(bool b) {v_->setElem(i_, b);}
40 inline Proxy::operator bool() const {return v_->getElem(i_);}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 664

Proxy Class Example (Continued)

1 #include "proxy_class_example_1.hpp"
2
3 int main() {
4 BoolVector v(16);
5 for (int i = 0; i < v.size(); ++i) {
6 v[i] = (i & 1);
7 }
8 for (int i = 0; i < v.size(); ++i) {
9 std::cout << v[i];

10 }
11 std::cout << "\n";
12 const BoolVector& cv = v;
13 for (int i = 0; i < cv.size(); ++i) {
14 std::cout << cv[i];
15 }
16 std::cout << "\n";
17 }

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 665

Part 5

Programming

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 666

Section 5.1

Good Programming Practices

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 667

Formatting, Naming, Documenting

Be consistent with the formatting of the source code (e.g., indentation

strategy, tabs versus spaces, spacing, brackets/parentheses).

Avoid a formatting style that runs against common practices.

Be consistent in the naming conventions used for identifiers (e.g., names

of objects, functions, namespaces, types) and files.

Avoid bizarre naming conventions that run against common practices.

Comment your code. If code is well documented, it should be possible to

quickly ascertain what the code is doing without any prior knowledge of

the code.

Use meaningful names for identifiers (e.g., names of objects, functions,

types, etc.). This improves the readability of code.

Avoid magic literal constants. Define a constant object and give it a

meaningful name.

const int maxTableSize = 100;
std::vector <TableEntry > table(maxTableSize);

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 668

Error Handling

If a program requires that certain constraints on user input be satisfied in

order to work correctly, do not assume that these constraints will be

satisfied. Instead, always check them.

Always handle errors gracefully.

Provide useful error messages.

Always check return codes. Even if the operation/function theoretically

cannot fail (under the assumption of bug-free code), in practice it may fail

due to a bug.

If an operation is performed that can fail, check the status of the

operation to ensure that it did not fail (even if you think that it should not

fail). For example, check for error conditions on streams.

If a function can fail, always check its return value.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 669

Simplicity

Do not unnecessarily complicate code. Use the simplest solution that will

meet the needs of the problem at hand.

Do not impose bogus limitations. If a more general case can be handled

without complicating the code and this more general case is likely to be

helpful to handle, then handle this case.

Do not unnecessarily optimize code. Highly optimized code is often much

less readable. Also, highly optimized code is often more difficult to write

correctly (i.e., without bugs). Do not write grossly inefficient code that is

obviously going to cause performance problems, but do not optimize

things beyond avoiding gross inefficiencies that you know will cause

performance problems.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 670

Code Duplication

Avoid duplication of code. If similar code is needed is more than place,

put the code in a function. Also, utilize templates to avoid code duplication.

The avoidance of code duplication has many advantages.

1 It simplifies code understanding. (Understand once, instead of n times.)
2 It simplifies testing. (Test once, instead of n times.)
3 It simplifies debugging. (Fix bugs in one place, instead of n places.)
4 It simplifies code maintenance. (Change code in one place, instead of n

places.)

Make good use of the available libraries. Do not reinvent the wheel. If a

library provides code with the needed functionality, use the code in the

library.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 671

Miscellany

Avoid multiple returns paths in functions. That is, only have one point of

exit from a function.

Avoid the use of global objects. For example, use static data members

instead of global objects. In well designed code, global objects are rarely

needed.

Ensure that the code is const correct.

If an object does not need to change, make it const. This improves the

readability of code. This also helps to ensure const correctness of code.

Avoid bringing many unknown identifiers into scope. For example, avoid

constructs like:

using namespace std;

Only bring identifiers into scope if you need them.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 672

Miscellany

Do not rely on undefined/unspecified/implementation-defined behavior.

Do not rely on any behavior that is not promised by the language. Do not

rely on undocumented features of libraries. That is, do not write code in a

way that it may only work on certain computing platforms or when the

moon is full.

Enable all compiler warning messages. Pay attention to warning

messages issued by the compiler.

Learn how to use a source-level debugger. There will be times when you

will absolutely need it.

Be careful to avoid using references, pointers, iterators that do not

reference valid data. Always be clear about which operations invalidate

references, pointers, and iterators.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 673

Testing: Preconditions and Postconditions

precondition: condition that must be true before function is called

for example, precondition for function that computes square root of x:

x≥ 0

postcondition: condition that must be true after function is called

for example, postcondition for function that removes entry from table of

size n: new size of table n−1

whenever feasible, check for violations of preconditions and

postconditions for functions

if precondition or postcondition is violated, terminate program immediately

in order to help in localizing bug

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 674

Testing

The single most important thing when writing code is that it does the job it

was intended to do correctly. That is, there should not be any bugs.

Test your code. If you do not spend as much time testing your code as you

do writing it, you are likely not doing enough testing.

Tests should exercise as much of the code as possible (i.e., provide good

code coverage).

Design and structure your code so that it is easy to test. In other words,

testing should be considered during design.

Your code will have bugs. Design your code so that it will help you to

isolate bugs. Use assertions. Use preconditions and postconditions.

Design your code so that is modular and can be written and tested in

pieces. The first testing of the software should never be testing the entire

software as a whole.

Often in order to adequately test code, one has to write separate

specialized test code.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 675

Code Examples

subscripting operator for 1-D array class:

template <class T>
const T& Array_1 <T>::operator[](int i) const {

// Precondition: index is in allowable range
assert(i >= 0 && i < data_.size());
return data_[i];

}

function taking pointer parameter:

int stringLength(const char* ptr) {
// Precondition: pointer is not null
assert(ptr != 0);
// Code to compute and return string length.
// ...

}

function that modifies highly complicated data structure:

void modifyDataStructure(Type& dataStructure) {
// Precondition: data structure is in valid state
assert(isDataStructureValid(dataStructure));
// Complicated code to update data structure.
// ...
// Postcondition: data structure is in valid state
assert(isDataStructureValid(dataStructure));

}

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 676

Section 5.2

Finite-Precision Arithmetic

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 677

Code Example

What do each of the following functions output when executed?

void func1() {
double x = 0.1;
double y = 0.3;
double z = 0.4;
if (x + y == z) {

std::cout << "true\n";
} else {

std::cout << "false\n";
}

}

void func2() {
double x = 1e50;
double y = -1e50;
double z = 1.0;
if (x + y + z == z + y + x) {

std::cout << "true\n";
} else {

std::cout << "false\n";
}

}

void func3() {
for (double x = 0.0; x != 1.0; x += 0.1) {

std::cout << "hello\n";
}

}
Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 678

Number Representations Using Different Radixes

Note: All numbers are base 10, unless explicitly indicated otherwise.

What is the representation of 1

3
in base 3?

1

3
= 0.3 = 0.13

What is the representation of 1

10
in base 2?

1

10
= 0.1 = 0.000112

A number may have a representation with a finite number of non-zero

digits in one particular number base but not in another.

Therefore, when a value must be represented with a limited number of

significant digits, the number base matters (i.e., affects the approximation

error).

For example, in base 2, 1

10
cannot be represented exactly using only a

finite number of significant digits.

0.000112 = 0.09375
0.0001100112 = 0.099609375
. . .

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 679

Finite-Precision Number Representations

finite-precision number representation only capable of representing small

fixed number of digits

due to limited number of digits, many values cannot be represented

exactly

in cases that desired value cannot be represented exactly, choose nearest

representable value (i.e., round to nearest representable value)

finite-precision representations can suffer from error due to roundoff,

underflow, and overflow

two general classes of finite-precision representations:

1 fixed-point representations
2 floating-point representations

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 680

Fixed-Point Number Representations

fixed-point representation: radix point remains fixed at same position in

number

if radix point fixed to right of least significant digit position, integer format

results

Integer Format an−1 an−2 · · · a1 a0.
if radix point fixed to left of most significant digit position, purely fractional

format results

Fractional Format .an−1 an−2 · · · a1 a0
fixed-point representations quite limited in range of values that can be

represented

numbers that vary greatly in magnitude cannot be represented easily

using fixed-point representations

one solution to range problem would be for programmer to maintain

scaling factor for each fixed-point number, but this is clumsy and error

prone

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 681

Floating-Point Number Representations

floating-point representation: radix point is not fixed at particular

position within number; instead radix point allowed to move and scaling

factor automatically maintained to track position of radix point

in general, floating-point value represents number x of form

x = sre,

s is signed integer with fixed number of digits, and called significand

e is signed integer with fixed number of digits, and called exponent

r is integer satisfying r ≥ 2, and called radix

in practice, r typically 2

for fixed r, representation of particular x not unique if no constraints

placed on s and e (e.g., 5 ·100 = 0.5 ·101 = 0.05 ·102)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 682

Floating-Point Number Representations (Continued)

to maximize number of significant digits in significand, s and e usually

chosen such that first nonzero digit in significand is to immediate left of

radix point (i.e., 1≤ |s|< r); number in this form called normalized;

otherwise called denormalized

other definitions of normalized/denormalized sometimes used but above

one consistent with IEEE 754 standard

Example:

0.75 = 0.112 = 1.12 ·2−1
1.25 = 1.012 = 1.012 ·20

−0.5 =−0.12 =−1.02 ·2−1

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 683

IEEE 754 Standard (IEEE Std. 754-1985)

most widely used standard for (binary) floating-point arithmetic

specifies four floating-point formats: single, double, single extended, and

double extended

single and double formats called basic formats

radix 2

three integer parameters determine values representable in given format:

number p of significand bits (i.e., precision)

maximum exponent Emax

minimum exponent Emin

parameters for four formats are as follows:

Parameter Single Single Double Double

Extended Extended

p 24 ≥ 32 53 ≥ 64

Emax 127 > 1023 1023 ≥ 16383

Emin −126 ≤−1022 −1022 ≤−16382
Exponent bias 127 unspecified 1023 unspecified

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 684

IEEE 754 Standard (Continued)

with each format, numbers of following form can be represented

(−1)s2E(b0.b1b2 · · ·bp−1)
where s ∈ {0,1}, E is integer satisfying Emin ≤ E ≤ Emax, and bi ∈ {0,1}
in addition, can represent four special values: +∞, −∞, signaling NaN,

and quiet NaN

NaNs produced by:

operations with at least one NaN operand

operations yielding indeterminate forms, such as 0/0, (±∞)/(±∞),
0 · (±∞), (±∞) ·0, (+∞)+(−∞), and (−∞)+(∞)
real operations that yield complex results, such as square root of negative

number, logarithm of negative number, inverse sine/cosine of number that

lies outside [−1,1]

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 685

IEEE 754 Basic Formats

always represent number in normalized form whenever possible; in such

cases, b0 = 1 and b0 need not be stored explicitly as part of significand

bit patterns with reserved exponent values (i.e., exponent values that lie

outside the range Emin ≤ E ≤ Emax) used to represent ±0, ±∞,

denormalized numbers, and NaNs

each of (basic) formats consist of three fields:

a sign bit, s

a biased exponent, e = E+ bias

a fraction, f = .b1b2 · · ·bp−1
only difference between formats is size of biased exponent and fraction

fields

value represented by basic format number related to its sign, exponent,

and fraction field, but relationship is complicated by the presence of zeros,

infinities, and NaNs

“strange” combination of biased and sign-magnitude formats used to

encode floating-point value chosen so that nonnegative floating-point

values ordered in same way as integers, allowing integer comparison to

compare floating-point numbers
Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 686

IEEE 754 Basic Formats (Continued)

single format:

1 8 23

s e f

MSB LSB MSB LSB

double format:

1 11 52

s e f

MSB LSB MSB LSB

summary of encodings:

Case Exponent Fraction Value

Normal Emin ≤ E ≤ Emax — (−1)s2E(1+ f)
Denormal E = Emin−1 f 6= 0 (−1)s2Emin f

Zero E = Emin−1 f = 0 (−1)s0
Infinity E = Emax +1 f = 0 (−1)s∞
NaN E = Emax +1 f 6= 0 NaN

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 687

IEEE 754 Encoding Examples

How would the number 5.2510 be represented in single format?

5.2510 = 101.012 ·20 = 1.01012 ·22
Therefore, s = 0, e = 210 +12710 = 12910 = 100000012, and

f = 0101000 · · ·0, resulting in the word:

0 10000001 01010000000000000000000

s e f

How would the number −9.12510 be represented in double format?

−9.12510 =−1001.0012 ·20 =−1.0010012 ·23
Therefore, s = 1, e = 310 +102310 = 102610 = 100000000102, and
f = 001001000 · · ·0, resulting in the word:

1 10000000010 00100100

s e f

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 688

Finite-Precision Arithmetic

Understand the impact of using finite-precision arithmetic.

Do not make invalid assumptions about the set of values that can be

represented by a particular fixed-point or floating-point type.

Integer arithmetic can overflow. Be careful to avoid overflow.

Floating-point arithmetic can overflow and underflow.

Perhaps, more importantly, however, floating-point arithmetic has

roundoff error. If you are not deeply troubled by the presence of roundoff

error, you should be as it can cause major problems in many situations.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 689

Additional Reading

D. Goldberg. What every computer scientist should know about

floating-point arithmetic. ACM Computing Surveys, 23(1):5–48, Mar. 1991

IEEE Std. 754-1985 — IEEE standard for binary floating-point arithmetic,

1985

IEEE Std. 754-2008 — IEEE standard for floating-point arithmetic, 2008

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 690

Part 6

References

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 691

Limits of Knowledge

Know what you do not know.

Ask questions when you are uncertain about something and be sure that

the person whom you ask is knowledgeable enough to give a correct

answer.

Know what information resources can be trusted.

Learn to use reference materials effectively (e.g., documentation on

libraries, standards).

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 692

C++ References

Some good references on various topics related to the C++ programming

language, C++ standard library, and other C++ libraries (such as Boost)

are listed on the slides that follow.

Any information on C++ (e.g., books, tutorials, videos, seminars) from the

following individuals (who are held in very high regard by the C++

community) is highly recommended:

Bjarne Stroustrup (the creator of C++)

Scott Meyers

Herb Sutter (Convener of ISO C++ standards committee for over 10 years)

Andrei Alexandrescu

David Abrahams (one of the founding members of Boost)

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 693

C++ References I

1 ISO/IEC 14882:2011 — information technology — programming

languages — C++, Sept. 2011.

This is the definitive specification of the C++ language and standard library. This

is an essential reference for any advanced programmer.

2 B. Stroustrup. The C++ Programming Language. Addison Wesley, 4th

edition, 2013.

This is the classic book on the C++ programming language and standard library,

written by the creator of the language. This is one of the best references for first

learning C++. Excellent

3 Standard C++ Foundation web site. http://www.isocpp.org, 2014.

This is the web site of a non-profit organization whose purpose is to support the

C++ software development community and promote the understanding and use

of modern standard C++ on all compilers and platforms. This is an absolutely

outstanding source of information on C++. Excellent

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 694

C++ References II

4 S. Meyers. Effective Modern C++: 42 Specific Ways to Improve Your Use

of C++11 and C++14. O’Reilly Media, Cambridge, MA, USA, 2015.

This book covers a list of 42 topics on how to better utilize the C++ language.

Excellent

5 S. Meyers. Effective C++: 50 Specific Ways to Improve Your Programs and

Designs. Addison Wesley, Menlo Park, California, 1992.

This book covers a list of 50 topics on how to better utilize the C++ language.

Excellent

6 S. Meyers. More Effective C++: 35 New Ways to Improve Your Programs

and Designs. Addison Wesley, Menlo Park, California, 1996.

This book covers a list of 35 topics on how to better utilize the C++ language. It

builds on Meyers’ earlier “Effective C++” book. Excellent

7 S. Meyers. Effective STL: 50 Specific Ways to Improve Your Use of the

Standard Template Library. Addison Wesley, 2001.

This book covers a list of 50 topics on how to better utilize the Standard Template

Library (STL), an essential component of the C++ standard library. Excellent

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 695

C++ References III

8 N. M. Josuttis. The C++ Standard Library: A Tutorial and Reference.

Addison Wesley, Upper Saddle River, NJ, USA, 2nd edition, 2012.

This is a very comprehensive book on the C++ standard library. This is arguably

the best reference on the standard library (other than the C++ standard). Excellent

9 D. Vandevoorde and N. M. Josuttis. C++ Templates: The Complete Guide.

Addison Wesley, 2002.

This is a very comprehensive book on template programming in C++. It is

arguably one of the best books on templates in C++. Excellent

10 A. Williams. C++ Concurrency in Action. Manning Publications, Shelter

Island, NY, USA, 2012.

This is a fairly comprehensive book on concurrency and multithreaded

programming in C++. It is arguably the best book available for those who want to

learn how to write multithreaded code using C++. Excellent

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 696

C++ References IV

11 H. Sutter. Exceptional C++: 47 Engineering Puzzles, Programming

Problems, and Solutions. Addison Wesley, 1999.

This book covers topics including (but not limited to): proper resource

management, exception safety, RAII, and good class design. Excellent

12 H. Sutter. More Exceptional C++: 40 New Engineering Puzzles,

Programming Problems, and Solutions. Addison Wesley, 2001.

This book covers topics including (but not limited to): exception safety, effective

object-oriented programming, and correct use of STL. Excellent

13 H. Sutter. Exceptional C++ Style: 40 New Engineering Puzzles,

Programming Problems, and Solutions. Addison Wesley, 2004.

This book covers topics including (but not limited to): generic programming,

optimization, resource management, and how to write modular code. Excellent

14 H. Sutter and A. Alexandrescu. C++ Coding Standards: 101 Rules,

Guidelines, and Best Practices. Addison Wesley, 2004.

This book presents 101 best practices, idioms, and common pitfalls in C++ in

order to allow the reader to become a more effective C++ programmer. Excellent

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 697

C++ References V

15 A. Langer and K. Kreft. Standard C++ IOStreams and Locales. Addison

Wesley, 2000.

This book provides a very detailed look at C++ I/O streams and locales.

Said-To-Be Excellent

16 V. A. Punathambekar. How to interpret complex C/C++ declarations.

http://www.codeproject.com/Articles/7042/

How-to-interpret-complex-C-C-declarations, 2004.

This is a detailed tutorial on how to interpret complex C/C++ type declarations.

This tutorial explains how type declarations are parsed in the language, which is

essential for all programmers to understand clearly. Excellent

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 698

Other C++ References I

1 S. B. Lippman, J. Lajoie, and B. E. Moo. C++ Primer. Addison Wesley,

Upper Saddle River, NJ, USA, 4th edition, 2005.

2 A. Koenig and B. E. Moo. Accelerated C++: Practical Programming by

Example. Addison Wesley, Upper Saddle River, NJ, USA, 2000.

3 B. Eckel. Thinking in C++—Volume 1: Introduction to Standard C++.

Prentice Hall, 2nd edition, 2000.

4 B. Eckel and C. Allison. Thinking in C++—Volume 2: Practical

Programming. Prentice Hall, 1st edition, 2003.

5 B. Stroustrup. Programming: Principles and Practice Using C++. Addison

Wesley, Upper Saddle River, NJ, USA, 2009.

An introduction to programming using C++ by the creator of the language.

6 A. Alexandrescu. Modern C++ Design. Addison Wesley, Upper Saddle

River, NJ, USA, 2001.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 699

Other C++ References II

7 D. Abrahams and A. Gurtovoy. C++ Template Metaprogramming:

Concepts, Tools, and Techniques from Boost and Beyond. Addison

Wesley, Boston, MA, USA, 2004.

8 D. D. Gennaro. Advanced C++ Metaprogramming. CreateSpace

Independent Publishing Platform, 2011.

9 Boost web site. http://www.boost.org, 2014.

The web site for the Boost C++ libraries.

10 B. Karlsson. Beyond the C++ Standard Library: An Introduction to Boost.

Addison Wesley, Upper Saddle River, NJ, USA, 2005.

An introduction to (some parts of) the Boost library.

11 B. Schaling. The Boost C++ Libraries. XML Press, 2nd edition, 2014.

An introduction to the Boost library. Online version at http://

theboostcpplibraries.com.

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 700

Yet More C++ References I

1 Herb Sutter’s Web Site: http://herbsutter.com

2 Herb Sutter’s Guru of the Week: http://www.gotw.ca/gotw/

3 Bjarne Stroustrup’s Web Site: http://www.stroustrup.com

4 ISO C++ Working Group web site: http://www.open-std.org/jtc1/

sc22/wg21/

5 C++ FAQ: http://www.parashift.com/c++-faq/

6 Newsgroup comp.lang.c++.moderated

7 http://en.cppreference.com

8 http://www.cplusplus.com

9 Stackoverflow: http://stackoverflow.com

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 701

The Last Word

Use as many information resources as you can to learn as much as you

can about C++.

Read books, articles, and other documents.

Watch videos.

Attend lectures and seminars.

But in addition to all of the preceding things:

Write code!
Write lots and lots and lots of code!
The only way to truly learn a programming language well is to use it

heavily (i.e., write lots of code using the language).

Copyright c© 2015 Michael D. Adams C++ Version: 2015-02-03 702

