
Exercises for Programming in C++

(Alpha Release, Version 2021-04-01)

Michael D. Adams

To obtain the most recent version of this book (with functional hyperlinks) or for additional informa-
tion and resources related to this book (such as lecture slides, video lectures, and errata), please
visit:

http://www.ece.uvic.ca/˜mdadams/cppbook

If you like this book, please consider posting a review of it at:

https://play.google.com/store/search?q=ISBN:9780987919755 or
http://books.google.com/books?vid=ISBN9780987919755

youtube.com/iamcanadian1867 github.com/mdadams @mdadams16

http://www.ece.uvic.ca/~mdadams/cppbook
http://www.ece.uvic.ca/~mdadams/cppbook
https://play.google.com/store/search?q=ISBN:9780987919755
http://books.google.com/books?vid=ISBN9780987919755
http://youtube.com/iamcanadian1867
http://github.com/mdadams
http://twitter.com/mdadams16

Exercises for Programming in C++
(Alpha Release, Version 2021-04-01)

Michael D. Adams

Department of Electrical and Computer Engineering
University of Victoria

Victoria, British Columbia, Canada

The author has taken care in the preparation of this book, but makes no expressed or implied warranty of any kind and
assumes no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

Copyright © 2021 Michael D. Adams

This book is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-
ND 3.0) License. A copy of this license can be found in the section titled “License” on page xi of this book. For a
simple explanation of the rights granted by this license, see:

http://creativecommons.org/licenses/by-nc-nd/3.0/

UNIX and X Window System are registered trademarks of The Open Group.
Linux is a registered trademark of Linus Torvalds.
Windows is a registered trademark of Microsoft Corporation.
Mac OS is a registered trademark of Apple Inc.
OpenGL and OpenGL ES are registered trademarks of Silicon Graphics Inc.
The YouTube logo is a registered trademark of Google, Inc.
The GitHub logo is a registered trademark of GitHub, Inc.
The Twitter logo is a registered trademark of Twitter, Inc.

This book was typeset with LATEX.

ISBN 978-0-9879197-5-5 (PDF)

http://creativecommons.org/licenses/by-nc-nd/3.0/

To my students, past, present, and future

v

Contents

License xi

Preface xvii
Acknowledgments . xvii

About the Author xix

Other Works by the Author xxi

1 Introduction 1
1.1 Disclaimer . 1
1.2 Important Comment on Hyperlinks . 1
1.3 About This Book . 1
1.4 Lecture Slides . 1
1.5 Book Web Site . 2
1.6 Git Repository . 2
1.7 Virtual Machine (VM) Disk Images . 2
1.8 Study Plan . 2

2 Basics 7
2.1 Exercises . 7

3 Classes 15
3.1 Exercises . 15

4 Templates 23
4.1 Exercises . 23

5 Library 29
5.1 Exercises . 29

6 Exceptions 39
6.1 Exercises . 39

7 Concurrency 45
7.1 Exercises . 45

8 Miscellany 61
8.1 Exercises . 61

9 C Language 89
9.1 Exercises . 89

Version 2021-04-01 Copyright © 2021 Michael D. Adams

vi CONTENTS

A CGAL 91
A.1 Computational Geometry Algorithms Library (CGAL) . 91

A.1.1 Reading . 91
A.2 Exercises . 92

B CMake 97
B.1 Exercises . 97

C Git 99
C.1 Exercises . 99

D Video Lectures 101
D.1 Introduction . 101
D.2 2019-05 SENG 475 Video Lectures . 101

D.2.1 Video-Lecture Catalog . 102
D.2.1.1 Lecture 1 (2019-05-07) — Course Introduction [2019-05-07] 102
D.2.1.2 Lecture 2 (2019-05-08) — Algorithms and Data Structures [2019-05-08] 102
D.2.1.3 Lecture 3 (2019-05-10) — Data Structures [2019-05-10] 103
D.2.1.4 Lecture 4 (2019-05-14) — Data Structures, Some C++ Review (Const and Other

Stuff) [2019-05-14] . 103
D.2.1.5 Lecture 5 (2019-05-15) — Some C++ Review (Const and Other Stuff) [2019-05-15] 104
D.2.1.6 Lecture 6 (2019-05-17) — Some C++ Review (Const and Other Stuff), Compile-

Time Computation [2019-05-17] . 104
D.2.1.7 Lecture 7 (2019-05-21) — Compile-Time Computation [2019-05-21] 105
D.2.1.8 Lecture 8 (2019-05-22) — Compile-Time Computation, Temporary Objects [2019-

05-22] . 105
D.2.1.9 Lecture 9 (2019-05-24) — Temporary Objects, Moving/Copying, Value Categories

[2019-05-24] . 106
D.2.1.10 Lecture 10 (2019-05-28) — Value Categories, Moving/Copying [2019-05-28] . . . 106
D.2.1.11 Lecture 11 (2019-05-29) — Copy Elision [2019-05-29] 106
D.2.1.12 Lecture 12 (2019-05-31) — Copy Elision, Implicit Move [2019-05-31] 106
D.2.1.13 Lecture 13 (2019-06-04) — Copy Elision, Implicit Move, Exceptions [2019-06-04] 107
D.2.1.14 Lecture 14 (2019-06-05) — Exceptions [2019-06-05] 107
D.2.1.15 Lecture 15 (2019-06-07) — Exceptions, Interval Arithmetic [2019-06-07] 108
D.2.1.16 Lecture 16 (2019-06-11) — Interval Arithmetic, Geometric Predicates and Appli-

cations [2019-06-11] . 108
D.2.1.17 Lecture 17 (2019-06-12) — Geometric Predicates and Applications, Memory Man-

agement [2019-06-12] . 108
D.2.1.18 Lecture 18 (2019-06-14) — Memory Management [2019-06-14] 109
D.2.1.19 Lecture 19 (2019-06-18) — Memory Management [2019-06-18] 109
D.2.1.20 Lecture 20 (2019-06-19) — Memory Management [2019-06-19] 110
D.2.1.21 Lecture 21 (2019-06-21) — Memory Management, Intrusive Containers, Pointers

to Members [2019-06-21] . 110
D.2.1.22 Lecture 22 (2019-06-25) — Pointers to Members, Intrusive Containers, Caches

[2019-06-25] . 111
D.2.1.23 Lecture 23 (2019-06-26) — Caches, Cache-Efficient Algorithms [2019-06-26] . . . 111
D.2.1.24 Lecture 24 (2019-06-28) — Cache-Efficient Algorithms [2019-06-28] 112
D.2.1.25 Lecture 25 (2019-07-03) — Cache-Efficient Algorithms, Concurrency [2019-07-03] 112
D.2.1.26 Lecture 26 (2019-07-05) — Concurrency [2019-07-05] 113
D.2.1.27 Lecture 27 (2019-07-09) — Concurrency [2019-07-09] 113
D.2.1.28 Lecture 28 (2019-07-10) — Concurrency [2019-07-10] 113
D.2.1.29 Lecture 29 (2019-07-12) — Concurrency [2019-07-12] 114

Copyright © 2021 Michael D. Adams Version 2021-04-01

CONTENTS vii

D.2.1.30 Lecture 30 (2019-07-16) — Concurrency [2019-07-16] 114
D.2.1.31 Lecture 31 (2019-07-17) — Concurrency, More Exceptions [2019-07-17] 114
D.2.1.32 Lecture 32 (2019-07-19) — Smart Pointers [2019-07-19] 115
D.2.1.33 Lecture 33 (2019-07-23) — Smart Pointers, Vectorization [2019-07-23] 115
D.2.1.34 Lecture 34 (2019-07-24) — Vectorization [2019-07-24] 116
D.2.1.35 Lecture 35 (2019-07-26) — Vectorization [2019-07-26] 116
D.2.1.36 Lecture 36 (2019-07-30) — Vectorization [2019-07-30] 117
D.2.1.37 Lecture 37 (2019-07-31) — Final Course Wrap-Up [2019-07-31] 117
D.2.1.38 Extra (2019-07-25) — Preliminary Information for Final Exam [2019-07-25] 117

D.3 Rudimentary C++ . 117
D.3.1 Video-Lecture Catalog . 117

D.3.1.1 Getting Started — Compiling and Linking [2017-04-13] 118
D.3.1.2 Version Control — Introduction [2017-04-06] . 118
D.3.1.3 Git — Introduction [2017-04-08] . 118
D.3.1.4 Git — Demonstration [2017-04-05] . 118
D.3.1.5 Build Systems — Introduction [2017-04-12] . 119
D.3.1.6 Make — Introduction [2017-04-12] . 119
D.3.1.7 CMake — Introduction [2017-04-16] . 119
D.3.1.8 CMake — Examples [2017-04-18] . 120
D.3.1.9 Basics — Introduction [2015-04-06] . 120
D.3.1.10 Basics — Objects, Types, and Values [2015-04-08] 120
D.3.1.11 Basics — Operators and Expressions [2016-03-20] 121
D.3.1.12 Basics — Control-Flow Constructs [2015-04-09] 121
D.3.1.13 Basics — Functions [2016-03-20] . 122
D.3.1.14 Basics — Input/Output [2016-03-21] . 122
D.3.1.15 Basics — Miscellany [2016-03-21] . 123
D.3.1.16 Classes — Introduction [2016-03-05] . 123
D.3.1.17 Classes — Members and Access Specifiers [2016-03-05] 123
D.3.1.18 Classes — Constructors and Destructors [2016-03-06] 123
D.3.1.19 Classes — Operator Overloading [2016-03-09] . 124
D.3.1.20 Classes — More on Classes [2016-03-22] . 124
D.3.1.21 Classes — Temporary Objects [2016-03-24] . 124
D.3.1.22 Classes — Functors [2016-03-24] . 125
D.3.1.23 Templates — Introduction [2016-03-14] . 125
D.3.1.24 Templates — Function Templates [2016-03-17] 125
D.3.1.25 Templates — Class Templates [2016-03-17] . 125
D.3.1.26 Templates — Variable Templates [2016-03-14] . 126
D.3.1.27 Templates — Alias Templates [2016-03-14] . 126
D.3.1.28 Standard Library — Introduction [2016-03-30] . 126
D.3.1.29 Standard Library — Containers, Iterators, and Algorithms [2016-04-05] 126
D.3.1.30 Standard Library — The vector Class Template [2016-03-30] 127
D.3.1.31 Standard Library — The basic string Class Template [2016-04-01] 127
D.3.1.32 Standard Library — Time Measurement [2016-04-02] 128
D.3.1.33 Concurrency — Preliminaries [2015-02-12] . 128
D.3.1.34 Concurrency — Threads [2015-02-17] . 129
D.3.1.35 Concurrency — Mutexes [2015-02-23] . 129
D.3.1.36 Concurrency — Condition Variables [2015-02-27] 130
D.3.1.37 Concurrency — Promises and Futures [2015-04-02] 130
D.3.1.38 CGAL — Introduction [2015-06-29] . 131
D.3.1.39 CGAL — Polygon Meshes [2015-07-02] . 131
D.3.1.40 CGAL — Subdivision Surface Methods [2015-06-29] 132
D.3.1.41 CGAL — Example Programs [2015-07-01] . 132

Version 2021-04-01 Copyright © 2021 Michael D. Adams

viii CONTENTS

D.3.1.42 Text Formatting in C++20 [2021-02-03] . 132
D.4 Miscellaneous Video Presentations . 133

D.4.1 Video-Lecture Catalog . 133
D.4.1.1 Meshlab/Geomview Demo [2019-06-16] . 133
D.4.1.2 Accessing the SDE Using VM Software [2020-04-26] 133
D.4.1.3 Assertions and CMake Build Types Demonstration [2020-04-30] 133
D.4.1.4 Address Sanitizer (ASan) Demonstration [2020-04-26] 133
D.4.1.5 Undefined-Behavior Sanitizer (UBSan) Demonstration [2020-04-26] 133
D.4.1.6 Lcov Demonstration [2020-04-30] . 134

Copyright © 2021 Michael D. Adams Version 2021-04-01

ix

List of Listings

software/basics/type deduction 1.cpp . 8
software/basics/type deduction 2.cpp . 9
software/basics/references 1.cpp . 10
software/basics/references 2.cpp . 11
software/basics/copy ints 0.cpp . 12
software/basics/returning invalid reference.cpp . 13
software/basics/using example.cpp . 13
software/classes/operator overloading exponentiation 1a.cpp . 15
software/classes/RealPoint2 interface.cpp . 17
software/classes/String 1.cpp . 19
software/library/String 2.cpp . 19
software/lambdas/capture and globals 1.cpp . 20
software/lambdas/lambda 1.cpp . 20
software/lambdas/lambda 2.cpp . 21
software/templates/function template type deduction failure 1 0.cpp . 23
software/templates/sum 1 a.cpp . 23
software/templates/Array.cpp . 25
software/library/array iterator test.cpp . 25
software/templates/IsVoid.cpp . 26
software/lambdas/generic lambda 2 a.cpp . 27
software/lambdas/generic lambda 1 a.cpp . 28
software/templates/raw user defined literal 1.cpp . 28
software/templates/merge.cpp . 29
software/library/subscripting vs iterator 1.cpp . 30
software/library/container reserve 1.cpp . 31
software/library/copyStream.cpp . 33
software/templates/variadic template output 1.cpp . 33
software/smart pointers/string 1.cpp . 34
software/smart pointers/source sink 1.cpp . 35
software/smart pointers/counter 1.cpp . 36
software/exceptions/stack unwinding 1.cpp . 40
software/exceptions/stack unwinding 2.cpp . 41
software/exceptions/exception processing 1 1.cpp . 42
software/exceptions/exception safety 1b.cpp . 43
software/concurrency/concurrency 1.cpp . 46
software/concurrency/concurrency 2.cpp . 47
software/concurrency/concurrency 3.cpp . 47
software/concurrency/concurrency 4.cpp . 48
software/concurrency/concurrency 5.cpp . 48
software/concurrency/concurrency 6.cpp . 49
software/concurrency/concurrency 7.cpp . 49

Version 2021-04-01 Copyright © 2021 Michael D. Adams

x LIST OF LISTINGS

software/concurrency/concurrency 9.cpp . 50
software/concurrency/concurrency 10.cpp . 50
software/concurrency/concurrency 11.cpp . 51
software/concurrency/concurrency 8.cpp . 51
software/concurrency/race condition 1.cpp . 51
software/concurrency/concurrency 13.cpp . 52
software/concurrency/concurrency 12.cpp . 52
software/concurrency/scoped thread 1 main.cpp . 53
software/concurrency/atomics 2 a.cpp . 57
software/rvalue references/expr category 1.cpp . 61
software/rvalue references/expr category 2.cpp . 62
software/rvalue references/function overloading 1 b.cpp . 63
software/rvalue references/rvalue references exercise 1.cpp . 63
software/rvalue references/reference collapse 1 b.cpp . 65
software/rvalue references/forwarding references 1 b.cpp . 65
software/basics/temporary objects example 1.cpp . 66
software/miscellany/temporary objects 1 1.cpp . 66
software/rvalue references/move copy 1 b.cpp . 68
software/rvalue references/move copy 2 1.cpp . 69
software/rvalue references/std move in return statements 1.cpp . 70
software/miscellany/mandatory copy elision 1 0.cpp . 71
software/rvalue references/move copy 3 1.cpp . 71
software/algorithms/tree find.cpp . 72
software/algorithms/sum lower triangle.cpp . 73
software/algorithms/reverse array 1.cpp . 73
software/algorithms/reverse array 2.cpp . 74
software/algorithms/factorial 1.cpp . 74
software/algorithms/factorial 2.cpp . 74
software/algorithms/recursive sum.hpp . 74
software/algorithms/hamming 1.cpp . 75
software/control flow graphs/abs.cpp . 77
software/control flow graphs/clip.hpp . 77
software/control flow graphs/ceillog2.cpp . 77
software/control flow graphs/hamming weight 1.cpp . 77
software/control flow graphs/reverse digits.cpp . 78
software/control flow graphs/safe signed multiply.hpp . 78
8.1 Code fragment A . 80
8.2 Code fragment B . 80
8.3 Variable declarations for code fragment . 80
8.4 Code fragment . 80
software/boost/multilist 1.cpp . 83
software/boost/multilist 1.dat . 83
software/boost/inventory 1 main.cpp . 85
software/boost/inventory 1.dat . 86
software/miscellany/print sorted 1.cpp . 86

Copyright © 2021 Michael D. Adams Version 2021-04-01

xi

License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-
ND 3.0) License. A copy of this license is provided below. For a simple explanation of the rights granted by this
license, see:

http://creativecommons.org/licenses/by-nc-nd/3.0/

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported Li-
cense
Creative Commons Legal Code

Attribution-NonCommercial-NoDerivs 3.0 Unported

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR
DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY
COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS
AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE
TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY
BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS
CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND
CONDITIONS.

1. Definitions

a. "Adaptation" means a work based upon the Work, or upon the Work and
other pre-existing works, such as a translation, adaptation,
derivative work, arrangement of music or other alterations of a
literary or artistic work, or phonogram or performance and includes
cinematographic adaptations or any other form in which the Work may be
recast, transformed, or adapted including in any form recognizably
derived from the original, except that a work that constitutes a
Collection will not be considered an Adaptation for the purpose of
this License. For the avoidance of doubt, where the Work is a musical
work, performance or phonogram, the synchronization of the Work in
timed-relation with a moving image ("synching") will be considered an
Adaptation for the purpose of this License.

b. "Collection" means a collection of literary or artistic works, such as
encyclopedias and anthologies, or performances, phonograms or
broadcasts, or other works or subject matter other than works listed

Version 2021-04-01 Copyright © 2021 Michael D. Adams

http://creativecommons.org/licenses/by-nc-nd/3.0/

xii LICENSE

in Section 1(f) below, which, by reason of the selection and
arrangement of their contents, constitute intellectual creations, in
which the Work is included in its entirety in unmodified form along
with one or more other contributions, each constituting separate and
independent works in themselves, which together are assembled into a
collective whole. A work that constitutes a Collection will not be
considered an Adaptation (as defined above) for the purposes of this
License.

c. "Distribute" means to make available to the public the original and
copies of the Work through sale or other transfer of ownership.

d. "Licensor" means the individual, individuals, entity or entities that
offer(s) the Work under the terms of this License.

e. "Original Author" means, in the case of a literary or artistic work,
the individual, individuals, entity or entities who created the Work
or if no individual or entity can be identified, the publisher; and in
addition (i) in the case of a performance the actors, singers,
musicians, dancers, and other persons who act, sing, deliver, declaim,
play in, interpret or otherwise perform literary or artistic works or
expressions of folklore; (ii) in the case of a phonogram the producer
being the person or legal entity who first fixes the sounds of a
performance or other sounds; and, (iii) in the case of broadcasts, the
organization that transmits the broadcast.

f. "Work" means the literary and/or artistic work offered under the terms
of this License including without limitation any production in the
literary, scientific and artistic domain, whatever may be the mode or
form of its expression including digital form, such as a book,
pamphlet and other writing; a lecture, address, sermon or other work
of the same nature; a dramatic or dramatico-musical work; a
choreographic work or entertainment in dumb show; a musical
composition with or without words; a cinematographic work to which are
assimilated works expressed by a process analogous to cinematography;
a work of drawing, painting, architecture, sculpture, engraving or
lithography; a photographic work to which are assimilated works
expressed by a process analogous to photography; a work of applied
art; an illustration, map, plan, sketch or three-dimensional work
relative to geography, topography, architecture or science; a
performance; a broadcast; a phonogram; a compilation of data to the
extent it is protected as a copyrightable work; or a work performed by
a variety or circus performer to the extent it is not otherwise
considered a literary or artistic work.

g. "You" means an individual or entity exercising rights under this
License who has not previously violated the terms of this License with
respect to the Work, or who has received express permission from the
Licensor to exercise rights under this License despite a previous
violation.

h. "Publicly Perform" means to perform public recitations of the Work and
to communicate to the public those public recitations, by any means or
process, including by wire or wireless means or public digital
performances; to make available to the public Works in such a way that
members of the public may access these Works from a place and at a
place individually chosen by them; to perform the Work to the public
by any means or process and the communication to the public of the
performances of the Work, including by public digital performance; to
broadcast and rebroadcast the Work by any means including signs,
sounds or images.

i. "Reproduce" means to make copies of the Work by any means including
without limitation by sound or visual recordings and the right of
fixation and reproducing fixations of the Work, including storage of a
protected performance or phonogram in digital form or other electronic
medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce,
limit, or restrict any uses free from copyright or rights arising from
limitations or exceptions that are provided for in connection with the
copyright protection under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License,
Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
perpetual (for the duration of the applicable copyright) license to

Copyright © 2021 Michael D. Adams Version 2021-04-01

xiii

exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more
Collections, and to Reproduce the Work as incorporated in the
Collections; and,

b. to Distribute and Publicly Perform the Work including as incorporated
in Collections.

The above rights may be exercised in all media and formats whether now
known or hereafter devised. The above rights include the right to make
such modifications as are technically necessary to exercise the rights in
other media and formats, but otherwise you have no rights to make
Adaptations. Subject to 8(f), all rights not expressly granted by Licensor
are hereby reserved, including but not limited to the rights set forth in
Section 4(d).

4. Restrictions. The license granted in Section 3 above is expressly made
subject to and limited by the following restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms
of this License. You must include a copy of, or the Uniform Resource
Identifier (URI) for, this License with every copy of the Work You
Distribute or Publicly Perform. You may not offer or impose any terms
on the Work that restrict the terms of this License or the ability of
the recipient of the Work to exercise the rights granted to that
recipient under the terms of the License. You may not sublicense the
Work. You must keep intact all notices that refer to this License and
to the disclaimer of warranties with every copy of the Work You
Distribute or Publicly Perform. When You Distribute or Publicly
Perform the Work, You may not impose any effective technological
measures on the Work that restrict the ability of a recipient of the
Work from You to exercise the rights granted to that recipient under
the terms of the License. This Section 4(a) applies to the Work as
incorporated in a Collection, but this does not require the Collection
apart from the Work itself to be made subject to the terms of this
License. If You create a Collection, upon notice from any Licensor You
must, to the extent practicable, remove from the Collection any credit
as required by Section 4(c), as requested.

b. You may not exercise any of the rights granted to You in Section 3
above in any manner that is primarily intended for or directed toward
commercial advantage or private monetary compensation. The exchange of
the Work for other copyrighted works by means of digital file-sharing
or otherwise shall not be considered to be intended for or directed
toward commercial advantage or private monetary compensation, provided
there is no payment of any monetary compensation in connection with
the exchange of copyrighted works.

c. If You Distribute, or Publicly Perform the Work or Collections, You
must, unless a request has been made pursuant to Section 4(a), keep
intact all copyright notices for the Work and provide, reasonable to
the medium or means You are utilizing: (i) the name of the Original
Author (or pseudonym, if applicable) if supplied, and/or if the
Original Author and/or Licensor designate another party or parties
(e.g., a sponsor institute, publishing entity, journal) for
attribution ("Attribution Parties") in Licensor’s copyright notice,
terms of service or by other reasonable means, the name of such party
or parties; (ii) the title of the Work if supplied; (iii) to the
extent reasonably practicable, the URI, if any, that Licensor
specifies to be associated with the Work, unless such URI does not
refer to the copyright notice or licensing information for the Work.
The credit required by this Section 4(c) may be implemented in any
reasonable manner; provided, however, that in the case of a
Collection, at a minimum such credit will appear, if a credit for all
contributing authors of Collection appears, then as part of these
credits and in a manner at least as prominent as the credits for the
other contributing authors. For the avoidance of doubt, You may only
use the credit required by this Section for the purpose of attribution
in the manner set out above and, by exercising Your rights under this
License, You may not implicitly or explicitly assert or imply any
connection with, sponsorship or endorsement by the Original Author,

Version 2021-04-01 Copyright © 2021 Michael D. Adams

xiv LICENSE

Licensor and/or Attribution Parties, as appropriate, of You or Your
use of the Work, without the separate, express prior written
permission of the Original Author, Licensor and/or Attribution
Parties.

d. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or
compulsory licensing scheme cannot be waived, the Licensor
reserves the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or
compulsory licensing scheme can be waived, the Licensor reserves
the exclusive right to collect such royalties for any exercise by
You of the rights granted under this License if Your exercise of
such rights is for a purpose or use which is otherwise than
noncommercial as permitted under Section 4(b) and otherwise waives
the right to collect royalties through any statutory or compulsory
licensing scheme; and,

iii. Voluntary License Schemes. The Licensor reserves the right to
collect royalties, whether individually or, in the event that the
Licensor is a member of a collecting society that administers
voluntary licensing schemes, via that society, from any exercise
by You of the rights granted under this License that is for a
purpose or use which is otherwise than noncommercial as permitted
under Section 4(b).

e. Except as otherwise agreed in writing by the Licensor or as may be
otherwise permitted by applicable law, if You Reproduce, Distribute or
Publicly Perform the Work either by itself or as part of any
Collections, You must not distort, mutilate, modify or take other
derogatory action in relation to the Work which would be prejudicial
to the Original Author’s honor or reputation.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR
OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY
KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS,
WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION
OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE
LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR
ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate
automatically upon any breach by You of the terms of this License.
Individuals or entities who have received Collections from You under
this License, however, will not have their licenses terminated
provided such individuals or entities remain in full compliance with
those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
termination of this License.

b. Subject to the above terms and conditions, the license granted here is
perpetual (for the duration of the applicable copyright in the Work).
Notwithstanding the above, Licensor reserves the right to release the
Work under different license terms or to stop distributing the Work at
any time; provided, however that any such election will not serve to
withdraw this License (or any other license that has been, or is
required to be, granted under the terms of this License), and this
License will continue in full force and effect unless terminated as
stated above.

Copyright © 2021 Michael D. Adams Version 2021-04-01

xv

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection,
the Licensor offers to the recipient a license to the Work on the same
terms and conditions as the license granted to You under this License.

b. If any provision of this License is invalid or unenforceable under
applicable law, it shall not affect the validity or enforceability of
the remainder of the terms of this License, and without further action
by the parties to this agreement, such provision shall be reformed to
the minimum extent necessary to make such provision valid and
enforceable.

c. No term or provision of this License shall be deemed waived and no
breach consented to unless such waiver or consent shall be in writing
and signed by the party to be charged with such waiver or consent.

d. This License constitutes the entire agreement between the parties with
respect to the Work licensed here. There are no understandings,
agreements or representations with respect to the Work not specified
here. Licensor shall not be bound by any additional provisions that
may appear in any communication from You. This License may not be
modified without the mutual written agreement of the Licensor and You.

e. The rights granted under, and the subject matter referenced, in this
License were drafted utilizing the terminology of the Berne Convention
for the Protection of Literary and Artistic Works (as amended on
September 28, 1979), the Rome Convention of 1961, the WIPO Copyright
Treaty of 1996, the WIPO Performances and Phonograms Treaty of 1996
and the Universal Copyright Convention (as revised on July 24, 1971).
These rights and subject matter take effect in the relevant
jurisdiction in which the License terms are sought to be enforced
according to the corresponding provisions of the implementation of
those treaty provisions in the applicable national law. If the
standard suite of rights granted under applicable copyright law
includes additional rights not granted under this License, such
additional rights are deemed to be included in the License; this
License is not intended to restrict the license of any rights under
applicable law.

Creative Commons Notice

Creative Commons is not a party to this License, and makes no warranty
whatsoever in connection with the Work. Creative Commons will not be
liable to You or any party on any legal theory for any damages
whatsoever, including without limitation any general, special,
incidental or consequential damages arising in connection to this
license. Notwithstanding the foregoing two (2) sentences, if Creative
Commons has expressly identified itself as the Licensor hereunder, it
shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the
Work is licensed under the CCPL, Creative Commons does not authorize
the use by either party of the trademark "Creative Commons" or any
related trademark or logo of Creative Commons without the prior
written consent of Creative Commons. Any permitted use will be in
compliance with Creative Commons’ then-current trademark usage
guidelines, as may be published on its website or otherwise made
available upon request from time to time. For the avoidance of doubt,
this trademark restriction does not form part of this License.

Creative Commons may be contacted at http://creativecommons.org/.

Version 2021-04-01 Copyright © 2021 Michael D. Adams

xvi LICENSE

Copyright © 2021 Michael D. Adams Version 2021-04-01

xvii

Preface

This book presents a study plan for learning C++ that is based on video lectures developed by the author. This book
also provides a large set of programming and other exercises that relate to C++. This book evolved, in part, out of the
need for a tool to assist in teaching C++ to the graduate students in the author’s research group at the University of
Victoria.

Acknowledgments
I would like to thank my past and present students for serving as test subjects for the use of this book. This has
helped me to make numerous improvements to this book that would have otherwise not been possible (e.g., clarifying
ambiguous exercise descriptions and correcting typographical errors).

Michael Adams
Victoria, BC
2021-04-01

Version 2021-04-01 Copyright © 2021 Michael D. Adams

xviii PREFACE

Copyright © 2021 Michael D. Adams Version 2021-04-01

xix

About the Author

Michael Adams received the B.A.Sc. degree in computer engineering from the University of Waterloo, Waterloo,
ON, Canada in 1993, the M.A.Sc. degree in electrical engineering from the University of Victoria, Victoria, BC,
Canada in 1998, and the Ph.D. degree in electrical engineering from the University of British Columbia, Vancouver,
BC, Canada in 2002. From 1993 to 1995, Michael was a member of technical staff at Bell-Northern Research in
Ottawa, ON, Canada, where he developed real-time software for fiber-optic telecommunication systems. Since 2003,
Michael has been on the faculty of the Department of Electrical and Computer Engineering at the University of
Victoria, Victoria, BC, Canada, first as an Assistant Professor and currently as an Associate Professor.

Michael is the recipient of a Natural Sciences and Engineering Research Council (of Canada) Postgraduate Schol-
arship. He has served as a voting member of the Canadian Delegation to ISO/IEC JTC 1/SC 29 (i.e., Coding of Audio,
Picture, Multimedia and Hypermedia Information), and been an active participant in the JPEG-2000 standardization
effort, serving as co-editor of the JPEG-2000 Part-5 standard and principal author of one of the first JPEG-2000 imple-
mentations (i.e., JasPer). His research interests include signal processing, image/video/audio processing and coding,
multiresolution signal processing (e.g., filter banks and wavelets), geometry processing, and data compression.

Version 2021-04-01 Copyright © 2021 Michael D. Adams

xx ABOUT THE AUTHOR

Copyright © 2021 Michael D. Adams Version 2021-04-01

xxi

Other Works by the Author

Some other open-access textbooks and slide decks by the author of this book include:

1. M. D. Adams, Lecture Slides for Programming in C++ (Version 2021-04-01), University of Victoria, Victoria,
BC, Canada, Apr. 2021, xxiii + 2901 slides, ISBN 978-0-9879197-4-8 (PDF). Available from Google Books,
Google Play Books, and author’s web site http://www.ece.uvic.ca/˜mdadams/cppbook.

2. M. D. Adams, Signals and Systems, Edition 3.0, University of Victoria, Victoria, BC, Canada, Dec. 2020,
xliv + 680 pages, ISBN 978-1-55058-673-2 (print), ISBN 978-1-55058-674-9 (PDF). Available from Google
Books, Google Play Books, University of Victoria Bookstore, and author’s web site http://www.ece.uvic.
ca/˜mdadams/sigsysbook.

3. M. D. Adams, Lecture Slides for Signals and Systems, Edition 3.0, University of Victoria, Victoria, BC, Canada,
Dec. 2020, xvi + 625 slides, ISBN 978-1-55058-677-0 (print), ISBN 978-1-55058-678-7 (PDF). Available from
Google Books, Google Play Books, University of Victoria Bookstore, and author’s web site http://www.ece.
uvic.ca/˜mdadams/sigsysbook.

4. M. D. Adams, Multiresolution Signal and Geometry Processing: Filter Banks, Wavelets, and Subdivision (Ver-
sion 2013-09-26), University of Victoria, Victoria, BC, Canada, Sept. 2013, xxxviii + 538 pages, ISBN 978-
1-55058-507-0 (print), ISBN 978-1-55058-508-7 (PDF). Available from Google Books, Google Play Books,
University of Victoria Bookstore, and author’s web site http://www.ece.uvic.ca/˜mdadams/waveletbook.

5. M. D. Adams, Lecture Slides for Multiresolution Signal and Geometry Processing (Version 2015-02-03), Uni-
versity of Victoria, Victoria, BC, Canada, Feb. 2015, xi + 587 slides, ISBN 978-1-55058-535-3 (print), ISBN
978-1-55058-536-0 (PDF). Available from Google Books, Google Play Books, University of Victoria Book-
store, and author’s web site http://www.ece.uvic.ca/˜mdadams/waveletbook.

Version 2021-04-01 Copyright © 2021 Michael D. Adams

http://www.ece.uvic.ca/~mdadams/cppbook
http://www.ece.uvic.ca/~mdadams/sigsysbook
http://www.ece.uvic.ca/~mdadams/sigsysbook
http://www.ece.uvic.ca/~mdadams/sigsysbook
http://www.ece.uvic.ca/~mdadams/sigsysbook
http://www.ece.uvic.ca/~mdadams/waveletbook
http://www.ece.uvic.ca/~mdadams/waveletbook

xxii OTHER WORKS BY THE AUTHOR

Copyright © 2021 Michael D. Adams Version 2021-04-01

1

Chapter 1

Introduction

1.1 Disclaimer

The book that you are currently reading represents a work in progress and should be considered an alpha release. It
is not intended to be well polished. Some parts of this book clearly need improvement. Moreover, some important
material is either not covered at all or has only very minimal coverage. For example, coverage of material related to
the recently ratified C++20 standard is very minimal (although more coverage of such material will certainly be added
in subsequent editions of this book). One of the few C++20 topics covered is text formatting via the video lecture
mentioned in Section D.3.1.42. In spite of the above, it is believed that this book will be of benefit to some people. So,
it is being made available in its current form. If you have any suggestions for improvements or other comments, your
feedback would be most welcome. Please send any comments directly to the author. The author’s contact information
can be found on the web site for this book. For details about the web site, see Section 1.5.

1.2 Important Comment on Hyperlinks

If you obtained a PDF version of this book from Google Play Books or Google Books instead of the book’s web
site, please be aware that all of the hyperlinks in the document will have been removed by Google. Since these
hyperlinks are critically important for navigating the content associated with this book, the author would very strongly
recommend that all users of this book download the PDF version from the book’s web site. (Again, for details about
the book’s web site, see Section 1.5.)

1.3 About This Book

To begin, this book presents a brief study plan for learning C++ based on video lectures prepared by the author
and some supplemental reading. Then, the remainder of the book consists of a collection of exercises that relate to
programming in C++. Most of the exercises focus on the C++ programming language, the C++ standard library, and
several other commonly-used libraries. Some of the exercises, however, focus on the use of software tools, such as
build tools (e.g., CMake) and version control tools (e.g., Git). In its current form, this book relies on video lectures
(and some supplemental reading) for the delivery of instructional content. In the long term, however, the author plans
to add instructional content (in written form) to this book, to yield a complete book on C++ programming.

1.4 Lecture Slides

This book is intended to be used in conjunction with the following (very large) set of lecture slides:

Version 2021-04-01 Copyright © 2021 Michael D. Adams

2 CHAPTER 1. INTRODUCTION

• M. D. Adams, Lecture Slides for Programming in C++ (Version 2021-04-01), University of Victoria, Victoria,
BC, Canada, Apr. 2021, xxiii + 2901 slides, ISBN 978-0-9879197-4-8 (PDF). Available from Google Books,
Google Play Books, and author’s web site http://www.ece.uvic.ca/˜mdadams/cppbook.

1.5 Book Web Site
This book has an associated web site whose URL is:

• http://www.ece.uvic.ca/˜mdadams/cppbook

To obtain the most recent version of this book (with functional hyperlinks) or for additional information and resources
related to this book (such as lecture slides, video lectures, and errata), please visit this site.

1.6 Git Repository
This book has an associated Git repository containing some source code and other supplemental files. The URL for
this repository is https://github.com/mdadams/cppbook_companion.git.

1.7 Virtual Machine (VM) Disk Images
The author has prepared a number of virtual machine (VM) disk images that each contain a basic software devel-
opment environment that can be used for learning C++. This development environment includes recent versions
of software such as: the GCC and Clang compiler tool chains, Git, CMake, GDB, Lcov, Boost, Catch2, GSL,
YouCompleteMe (YCM), and Vim LSP. These VM disk images can be obtained from https://www.ece.uvic.
ca/˜mdadams/cppbook/#vm_disk_images.

1.8 Study Plan
The instructional content for this book is delivered exclusively via video lectures and various supplemental reading
material. To facilitate easier learning, a study plan for learning C++ is provided. This study plan consists of viewing
video lectures and completing exercises related to those lectures. The video lectures in this study plan are described
in detail in Appendix D. The study plan consists of covering the following items (in order):

1. Software Development Environment (SDE)
• Watch the following video lectures:

– Accessing the SDE Using VM Software [2020-04-26] (Section D.4.1.2)
2. Version Control Systems and Git

• Watch the following video lectures:
– Version Control — Introduction [2017-04-06] (Section D.3.1.2)
– Git — Introduction [2017-04-08] (Section D.3.1.3)
– Git — Demonstration [2017-04-05] (Section D.3.1.4)

• Complete all of the Git exercises from Appendix C.
3. Compiling and Linking

• Watch the following video lectures:
– Getting Started — Compiling and Linking [2017-04-13] (Section D.3.1.1)

4. Build Systems
• Watch the following video lectures:

– Build Systems — Introduction [2017-04-12] (Section D.3.1.5)
– CMake — Introduction [2017-04-16] (Section D.3.1.7)
– CMake — Examples [2017-04-18] (Section D.3.1.8)

Copyright © 2021 Michael D. Adams Version 2021-04-01

http://www.ece.uvic.ca/~mdadams/cppbook
http://www.ece.uvic.ca/~mdadams/cppbook
https://github.com/mdadams/cppbook_companion.git
https://www.ece.uvic.ca/~mdadams/cppbook/#vm_disk_images
https://www.ece.uvic.ca/~mdadams/cppbook/#vm_disk_images

1.8. STUDY PLAN 3

– Assertions and CMake Build Types Demonstration [2020-04-30] (Section D.4.1.3)
• Complete all of the CMake exercises from Appendix B.
• Optionally, watch the following video lectures:

– Make — Introduction [2017-04-12] (Section D.3.1.6)
Although the author strongly recommends the use of CMake over Make, it is still likely to be helpful to
have an understanding of Make (since CMake often uses Make as the underlying native build system).

5. Overview of C++
• Read the following chapters from [27]:

– Chapter 1: Notes to Reader
– Chapter 2: A Tour of C++: The Basics
– Chapter 3: A Tour of C++: Abstraction Mechanisms
– Chapter 4: A Tour of C++: Containers and Algorithms
– Chapter 5: A Tour of C++: Concurrency and Utilities

At the time of this writing, the above chapters are freely available at https://isocpp.org/tour.
6. Software Testing Tools

• Watch the following video lectures:
– Address Sanitizer (ASan) Demonstration [2020-04-26] (Section D.4.1.4)
– Undefined-Behavior Sanitizer (UBSan) Demonstration [2020-04-26] (Section D.4.1.5)
– Lcov Demonstration [2020-04-30] (Section D.4.1.6)

7. Basics
• Watch the following video lectures:

– Basics — Introduction [2015-04-06] (Section D.3.1.9)
– Basics — Objects, Types, and Values [2015-04-08] (Section D.3.1.10)
– Basics — Operators and Expressions [2016-03-20] (Section D.3.1.11)
– Basics — Control-Flow Constructs [2015-04-09] (Section D.3.1.12)
– Basics — Functions [2016-03-20] (Section D.3.1.13)
– Basics — Input/Output [2016-03-21] (Section D.3.1.14)
– Basics — Miscellany [2016-03-21] (Section D.3.1.15)

• Read the article [23]. This article provides a detailed tutorial on type declarations. The syntax used in type
declarations can often be a source of confusion to those learning C++. This article will help to greatly
reduce the potential for confusion in this regard.

• Complete all of the exercises from Chapter 2.
• All exercises (here and subsequently) should be built using CMake.
• All exercises (here and subsequently) should normally be built with ASan and UBSan enabled.
• If additional reference material is needed, refer to the following chapters from [27]:

– Chapter 6: Types and Declarations
– Chapter 7: Pointers, Arrays, and References
– Chapter 8: Structures, Unions, and Enumerations
– Chapter 9: Statements
– Chapter 10: Expressions
– Chapter 11: Select Operations
– Chapter 12: Functions
– Chapter 14: Namespaces
– Chapter 15: Sources Files and Programs

8. Classes
• Watch the following video lectures:

– Classes — Introduction [2016-03-05] (Section D.3.1.16)

Version 2021-04-01 Copyright © 2021 Michael D. Adams

https://isocpp.org/tour

4 CHAPTER 1. INTRODUCTION

– Classes — Members and Access Specifiers [2016-03-05] (Section D.3.1.17)
– Classes — Constructors and Destructors [2016-03-06] (Section D.3.1.18)
– Classes — Operator Overloading [2016-03-09] (Section D.3.1.19)
– Classes — More on Classes [2016-03-22] (Section D.3.1.20)
– Classes — Temporary Objects [2016-03-24] (Section D.3.1.21)
– Classes — Functors [2016-03-24] (Section D.3.1.22)

• Complete all of the exercises from Chapter 3.
• If additional reference material is needed, refer to the following chapters from [27]:

– Chapter 16: Classes
– Chapter 17: Construction, Cleanup, Copy, and Move
– Chapter 18: Overloading
– Chapter 19: Special Operators

9. Templates
• Watch the following video lectures:

– Templates — Introduction [2016-03-14] (Section D.3.1.23)
– Templates — Function Templates [2016-03-17] (Section D.3.1.24)
– Templates — Class Templates [2016-03-17] (Section D.3.1.25)
– Templates — Variable Templates [2016-03-14] (Section D.3.1.26)
– Templates — Alias Templates [2016-03-14] (Section D.3.1.27)

• Complete all of the exercises from Chapter 4.
• If additional reference material is needed, refer to the following chapters from [27]:

– Chapter 23: Templates
– Chapter 24: Generic Programming

10. Standard Library
• Watch the following video lectures:

– Standard Library — Introduction [2016-03-30] (Section D.3.1.28)
– Standard Library — Containers, Iterators, and Algorithms [2016-04-05] (Section D.3.1.29)
– Standard Library — The vector Class Template [2016-03-30] (Section D.3.1.30)
– Standard Library — The basic string Class Template [2016-04-01] (Section D.3.1.31)
– Standard Library — Time Measurement [2016-04-02] (Section D.3.1.32)
– Text Formatting in C++20 [2021-02-03] (Section D.3.1.42)

• Complete all of the exercises from Chapter 5.
• If additional reference material is needed, refer to the following chapters from [27]:

– Chapter 30: Standard Library Summary
– Chapter 31: STL Containers
– Chapter 32: STL Algorithms
– Chapter 33: STL Iterators
– Chapter 34: Memory and Resources
– Chapter 35: Utilities
– Chapter 36: Strings
– Chapter 37: Regular Expressions
– Chapter 38: I/O Streams
– Chapter 39: Locales
– Chapter 40: Numerics

11. Exceptions
• Watch the parts of the video lectures from Lectures 13–15 for SENG 475 (in Section D.2).

Copyright © 2021 Michael D. Adams Version 2021-04-01

1.8. STUDY PLAN 5

• Complete all of the exercises from Chapter 6.
• If additional reference material is needed, refer to the following chapters from [27]:

– Chapter 13: Exception Handling
12. Miscellaneous Topics

• Complete all of the exercises from Chapter 8.
13. Classes Revisited: Inheritance [Can Be Deferred Until Later]

• Read the following chapters from [27]:
– Chapter 20: Derived Classes
– Chapter 21: Class Hierarchies
– Chapter 22: Run-Time Type Information

• This material is not currently covered by the video lectures.
14. Templates Revisited [Can Be Deferred Until Later]

• Read the following chapters from [27]:
– Chapter 25: Specialization
– Chapter 26: Instantiation
– Chapter 27: Templates and Hierarchies
– Chapter 28: Metaprogramming
– Chapter 29: A Matrix Design

• This material is not currently covered by the video lectures.
15. Concurrency

• Watch the following video lectures:
– Concurrency — Preliminaries [2015-02-12] (Section D.3.1.33)
– Concurrency — Threads [2015-02-17] (Section D.3.1.34)
– Concurrency — Mutexes [2015-02-23] (Section D.3.1.35)
– Concurrency — Condition Variables [2015-02-27] (Section D.3.1.36)
– Concurrency — Promises and Futures [2015-04-02] (Section D.3.1.37)

• Note that much of this material is also covered in Lectures 25–31 for SENG 475 (in Section D.2).
• Complete all of the exercises from Chapter 7.
• If additional reference material is needed, refer to the following chapters from [27]:

– Chapter 41: Concurrency
– Chapter 42: Threads and Tasks

For much more detailed coverage of concurrency in C++, the book by Williams [33] is very highly rec-
ommended.

16. CGAL
• Read the reference material on CGAL identified in Appendix A.
• Watch the following video lectures:

– CGAL — Introduction [2015-06-29] (Section D.3.1.38)
– CGAL — Polygon Meshes [2015-07-02] (Section D.3.1.39)
– CGAL — Subdivision Surface Methods [2015-06-29] (Section D.3.1.40)
– CGAL — Example Programs [2015-07-01] (Section D.3.1.41)
– Meshlab/Geomview Demo [2019-06-16] (Section D.4.1.1)

• Complete all of the exercises from Appendix A.

Version 2021-04-01 Copyright © 2021 Michael D. Adams

6 CHAPTER 1. INTRODUCTION

Copyright © 2021 Michael D. Adams Version 2021-04-01

7

Chapter 2

Basics

2.1 Exercises

Objects, Types, and Values
2.1 For each of the declarations below, do the following. State whether the declaration is also a definition. If the

declaration is not a definition, write a definition for the entity being declared. If the declaration is a definition,
write a declaration for the entity being declared that is not also a definition.

(a) int i = 5;

(b) int abs(int x);

(c) float sqr(float x) {return x * x;}

(d) extern const double pi;

(e) char s[] = "Hello";

(f) double x;

(g) int (*func)(int, int);

(h) template <typename T> T max(T x, T y);

(i) template <typename T> bool is_negative(T x) {return x < 0;}

(j) auto meaning_of_life = 42;

2.2 For each of the declarations below, do the following. State whether the declaration is also an initialization. If it
is not an initialization, modify it so that it is one.

(a) int x;

(b) void (*f)();

(c) const double pi = 3.14;

2.3 State whether each line of code below corresponds to a type declaration or definition.

(a) struct Point {double x; double y;};

(b) struct Thing;

(c) enum Fruit : int {apple, orange, banana};

(d) enum Color : int;

Version 2021-04-01 Copyright © 2021 Michael D. Adams

8 CHAPTER 2. BASICS

2.4 Write a declaration for each of the entities listed below. Initialize each one. Do not use the null pointer in any
initializations.

(a) a pointer to a char
(b) a pointer to a constant char
(c) a constant pointer to a char
(d) a constant pointer to a constant char
(e) a pointer to a function taking a double parameter and returning an int

(f) a pointer to a pointer to an int

(g) an lvalue reference to an array of 16 ints
(h) a pointer to an array of 10 elements of type std::string

(i) an lvalue reference to an array of 8 ints

2.5 Explain what is potentially wrong with the line of code below.
char c = -1;

2.6 For each of the conditions below, state whether the condition must be true, must be false, or could be either true
or false.

(a) sizeof(char) == 1

(b) sizeof(int) == 2 || sizeof(int) == 4

(c) sizeof(short) < sizeof(int) && sizeof(int) < sizeof(long) &&

sizeof(long) < sizeof(long long)

(d) sizeof(short) <= sizeof(int) && sizeof(int) <= sizeof(long) &&

sizeof(long) <= sizeof(long long)

2.7 Using typedef, create a type alias for each of the types listed below.

(a) a pointer to a char
(b) a pointer to a const char

(c) a const pointer to a char
(d) a pointer to a function taking a float parameter and returning an int

(e) a pointer to an array of 16 elements of an array of 8 elements of type long
(f) an lvalue reference to an array of 8 ints
(g) an rvalue reference to a pointer to an int

2.8 Repeat the previous problem with a using statement instead of a typedef statement.

2.9 In the code given below, state the type of each of following objects: a, b, c, d, e, and f.

1 int main()
2 {
3 const int i = 42;
4 int j = 0;
5 auto a = i;
6 auto b = j;
7 decltype(i) c = 0;
8 decltype((i)) d = 0;
9 decltype(j) e;

10 decltype(&i) f;
11 }

Copyright © 2021 Michael D. Adams Version 2021-04-01

2.1. EXERCISES 9

2.10 For each of the literals given below, state its type.

(a) 123

(b) 3.14

(c) 1.0f

(d) "Hello, World!\n"

(e) 0UL

2.11 Each of the code fragments below contains an error. In each case, explain what the error is, why it is an error,
and how the error can be fixed.

(a) const char a = ’a’;
char *c = &a;

(b) const int i = 42;
auto& j = i;
++j;

2.12 What is the size of the character array s below and what is the length of the character string in this array as
returned by the strlen function?

char s[] = "Hello";

2.13 In the code given below, state the type of each of following objects: a, b, c, d, e, f, g, and h.

1 int main()
2 {
3 const int ci = 42;
4 int i = ci;
5 auto& a = i;
6 auto& b = ci;
7 auto&& c = 0;
8 const auto&& d = 0;
9 auto e = &ci;

10 auto f = &i;
11 auto const g = &i;
12 const auto h = &i;
13 }

Operators and Expressions
2.14 Fully parenthesize each of the expressions given below.

(a) a = b + c * d >> 1 & 2

(b) a == 0 && b != 0 || c < 0

(c) a & 15 != 15

(d) a++, b = a

(e) 0 <= i < 8

(f) a = b = c = 0

Version 2021-04-01 Copyright © 2021 Michael D. Adams

10 CHAPTER 2. BASICS

(g) a[2][1] *= f(1, 2) + 1

(h) a << b << c << d

(i) c = a < 0

(j) a+++b + a + ++b

(k) a *= * b < 0 ? - * b : * b

2.15 For each expression identified by a comment in the code below, state whether the expression is an lvalue or
rvalue.

1 int abs(int);
2

3 void func()
4 {
5 int x = 0;
6 int y = 0;
7 int z;
8

9 ++x;
10 // x
11 // ++x
12 y++;
13 // y++
14 z = x + y;
15 // x + y
16 // z = x + y
17 z = abs(x + 1);
18 // abs(x + 1)
19 x = y;
20 // x = y
21 }

Control-Flow Constructs and Functions
2.16 Write a program that prints to standard output the size and alignment of each of following types: int, long,

float, and double. The program should also print similar information for the type corresponding to a pointer
to each of these types.

2.17 Consider the execution of the program whose source listing is given below. For each line of the source code
marked by a comment /*??? */ indicate the value of the objects x, y, and z, after the line of code completes
execution.

1 int main()
2 {
3 int x = 0;
4 int y = 1;
5 int& z = x; /* ??? */
6 x = y; /* ??? */
7 y = z + 1; /* ??? */
8 ++z; /* ??? */
9 }

Copyright © 2021 Michael D. Adams Version 2021-04-01

2.1. EXERCISES 11

2.18 Write a function called strlen that takes a pointer to the first character of a C-style string (i.e., a null-terminated
string) and returns an int indicating the number of characters in the string (not counting the terminating null
character).

2.19 Write a function called swap that exchanges the values of two int objects, such that the two objects to be
exchanged are passed to the function using:

(a) two pointers to int objects

(b) two references to int objects

Which of these two approaches is preferable? Explain your answer.

2.20 State the output that will be produced by the execution of the program listed below. Explain your answer.

1 #include <iostream>
2

3 void increment(int x)
4 {
5 ++x;
6 }
7

8 int main()
9 {

10 int i = 0;
11 increment(i);
12 std::cout << i << "\n";
13 }

2.21 Write a program that outputs the lowercase letters (i.e., a to z) and decimal digits (i.e., 0 to 9) and their corre-
sponding integer values. (Note: The C++ language standard does not require that lower case letters be numbered
consecutively. The decimal digits, however, must be numbered consecutively.)

2.22 Write a program to output the smallest and largest values of the following types: char, short, int, long,
long long, float, double, long double, and unsigned int. (Hint: Use std::numeric_limits.)

2.23 Consider a dataset that consists of a sequence of records, where each record consists of the following two fields:
1) a name, which is a string (containing no whitespace characters) and 2) a value, which is a real number.
Records and fields within records are delimited by whitespace. The same name can appear in multiple records.
The number of records in the dataset may be extremely large (e.g., quadrillions of records). Develop a program
that reads the above type of dataset from standard input and writes the following information to standard output:
1) the number of (distinct) names; 2) for each name, the minimum, maximum, and average of the values for all
of the records with that particular name; and 3) the minimum, maximum, and average of the values for all of
the records. (Hint: Use std::map.)

2.24 (a) Write a function str_to_int that converts a C-style string representing a signed integer (i.e., a string
consisting of a possible plus or minus sign followed by one or more digits) to its corresponding numeric
value. The function should take a single parameter that is a pointer to the C-style string of digits and return
an int. If the string is not formatted correctly, the value zero should be returned.

(b) Write a program to test the str_to_int function. Also, test the str_to_int function with the program
below.

Version 2021-04-01 Copyright © 2021 Michael D. Adams

12 CHAPTER 2. BASICS

#include <iostream>

// Place the code for the str_to_int function here.

int main()
{

const char s[] = "123";
std::cout << str_to_int(s) << "\n";

}

2.25 (a) Write a function str_concat that takes two C-style strings as parameters and returns the concatenation of
these two strings as a C-style string. Use new to obtain the memory to hold the concatenated string.

(b) The interface provided by the str_concat function has an important shortcoming that is likely to lead bugs
in practice. Identify this shortcoming and the type of bug that is likely to arise.

2.26 (a) Write a function copy_ints that copies a specified number of ints from one area of memory to another.
The function should have a void return type and take the following parameters: 1) a pointer specifying
the start of the source area for the copy operation; 2) an integral type specifiying how many ints to copy;
and 3) a pointer specifying the start of the destination area for the copy operation.

(b) Write a program to test the copy_ints function. Also, test the function with the program below.

1 #include <iostream>
2 #include <cassert>
3

4 // Place the code for the copy_ints function here.
5

6 int main()
7 {
8 const int src[4] = {1, 2, 3, 4};
9 int dst[4] = {0, 0, 0, 0};

10 copy_ints(src, 4, dst);
11 assert(!memcmp(src, dst, sizeof(src)));
12 }

2.27 Consider the following types: i) a function taking arguments of type pointer to char and lvalue reference to
int and returning no value; ii) a pointer to a function of the type in (i); iii) a function taking a pointer of the type
in (ii) as an argument and returning no value; and iv) a function taking no arguments and returning a pointer
to a function of the type in (iii). Write a declaration for each of the preceding types. Write the definition of a
function func that takes as an argument a pointer to a function of the type in (iv) and returns its argument as the
return value (without any type conversion).

2.28 Develop a program that writes the contents of one or more files in succession to standard output. (That is, the
program writes the concatenation of a number of files to standard output.) The sequence of files to be processed
should be specified as command-line arguments (i.e., via the arguments passed to the main function).

2.29 Consider the code for the function given below. Identify the one very serious bug in this code. Explain how this
bug could be fixed.

Copyright © 2021 Michael D. Adams Version 2021-04-01

2.1. EXERCISES 13

1 #include <cmath>
2

3 double& get_value(double x)
4 {
5 double result = 0.0;
6 for (int i = 0; i < 100; ++i) {
7 result += exp(x + i / 100.0);
8 }
9 return result;

10 }

Namespaces
2.30 (a) Consider the program whose source listing is given below. Modify this program so that the scope resolu-

tion operator :: (e.g., as appears in std::cout) is no longer needed. Resist the temptation to commit the
cardinal sin of writing “using namespace std;”.

#include <iostream>

int main()
{

std::cout << "Hello, World!\n";
}

(b) Explain why a using a construct like “using namespace std;” is truly evil.

2.31 Write your own implementation of the strlen function from the standard library. To avoid naming conflicts,
place your strlen function in the namespace mine. Write a program that reads a line of text from standard input
and then prints the length of the line of text (in characters) using your strlen function and also the one from
the standard library. (Of course, both functions should yield the same answer.)

Preprocessor
2.32 What is either erroneous or potentially problematic with each of the following preprocessor macro definitions?

(a) #define multiply(x, y) x * y

(b) #define maximum(x, y) x > y ? x : y

(c) #define factorial(x) ((x) * factorial((x) - 1))

2.33 For the particular compiler that you are using, find the directory in which standard library header files (such as
iostream) are kept.

2.34 An include guard is a construct used to avoid the potential problems caused by multiple inclusion of header
files resulting from the use of the #include directive. There are two types of include guards: internal and
external. An external include guard performs a test outside the header file it is guarding and includes it only
once per compilation. An internal include guard performs a test inside the header file it is guarding. Write a
simple program using a single header file with an internal include guard. Modify the code to use an external
include guard. Discuss the advantages and disadvantages of each of these two approaches.

2.35 Preprocessor macros have many shortcomings. Explain how macros do not interact well with namespaces.

Version 2021-04-01 Copyright © 2021 Michael D. Adams

14 CHAPTER 2. BASICS

Copyright © 2021 Michael D. Adams Version 2021-04-01

15

Chapter 3

Classes

3.1 Exercises

Classes; Construction, Destruction, and Operator Overloading
3.1 Develop a class Counter that represents a simple integer counter. The class should satisfy the following require-

ments:

(a) A constructor should be provided that takes a single int argument that is used to initialize the counter
value. The argument should default to zero.

(b) The prefix increment and postfix increment operators should be overloaded in order to provide a means
by which to increment the counter value.

(c) A member function getValue should be provided that returns the current counter value.

In addition, the class must track how many Counter objects are currently in existence. A means for querying
this count should be provided. The code must not use any global variables. (Hint: Use static members.)

3.2 (a) Define a class Exponent to hold a real exponent for an exponentiation operation. Through clever use of
operator overloading, find a way to have the expression x ** y call std::pow(x, y), where the types of
x and y are double and Exponent, respectively. In other words, the program listed below when executed
would output the value 16 (i.e., 24 = 16).

1 #include <iostream>
2 #include <cmath>
3

4 // Insert your code here.
5

6 int main()
7 {
8 const double x = 2.0;
9 const Exponent y = 4.0;

10

11 std::cout << x ** y << "\n";
12 }

(b) Is the preceding use of operator overloading wise? Explain.

3.3 (a) Develop a class Histogram for performing histogram calculations (i.e., counting how many values fall in
each of a number of intervals). The class should satisfy the following requirements:

Version 2021-04-01 Copyright © 2021 Michael D. Adams

16 CHAPTER 3. CLASSES

i. A constructor should be provided that takes a single argument specifying a std::vector of doubles
containing the bounds of the histogram bins. The elements of the std::vector must be strictly mono-
tonically increasing. For example, invoking the constructor with the argument

std::vector<double>{0.0, 3.14, 20.0, 42.42}

would create a histogram with three bins, corresponding to the intervals [0,3.14), [3.14,20), and
[20,42.42).

ii. A member function clear should be provided that clears the histogram statistics.
iii. A member function update should be provided that takes a new data value to be added to the histogram

statistics. This function should be able to handle out-of-range data in some appropriate manner.
iv. A member function display should be provided that outputs the contents of the histogram to a given

output stream (i.e., std::ostream) in some human-readable format.
v. The class should not be default constructable (i.e., no default constructor should be provided).

vi. The class should provide move and copy constructors, move and copy assignment operators, and a
destructor.

vii. All data members should be private.

(b) Write a program to thoroughly test your Histogram class.

3.4 (a) Develop a class Integer that behaves similar to the built-in integer type int, except that: 1) the meaning
of addition and subtraction are reversed; and 2) the meaning of multiplication and division are reversed.
The Integer class should satisfy the following requirements:

i. A constructor should be provided that takes a single int argument that is used to initialize the
Integer. The argument should default to zero.

ii. The class should provide move and copy constructors, move and copy assignment operators, and a
destructor.

iii. The class should overload all of the following operators: addition, subtraction, multiplication, divi-
sion, +=, -=, *=, and /=.

iv. A stream inserter should be provided to allow an Integer to be written to an output stream (i.e.,
std::ostream).

v. A stream extractor should be provided to allow an Integer to be read from an input stream (i.e.,
std::istream).

vi. All data members should be private.

(b) Write a program to test your Integer class.

(c) Also, test your class with the program below. The program should output a value of 3.

1 #include <iostream>
2

3 // Insert the code for the Integer class here.
4

5 int main()
6 {
7 const Integer x = 1;
8 const Integer y = 2;
9 const Integer z = 3;

10

11 // Since the meaning of + and - are reversed and
12 // the meaning of * and / are reversed,
13 // the line of code following this comment
14 // effectively computes:
15 // (x - y) / (x - y) * z
16 std::cout << (x + y) * (x + y) / z << "\n";
17 }

Copyright © 2021 Michael D. Adams Version 2021-04-01

3.1. EXERCISES 17

(d) Although the class that you have just developed is perfectly valid C++ code, it is pure evil. Explain why.

3.5 (a) Develop a class Rational that represents a rational number (i.e., a number of the form x/y where x and y
are integers and y 6= 0). The class should satisfy the following requirements:

i. A type member Integer should be provided that corresponds to the integer type used to represent the
numerator and denominator of the rational number.

ii. A constructor should be provided that takes two arguments corresponding to the numerator and de-
nominator values of the rational number, respectively. The first argument should default to zero. The
second argument should default to one.

iii. The class should provide move and copy constructors, move and copy assignment operators, and a
destructor.

iv. The addition, subtraction, multiplication, and division operators should be provided.
v. The +=, -=, *=, and /= operators should be provided.

vi. A member function toDouble should be provided that returns the best approximation of the rational
number as a double.

vii. A stream inserter should be provided to write a rational number to an output stream (std::ostream)
using a format like “-15/23”.

viii. All data members should be private.

In order to simplify the implementation, you do not need to maintain a rational number in reduced form
(so that the numerator and denominator are coprime).

(b) Write a program to thoroughly test your Rational class.

(c) Explain why maintaining a rational number in reduced form (i.e., such that the numerator and denominator
are coprime) would be desirable in many applications (although this is not done in this exercise).

3.6 (a) In this problem, you will develop a class RealPoint2 that represents a point in two dimensions with
double (i.e., real) coordinates. This class should provide an interface like that shown below.

1 class RealPoint2
2 {
3 public:
4 // The coordinate type, in case we want to change it later.
5 typedef double Real;
6

7 // Create a new point with coordinates (0, 0).
8 RealPoint2();
9

10 // Create a new point with coordinates (x, y).
11 RealPoint2(const Real& x, const Real& y);
12

13 // Obtain a reference to the x-coordinate of the point.
14 Real& x();
15 const Real& x() const;
16

17 // Obtain a reference to the y-coordinate of the point.
18 Real& y();
19 const Real& y() const;
20

21 // Add/subtract displacement to/from point (i.e., translate point).
22 RealPoint2& operator+=(const RealPoint2& p);
23 RealPoint2& operator-=(const RealPoint2& p);
24

Version 2021-04-01 Copyright © 2021 Michael D. Adams

18 CHAPTER 3. CLASSES

25 };
26

27 // Write a point to an output stream.
28 std::ostream& operator<<(std::ostream& out, const RealPoint2& p);
29

30 // Read a point from an input stream.
31 std::istream& operator>>(std::istream& in, RealPoint2& p);

(b) Write a program that reads points from standard input, translates them by (1.5,−1.5), and writes them
to standard output. The program should terminate when EOF is reached. Use += or -= to perform the
translation.

(c) The x and y member functions of the RealPoint2 class return references. Explain why such a practice
might be undesirable.

3.7 Develop a class IntStack that represents a stack containing int elements. Provide the basic functionality that
would normally be expected from a stack (e.g., push an element on the stack, pop an element off the stack, get
the top element on the stack, query the number of elements on the stack). The std::vector class template may
be used to hold the elements on the stack.

3.8 (a) Develop a class IntArray2 that represents a two-dimensional array of ints. The class should satisfy the
following requirements:

i. A default constructor should be provided that creates an empty (i.e., 0×0) array.
ii. A constructor should be provided that takes two arguments corresponding to the width and height of

the array to be created.
iii. The std::vector class template may be used to store the elements of the array.
iv. Objects of the class should be movable and copyable.
v. Member functions should be provided for querying the width, height, and size (i.e., number of ele-

ments) of the array.
vi. The function call operator should provide access to the (x,y)th element of the array.

vii. A stream inserter (i.e., <<) should be provided so that an array can be written to an output stream
(std::ostream).

viii. A stream extractor (i.e., >>) should be provided so that an array can be read from an input stream
(std::istream).

ix. All data members should be private.

(b) Write a program that thoroughly tests the IntArray2 class.

3.9 (a) Develop a class String that represents a sequence of zero or more characters (i.e., a character string). Any
character may appear in the string, including the null character (i.e., ’\0’). The class should satisfy the
following requirements:

i. A default constructor should be provided that creates an empty string.
ii. A constructor should be provided that takes a pointer to a null-terminated string as an argument to

which to initialize the object to be created.
iii. The std::vector class template may be used to store the underlying string data.
iv. Objects of the class must be movable and copyable.
v. The operators += and + should perform string concatenation.

vi. The subscripting operator (i.e., []) should allow access to an indivdual character in the string.
vii. A stream inserter (i.e., <<) should be provided so that strings can be written to an output stream

(std::ostream).

Copyright © 2021 Michael D. Adams Version 2021-04-01

3.1. EXERCISES 19

viii. A stream extractor (i.e., >>) should be provided so that strings can be read from an input stream
(std::istream).

ix. The member function c_str should return a pointer to a null-terminated string corresponding the
current value of the String object. More specifically, the null-terminated string should be equivalent
to the contents of the String object with a null character appended.

x. The member function size should return the number of characters in the string.

(b) Write a program that thoroughly tests the String class.

(c) Also, test your String class with the program below.

1 #include <iostream>
2

3 // Replace the following line with your code.
4 #include "String.cpp"
5

6 int main()
7 {
8 const String hello("Hello");
9 const String world("World");

10

11 String s = hello + String(" ");
12 s += world;
13 std::cout << s << "\n";
14 }

3.10 (a) Augment the functionality of the String class from Exercise 3.9 to provide iterator types that can be used
for iteration over characters in a String object. The mutating and non-mutating iterator types should
be called Iterator and ConstIterator, respectively. Provide begin and end member functions to obtain
iterators.

(b) Write a program to thoroughly test the String class (including its Iterator and ConstIterator classes).

(c) Test your String class with the program below.

1 #include <iostream>
2

3 // Replace the following line with your code.
4 #include "String.cpp"
5

6 int main()
7 {
8 const String hello = "Hello";
9 const String world = "World";

10

11 String s = hello;
12 s += String(" ");
13 s += world;
14 std::cout << s << "\n";
15

16 String::Iterator si = s.begin();
17 String::ConstIterator sci = si;
18 for (String::Iterator i = s.begin(); i != s.end(); ++i) {
19 ++(*i);
20 }
21 for (String::ConstIterator i = s.begin(); i != s.end(); ++i) {
22 std::cout << *i;
23 }

Version 2021-04-01 Copyright © 2021 Michael D. Adams

20 CHAPTER 3. CLASSES

24 std::cout << "\n";
25 }

Functor Classes and Lambda Expressions
3.11 (a) Develop a class Quadratic that represents a function of the form f (x) = ax2 + bx+ c, where x is a real

variable and a,b,c are real constants. The class must satisfy the following requirements:

i. A constructor should be provided that takes the values for a, b, and c (from above) as arguments. All
three of these arguments should default to zero.

ii. The class should provide move and copy constructors, move and copy assignment operators, and a
destructor.

iii. The function call operator (i.e., operator()) should be provided. It should take a single argument x
and return the value f (x).

iv. All data members should be private.

(b) Write a program to thoroughly test your Quadratic class.

(c) Test your Quadratic class with the code below.

1 #include <iostream>
2

3 int main()
4 {
5 const Quadratic f(1.0, 2.0, 3.0);
6 const Quadratic g = f;
7 std::cout << f(1.0) << " " << g(1.0) << "\n";
8 }

3.12 State the output of the program whose source code is given below. Explain why this output is obtained.

1 #include <iostream>
2

3 int x = 1;
4

5 auto f1 = []() {return x + 1;};
6 auto f2 = [x = x]() {return x + 1;};
7

8 int main()
9 {

10 x = 10;
11 std::cout << f1() << " " << f2() << "\n";
12 }

3.13 State the output of the program whose source code is given below. Explain why this output is obtained.

1 #include <iostream>
2

3 auto make_functor(int x)
4 {
5 static int a = 0;
6 return [=](int y) {
7 static int b = 0;
8 return y + x + (a++) + (b++);

Copyright © 2021 Michael D. Adams Version 2021-04-01

3.1. EXERCISES 21

9 };
10 }
11

12 int main()
13 {
14 auto f1 = make_functor(1);
15 auto f2 = make_functor(2);
16 std::cout << f1(0) << "\n";
17 std::cout << f2(0) << "\n";
18 std::cout << f1(1) << "\n";
19 std::cout << f2(1) << "\n";
20 }

3.14 State the output of the program whose source code is given below. Explain why this output is obtained.

1 #include <iostream>
2

3 auto f = [](auto x)
4 {
5 static int c = 0;
6 return (++c) + x;
7 };
8

9 int main()
10 {
11 std::cout << f(1) << ’\n’;
12 std::cout << f(0.5) << ’\n’;
13 std::cout << f(1) << ’\n’;
14 std::cout << f(0.5) << ’\n’;
15 }

Inheritance
3.15 (a) Consider the class Base shown in the listing below. Derive two classes Derived1 and Derived2 from Base,

and in each case, define the member function display to output the name of the class.

class Base {
public:

virtual void display()
{

std::cout << "Base\n";
}

};

(b) Create an object of each of the types Base, Derived1, and Derived2, and invoke its display member
function. Create pointers of type Base* that are initialized to point to the preceding Base, Derived1, and
Derived2 objects, and call display through each of these pointers.

3.16 Suppose that we want a class that can be used to represent people at a university (e.g., faculty, staff, undergrad-
uate students, and graduate students). For all types of people, we want to record their name and university ID.
For specific types of people, we want to record some additional information. In the case of faculty, we want to
record their rank (i.e., Assistant Professor, Associate Professor, or Full Professor). In the case of undergraduate
students, we want to record their year of study (i.e., 1, 2, 3, or 4). In the case of graduate students, we want
to record their supervisor’s university ID. Suggest a class hierarchy that might be used to represent the above
collection of people. You do not need to fully implement the class.

Version 2021-04-01 Copyright © 2021 Michael D. Adams

22 CHAPTER 3. CLASSES

Run-Time Type Information
3.17 (a) Use the typeid operator and the name member function of the std::type_info class in order to print

the name of each of the types listed below.

i. int

ii. double

iii. void (*)(int, int)

iv. struct Widget {};

(b) Are the names that are printed what you expect? (It is worth noting that name member function typically
returns a mangled (i.e., encoded) version of the type name.)

Copyright © 2021 Michael D. Adams Version 2021-04-01

23

Chapter 4

Templates

4.1 Exercises

Function Templates
4.1 Consider a program that consists of the single source-code file whose listing is given below. The code shown in

this listing below will fail to compile, due to a type-deduction failure.

(a) Identify which type cannot be deduced, and explain why this type cannot be deduced.

(b) Explain how the code can be modified to resolve this problem, without changing the definition of func.

1 template <class T, class U>
2 void func(const U& u)
3 {
4 T x;
5 // ...
6 }
7

8 int main()
9 {

10 int x;
11 func(x); // ERROR: type-deduction failure
12 }

4.2 Develop a template function min3 that takes three arguments of the same type and returns the least of these
arguments. For example, min3(1, 0, 2) would return 0 and min3(1.5, 0.5, 3.0) would return 0.5.

4.3 (a) Develop a template function sum that computes the sum of zero or more elements (of the same type) that
are stored contiguously in memory. The template should have a single parameter that is the type of the
elements to be processed by the function. The function has two parameters: 1) a pointer to the first element
in the range to be summed; and 2) a pointer to one-past-the-last element in the range to be summed.

(b) Write a program to test the sum function.

(c) Also, test the sum function with the code below.

1 #include <iostream>
2

3 int main()
4 {

Version 2021-04-01 Copyright © 2021 Michael D. Adams

24 CHAPTER 4. TEMPLATES

5 const int i[3] = {1, 2, 3};
6 const double d[3] = {1.0, 2.0, 3.0};
7 std::cout << sum(&i[0], &i[3]) << "\n";
8 std::cout << sum(&d[0], &d[3]) << "\n";
9 }

Class Templates
4.4 Convert the RealPoint2 class from Exercise 3.6 to a class template Point2. The template should take as a

parameter the type to be used for point coordinates (which might be double, float, int, or some other
numeric type). Test your code for at least one integral type (e.g., short, int, long) and one real type (e.g.,
float, double).

4.5 Develop a template class Complex that represents a complex number and is parameterized on the type T used to
represent the real and imaginary parts of the complex number. So, for example, Complex<float> would be a
complex number with the real and imaginary parts represented with floats.

4.6 (a) Convert the IntArray2 class developed in Exercise 3.8 to a template class Array2. This template should
have a single parameter, which is the type of the elements to be stored in the array.

(b) Write a program to thoroughly test your Array2 class. Be sure to test it for both integral (e.g., int) and
floating-point (e.g., double) types.

(c) Write a program that does the following:
i. Read a real array (including its dimensions) from standard input into an Array2<double>.

ii. Copy the elements from the Array2<double> object into an Array2<int> object which will result in
the elements being rounded.

iii. Write the rounded array to standard output.

4.7 (a) Develop a template class Array that represents a fixed-size array. The template should have two param-
eters. The first specifies the type of the elements in the array and the second is an integer specifying the
number of elements in the array. The class should satisfy the following requirements:

i. The array element data should be stored in a C++ array (which has fixed size). (In other words, do
not use new and delete for memory allocation.)

ii. A constructor should be provided that has a single std::initializer_list parameter so that the array
can be constructed from a list of element values. The size of the initializer_list must be less than
or equal to the array size. In the case that it is less, the remaining elements (for which values are not
provided) should be initialized to zero.

iii. Move and copy constructors, move and copy assignment operators, and a destructor should be pro-
vided.

iv. The subscripting operator should provide access to an array element.
v. The member function size should return the number of elements in the array. Since the value returned

by this function is a compile-time constant, the function should be constexpr.
vi. The member function fill should fill the array with a specified value.

vii. All data members must be private.
viii. A stream inserter (i.e., <<) must be provided that writes an array to an output stream (i.e., std::ostream).

ix. The member type Value should be an alias for the type of the array elements.

(b) Write a program to thoroughly test the Array class.

(c) Also, test your code with the program given in the listing below.

Copyright © 2021 Michael D. Adams Version 2021-04-01

4.1. EXERCISES 25

1 #include <iostream>
2

3 // Include your code here.
4 #include "Array.hpp"
5

6 int main()
7 {
8 const Array<int, 4> a{1, 2, 3, 4};
9 const Array<int, 4> b{1, 2};

10 auto c = a;
11 auto d = b;
12 d = std::move(c);
13 std::cout << c << "\n";
14 }

4.8 (a) Develop a class template called array_iterator that is parameterized on a single type T. The type provides
all of the functionality of a contiguous iterator that refers to an object of type T. If T is a const type, then
array_iterator<T> is a nonmutating iterator. Otherwise, array_iterator<T> is a mutating iterator. The
type array_iterator<T> is constructible from a pointer having type T*.

(b) Test the array_iterator class template type thoroughly.
(c) Ensure that the class works correctly with the code shown below.

1 #include <cassert>
2 #include <cstddef>
3 #include <iterator>
4 #include "array_iterator.hpp"
5

6 int main()
7 {
8 using iterator = array_iterator<int>;
9 using const_iterator = array_iterator<const int>;

10 static_assert(std::random_access_iterator<iterator>);
11 static_assert(std::random_access_iterator<const_iterator>);
12 int a[]{1, 2, 3, 4};
13 const std::size_t size = std::size(a);
14 array_iterator<int> begin(std::begin(a));
15 array_iterator<const int> cbegin(std::begin(a));
16 array_iterator<int> end(std::end(a));
17 array_iterator<const int> cend(std::end(a));
18 assert(end - begin == size);
19 assert(begin + size == end);
20 assert(end - size == begin);
21 assert(size + begin == end);
22 auto i = begin;
23 assert((i += size) == end);
24 i = end;
25 assert((i -= size) == begin);
26 assert(&*begin == &a[0]);
27 i = begin;
28 auto ci = cbegin;
29 assert(ci == i);
30 assert(i == ci);
31 ++ci;
32 assert(i != ci);
33 assert(ci != i);
34 }

Version 2021-04-01 Copyright © 2021 Michael D. Adams

26 CHAPTER 4. TEMPLATES

Variadic Templates
4.9 Develop a (variadic) template function minimum that takes an one or more arguments of the same type and returns

the argument with the least value. For example:

• minimum(6, 5, 4, 3, 2) would return 2; and
• minimum(1.0, 2.0, 3.0, 4.0, 5.0, 6.0) would return 1.0.

[Hint: Use recursion. Two function templates are needed, with one being variadic.]

4.10 Develop a (variadic) template function sum that takes two or more arguments of the same type and returns their
sum. For example:

• sum(1, 2, 4) would return 7; and
• sum(2.0, 1.0, 1.0, 0.5) would return 4.5.

Template Specialization
4.11 Develop a class template that can be used to compute the factorial of a std::size_t value at compile time. The

class template should have a declaration like the following:

template<std::size_t N> struct factorial;

The class template should provide a single (public) member value that holds the factorial of N. Template
specialization should be used to handle the case of N equal to 0. [Hint: Use an enumeration.]

4.12 (a) Develop a class template IsVoid that can be used to test if a type matches the type void, ignoring any
const or volatile qualifiers. The template has a single parameter T, which is a type that is to be tested
for being void. The class should have only the following two members, both of which are public:

i. A type member ValueType that is an alias for bool.
ii. A constant data member value of type ValueType that indicates if T matches with bool.

For example, IsVoid<void>::value should be true, while IsVoid<int>::value should be false. [Hint:
Use template specialization.]

(b) Test your IsVoid template class with the program whose listing is given below.

1 #include <iostream>
2

3 // Include your IsVoid class template here.
4 #include "IsVoid.hpp"
5

6 int main()
7 {
8 std::cout << std::boolalpha
9 << IsVoid<void>::value << "\n"

10 << IsVoid<const void>::value << "\n"
11 << IsVoid<volatile void>::value << "\n"
12 << IsVoid<const volatile void>::value << "\n"
13 << IsVoid<int>::value << "\n"
14 << IsVoid<const double>::value << "\n"
15 << IsVoid<volatile char>::value << "\n"
16 << IsVoid<const volatile long long>::value << "\n"
17 << IsVoid<void (*)(int, int)>::value << "\n"
18 ;
19 }

This program would be expected to produce the following output when executed:

Copyright © 2021 Michael D. Adams Version 2021-04-01

4.1. EXERCISES 27

true
true
true
true
false
false
false
false
false

Generic Lambdas
4.13 (a) Use a lambda expression to define a functor called print_container. The function-call operator should

take two parameters, having the types std::ostream& and T, where T is intended to be a sequence container
type such as std::vector, std::list, or std::deque. This operator should output each of the elements
in the container on the same line separated by space characters to the output stream specified by the first
parameter.

(b) Use a lambda expression to define a functor called prefix_increment. This functor should have a function-
call operator that takes a single parameter of any type. The behavior of this operator should be such that
prefix_increment(x) is semantically equivalent to ++x.

(c) In the code below, replace the indicated preprocessor directive (i.e., #include "generic_lambda_2_b.cpp")
with the functor definitions written in the preceding parts of this exercise and confirm that the resulting
code works correctly.

1 #include <iostream>
2 #include <vector>
3 #include <list>
4 #include <deque>
5 #include <algorithm>
6 #include <iterator>
7

8 template <class T>
9 void do_work()

10 {
11 // Replace the following preprocessor include directive with
12 // the definitions of print_container and prefix_increment functors.
13 #include "generic_lambda_2_b.cpp"
14

15 T v{0, 1, 2, 3, 4, 5, 6, 7};
16 // Print the elements in the container.
17 print_container(std::cout, v);
18 // Increment each of the elements in the container.
19 std::for_each(v.begin(), v.end(), prefix_increment);
20 // Print the elements in the container.
21 print_container(std::cout, v);
22 }
23

24 int main()
25 {
26 do_work<std::vector<int>>();
27 do_work<std::deque<int>>();
28 do_work<std::list<int>>();
29 }

Version 2021-04-01 Copyright © 2021 Michael D. Adams

28 CHAPTER 4. TEMPLATES

4.14 In the code below, replace the indicated preprocessor directive (i.e., #include "generic_lambda_1_b.cpp")
with the definition of a functor called multiply that is obtained using a lambda expression. This functor should
have a function-call operator that takes two parameters x and y of any type and returns the value x * y (having
the correct type). Confirm that the resulting code works correctly.

1 #include <iostream>
2 #include <complex>
3

4 int main()
5 {
6

7 // Replace the following preprocessor include directive with
8 // the defintion of the multiply functor.
9 #include "generic_lambda_1_b.cpp"

10

11 using namespace std::literals;
12 std::cout
13 << multiply(2, 3) << " "
14 << multiply(0.5, 2.0) << " "
15 << multiply(2, 0.25) << " "
16 << multiply(1.0 + 1.0i, 1.0 - 1.0i) << "\n";
17

18 return 0;
19 }

Miscellany
4.15 Write a template raw literal operator that uses the suffix _4 to denote an integer literal in radix 4. Test your code

with the program in the listing below.

1 #include <iostream>
2

3 // Include your code here.
4 #include "raw_user_defined_literal_1.hpp"
5

6 int main()
7 {
8 // Output 1 4 16
9 std::cout << 1_4 << " " << 10_4 << " " << 100_4 << "\n";

10 // Output -1 -4 -16
11 std::cout << -1_4 << " " << -10_4 << " " << -100_4 << "\n";
12 // Output 228 27
13 std::cout << 3210_4 << " " << 0123_4 << "\n";
14 // Output -228 -27
15 std::cout << -3210_4 << " " << -0123_4 << "\n";
16 }

Copyright © 2021 Michael D. Adams Version 2021-04-01

29

Chapter 5

Library

5.1 Exercises

Containers, Iterators Algorithms
5.1 (a) Develop a template function merge that merges two containers. The template function should have three

parameters. The first two parameters specify the containers to be merged. The last parameter specifies the
container to hold the result of the merge operation. The types of all three containers may be different. The
template should work for at least the following container types: std::vector, std::list, and std::set.

(b) Develop a template function output that writes the contents of any container to a particular output stream
(i.e., std::ostream). The template function should have two parameters. The first parameter specifies
the output stream to which the container elements should be written. The second parameter specifies the
container whose elements are to be output. You may assume that the container element type has a stream
inserter. In other words, the << operator may be used to write a container element to an output stream. The
output function should return a reference to the output stream.

(c) Test your merge and output functions with the program whose listing is given below.

1 #include <iostream>
2 #include <vector>
3 #include <list>
4 #include <set>
5 #include <string>
6

7 // Include your code here.
8 #include "merge.hpp"
9

10 int main()
11 {
12 const std::vector<std::string> c1{"delta", "beta", "alpha"};
13 const std::list<std::string> c2{"delta", "beta", "alpha"};
14 const std::set<std::string> c3{"one", "two", "four"};
15 std::vector<std::string> d1;
16 std::list<std::string> d2;
17 std::set<std::string> d3;
18 merge(c1, c2, d1);
19 output(std::cout, d1) << "\n";
20 merge(c2, c3, d2);
21 output(std::cout, d2) << "\n";
22 merge(c3, c1, d3);
23 output(std::cout, d3) << "\n";

Version 2021-04-01 Copyright © 2021 Michael D. Adams

30 CHAPTER 5. LIBRARY

24 }

5.2 Use a functor (i.e., function object) and the std::sort algorithm in order to write a program that does the
following:

(a) Read real numbers from standard input (separated by whitespace) and store them into a std::vector<double>.
The program should keep reading numbers until end-of-file is reached.

(b) Output the numbers to standard output from the std::vector<double> in the same order that they were
input.

(c) Sort the elements in the std::vector<double> in order of decreasing magnitude.

(d) Output the sorted list to standard output.

5.3 Suppose that we want to compute the sum of all of the elements in a container of type std::vector<int>. This
can be accomplished by each of the functions calcSum1 and calcSum2 in the listing below.

1 #include <vector>
2

3 int calcSum1(const std::vector<int>& v)
4 {
5 int sum = 0;
6 for (auto i = v.begin(); i != v.end(); ++i) {
7 sum += *i;
8 }
9 return sum;

10 }
11

12 int calcSum2(const std::vector<int>& v)
13 {
14 int sum = 0;
15 for (int i = 0; i < v.size(); ++i) {
16 sum += v[i];
17 }
18 return sum;
19 }

(a) Of the two functions calcSum1 and calcSum2, which would you expect to require less time to execute?
Explain the reason for your answer.

(b) Write a program that uses each of the calcSum1 and calcSum2 functions to compute the sum of a std::vector<int>
containing 224 = 16777216 elements. Use std::chrono::high_resolution_timer to measure the execu-
tion time required for each of these functions. Enable full optimization when compiling your program.
After having computed the sum in each case, be sure to use the result (e.g., by printing its value), since a
good optimizer is likely to eliminate the sum calculation if the result of the calculation is never used. Of
the functions calcSum1 and calcSum2, which requires less execution time? By what factor do the execution
times of these two functions differ? Is this result consistent with your answer in the previous part of this
exercise? (It should be.)

5.4 Consider the two functions getVector1 and getVector2 in the listing below. Each of these functions returns a
std::vector<int> of the requested size n with the elements initialized to 0,1,2, . . . ,(n−1).

Copyright © 2021 Michael D. Adams Version 2021-04-01

5.1. EXERCISES 31

1 #include <vector>
2

3 std::vector<int> getVector1(int n)
4 {
5 std::vector<int> result;
6 for (int i = 0; i < n; ++i) {
7 result.push_back(i);
8 }
9 return result;

10 }
11

12 std::vector<int> getVector2(int n)
13 {
14 std::vector<int> result;
15 result.reserve(n);
16 for (int i = 0; i < n; ++i) {
17 result.push_back(i);
18 }
19 return result;
20 }

(a) Of the two functions getVector1 and getVector2, which would you expect to be require less time to
execute? Explain the reason for your answer.

(b) Write a program that uses each of the getVector1 and getVector2 functions to generate a std::vector<int>
containing 224 = 16777216 elements. Use std::chrono::high_resolution_timer to measure the execu-
tion time required for each of these functions. Enable full optimization when compiling your program.
Of the functions getVector1 and getVector2, which requires less execution time? By what factor do the
execution times of these two functions differ? Is this result consistent with your answer in the previous
part of this exercise? (It should be.)

5.5 For each of the cases below, write a program to perform the requested task.

(a) Print 100 random numbers. Each random number must be obtained by applying the function-call operator
to a closure. Only one closure may be constructed. The random number should be generated by drand48

which has the declaration (found in cstdlib): double drand48();

(b) Use std::sort to sort (in ascending order) a std::vector of ints containing the elements {1,3,8,6,4,5,7,2,0,9}.
After the sorting is completed, print the number of comparisons that were needed during sorting. Your
solution should make use of a lambda expression.

(c) Given the vector and set:

std::vector<int> vec{1, 3, 8, 6, 4, 5, 7, 2, 0, 9};
std::set<int> infinities{3, 2};

Use std::stable_sort along with a lambda expression to sort the elements of vec in ascending order with
elements matching those in infinities being treated as if they were (positive) infinity (i.e., coming last
in sort order). Your solution should utilize a lambda expression.

5.6 A program needs to store elements of type T in a container. For each set of assumptions below, identify which
container in the standard library would be the most appropriate to employ and fully justify your choice.

(a) First case.

i. elements in the container will need to be located very frequently (based on their value);
ii. T is a builtin type;

Version 2021-04-01 Copyright © 2021 Michael D. Adams

32 CHAPTER 5. LIBRARY

iii. memory usage should be minimized;
iv. the container will hold a very large number of elements;
v. the contents of the container will not be changed after initialization.

(b) Second case.

i. elements in the container will need to be located very frequently (based on their value);
ii. the contents of the container will be changed very frequently, with elements being added and removed

at arbitrary positions in the container;
iii. the container will hold a relatively large number of elements;

(c) Third case.

i. elements will frequently be added to and removed from arbitrary positions in the container;
ii. only the first and last elements need to located frequently;

5.7 Given an object v of type std::vector<int>, write code to determine whether all of the elements of the vector
are odd integers. Use a lambda expression and std::all_of.

5.8 Given an object v of type std::vector<std::pair<double,double>, write code to sort the elements of the
vector by the product of their first and second members. Use a lambda expression and std::sort.

5.9 Write a function called count_even that takes a single parameter of type const std::vector<int>& and returns
a value of type int corresponding to a count of the number of even elements in the vector. Use std::for_each

with a lambda expression to count the number of even elements.

5.10 Write a function called find_first_negative that takes a single parameter of type const std::vector<int>&
and returns a value of type int corresponding to the index of the first negative element in the vector. If the vector
contains no negative elements, the value -1 should be returned. Use std::find_if with a lambda expression to
find the first negative element.

5.11 Write a function called transform_quadratic that matches the following declaration:

void transform_quadratic(std::vector<int>& v, double a, double b, double c);

The function should replace each element x in the vector v with the value a * x * x + b * x + c. Use
std::transform with a lambda expression in order to perform this task.

5.12 Write a function called is_sorted that matches the following declaration:

bool is_sorted(const std::vector<double>& v, int& num_compares)

The function should return true if the elements of the vector v are sorted in ascending order and false
otherwise. Use std::is_sorted with a lambda expression in order to determine if the elements are sorted. Upon
return, the parameter num_compares should be set to the number of comparisons required by std::is_sorted

(i.e., the number of times that the function-call operator is invoked for the comparison functor).

Copyright © 2021 Michael D. Adams Version 2021-04-01

5.1. EXERCISES 33

Input/Output
5.13 Consider the function copyStream given in the listing below. This function is intended to copy the contents of

one stream to another so that the output stream will be associated with exactly the same sequence of characters
as the input stream. The function returns true upon success and false otherwise. Unfortunately, this code
has a serious flaw. Identify this flaw and explain how it can be fixed.

1 #include <iostream>
2

3 bool copyStream(std::istream& in, std::ostream& out)
4 {
5 char c;
6 while (in >> c) {
7 if (!(out << c)) {
8 // Output failed.
9 return false;

10 }
11 }
12 if (!in.eof()) {
13 // Input failed.
14 return false;
15 }
16 // Success.
17 return true;
18 }

5.14 Develop a template function output that writes data to a std::ostream. The parameters of the function are as
follows: 1) an output stream std::ostream; and 2) one or more parameters that correspond to objects that can
be inserted into a stream with a stream inserter (i.e., <<). For example, the output function should work with
the program listed below.

1 #include <iostream>
2 #include <iomanip>
3

4 // Include your code here.
5 #include "variadic_template_output_1.hpp"
6

7 int main()
8 {
9 // Output "Hello, World!\n".

10 output(std::cout, "Hello, World!\n");
11

12 // Output "1\n".
13 output(std::cout, 1, "\n");
14

15 // Output "Hello World!\n".
16 output(std::cout, "Hello ", "World!", "\n");
17

18 // Output "Testing***1***2***3\n"
19 output(std::cout,
20 std::setfill(’*’),
21 "Testing",
22 std::setw(4), 1,
23 std::setw(4), 2,
24 std::setw(4), 3,
25 "\n");
26 }

Version 2021-04-01 Copyright © 2021 Michael D. Adams

34 CHAPTER 5. LIBRARY

Smart Pointers
5.15 What is the difference between the smart pointer types std::unique_ptr and std::shared_ptr? When should

one of these types be preferred over the other?

5.16 Recall the str_concatenate function developed in Exercise 2.25. The interface provided by this function is
quite error prone, as it requires that the caller remember to free memory at some potentially much later point in
the code. Modify the interface of this function in such a way as to eliminate this problem, using an approach
based on smart pointers. [Hint: Use one of the smart pointer types from the standard library.]

5.17 For each part of this exercise, consider the program whose listing is given. The given code has a number of
problems that relate to memory management (e.g., memory ownership). Fix these problems by introducing
smart pointers into the code. Only change interfaces to the extent that it is necessary in order to fix the problems
in the original code.

(a)

1 #include <iostream>
2

3 std::size_t string_length(const char* s)
4 {
5 std::size_t n = 0;
6 while (*s != ’\0’) {
7 ++s;
8 ++n;
9 }

10 return n;
11 }
12

13 char* string_copy(char* d, const char* s)
14 {
15 char* p = d;
16 while ((*p = *s) != ’\0’) {
17 ++p;
18 ++s;
19 }
20 *p = ’\0’;
21 return d;
22 }
23

24 char *string_duplicate(const char* s)
25 {
26 std::size_t n = string_length(s);
27 char *result = new char[n + 1];
28 string_copy(result, s);
29 return result;
30 }
31

32 char* string_concatenate(const char* first, const char* second)
33 {
34 std::size_t first_len = string_length(first);
35 std::size_t second_len = string_length(second);
36 char* result = new char[first_len + second_len + 1];
37 string_copy(result, first);
38 string_copy(result + first_len, second);
39 return result;

Copyright © 2021 Michael D. Adams Version 2021-04-01

5.1. EXERCISES 35

40 }
41

42 int main() {
43 char *s = string_concatenate("Hello, ", "World!");
44 char *t = string_duplicate(s);
45 std::cout << t << ’\n’;
46 delete[] s;
47 delete[] t;
48 }

(b)

1 #include <iostream>
2 #include <cstring>
3

4 // Duplicate a C-style string.
5 char *string_duplicate(const char* s)
6 {
7 std::size_t n = std::strlen(s);
8 char *result = new char[n + 1];
9 std::strcpy(result, s);

10 return result;
11 }
12

13 // Read character data from an input stream and return it.
14 char* source_data()
15 {
16 char buffer[1024];
17 if (std::cin.getline(buffer, sizeof(buffer))) {
18 return string_duplicate(buffer);
19 } else {
20 return nullptr;
21 }
22 }
23

24 // Transform the character data and return the transformed data.
25 // (Map lowercase to uppercase.)
26 char* transform_data(char* s)
27 {
28 char* p = s;
29 while (*p != ’\0’) {
30 if (islower(*p)) {
31 *p = toupper(*p);
32 }
33 ++p;
34 }
35 return s;
36 }
37

38 // Write the character data to an output stream and then discard the data.
39 void sink_data(char *s)
40 {
41 std::cout << s << ’\n’;
42 delete[] s;
43 }
44

45 int main()
46 {

Version 2021-04-01 Copyright © 2021 Michael D. Adams

36 CHAPTER 5. LIBRARY

47 char *s;
48 while (s = source_data()) {
49 s = transform_data(s);
50 sink_data(s);
51 }
52 }

(c)

1 #include <iostream>
2 #include <cassert>
3

4 class Counter
5 {
6 public:
7 Counter(int i = 0) : p_(new int(i)) {}
8 ˜Counter() {
9 if (p_) {

10 delete p_;
11 }
12 }
13 Counter(Counter&& c) : p_(c.p_) {
14 c.p_ = nullptr;
15 }
16 Counter(const Counter& c) {
17 if (p_) {
18 p_ = new int(*c.p_);
19 } else {
20 p_ = nullptr;
21 }
22 }
23 Counter& operator=(Counter&& c) {
24 if (this != &c) {
25 if (p_) {
26 delete p_;
27 }
28 p_ = c.p_;
29 c.p_ = nullptr;
30 }
31 return *this;
32 }
33 Counter& operator=(const Counter& c) {
34 if (this != &c) {
35 if (p_) {
36 delete p_;
37 }
38 p_ = new int(*c.p_);
39 }
40 return *this;
41 }
42 int getCount() const {
43 assert(p_);
44 return *p_;
45 }
46 Counter& operator++() {
47 assert(p_);
48 ++*p_;
49 return *this;

Copyright © 2021 Michael D. Adams Version 2021-04-01

5.1. EXERCISES 37

50 }
51 private:
52 int* p_; // pointer to counter value
53 };
54

55 int main() {
56 Counter a(0);
57 Counter b(std::move(a));
58 Counter c(b);;
59 c = std::move(b);
60 b = ++c;
61 a = ++c;
62 std::cout << a.getCount() << ’\n’;
63 std::cout << b.getCount() << ’\n’;
64 std::cout << c.getCount() << ’\n’;
65 }

Miscellany
5.18 Write a program that reads real numbers from standard input into a std::vector (until end-of-file is reached),

and then prints (to standard output) the median of the numbers read. Use the standard library as much as
possible. Do not fully sort the vector, as this would be inefficient.

5.19 Develop a program that writes to standard output a table for converting from pounds to kilograms. The table
should have two columns, the first for pounds and the second for kilograms. The entries in the first column (i.e.,
pounds) should range from 0 to 200 in increments of 10. The program output should be formatted so that it
exactly matches that shown below. Use I/O manipulators to assist with the formatting. To convert from pounds
to kilograms, use the formula k = 0.453592p, where p and k are the mass in pounds and kilograms, respectively.

Pounds Kilograms
0.00 0.00
10.00 4.54
20.00 9.07
30.00 13.61
... ...

200.00 90.72

5.20 Write a program that generates one million random real numbers chosen from a normal distribution with mean
µ and standard deviation σ . The quantity µ should be chosen as a random number taken from a uniform
distribution on the interval [−10,10], and σ should be chosen as 1. Use the random-number-generation engine
std::mt19937 (i.e., 32-bit Mersenne Twister) seeded with a random number from std::random_device. Output
a (text-based) histogram with 20 bins to show the approximate distribution. The histogram output should follow
the formatting example shown below. The output has one line per histogram bin, consisting of two fields: 1) a
real number specifying the center of the histogram bin; and 2) zero or more asterisks, with number of asterisks
chosen in proportion to the histogram bin count. Avoid having a single line of output exceed 80 characters so
that the histogram will display without line wrapping on an 80-column terminal.

-11.07
-10.60
-10.13
-9.66
-9.19 *
-8.73 ****

Version 2021-04-01 Copyright © 2021 Michael D. Adams

38 CHAPTER 5. LIBRARY

-8.26 **********
-7.79 *******************
-7.32 *****************************
-6.85 ************************************
-6.38 ***********************************
-5.91 ****************************
-5.44 ******************
-4.97 *********
-4.50 ***
-4.04 *
-3.57
-3.10
-2.63
-2.16

Copyright © 2021 Michael D. Adams Version 2021-04-01

39

Chapter 6

Exceptions

6.1 Exercises

Exceptions
6.1 Explain what is fundamentally wrong with structuring the code for a function as shown below.

void func() {
initialize(); // perform initialization
do_work(); // do some work
cleanup(); // perform any necessary cleanup

}

6.2 Consider the code given below, in which Thing is some class type. Can the function analyze throw an exception?
Justify your answer. Can the function doWork throw an exception? Justify your answer.

// The type Thing is defined in the following header file.
#include <Thing.hpp>

Thing globalThing;

void analyze(Thing x) noexcept
{

// ...
}

void doWork()
{

analyze(globalThing);
}

6.3 (a) Write a function called safe_divide that takes two double arguments and returns a double correspond-
ing to the result of dividing the first argument by the second argument. Before performing the division, the
function should check to determine if division by zero would occur. If division by zero would occur, in-
stead of performing the division, the function should throw an exception of type std::invalid_argument.

(b) Write a program that loops performing the following steps: 1) read two real numbers from standard input;
2) compute the quotients of these two numbers using the safe_divide function; 3) write the division result
to standard output. If the safe_divide function throws an invalid_argument exception, this should be
caught by the caller and an appropriate error message written to standard error. Check to ensure that the
program correctly handles both the cases of division by zero and nonzero values.

Version 2021-04-01 Copyright © 2021 Michael D. Adams

40 CHAPTER 6. EXCEPTIONS

6.4 Develop a function template called quadratic that can be used to evaluate a quadratic function of the form
f (x) = ax2 +bx+ c (where x, a, b, and c are real) and has the following properties:

• The template is parameterized on a real number type T, which may be assumed to have all of the usual
arithmetic operators (such as addition and multiplication).

• The function has four parameters of type T corresponding to the values of x, a, b, and c, respectively.
• The function returns a value of type T corresponding to f (x).
• The noexcept specifier for the function must be correct regardless of the type T.

6.5 (a) Write a function process having a single int parameter x that performs the following:
• if x is 1, an exception of type int is thrown;
• if x is 2, an exception "yikes" is thrown;
• otherwise, nothing is done.

(b) Write a program whose main function performs the following for each element x of
std::vector<int>{0, 1, 2, 3}: Call process(x) and then print "okay\n" to standard output. While
doing this, exceptions of type int and char * should be caught. In each case, the exception handler
should print the type of exception (e.g., int) and the value of the exception (and allow execution of the
program to continue normally).

Stack Unwinding
6.6 When each of the programs listed below is executed, the throw statement marked by a comment of the form

/* throw site */ will be reached, resulting in an exception being thrown. Identify the objects that are
destroyed during the stack unwinding process initiated by this throw statement and specify the sequence in
which these objects are destroyed.

(a)

1 #include <iostream>
2 #include <stdexcept>
3 #include <vector>
4 #include <complex>
5 #include <string>
6

7 using namespace std::literals;
8

9 void func1() {
10 std::string hello("hello"s);
11 std::vector<int> countdown{3, 2, 1, 0};
12 {
13 std::string die("die"s);
14 std::vector<std::string> die3{die, die, die};
15 throw std::runtime_error("yikes!"); /* throw site */
16 }
17 std::string goodbye("goodbye"s);
18 }
19

20 void func2(bool flag) {
21 std::vector<double> dv{1.0, 0.5, 0.25};
22 std::string herb("Herb"s);
23 if (flag) {
24 std::string bjarne("Bjarne"s);
25 std::complex<double> i(1.0i);
26 func1();

Copyright © 2021 Michael D. Adams Version 2021-04-01

6.1. EXERCISES 41

27 }
28 }
29

30 int main() {
31 std::string scott("Scott"s);
32 std::vector<int> count{1, 2, 3};
33 try {
34 std::complex<double> z(1.0i);
35 std::complex<double> u(z * z);
36 func2(true);
37 }
38 catch (std::runtime_error& e) {
39 std::cout << e.what() << "\n";
40 }
41 }

(b)

1 #include <iostream>
2 #include <stdexcept>
3 #include <string>
4 #include <cmath>
5 #include <vector>
6

7 using namespace std::literals;
8

9 [[noreturn]] void panic(std::string s)
10 {
11 throw std::runtime_error(s); /* throw site */
12 }
13

14 double squareRoot(double x)
15 {
16 if (x < 0.0) {
17 std::string s("square root of negative number"s);
18 panic(s);
19 }
20 return std::sqrt(x);
21 }
22

23 int main()
24 {
25 std::vector<double> v{1.0, 4.0, -1.0};
26 for (auto x : v) {
27 try {
28 std::cout << squareRoot(x) << "\n";
29 }
30 catch (std::runtime_error& e) {
31 std::cout << "exception: " << e.what() << "\n";
32 }
33 }
34 }

6.7 Identify (in order) each point in the execution of the code given below where the destructor for std::string is
called. For each invocation of this destructor, identify the object being destroyed and its value (at destruction
time). Assume that the program does not run out of memory (e.g., no std::bad_alloc exceptions are thrown).

Version 2021-04-01 Copyright © 2021 Michael D. Adams

42 CHAPTER 6. EXCEPTIONS

1 #include <iostream>
2 #include <string>
3

4 using std::string;
5

6 class omg {};
7 class yikes {};
8

9 void func_1(string s)
10 {
11 string alpha("alpha");
12 if (s == "omg") {
13 string beta("beta");
14 throw omg();
15 string gamma("gamma");
16 } else if (s == "yikes") {
17 string delta("delta");
18 throw yikes();
19 string epsilon("epsilon");
20 }
21 string zeta("zeta");
22 }
23

24 void func_2(string s)
25 {
26 string eta("eta");
27 try {
28 string theta("theta");
29 func_1(s);
30 string iota("iota");
31 } catch (const omg& e) {
32 string kappa("kappa");
33 func_1("yikes");
34 string lambda("lambda");
35 }
36 string mu("mu");
37 }
38

39 int main()
40 try {
41 string nu("nu");
42 func_2("omg");
43 string xi("xi");
44 } catch (...) {
45 std::cerr << "exception\n";
46 }

Exception Safety
6.8 For each of the code listings given below, identify any exception-safety problems and suggest how they can be

eliminated.

(a)

1 #include <cstddef>
2

Copyright © 2021 Michael D. Adams Version 2021-04-01

6.1. EXERCISES 43

3 void useBuffers(std::size_t, char* p1, char* p2) noexcept;
4

5 void func(std::size_t size)
6 {
7 // allocate memory for first buffer
8 char* buf1 = new char[size];
9 // allocate memory for second buffer

10 char* buf2 = new char[size];
11 // use the buffers
12 useBuffers(size, buf1, buf2);
13 // deallocate memory for first buffer
14 delete[] buf1;
15 // deallocate memory for second buffer
16 delete[] buf2;
17 }

(b)

1 #include <iostream>
2 #include <ios>
3 #include <iomanip>
4

5 // print int to stream in hexadecimal
6 bool print(std::ostream& out, int x)
7 {
8 // save formatting flags
9 auto oldFlags = out.flags();

10 // set formatting flags to use hexadecimal and output integer value
11 out << std::showbase << std::hex << x << "\n";
12 // restore formatting flags
13 out.flags(oldFlags);
14 return out;
15 }

(c)

1 #include <deque>
2

3 // Note:
4 // std::deque::front: guaranteed not to throw
5 // std::deque::pop_front: guaranteed not to throw
6 // std::deque::push_back: may throw, provides strong guarantee
7

8 // FIFO queue class
9 template <class T>

10 class Queue
11 {
12 public:
13 // get number of elements on queue
14 int size() const {
15 return q_.size();
16 }
17 // remove and return element from front of queue
18 T get() {
19 T result(q_.front());
20 q_.pop_front();
21 return result;
22 }

Version 2021-04-01 Copyright © 2021 Michael D. Adams

44 CHAPTER 6. EXCEPTIONS

23 // add element to back of queue
24 void put(const T& value) {
25 q_.push_back(value);
26 }
27 private:
28 // underlying queue
29 std::deque<T> q_;
30 };

6.9 Write a template function strongSort that sorts a std::vector (using std::sort) and provides the strong
exception-safety guarantee. The function should have a declaration matching the following:

template <class T, class F> void strongSort(std::vector<T>&, F less);

The first and second function parameters correspond to the vector to be sorted and a comparison function/func-
tor.

6.10 Write a function getBuffer that has a single int parameter size that specifies the size (in characters) of a
memory buffer to allocate. The function allocates the buffer and returns it. Use an appropriate smart pointer
type in order to ensure that the code is exception safe. Assume that the buffer is to be owned by only one part
of the program.

6.11 (a) Write a function getWord that reads a (whitespace-delimited) word of input as a std::string from a
std::istream and has the following characteristics:

• The function has a single std:istream& parameter specifying the stream from which to read the
std::string.

• The function should return an appropriate pointer type that refers to the std::string read. A null
pointer should be returned if the input operation fails. (The returned std::string must be allocated
on the heap.)

• The function must be exception safe.

(b) Write a program whose main function loops performing the following: 1) read a word (i.e., std::string)
using the getWord function; 2) store the pointer to the std::string in std::vector and std::set contain-
ers. The loop terminates when the getWord function returns a null pointer. The string data should be stored
in the two containers in such a way that the data is not duplicated between the containers. All of the code
must be exception safe.

Copyright © 2021 Michael D. Adams Version 2021-04-01

45

Chapter 7

Concurrency

7.1 Exercises

Sequential Consistency
7.1 Consider a multithreaded program written in a language with a syntax similar to C++ that provides (full) se-

quential consistency (not SC-DRF) and an assertion mechanism (i.e., assert) similar to the one in C++. The
program has two threads, and these threads share the variables x, y, and z of type int, all of which are initially
zero. Below, several different scenarios are given for the code of the two threads. In each case, the code contains
a number of assertions. For each scenario, indicate whether each assertion will be true: always, sometimes, or
never. Justify your answer in each case.

(a) First scenario.
• Thread 1 Code.

[A1] x = 1;
[A2] y = 1;

• Thread 2 Code.

[B1] if (x == 1)
[B2] assert(y == 1);

(b) Second scenario.
• Thread 1 Code

[A1] x = 1;
[A2] y = 1;

• Thread 2 Code

[B1] while (!y) {}
[B2] assert(x == 1);

(c) Third scenario.
• Thread 1 Code

[A1] x = 1;
[A2] y = 1;
[A3] z = 1;

• Thread 2 Code

[B1] while (!y) {}
[B2] assert(x == 1);
[B3] assert(z == 1);

Version 2021-04-01 Copyright © 2021 Michael D. Adams

46 CHAPTER 7. CONCURRENCY

(d) Fourth scenario.
• Thread 1 Code.

[A1] x = 1;
[A2] y = 1;

• Thread 2 Code.

[B1] if (y == 1)
[B2] assert(x == 1);

7.2 Consider a multithreaded program written in a language with a syntax similar to C++ that provides (full) se-
quential consistency (not SC-DRF). The program has three threads, and these threads share the variables a and
b of type int, both of which are initially zero. Identify n possible sets of values for a and b that can be obtained
upon completion of program execution, where n is specified in each part of this question. For each set, specify at
least one sequentially-consistent execution of the program that produces that set. When specifying an execution
sequence, the line labels provided in the source listing (i.e., A1, A2, B1, B2, C1, and C2) can be used to identify
the statements being executed.

(a) First scenario. Find at least 2 different sets of values for a and b.
Thread 1 Code

[A1] a = 1;
[A2] b = 1;

Thread 2 Code
[B1] while (b == 0) {}
[B2] a = a + 1;

Thread 3 Code
[C1] while (a == 0) {}
[C2] b = b + 1;

(b) Second scenario. Find at least 5 different sets of values for a and b.
Thread 1 Code

[A1] a = a + 1;
[A2] b = b + 1;

Thread 2 Code
[B1] if (a == 0)
[B2] {a = 2 * b;}

Thread 3 Code
[C1] if (b == 0)
[C2] {b = 2 * a;}

7.3 Consider the execution of the two-threaded program listed below. The program has four integer variables a, b, x,
and y, all of which are initially zero. Enumerate all possible sequentially-consistent executions of this program.
For each case, state the value of a and b upon completion of the program. Upon program completion, is there
any combination of the values 0 and 1 that cannot be obtained for a and b?

• Thread A Code:

[A1] x = 1;
[A2] a = y;

• Thread B Code:

[B1] y = 1;
[B2] b = x;

Data Races
7.4 For each of the programs listed below: 1) state the behavior of the program (i.e., what it does) when executed

(being sure to include all possibilities); and 2) if the program contains any data races, identify them and suggest
how they might be fixed.

(a)

1 #include <iostream>
2 #include <thread>
3

4 int x = 0;
5 int y = 0;

Copyright © 2021 Michael D. Adams Version 2021-04-01

7.1. EXERCISES 47

6

7 int main()
8 {
9 std::thread t1([]() {

10 x = 1;
11 y = 2;
12 });
13 std::thread t2([]() {
14 std::cout << y << " ";
15 std::cout << x << std::endl;
16 });
17 t1.join();
18 t2.join();
19 }

(b)

1 #include <iostream>
2 #include <thread>
3 #include <mutex>
4

5 std::mutex m;
6 int x = 0;
7 int y = 0;
8

9 int main()
10 {
11 std::thread t1([]() {
12 std::scoped_lock<std::mutex> lock(m);
13 x = 1;
14 y = 2;
15 });
16 std::thread t2([]() {
17 std::scoped_lock<std::mutex> lock(m);
18 std::cout << y << " ";
19 std::cout << x << std::endl;
20 });
21 t1.join();
22 t2.join();
23 }

(c)

1 #include <iostream>
2 #include <thread>
3 #include <atomic>
4

5 std::atomic<int> x(0);
6 std::atomic<int> y(0);
7

8 int main()
9 {

10 std::thread t1([]() {
11 x.store(1);
12 y.store(2);
13 });
14 std::thread t2([]() {
15 std::cout << y.load() << " ";

Version 2021-04-01 Copyright © 2021 Michael D. Adams

48 CHAPTER 7. CONCURRENCY

16 std::cout << x.load() << std::endl;
17 });
18 t1.join();
19 t2.join();
20 }

(d)

1 #include <iostream>
2 #include <thread>
3 #include <atomic>
4

5 std::atomic<int> x(0);
6 std::atomic<int> y(0);
7

8 int main()
9 {

10 std::thread t1([]() {
11 x.store(1, std::memory_order_relaxed);
12 y.store(2, std::memory_order_relaxed);
13 });
14 std::thread t2([]() {
15 std::cout << y.load(std::memory_order_relaxed) << " ";
16 std::cout << x.load(std::memory_order_relaxed) << std::endl;
17 });
18 t1.join();
19 t2.join();
20 }

(e)

1 #include <iostream>
2 #include <string>
3 #include <atomic>
4 #include <thread>
5

6 std::atomic<std::string*> s(nullptr);
7 int i = 0;
8

9 void producer()
10 {
11 std::string* p = new std::string("Hello");
12 i = 1;
13 s.store(p, std::memory_order_release);
14 }
15

16 void consumer()
17 {
18 std::string *p;
19 while (!(p = s.load(std::memory_order_acquire))) {
20 ;
21 }
22 std::cout << *p << " ";
23 std::cout << i << "\n";
24 }
25

26 int main()
27 {

Copyright © 2021 Michael D. Adams Version 2021-04-01

7.1. EXERCISES 49

28 std::thread t1(producer);
29 std::thread t2(consumer);
30 t1.join();
31 t2.join();
32 }

(f)

1 #include <iostream>
2 #include <string>
3 #include <atomic>
4 #include <thread>
5

6 std::atomic<std::string*> s(nullptr);
7 int i = 0;
8

9 void producer()
10 {
11 std::string* p = new std::string("Hello");
12 i = 1;
13 s.store(p, std::memory_order_release);
14 }
15

16 void consumer()
17 {
18 std::string *p;
19 while (!(p = s.load(std::memory_order_consume))) {
20 ;
21 }
22 std::cout << *p << " ";
23 std::cout << i << "\n";
24 }
25

26 int main()
27 {
28 std::thread t1(producer);
29 std::thread t2(consumer);
30 t1.join();
31 t2.join();
32 }

(g)

1 #include <thread>
2 #include <cassert>
3

4 int x = 0;
5 bool done = false;
6

7 int main()
8 {
9 std::thread t1([](){

10 x = 42;
11 done = true;
12 });
13 std::thread t2([](){
14 while (!done) {}
15 assert(x == 42);

Version 2021-04-01 Copyright © 2021 Michael D. Adams

50 CHAPTER 7. CONCURRENCY

16 });
17 t1.join();
18 t2.join();
19 }

(h)

1 #include <thread>
2 #include <mutex>
3 #include <cassert>
4

5 std::mutex m;
6 bool initialized = false;
7 int x;
8

9 void do_work()
10 {
11 if (!initialized) {
12 std::scoped_lock<std::mutex> g(m);
13 x = 42;
14 initialized = true;
15 }
16 assert(x == 42);
17 }
18

19 int main()
20 {
21 std::thread t1(do_work);
22 std::thread t2(do_work);
23 t1.join();
24 t2.join();
25 }

(i)

1 #include <thread>
2

3 int x = 0;
4 int y = 0;
5

6 int main()
7 {
8 std::thread t1([](){
9 if (x) {

10 y = 1;
11 }
12 });
13 std::thread t2([](){
14 if (y) {
15 x = 1;
16 }
17 });
18 t1.join();
19 t2.join();
20 }

(j)

Copyright © 2021 Michael D. Adams Version 2021-04-01

7.1. EXERCISES 51

1 #include <iostream>
2 #include <list>
3 #include <thread>
4 #include <mutex>
5

6 std::list<int> x;
7 std::mutex m;
8 std::thread t;
9

10 int main()
11 {
12 t = std::thread([](){
13 for (;;) {
14 std::scoped_lock<std::mutex> g(m);
15 if (!x.empty()) {
16 std::cout << x.front() << "\n";
17 x.pop_front();
18 }
19 }
20 });
21 t.detach();
22 for (int i = 0; i < 1000; ++i) {
23 std::scoped_lock<std::mutex> g(m);
24 x.push_back(i);
25 }
26 }

(k)

1 #include <thread>
2 #include <atomic>
3 #include <cassert>
4

5 std::atomic<int> x(0);
6 std::atomic<bool> done(false);
7

8 int main()
9 {

10 std::thread t1([](){
11 x = 42;
12 done = true;
13 });
14 std::thread t2([](){
15 while (!done) {}
16 assert(x == 42);
17 });
18 t1.join();
19 t2.join();
20 }

(l)

1 #include <thread>
2 #include <iostream>
3

4 unsigned long long counter(0);
5

6 int main()

Version 2021-04-01 Copyright © 2021 Michael D. Adams

52 CHAPTER 7. CONCURRENCY

7 {
8 std::thread t1([](){
9 for (int i = 0; i < 100000; ++i) {

10 ++counter;
11 }
12 });
13 std::thread t2([](){
14 for (int i = 0; i < 100000; ++i) {
15 ++counter;
16 }
17 });
18 t1.join();
19 t2.join();
20 std::cout << counter << "\n";
21 }

(m)

1 #include <thread>
2 #include <mutex>
3

4 struct Widget {
5 char x;
6 char y;
7 std::mutex xMutex;
8 std::mutex yMutex;
9 };

10

11 Widget w;
12

13 int main()
14 {
15 std::thread t1([](){
16 {
17 std::scoped_lock<std::mutex> lock(w.xMutex);
18 w.x = 1;
19 }
20 });
21 std::thread t2([](){
22 {
23 std::scoped_lock<std::mutex> lock(w.yMutex);
24 w.y = 1;
25 }
26 });
27 t1.join();
28 t2.join();
29 }

(n)

1 #include <thread>
2 #include <mutex>
3

4 struct Widget {
5 int x:9;
6 int y:7;
7 };
8

Copyright © 2021 Michael D. Adams Version 2021-04-01

7.1. EXERCISES 53

9 Widget w;
10 std::mutex xMutex;
11 std::mutex yMutex;
12

13 int main()
14 {
15 std::thread t1([](){
16 {
17 std::scoped_lock<std::mutex> lock(xMutex);
18 w.x = 1;
19 }
20 });
21 std::thread t2([](){
22 {
23 std::scoped_lock<std::mutex> lock(yMutex);
24 w.y = 1;
25 }
26 });
27 t1.join();
28 t2.join();
29 }

Threads
7.5 (a) In the code below, the function runThread creates a thread, performs some other work by calling the func-

tion doStuff, and then waits for the created thread to complete execution. What is problematic about the
manner in which the runThread function is written? (Hint: Note the declaration of the doStuff function.)

1 #include <thread>
2

3 void doWork();
4 void doStuff();
5

6 void runThread()
7 {
8 std::thread t(doWork);
9 doStuff();

10 t.join();
11 }

(b) Suggest two possible solutions to the problem identified above.

7.6 The std::thread class requires that a user of the class must never leave a thread object in a joinable state at the
time of destruction. Of course, this leads to the common programming mistake of forgetting to perform a join
operation on a thread object prior to destruction. Develop a RAII class for std::thread called scoped_thread.
The scoped_thread class should serve as a simple wrapper for a std::thread object that automatically performs
a join operation (if needed) at the time of destruction. For example, the scoped_thread class should allow a
program like that shown below to operate correctly.

1 #include <iostream>
2 #include <thread>
3

4 // Replace the following line with the appropriate
5 // header file for your scoped_thread class.
6 #include "scoped_thread.hpp"

Version 2021-04-01 Copyright © 2021 Michael D. Adams

54 CHAPTER 7. CONCURRENCY

7

8 void bonjour()
9 {

10 std::cout << "Bonjour, Le Monde!\n";
11 }
12

13 int main()
14 {
15 // Include extra set of parentheses on the following
16 // line in order to avoid the most-vexing parse problem.
17 scoped_thread t1((std::thread(bonjour)));
18

19 scoped_thread t2(std::thread([](){
20 std::cout << "Hello, World!\n";
21 }));
22 }

7.7 Write a program whose main function starts two threads that behave as follows. The first thread prints "Greetings!\n"
to standard output. The second thread performs the following:

(a) Print "Sleep.\n" to standard output.
(b) Sleep for 3 seconds.
(c) Print "Wakeup.\n" to standard output.

Use std::osyncstream to avoid potential data races on std::cout.

7.8 Write a program whose main function starts three threads that behave as described below. The first thread loops
10 times, performing the following in each iteration:

(a) Print "tick\n" to standard output.
(b) Sleep for 1 second.

The second thread loops 5 times, performing the following in each iteration:

(a) Print "tock\n" to standard output.
(b) Sleep for 2 seconds.

The third thread simply does the following:

(a) Sleep for 10 seconds.
(b) Print "chime\n" to standard output.

Use std::osyncstream to avoid potential data races on std::cout.

Mutexes
7.9 Writing data to an arbitrary std::ostream is not guaranteed to be thread safe in all cases (e.g., unsynchronized

streams), and even in the cases where thread safety is guaranteed, the characters output by different threads may
interleave arbitrarily. With this in mind, modify the output function from Exercise 5.14 so that: 1) thread safety
is guaranteed; and 2) the output produced by a single call to the output function will not interleave with output
produced by calls made in other threads.

7.10 (a) Write a program whose main function starts two threads that perform the work described below. For each
integer i from −100 to 100 (inclusive), the first thread computes the square of i and prints the result to
standard output using a message of the form “The square of i is x.” (where x = i2) followed by a newline
character. For each integer i from −100 to 100 (inclusive), the second thread computes the cube of i
and prints the result to standard output using a message of the form “The cube of i is x.” (where x = i3)
followed by a newline character. [The lines of output from the two threads are permitted to interleave.]

Copyright © 2021 Michael D. Adams Version 2021-04-01

7.1. EXERCISES 55

(b) Modify the program developed in part (a) of this exercise so that each line of output produced by the
threads is written to the stream atomically (i.e., the characters in a single line of output do not interleave
with any characters written by other threads). [Hint: Use a mutex.]

7.11 Write a program that creates 16 threads, each of which loop 128 times performing the following operations:

(a) Write to standard output the message "Greetings from thread " followed by the thread ID (obtained via
std::thread::get_id) and a newline character. Use a mutex to ensure that accesses to std::cout are
guaranteed to be properly synchronized and to ensure that each message is output atomically (i.e., without
being interleaved with characters from other threads). Use a lock guard to ensure that the mutex resource
cannot be leaked.

(b) Sleep for 100 milliseconds.

[Hint: The following will be helpful in this exercise: std::thread, std::this_thread, std::mutex, std::scoped_lock,
and std::chrono::milliseconds.]

7.12 In this exercise, we consider a multithreaded program with two types of threads: a reader thread and writer
thread. The main function starts one writer thread and three reader threads. All threads share the variable value

of type int. The writer thread performs the following for v from 0 to 3 (inclusive):

(a) Set value to v.
(b) Print a message to standard output of the form “writer: v” followed by a newline character.
(c) Sleep for 1000 milliseconds.

The three reader threads should be uniquely numbered 0, 1, and 2. Each reader thread loops 20 times, perform-
ing the following in each iteration:

(a) Get the value of value.
(b) Print to standard output a message of the form “reader r: v” followed by a newline character, where r is

the number of the reader thread (i.e., 0, 1, or 2) and v is the value read from value in the previous step.
(c) Sleep for 250 milliseconds.

Use a shared mutex for synchronizing access to value. This should be done in such a way that the writer thread
uses an exclusive lock and each of the reader threads uses a shared lock. In addition, use a (regular) mutex in
order to ensure that each line of output produced by the various threads is written atomically to the stream.

Condition Variables
7.13 (a) Develop a class called IntQueue that provides a simple thread-safe FIFO queue of ints. The class should

provide the following two public members:
i. The member function get is used to remove an integer from the queue. The function blocks the

calling thread until an element is available on the queue. Then, the integer from the front of the queue
is removed and returned to the caller. This function must be thread safe.

ii. The member function put is used to insert an integer in the queue. The function inserts the given
integer in the queue. This function must be thread safe.

For the IntQueue class, use a std::list for storing the elements of the queue. [Hint: The IntQueue class
will also need a mutex (std::mutex) and a condition variable (std::condition_variable).]

(b) Write a program that consists of two threads: a producer thread and a consumer thread. These two threads
share a single IntQueue. The producer thread should loop 1000 times, performing the following steps in
each iteration:

i. Put an integer on the queue.
ii. Sleep for 1 millisecond.

Version 2021-04-01 Copyright © 2021 Michael D. Adams

56 CHAPTER 7. CONCURRENCY

After the loop completes, the thread should place the value -1 on the queue. The consumer thread should
performing the following steps:

i. Get an integer from the queue.
ii. Print the integer to standard output.

iii. If the integer is not negative, go to the first step (i.e., get another integer from the queue).

(c) Identify a potentially serious shortcoming of the IntQueue class, as specified above. In particular, consider
what happens when elements are added to and removed from the queue at different rates.

7.14 In this exercise, we consider a program whose main function starts two types of threads: producer and consumer
threads. A producer thread generates one or more integer values for use by consumer threads. A consumer
thread uses integer values generated by producer threads. In order to transfer the integer data generated by
producer threads to consumer threads, two shared (global) variables are employed (excluding synchronization
variables). The first variable data is of type int and is used to pass an integer value generated by a producer
thread to a consumer thread. The second variable ready is of type bool and is used to indicate whether data
holds a value that is ready for use by a consumer thread. The preceding two variables are shared amongst all
of the producer and consumer threads so that, in effect, these variables operate as a single shared queue with a
maximum length of one. Write a program allowing the producer and consumer threads to operate correctly for
each of the variants of this exercise listed below. Employ mutexes and condition variables, as appropriate, in
order to ensure that access to shared data is properly synchronized.

(a) First variant (a single producer thread transferring a single value to a single consumer thread). In this
variant of the exercise (which is the simplest variant), the main function should start one producer thread
and one consumer thread. The producer thread should generate a single integer value and terminate. The
consumer thread should read a single integer value, print the value to standard output, and terminate.
[Hint: Your solution should employ one mutex and one condition variable.]

(b) Second variant (a single producer thread transferring multiple values to a single consumer thread). In this
variant of the exercise, the main function should start one producer thread and one consumer thread. The
producer thread should iterate 10000 times, generating each of the values 0 to 9999. The consumer thread
should iterate 10000 times, with each iteration reading a value sent by the producer thread and printing
the value to standard output. [Hint: Your solution should employ one mutex and two condition variables.]

(c) Third variant (multiple producer threads transferring multiple values to multiple consumer threads). In this
variant of the exercise, the main function should start four producer threads and four consumer threads.
Each producer thread should iterate 10000 times, generating each of the values 0 to 9999. Each consumer
thread should iterate 10000 times, with each iteration reading a value generated by a producer thread and
printing the value to standard output.

7.15 In this exercise, a multithreaded program is developed with a shared (global) variable ready of type bool. Write
a program whose main function performs the following:

(a) Set ready to false.
(b) Start 10 threads with doWork as the function to execute, passing a different integer value (from 0 to 9) as

an argument to doWork in each case.
(c) Sleep for 3 seconds.
(d) Set ready to true.
(e) Wait for the threads to finish executing.

The function doWork has a single parameter id of type int, and when the function is executed, it simply blocks
waiting for ready to become true and then prints the value of id to standard output.

Copyright © 2021 Michael D. Adams Version 2021-04-01

7.1. EXERCISES 57

Atomics
7.16 Write a program whose main function starts one writer thread and one reader thread that behave as described

below. All of the threads of the program share a single variable data of type int (excluding synchronization
variables) that is used to transfer a single integer value from the writer thread to the reader thread. The writer
thread performs the following:

(a) Sleep for 1 second.
(b) Set data to 42.

The reader thread performs the following:

(a) Wait until the writer thread has written a value to data.
(b) Print the value of data to standard output.

Use atomics in order to synchronize access to shared data. (Do not use any mutexes or condition variables.)

7.17 Write a multithreaded program that behaves as described below. The program consists of the main thread
and four worker threads. All of the threads of the program share a single variable counter that holds an
unsigned long long value. The main function should initialize counter to zero and then start four worker
threads. Each worker thread should loop 20000 times, incrementing counter in each iteration. After the four
worker threads complete execution, the main thread should print the value of counter to standard output. Use
atomics in order to properly synchronize access to any shared variables.

7.18 Write a program with the behavior described below. The main function starts several threads, henceforth referred
to as worker threads, that generate random numbers (in a manner to be explained in more detail shortly). All of
the threads share the global variable globalMaxValue of type std::atomic<long>. This variable is used to track
the largest random number generated by all of the threads so far during program execution. To begin, the main

function should initialize globalMaxValue to std::numeric_limits<long>::min() and then start four worker
threads. Each worker thread should loop 10000 times, performing the following in each iteration:

(a) Generate a random integer r using the getRandom function given below.
(b) If r is greater than globalMaxValue then set globalMaxValue to r. In other words, update globalMaxValue

to accurately reflect the largest random number generated so far by all threads. Of course, this update must
be properly synchronized.

After iteration completes, the worker thread should output to standard output the maximum random value v that
the thread itself generated. This should be done using a message of the form “thread i: v” followed by a newline
character, where i is a unique integer identifying the thread (i.e., 0, 1, 2, and 3). After all of the worker threads
finish execution, the main thread should print to standard output the value of globalMaxValue using a message
of the form “all: v” followed by a newline character, where v is value of globalMaxValue. [Hint: In order to
update globalMaxValue, use compare_exchange_strong or compare_exchange_weak.]

All of the threads should use the getRandom function listed below in order to generate integers uniformly dis-
tributed on [0,999999]. This function is thread safe and ensures that each thread will generate a different random
number sequence.

1 #include <random>
2

3 // Get a random integer uniformly distributed on [0, 999999].
4 long getRandom()
5 {
6 thread_local static std::default_random_engine
7 gen((std::random_device()()));
8 thread_local static std::uniform_int_distribution<long>
9 dist(0, 999’999L);

10 return dist(gen);
11 }

Version 2021-04-01 Copyright © 2021 Michael D. Adams

58 CHAPTER 7. CONCURRENCY

Latches and Barriers
7.19 A latch is basic one-time synchronization mechanism that allows threads to block until a particular event occurs

a certain number of times. A latch maintains an internal count that is initialized to some nonzero value when
the latch is created. Operations are provided by a latch to allow a thread to: 1) decrement the latch’s count;
and 2) block until the latch’s count reaches zero. A latch can only be used once. In other words, the latch’s
count can never be changed again after it reaches zero. Write a latch class that represents a latch and has the
following functionality:

• the constructor takes a single integer argument which is the initial count for the latch;
• the count_down member function decrements the latch’s count;
• the wait member function blocks the calling thread until the latch’s count reaches zero;
• the count_down_and_wait member function decrements the latch’s count and then blocks the calling thread

until the latch’s count reaches zero;
• the try_wait member function returns true if the latch’s count has reached zero and false otherwise;
• the class is not movable or copyable.

Use mutexes and condition variables as appropriate.

7.20 A barrier is basic synchronization mechanism that allows threads to block until a specific number of threads are
waiting. A barrier maintains an internal thread counter that is initialized when the barrier is created. A thread
can decrement the counter and then block waiting until the counter reaches zero. When the barrier’s count
reaches zero, all threads waiting on the barrier are awoken and the barrier’s count is reset to its initial value.
Develop a barrier class that provides the functionality of a barrier and has the following characteristics:

• the constructor takes a single integer argument that is the initial count value for the barrier;
• the count_down_and_wait member function decrements the barrier’s count by one; if the resulting count

is not zero, the calling thread is blocked until the count reaches zero; otherwise, the count is reset to its
initial value and all threads waiting on the barrier are awoken.

Use mutexes and condition variables as appropriate.

Miscellany
7.21 In this exercise, we consider the testing of integers for primeness. Write a function isPrime that tests if an integer

is prime. The function should take an unsigned long argument corresponding to the integer to be tested and
return a value of type bool indicating if the integer is prime. The primality test need not be implemented in any
sophisticated way. For example, to test if the integer i is prime, an algorithm that checks for divisibility by odd
numbers from 3 to i−1 (inclusive) would suffice.

Write a multithreaded program that employs the isPrime function in order to test the following four numbers
for primeness:

(a) 4,294,967,291
(b) 4,294,967,279
(c) 4,294,967,231
(d) 4,294,967,197

(If your computer is very slow, you may alternatively consider the following four integers: 16,777,213; 16,777,199;
16,777,183; and 16,777,153.) Each of the above numbers should be tested for primeness in a separate thread
with the result of the primality test being made available to the main thread (i.e., the thread executing the main

function) via a future. From the main thread, for each number v being tested, print to standard output a message
of the form “The number v is prime.” or “The number v is not prime.”, as appropriate, followed by a newline
character. The above program is to be written using each of the two approaches listed below.

Copyright © 2021 Michael D. Adams Version 2021-04-01

7.1. EXERCISES 59

(a) First approach. Use the std::async function to launch the threads to perform the desired computation.
(b) Second approach. Use the std::packaged_task template class to assist in launching threads to perform

the desired computation. (Do not use the std::async function in this case.)

Version 2021-04-01 Copyright © 2021 Michael D. Adams

60 CHAPTER 7. CONCURRENCY

Copyright © 2021 Michael D. Adams Version 2021-04-01

61

Chapter 8

Miscellany

8.1 Exercises

Value Categories

8.1 Consider the program whose source code is given below. In each case where a line of code is followed by one or
more comments containing an expression (from that line of code), indicate whether the expression is an lvalue
or rvalue (i.e., prvalue or xvalue).

1 #include <iostream>
2 #include <vector>
3 #include <utility>
4

5 std::vector<int>&& func1(std::vector<int>& x) {
6 return static_cast<std::vector<int>&&>(x);
7 // x?
8 // static_cast<std::vector<int>&&>(x)?
9 }

10

11 int main() {
12 std::vector<int> x = {1, 2, 3};
13 std::vector<int> y;
14 int a;
15

16 for (auto i = x.begin(); i != x.end(); ++i) {
17 // x.begin()?
18 // ++i?
19 *i += 5;
20 // i?
21 // *i?
22 // *i += 5?
23 }
24

25 a = x[0];
26 // x[0]?
27 ++a; a++;
28 // ++a?
29 // a++?
30

31 y = func1(x);
32 // func1(x)?

Version 2021-04-01 Copyright © 2021 Michael D. Adams

62 CHAPTER 8. MISCELLANY

33 // y = func1(x)?
34 }

8.2 Consider the program whose source code is given below. In each case where a line of code is followed by one or
more comments containing an expression (from that line of code), indicate whether the expression is an lvalue
or rvalue (i.e., prvalue or xvalue).

1 #include <iostream>
2 #include <vector>
3 #include <utility>
4

5 std::vector<float>& half(std::vector<float>& a)
6 {
7 for (auto&& x : a) {
8 x *= 0.5f;
9 // 0.5f

10 // x *= 0.5f
11 }
12 return a;
13 }
14

15 std::vector<float> get_data()
16 {
17 return std::vector<float>{1.0f, 0.5f, 0.25f, 0.125f};
18 // std::vector<float>{1.0f, 0.5f, 0.25f, 0.125f}
19 }
20

21 int main() {
22 std::vector<float> a{1.0f, 2.0f, 3.0f};
23 std::vector<float> b(std::move(a));
24 float x = 0.0f;
25 float y = 42.0f;
26 float* p = nullptr;
27 // nullptr
28 a = std::move(b);
29 // std::move
30 // std::move(b)
31 // a = std::move(b)
32 b = {1.0f, 2.0f, 3.0f};
33 // {1.0f, 2.0f, 3.0f}
34 half(b);
35 // half(b)
36 x += (- a[0] + 2.0f * a[1] - 42) / 3.0f;
37 // 42
38 // - a[0]
39 // - a[0] + 2.0f * a[1] - 42
40 x *= y + y;
41 // y + y
42 p = a.data();
43 // a.data()
44 x = *p + 1.0f;
45 // *p
46 // x = *p + 1.0f
47 b = get_data();
48 // get_data()
49 std::cout << a[0] << ’\n’;

Copyright © 2021 Michael D. Adams Version 2021-04-01

8.1. EXERCISES 63

50 // std::cout
51 // std::cout << a[0]
52 // ’\n’
53 std::vector<float>::iterator i = a.begin();
54 std::vector<float>::iterator j;
55 ++i;
56 // ++i
57 j = i;
58 // j = i
59 i--;
60 // i--
61 std::cout << j - i << ’\n’;
62 // j - i
63 std::cout << *i << "\n";
64 // *i
65 // "\n"
66 }

Overload Resolution
8.3 In the program whose source code is given below, the overloaded function func is invoked several times. For

each function invocation, state which overload is called.

1 #include <utility>
2 #include <string>
3

4 void func(std::string&);
5 void func(const std::string&);
6 void func(std::string&&);
7 void func(const std::string&&);
8

9 const std::string getConstString()
10 {
11 return std::string("Bjarne");
12 }
13

14 int main()
15 {
16 const std::string cs("Hello");
17 std::string s = cs;
18 func(cs);
19 func(s);
20 func(s + "!");
21 func(s + s);
22 func(std::move(s));
23 func(getConstString());
24 }

8.4 Consider the program with the source code listing shown below. The function main makes several calls to the
overloaded functions func1 and func2. Determine which overload is invoked in each case and, in the process of
doing so, determine the output that the program will produced when executed.

1 #include <complex>
2 #include <iostream>
3

Version 2021-04-01 Copyright © 2021 Michael D. Adams

64 CHAPTER 8. MISCELLANY

4 typedef std::complex<double> Complex;
5

6 const Complex getConst()
7 {
8 return Complex(1.0, 2.0);
9 }

10

11 void func1(const Complex& a)
12 {
13 std::cout << "func1(const Complex&) called\n";
14 }
15

16 void func1(Complex& a)
17 {
18 std::cout << "func1(Complex&) called\n";
19 }
20

21 void func1(Complex&& a)
22 {
23 std::cout << "func1(Complex&&) called\n";
24 }
25

26 void func2(const Complex& a)
27 {
28 std::cout << "func2(const Complex&) called\n";
29 }
30

31 void func2(const Complex&& a)
32 {
33 std::cout << "func2(const Complex&&) called\n";
34 }
35

36 int main()
37 {
38 const Complex j(0.0, 1.0);
39 Complex a(1.0, 1.0);
40 const Complex* p = &j;
41

42 func1(a);
43 func1(j);
44 func1(a * a);
45 func1(getConst());
46 func1(*p);
47

48 func2(a + a);
49 func2(j);
50 func2(getConst());
51 }

References, Reference Binding, and Reference Collapsing
8.5 For each reference binding operation in the code fragment below, state whether the operation is legal, and if not

why.

1 double getDouble();
2 const double cd = 42.0;

Copyright © 2021 Michael D. Adams Version 2021-04-01

8.1. EXERCISES 65

3 double d = cd;
4

5 double& lr1 = d;
6 double& lr2 = cd;
7 double& lr3 = getDouble();
8

9 const double& lrc1 = d;
10 const double& lrc2 = cd;
11 const double& lrc3 = 42.0;
12

13 double&& rr1 = d;
14 double&& rr2 = cd;
15 double&& rr3 = getDouble();
16

17 const double&& rrc1 = d;
18 const double&& rrc2 = cd;
19 const double&& rrc3 = 42.0;

8.6 For each of the identifiers T1, T2, . . ., T16, state the type to which the identifier corresponds.

1 typedef char& LvRefChar;
2 typedef const char& LvRefConstChar;
3 typedef char&& RvRefChar;
4 typedef const char&& RvRefConstChar;
5

6 typedef LvRefChar& T1;
7 typedef const LvRefChar& T2;
8 typedef LvRefChar&& T3;
9 typedef const LvRefChar&& T4;

10

11 typedef LvRefConstChar& T5;
12 typedef const LvRefConstChar& T6;
13 typedef LvRefConstChar&& T7;
14 typedef const LvRefConstChar&& T8;
15

16 typedef RvRefChar& T9;
17 typedef const RvRefChar& T10;
18 typedef RvRefChar&& T11;
19 typedef const RvRefChar&& T12;
20

21 typedef RvRefConstChar& T13;
22 typedef const RvRefConstChar& T14;
23 typedef RvRefConstChar&& T15;
24 typedef const RvRefConstChar&& T16;

8.7 In the code fragment below, the template function func is invoked several times. For each invocation of func,
state the type deduced for the template parameter T as well as the type of the function parameter p.

1 #include <utility>
2

3 // ... (includes declaration of func2)
4

5 template <class T>
6 void func(T&& p)
7 {

Version 2021-04-01 Copyright © 2021 Michael D. Adams

66 CHAPTER 8. MISCELLANY

8 func2(std::forward<T>(p));
9 }

10

11 int main()
12 {
13 const double cd = 42.42;
14 double d = cd;
15

16 func(d);
17 func(cd);
18 func(d + d);
19 func(std::move(d));
20 }

Temporaries
8.8 Consider the program with the source listing given below. For the purposes of this exercise, assume that no

optimization is performed by the compiler. Identify each temporary object that is needed during the execution
of the the main function. Only temporary objects local to the main function need be considered. For each
temporary object, identify the line number where it is created and explain why it is needed.

1 int sqr(int x)
2 {
3 return x * x;
4 }
5

6 int main()
7 {
8 int x = 0;
9 int y;

10 int z;
11

12 y = ++x;
13 x = y++;
14 z = x + y;
15 x = sqr(z) + 42;
16 }

8.9 Consider the program with the source listing given below. For the purposes of this exercise, assume that no
optimization is performed by the compiler. Identify each temporary object of type counter in the main function
that results from the code on the lines marked by a comment /* ??? */. For each temporary object, identify
the line of code where the temporary object is created and provide a brief description of the temporary object
along with an explanation of why it is required.

1 #include <iostream>
2

3 // A counter class.
4 class counter {
5 public:
6

7 // The counter value type.
8 using value_type = std::size_t;
9

10 counter(value_type x = value_type(0)) : value_(x) {}

Copyright © 2021 Michael D. Adams Version 2021-04-01

8.1. EXERCISES 67

11

12 counter(const counter& x) = default;
13 counter& operator=(const counter& x) = default;
14 ˜counter() = default;
15

16 // Increment the counter.
17 counter& operator++()
18 {
19 ++value_;
20 return *this;
21 }
22

23 // Increment the counter.
24 counter operator++(int)
25 {
26 counter old(*this);
27 ++value_;
28 return old;
29 }
30

31 // Add the value of another counter to the counter.
32 counter& operator+=(const counter& x)
33 {
34 value_ += x.value_;
35 return *this;
36 }
37

38 // Get the value of the counter.
39 value_type get_value() const
40 {
41 return value_;
42 }
43

44 private:
45

46 // The counter value.
47 value_type value_;
48 };
49

50 // Add two counters.
51 counter operator+(const counter& x, const counter& y)
52 {
53 return counter(x) += y;
54 }
55

56 // Output a counter to a stream.
57 std::ostream& operator<<(std::ostream& out, const counter& x)
58 {
59 return out << x.get_value();
60 }
61

62 int main() {
63 counter x;
64 counter y;
65 counter z;
66 // ... (code omitted here changes x, y, and z)
67 z = x + y; /* ??? */

Version 2021-04-01 Copyright © 2021 Michael D. Adams

68 CHAPTER 8. MISCELLANY

68 z = z + z; /* ??? */
69 y = ++z; /* ??? */
70 z = y++; /* ??? */
71 x = z; /* ??? */
72 std::cout << x << ’ ’ << y << ’ ’ << z << ’\n’;
73 }

Copying, Moving, and Copy Elision
8.10 Copy and move constructors employ pass by reference. Explain why this must be so (i.e., why pass by value

cannot be used).

8.11 Consider the program whose source code is given below. In the main function, move/copy construction and
move/copy assignment for the SharedInt class is performed in several places. Identify each of these places,
specifically indicating whether a copy or move is employed. Assume that the compiler does not perform any
optimization.

1 #include <iostream>
2 #include <memory>
3

4 class SharedInt
5 {
6 public:
7 // default constructor
8 SharedInt(int i = 0) : p_(std::make_shared<int>(i)) {}
9

10 // copy constructor
11 SharedInt(SharedInt& i) : p_(i.p_) {}
12

13 // move constructor
14 SharedInt(SharedInt&& i) : p_(std::move(i.p_)) {}
15

16 // copy assignment operator
17 SharedInt& operator=(const SharedInt& i)
18 {
19 if (this != &i) {
20 p_ = i.p_;
21 }
22 return *this;
23 }
24

25 // move assignment operator
26 SharedInt& operator=(SharedInt&& i)
27 {
28 p_ = std::move(i.p_);
29 return *this;
30 }
31

32 // get the underlying integer value
33 int get() const
34 {
35 return *p_;
36 }
37

38 // compute the square

Copyright © 2021 Michael D. Adams Version 2021-04-01

8.1. EXERCISES 69

39 SharedInt square() const
40 {
41 return SharedInt((*p_) * (*p_));
42 }
43

44 // increment
45 SharedInt& operator++()
46 {
47 ++(*p_);
48 return *this;
49 }
50 private:
51 // shared pointer to integer
52 std::shared_ptr<int> p_;
53 };
54

55 int main()
56 {
57 SharedInt x(2);
58 SharedInt y(x.square());
59 SharedInt z(x);
60 SharedInt w(std::move(y));
61 y = std::move(w);
62 w = y.square();
63 x = y;
64 ++z;
65 std::cout << w.get() << " " << x.get() << " " << y.get() << " " <<
66 z.get() << "\n";
67 }

8.12 Identify all copy and move operations (i.e., copy construction, move construction, copy assignment, and move
assignment), if any, associated with each line of code marked by a comment “???” in the program below. Be
sure to distinguish between cases where a copy/move operation is: 1) required with certainty (since it cannot
possibly be elided); and 2) may be required (depending on whether or not it can be elided). Also, identify cases
where a copy/move operation is guaranteed to be elided.

1 #include <cstdlib>
2 #include <utility>
3

4 class Widget {
5 public:
6 Widget(int value = 0) : value_(value) {}
7 ˜Widget() = default;
8 Widget(Widget&&) = default;
9 Widget(const Widget&) = default;

10 Widget& operator=(Widget&&) = default;
11 Widget& operator=(const Widget&) = default;
12 int get_value() const {return value_;}
13 private:
14 int value_;
15 };
16

17 Widget make_widget_1()
18 {
19 if (std::rand() % 2) {
20 return Widget(1);

Version 2021-04-01 Copyright © 2021 Michael D. Adams

70 CHAPTER 8. MISCELLANY

21 } else {
22 return Widget(0);
23 }
24 }
25

26 Widget make_widget_2(bool b)
27 {
28 Widget w(0);
29 Widget x(1);
30 if (b) {
31 return x;
32 } else {
33 return w;
34 }
35 }
36

37 int func_1(Widget w)
38 {
39 return w.get_value();
40 }
41

42 int func_2(Widget&& w)
43 {
44 return w.get_value();
45 }
46

47 int main() {
48 Widget a;
49 Widget b(a); // ???
50 Widget c = a; // ???
51 Widget d(std::move(c)); // ???
52 Widget e = std::move(d); // ???
53 Widget f(make_widget_1()); // ???
54 Widget g(make_widget_2(true)); // ???
55 c = a; // ???
56 b = std::move(c); // ???
57 a = make_widget_1(); // ???
58 a = make_widget_2(true); // ???
59 func_1(a); // ???
60 func_1(std::move(a)); // ???
61 func_1(make_widget_1()); // ???
62 func_2(std::move(b)); // ???
63 }

8.13 Consider the get_data function in the source listing shown below. The particular use of std::move in the return
statement of this function is problematic. Explain why such a usage of std::move is problematic and how to fix
it.

1 #include <utility>
2 #include <vector>
3

4 std::vector<float> get_data()
5 {
6 return std::move(std::vector<float>{1.0f, 0.5f, 0.25f, 0.125f});
7 }

Copyright © 2021 Michael D. Adams Version 2021-04-01

8.1. EXERCISES 71

8.14 Consider the code for the make_set, make_vector, and make_mutexes functions in the source listing below. In
each case, the function is written in such a way that copy elision is not mandatory. This means that, for each
of these functions, propagating the return value back to the caller may require a copy/move operation. For
each function, explain why copy elision is not mandatory. Then, rewrite the function so that copy elision is
mandatory, thus, eliminating any possibility of using a copy/move operation to propagate the return value back
to the caller.

1 #include <list>
2 #include <mutex>
3 #include <set>
4 #include <utility>
5 #include <vector>
6

7 std::set<int> make_set()
8 {
9 std::set<int> s{1, 2, 4, 8};

10 return s;
11 }
12

13 std::vector<int> make_vector(bool flag)
14 {
15 std::vector<int> a{1, 2, 3, 4};
16 std::vector<int> b{5, 6, 7, 8};
17 if (flag) {
18 return a;
19 } else {
20 return b;
21 }
22 }
23

24 std::list<std::mutex> make_mutexes(int n)
25 {
26 return std::move(std::list<std::mutex>(n));
27 }

8.15 For each line of code marked by a comment “???” in the program below, identify all copy and move operations
(i.e., copy construction, move construction, copy assignment, and move assignment) associated with objects
of type std::vector<float> (if any). Be sure to distinguish between cases where a copy/move operation is:
1) required with certainty (since it cannot possibly be elided); and 2) may be required (depending on whether
or not it can be elided). Also, identify cases where a copy/move operation is guaranteed to be elided (i.e.,
mandatory copy elision).

1 #include <algorithm>
2 #include <functional>
3 #include <random>
4 #include <utility>
5 #include <vector>
6

7 std::vector<float> make_vector_1()
8 {
9 return std::vector<float>(42, 42.0f);

10 }
11

12 std::vector<float> make_vector_2()
13 {
14 std::default_random_engine gen;

Version 2021-04-01 Copyright © 2021 Michael D. Adams

72 CHAPTER 8. MISCELLANY

15 std::uniform_real_distribution<float> dist(0.0f, 10.0f);
16 std::vector<float> a(10);
17 std::generate(a.begin(), a.end(), [&](){return dist(gen);});
18 return a;
19 }
20

21 std::vector<float> make_vector_3()
22 {
23 return std::move(std::vector<float>{1.0f, 2.0f, 3.0f, 4.0f});
24 }
25

26 float sum_1(const std::vector<float>& a)
27 {
28 return std::accumulate(a.begin(), a.end(), 0.0f);
29 }
30

31 float sum_2(std::vector<float> a)
32 {
33 return std::accumulate(a.begin(), a.end(), 0.0f);
34 }
35

36 std::vector<float> a(make_vector_1()); // ???
37 std::vector<float> b(make_vector_2()); // ???
38 std::vector<float> c(make_vector_3()); // ???
39

40 int main()
41 {
42 std::vector<float> v(a); // ???
43 std::vector<float> w(std::move(c)); // ???
44 std::vector<float> x(make_vector_1()); // ???
45 std::vector<float> y(make_vector_2()); // ???
46 std::vector<float> z(make_vector_3()); // ???
47 v = std::move(b); // ???
48 w = v; // ???
49 w = make_vector_1(); // ???
50 w = make_vector_2(); // ???
51 w = make_vector_3(); // ???
52 float s;
53 s = sum_1(make_vector_1()); // ???
54 s = sum_2(make_vector_1()); // ???
55 }

Algorithms and Data Structures
8.16 A binary tree is used to represent a set of integers. The partial source code for this tree type is shown below. A

node in the tree is represented using the Node type. A function find_element is provided. This function finds a
node that holds a specified value v by searching in a given node n and all of its descendants. If a node containing
the desired value is found, a pointer to the node is returned; otherwise, a null pointer is returned. (To search the
entire tree, the value of n would simply be chosen as the root node of the tree.)

1 // Tree node type.
2 struct Node {
3 Node* parent; // pointer to parent
4 Node* left; // pointer to left child
5 Node* right; // pointer to right child

Copyright © 2021 Michael D. Adams Version 2021-04-01

8.1. EXERCISES 73

6 int value; // value
7 };
8

9 // Find tree node that contains specified element.
10 Node* find_element(Node* n, int v) {
11 if (v == n->value) {
12 // We have found the desired element.
13 return n;
14 } else if (v < n->value) {
15 // The element if present must be in the left subtree.
16 return n->left ? find_element(n->left, v) : nullptr;
17 } else {
18 // The element if present must be in the right subtree.
19 return n->right ? find_element(n->right, v) : nullptr;
20 }
21 }

(a) If the tree is balanced and contains n nodes, determine the asymptotic time complexity of find_element
(as a function of n). (A tree is balanced if the depth of each leaf node is O(logn).)

(b) Determine the time complexity of the function if the tree contains n nodes but is not balanced.

[Hint: In both parts of this exercise, simply consider the number of nodes in the tree that must be visited in the
worst case.]

8.17 Consider the function sum_lower_triangle whose source code is given below. This function sums the elements
in the lower triangular part of an n×n matrix and returns the result.

(a) Determine the asymptotic time complexity of this function (where the problem size is n).

(b) Determine the asymptotic space complexity of this function (where the problem size is n).

1 template <int n, class T>
2 T sum_lower_triangle(const T (&a)[n][n]) {
3 T sum(0);
4 for (int i = 0; i < n; ++i) {
5 for (int j = 0; j <= i; ++j) {
6 sum += a[i][j];
7 }
8 }
9 return sum;

10 }

8.18 Consider the two functions reverse_array_1 and reverse_array_2 whose source code is given below. Each of
these functions reverses the elements in a one-dimensional array.

1 #include <utility>
2

3 template <class T>
4 void reverse_array_1(T* a, int n)
5 {
6 for (int i = 0; i < n / 2; ++i) {
7 std::swap(a[i], a[n - 1 - i]);
8 }
9 }

Version 2021-04-01 Copyright © 2021 Michael D. Adams

74 CHAPTER 8. MISCELLANY

1 #include <vector>
2

3 template <class T>
4 void reverse_array_2(T* a, int n)
5 {
6 // Copy the array elements into a vector.
7 std::vector<T> v(&a[0], &a[n]);
8 // Copy the elements from the vector to the array in reverse order.
9 for (int i = 0; i < n; ++i) {

10 a[i] = v[n - 1 - i];
11 }
12 }

(a) Find the asymptotic time and asymptotic space complexities of reverse_array_1. State any assumptions
made in your answer.

(b) Find the asymptotic time and asymptotic space complexities of reverse_array_2. State any assumptions
made in your answer.

(c) Which function would be preferable to use, based on asymptotic complexity analysis? Explain your
answer.

8.19 Consider the two functions factorial_1 and factorial_2 whose source code is given below. Each of these
functions computes a factorial.

1 unsigned long long factorial_1(unsigned int n)
2 {
3 unsigned long long result = 1;
4 for (auto i = n; i > 1; --i) {
5 result *= i;
6 }
7 return result;
8 }

1 unsigned long long factorial_2(unsigned int n)
2 {
3 if (n >= 2) {
4 return n * factorial_2(n - 1);
5 } else {
6 return 1;
7 }
8 }

(a) Find the asymptotic time and asymptotic space complexities of factorial_1.

(b) Find the asymptotic time and asymptotic space complexities of factorial_2.

(c) Which of these two functions would be preferable to use based on asymptotic complexity analysis? Ex-
plain your answer.

8.20 Consider the function template recursive_sum whose source code is given below. This function template com-
putes the sum of the n elements of type T stored in the array pointed to by first.

1 template <class T>
2 T recursive_sum(const T* first, std::size_t n)
3 {
4 if (n >= 2) {

Copyright © 2021 Michael D. Adams Version 2021-04-01

8.1. EXERCISES 75

5 std::size_t m = n / 2;
6 return recursive_sum(first, m) +
7 recursive_sum(first + m, n - m);
8 } else {
9 return *first;

10 }
11 }

(a) Determine the asymptotic time complexity of this function, where the problem size is n. (Assume that, for
elements of type T, the addition operation is a constant-time algorithm.)

(b) Determine the asymptotic space complexity of this function, where the problem size is n.

8.21 The Hamming weight of an integer is the number of one digits in the binary representation of the number.
Consider the following function for computing the Hamming weight of an integer.

1 unsigned int hamming_1(unsigned int x)
2 {
3 unsigned int result = 0;
4 while (x != 0) {
5 // Is the least significant bit nonzero?
6 if ((x & 1) != 0) {
7 // One more nonzero bit has been found.
8 ++result;
9 }

10 // Shift the bits in the value right by one position.
11 x >>= 1;
12 }
13 return result;
14 }

(a) Determine the asymptotic time and asymptotic space complexities of the hamming_1 function, where the
input problem size is the number n of bits in the integer whose Hamming weight is to be computed.

(b) As it turns out, the Hamming weight of an integer can be computed with a lower asymptotic time com-
plexity than that achieved by hamming_1. Write a function hamming_2 that implements such an algorithm.
Identify the advantages and disadvantages of the new algorithm (used by hamming_2) relative to the original
one (used by hamming_1).

(c) Comment on the reasonableness of using asymptotic analysis in situations like the one in this exercise.

8.22 Explain the difference between worst-case and amortized complexity. Give an example of a situation in which
one might care more about: 1) worst-case complexity (relative to amortized complexity); 2) amortized com-
plexity (relative to worst-case complexity).

8.23 Three parts A,B,C of a program have been identified as potential bottlenecks. Measurements have shown that
the percentage of time spent in each of these parts of the code is as follows:

Part Fraction of Time

A 5%
B 50%
C 10%

It is believed that through additional optimization the speedup achievable for each part of the code is as follows:
Part Speedup Factor

A 10
B 1.05
C 3

Version 2021-04-01 Copyright © 2021 Michael D. Adams

76 CHAPTER 8. MISCELLANY

There is only enough time before the next product release to optimize one of the three parts of the code. Which
one should by optimized? Justify your answer.

8.24 In each of the following scenarios, identify the type of container that should be used to store the collection in
question, and justify your choice, being careful to state any important assumptions made. (The justification of
your choice is critically important, since more than one correct answer is possible.)

(a) A program needs to maintain a large set of integers using a container. The complete contents of the
container are known at the time that the container is first created and do not change subsequently. The
container is very frequently searched for particular values. The ability to iterate over the container ele-
ments in sorted order is frequently needed.

(b) A program needs to maintain a large set of integers using a container. The container contents are modified
very frequently during program execution by inserting and removing elements. The values to be inserted
in, and removed from, the container follow no particular pattern. The container is frequently searched for
particular values. The ability to iterate over the container elements in sorted order is frequently needed.

(c) A program needs to maintain a large set of real numbers using a container. The maximum size of this set is
known at the time that the container is created. The container contents are modified very frequently during
program execution by inserting and removing elements. While the values inserted into the container follow
no particular pattern, each element removed from the container is always the one with the largest value.

8.25 Some container types have the property that they provide stable element references. Some container types have
the property that they provide stable iterators. For each of these properties, explain what the property means
and why one might care whether a container type has the property. Also, give an example of a container that
has the property and one that does not.

8.26 Explain why one might want to separate the operations of memory allocation and construction. Similarly,
explain why one might want to separate the operations of destruction and memory deallocation.

8.27 Identify two advantages that array-based containers have over node-based containers.

8.28 Discuss the trade offs between (i.e., relative advantages and disadvantages of) array-based and node-based
implementations of a stack.

8.29 In each of the following scenarios, indicate whether an intrusive or nonintrusive container should be used to
store each collection in question, and justify your choice, being careful to state any important assumptions
made.

(a) A operating system kernel represents a process (i.e., a thread plus the resources needed for its execution)
using a type called process. The process type has a very substantial amount of state (and is neither
movable nor copyable). The operating system must maintain two containers. The first holds all existing
processes (i.e., the process list). The second holds all processes that are ready to run (i.e., the scheduling
queue), which is used for process scheduling.

(b) A program needs to maintain a collection of mutexes of type std::mutex in a container. Due to other
design constraints, none of the nonintrusive containers that are available for use provide stable references.

(c) A program needs to maintain a collection of mutexes of type std::mutex in a container. Nonintrusive
containers are available that allow in-place construction and provide stable references. The mutexes only
need to exist inside the container.

Copyright © 2021 Michael D. Adams Version 2021-04-01

8.1. EXERCISES 77

8.30 Draw the control-flow graph for the evaluation of each of the boolean expressions given below, assuming that
only built-in operators are used.

(a) a || (b && c)

(b) a && (b || c)

(c) (a || b) && (c || d)

(d) (a && b) || (c && d)

(e) (a || b) && c

(f) (a && b) || c

8.31 Draw the control-flow graph for each of the functions defined in the source listings below.

(a)

1 int abs(int x)
2 {
3 return (x < 0) ? -x : x;
4 }

(b)

1 // Precondition: min_value <= max_value
2 template <class T>
3 inline T clip(const T& x, const T& min_value, const T& max_value)
4 {
5 if (x < min_value) {
6 return min_value;
7 } else if (x > max_value) {
8 return max_value;
9 }

10 return x;
11 }

(c)

1 // Computes the ceiling of log base 2 of x (i.e., ceil(log2(x))).
2 // Precondition: x > 0
3 int ceilLog2(int x)
4 {
5 int n = 0;
6 --x;
7 while (x > 0) {
8 x >>= 1;
9 ++n;

10 }
11 return n;
12 }

(d)

1 int hamming_weight(unsigned int n)
2 {
3 int weight = 0;
4 while (n) {
5 if (n & 1) {
6 ++weight;
7 }
8 n >>= 1;

Version 2021-04-01 Copyright © 2021 Michael D. Adams

78 CHAPTER 8. MISCELLANY

9 }
10 return weight;
11 }

(e)

1 #include <tuple>
2 #include <limits>
3

4 std::pair<unsigned int, bool> reverse_digits(unsigned int x)
5 {
6 unsigned int result = 0;
7 while (x) {
8 unsigned int d = x % 10;
9 if (result > (std::numeric_limits<unsigned int>::max() - d) / 10) {

10 return {0, false};
11 }
12 result = result * 10 + d;
13 x /= 10;
14 }
15 return {result, true};
16 }

(f)

1 #include <limits>
2 #include <tuple>
3

4 // T is a signed integral type
5 template <class T>
6 std::pair<T, bool> safe_signed_multiply(T x, T y)
7 {
8 constexpr auto min = std::numeric_limits<T>::min();
9 constexpr auto max = std::numeric_limits<T>::max();

10 if (x > 0) {
11 if (y > 0) {
12 // x and y are both positive
13 if (x > max / y) {
14 return {max, false};
15 }
16 } else {
17 // x is positive, y is nonpositive
18 if (y < min / x) {
19 return {min, false};
20 }
21 }
22 } else {
23 if (y > 0) {
24 // x is nonpositive, y is positive
25 if (x < min / y) {
26 return {min, false};
27 }
28 } else {
29 // x and y are both nonpositive
30 if (x != 0 && y < max / x) {
31 return {max, false};
32 }
33 }

Copyright © 2021 Michael D. Adams Version 2021-04-01

8.1. EXERCISES 79

34 }
35 return {x * y, true};
36 }

Caches and Virtual Memory

8.32 A 4-way set associative cache has a size of 32 KB and a block size of 64 bytes. The number of bits in an address
is 32. Determine the number of bits for the tag, index, and block offset.

8.33 Consider a 2-way set associative cache with a 14-bit tag, 8-bit index, and 4-byte block size. Suppose that all of
the valid cache entries are as shown in the table.

Data
Byte Byte Byte Byte

Tag Index 002 012 102 112

010101010111102 000000002 DE16 AD16 BE16 EF16
111101101101112 000000002 ED16 DA16 EB16 FE16
010101010111102 000000012 A016 A116 A216 A316
111111110000002 000000012 0A16 1A16 2A16 3A16
010101010111102 011111102 9016 9116 9216 9316
111110010111102 011111102 0916 1916 2916 3916
010101010111102 011111112 B016 B116 B216 B316
111100001111002 011111112 0B16 1B16 2B16 3B16
010101010111102 100000002 C016 C116 C216 C316
011001100010112 100000002 0C16 1C16 2C16 3C16
010101010111102 100000012 D016 D116 D216 D316
110101000101102 100000012 0D16 1D16 2D16 3D16
010101010111102 111111112 E016 E116 E216 E316
111101101011112 111111112 0E16 1E16 2E16 3E16

(a) Determine the number of blocks in the cache.

(b) Determine the number of blocks in memory.

(c) Determine the cached value for the byte at address 557A0216 if present.

(d) Determine the cached value for the byte at address FFFFFF16 if present.

8.34 Consider the code fragments A and B, as given in Listings 8.1 and 8.2, where the variable a is declared as

double a[1024][1024];

Determine the number of cache misses that occurs during the execution of each of the code fragments A and B,
subject to the following assumptions:

• the system has a 8 KB direct-mapped cache with a block size of 64 bytes;
• the cache is initially empty;
• the variables sum, i, and j are kept in registers for the duration of the code fragment execution, so that

accesses to these variables do not impact caching;
• an object of type double requires 8 bytes of storage (i.e., sizeof(double) is 8);
• the array a is aligned on a 64-byte boundary; and
• while the code fragment is running, no other code executes.

Version 2021-04-01 Copyright © 2021 Michael D. Adams

80 CHAPTER 8. MISCELLANY

Listing 8.1: Code fragment A

1 sum = 0.0;
2 for (int i = 0; i < 1024; ++i) {
3 for (int j = 0; j < 1024; ++j) {
4 sum += a[i][j];
5 }
6 }

Listing 8.2: Code fragment B

1 sum = 0.0;
2 for (int i = 0; i < 1024; ++i) {
3 for (int j = 0; j < 1024; ++j) {
4 sum += a[j][i];
5 }
6 }

8.35 Consider the code fragment whose source listing is given below, where n is a compile-time constant (of type
int). For each of the following values for n, determine the cache miss rate during the execution of the given
code fragment: (a) 2048 and (b) 2064. For the purposes of this analysis, assume that:

• the cache is 8 KiB in size and 2-way set associative and has a block size of 64 bytes;
• the cache has a write-hit policy of write back, a write-miss policy of write allocate, and a replacement

policy of LRU;
• the cache is initially empty;
• an object of type float requires 4 bytes of storage (i.e., sizeof(float) is 4);
• the array a is aligned on a 4096-byte boundary;
• the arrays a, b, and c are stored contiguously in memory in that order (with no padding between them);
• the variables i and j are kept in registers for the duration of the code fragment execution, so that accesses

to these variables do not impact caching;
• while the code fragment is executing, no other code executes; and
• the compiler does not apply any code transformations (e.g., optimizations) that would change the order of

memory accesses from what is shown in the source listing.

Listing 8.3: Variable declarations for code fragment

1 constexpr int n = /* ... */;
2 float a[4][n];
3 float b[4][n];
4 float c[4][n];

Listing 8.4: Code fragment

1 for (int i = 0; i < n; ++i) {
2 for (int j = 0; j < 4; ++j) {
3 c[j][i] = a[j][i] + b[j][i];
4 }
5 }

8.36 Consider a system with 24-bit virtual addresses, 16-bit physical addresses, and a 1 KB page size. Determine the
number of virtual and physical pages, and the number of bits in a virtual page number, physical page number,
and page offset.

Copyright © 2021 Michael D. Adams Version 2021-04-01

8.1. EXERCISES 81

8.37 Consider a system where the sizes of a virtual page number (VPN), physical page number (PPN), and page
offset (PO) are 14, 6, and 10 bits, respectively. Suppose that the page table contains the following information
for address translation and protection:

VPN PPN Flags
000000000000012 0010002 present, readable, not writable, executable
000000000000102 0010012 present, readable, not writable, not executable
000000000000112 0010102 present, readable, writable, not executable
111111111111002 0011112 present, readable, writable, not executable
111111111111012 0011102 present, readable, writable, not executable
111111111111102 0011012 present, readable, writable, not executable
111111111111112 0011002 present, readable, writable, not executable

Determine the result of the address translation and protection check for each of the following accesses to mem-
ory:

(a) a data read (1 byte) at address 0000000000000000000000002;
(b) a data write (2 bytes) at address 0000000000001100110011002; and
(c) an instruction fetch (2 bytes) at address 1111111111111100000000002.

Containers and Iterators
8.38 Develop a template class Vector that represents a one-dimensional array and is parameterized on the type T of

the elements in the vector. The class should use operator new and operator delete for memory allocation.
Provide iterator and const_iterator types with the usual functionality along with and begin and end member
functions.

8.39 Develop a template class List that represents a doubly-linked list and is parameterized on the type T of the
elements in the list. For example, List<int> and List<double> would correspond to lists of ints and
doubles, respectively. The class should use operator new and operator delete for memory allocation.
The List class should provide type members for mutating and nonmutating iterator types called iterator and
const_iterator, respectively. The List class should support the basic operations associated with a list, includ-
ing:

(a) create an empty list (via a default constructor);
(b) copy a list (via a constructor and assignment operator);
(c) move a list (via a constructor and assignment operator);
(d) query the number of elements in the list (size member function);
(e) get an iterator corresponding to the first element in the list (begin member function);
(f) get an iterator corresponding to the end position (i.e., after the last element) in the list (end member

function);
(g) add a single element to the list (by copying) (insert member function);
(h) remove a single element from the list (erase member function);
(i) clear the list (i.e., delete all elements from the list) (clear member function);
(j) swap the contents of two lists (swap member function);
(k) splice a range of elements from one list to another (splice member function);

The iterator types (List::iterator and List::const_iterator) should provide the basic operations that one
would expect of a bidirectional iterator type (e.g., copy, equality, inequality, increment, decrement, and derefer-
ence). The functionality provided by the List class should match the behavior of the corresponding functionality
in the std::list class. For more information about the std::list class, see:

• http://en.cppreference.com/w/cpp/container/list

Note that the value returned by the end member function must not change as elements are added to, or removed
from, the list. (Hint: This behavior can be guaranteed through the use of a dummy node, sometimes called a
sentry node. The iterator returned by end is then associated with this dummy node.)

Version 2021-04-01 Copyright © 2021 Michael D. Adams

http://en.cppreference.com/w/cpp/container/list

82 CHAPTER 8. MISCELLANY

8.40 Develop a template class Stack that represents a stack and is parameterized on the type T of the elements in
the stack. So, for example, Stack<int> would be a stack of ints. The class should use operator new and
operator delete for memory allocation. The Stack class should provide the basic operations associated
with a stack, including:

(a) default construct a stack;
(b) copy a stack;
(c) move a stack;
(d) test if the stack is empty (empty);
(e) query the number of elements on the stack (size);
(f) push an element on the stack (push); and
(g) pop an element off the stack if the stack is not empty and provide the popped value (pop).

Miscellany

8.41 In this exercise, a container class representing a collection of key-value pairs is developed. Each item in the
class can be either marked or unmarked. The class allows (efficient) iteration over all items in the container as
well as only those items that are marked. The class is called Collection. The items in the collection are of type
Item. The Collection and Item classes must be placed in the namespace ra.

The Item class has the following public data members:

• name, a string of type std::string which holds the name of the item
• value, a float that holds some real value associated with the item
• any members needed to maintain links for the two linked lists into which an item may be inserted (each

item can be potentially be inserted into multiple linked lists simultaneously)

No explicit boolean value can be used to track whether an items is marked. This must be determined by the
state of the links for the relevant linked list. The Item class is neither copyable nor movable.

The Collection class is neither copyable nor movable. The Collection class provides the following public type
members:

• item_type, which is an alias for the type used to represent items in the collection
• all_iterator and all_const_iterator, which are mutating and non-mutating iterator types used to iterate

over all items in the container in the order of insertion
• marked_iterator and all_marked_iterator, which are mutating and non-mutating iterator types used to

iterate over all marked items in the container

The Collection class provides the following public function members:

• a default constructor, which creates an empty collection
• a destructor
• make_item, a static member function (for convenience) that can be used to create a default-constructed
item_type object on the heap; this function takes no parameters and returns a pointer to the created object

• destroy_item (for convenience) that can be used to destroy an object created with make_item; this function
takes single parameter which is a reference to item_type object to be destroyed.

• add_item that allows a new item to be inserted in the collection; this function take a reference to an
item_type object; no value is returned by the function

• all_begin and all_end, which are overloaded and return all_iterator and all_const_iterator type
iterator, which allow iteration over all items in the collection

• marked_begin and marked_end, which are overloaded and return marked_iterator and marked_const_iterator

type iterators, which allow iteration over marked items in the collection
• is_marked which tests if an item is marked; this function takes a single parameter that is a reference to

a item_type object; the function has return type bool; if the item is marked, true is returned; otherwise,
false is returned

Copyright © 2021 Michael D. Adams Version 2021-04-01

8.1. EXERCISES 83

• mark, which marks an item if it is not currently marked returning true if the marking was performed and
false otherwise; this function takes a single parameter that is a reference to a item_type object (which, of
course, must be in the collection)

• unmark, which unmarks an item if it is currently marked returning true if the unmarking was performed
and false otherwise; this function takes a single parameter that is a reference to a item_type object (which,
of course, must be in the collection)

The Collection type is neither copyable nor movable. Use the boost::intrusive::list type for intrusive
linked lists. This minimal interface for the Collection class should allow the code in the listing below to
function correctly.

1 #include <iostream>
2 #include "multilist_1.hpp"
3

4 int main() {
5

6 ra::Collection c;
7

8 // Read in name-value pairs and mark every other pair.
9 std::string name;

10 float value;
11 std::size_t count = 0;
12 while (std::cin >> name >> value) {
13 ra::Collection::item_type* p = c.make_item();
14 p->name = name;
15 p->value = value;
16 c.add_item(*p);
17 if (!(count % 2)) {
18 c.mark(*p);
19 }
20 ++count;
21 }
22 if (!std::cin.eof()) {
23 std::cerr << "input error\n";
24 return 1;
25 }
26

27 // Print all items in the collection.
28 std::cout << "all items:\n";
29 for (auto i = c.all_begin(); i != c.all_end(); ++i) {
30 std::cout << i->name << ’ ’ << i->value << ’\n’;
31 }
32

33 // Print only the marked items in the collection.
34 std::cout << "marked items:\n";
35 for (auto i = c.marked_begin(); i != c.marked_end(); ++i) {
36 std::cout << i->name << ’ ’ << i->value << ’\n’;
37 }
38

39 std::cout.flush();
40 return std::cout ? 0 : 1;
41 }

The above program would take input resembling that shown below.

apple 1.0
banana 0.5
grape 3.14

Version 2021-04-01 Copyright © 2021 Michael D. Adams

84 CHAPTER 8. MISCELLANY

orange 42

8.42 In this exercise, a class used to manage a product inventory will be developed. Each inventory item has the
following attributes:

(a) product ID (which is a unique string)
(b) product name (which is a string that is not necessarily unique)
(c) quantity (which is an integer)
(d) unit cost (which is a real number)

An inventory item is to be represented with a class called Item. The Item class is neither movable nor copyable.
The inventory is to be represented with a class called Inventory. This class is essentially a container for Item
objects that maintains:

• a list of all of the inventory items in insertion order (i.e., the order that they were added to the inventory)
• a map with the product ID as key
• a multimap with the product name as key

The inventory-item information is not allowed to be duplicated in memory. Therefore, all containers employed
should be intrusive. Containers from the Boost Intrusive library should be employed. The Item class should
have only the following public data members:

• id

• name

• quantity

• cost

• any data members needed for intrusive containers

All of the above classes should be placed in the namespace ra. The Inventory class should provide the following
public type members:

• item_type, which is an alias for the inventory item type (i.e., Item)
• items_iterator and items_const_iterator, which are used to iterate over items as a list (in insertion

order)
• items_by_id_iterator and items_by_id_const_iterator, which are used to iterate over items sorted by

product ID
• items_iterator and items_const_iterator, which are used to iterate over items sorted by product name

The Inventory class should provide the following public member functions:

• default constructor. This creates an empty inventory (i.e., an inventory with no items).
• destructor
• add_item. This function adds an item to the inventory. The return type is the iterator type items_iterator.

If the addition is successful, an iterator referring to the newly added item is returned. Otherwise, the end
iterator is returned.

• items_begin, items_end, items_by_id_begin, items_by_id_end, items_by_name_begin, items_by_name_end,
which yield iterators for accessing the items in the container in various ways (e.g., as a list, as a map, as
a multimap). Each of these functions should be overloaded to handle the case of const and non-const
objects.

• find_by_id. This function finds the item with the specified ID (if one exists). This function takes a single
parameter of std::string, which corresponds to the ID to be used for lookup. A pointer to an Item is
returned. If an item is found, a pointer to it is returned. Otherwise, the null pointer is returned. This
function is overloaded to handle the case of const and non-const objects.

The Inventory type is neither copyable nor movable. This minimal interface for the Inventory class should
allow the code in the listing below to function correctly.

Copyright © 2021 Michael D. Adams Version 2021-04-01

8.1. EXERCISES 85

1 #include <iostream>
2 #include <string>
3 #include <vector>
4 #include "inventory_1_util.hpp"
5

6 int main(int argc, char** argv)
7 {
8 ra::Inventory inventory;
9

10 std::string id;
11 std::string name;
12 double cost;
13 std::size_t quantity;
14 while (std::cin >> id >> name >> quantity >> cost) {
15 if (inventory.add_item(id, name, quantity, cost) ==
16 inventory.items_end()) {
17 std::cerr << "unable to add item to inventory\n";
18 return 1;
19 }
20 }
21 if (!std::cin.eof()) {
22 std::cerr << "unable input error\n";
23 return 1;
24 }
25

26 std::cout << "items in insertion order:\n";
27 for (auto i = inventory.items_begin(); i != inventory.items_end(); ++i) {
28 std::cout << i->id << ’ ’ << i->name << ’ ’ << i->quantity << ’ ’ <<
29 i->cost << ’\n’;
30 }
31 std::cout << ’\n’;
32

33 std::cout << "items sorted by ID:\n";
34 for (auto i = inventory.items_by_id_begin();
35 i != inventory.items_by_id_end(); ++i) {
36 std::cout << i->id << ’ ’ << i->name << ’ ’ << i->quantity << ’ ’ <<
37 i->cost << ’\n’;
38 }
39 std::cout << ’\n’;
40

41 std::cout << "items sorted by name:\n";
42 for (auto i = inventory.items_by_name_begin();
43 i != inventory.items_by_name_end(); ++i) {
44 std::cout << i->id << ’ ’ << i->name << ’ ’ << i->quantity << ’ ’ <<
45 i->cost << ’\n’;
46 }
47 std::cout << ’\n’;
48

49 std::cout << "results of find operations:\n";
50 std::vector<std::string> ids{"apple-0000", "orange-1000"};
51 for (auto&& id : ids) {
52 ra::Inventory::item_type* item = inventory.find_by_id(id);
53 if (item) {
54 std::cout << "found " << item->id << ’ ’ << item->name << ’ ’ <<
55 item->quantity << ’ ’ << item->cost << ’\n’;
56 }
57 }

Version 2021-04-01 Copyright © 2021 Michael D. Adams

86 CHAPTER 8. MISCELLANY

58

59 std::cout.flush();
60 return std::cout ? 0 : 1;
61 }

The above program would take input resembling that shown below.

842 apple 100 0.25
843 apple 100 0.32
844 apple 100 0.50
100 zebra 100 0.50
000 grape 100 0.50
342 orange 100 0.50
343 orange 100 0.50
202 elephant 100 0.50
201 eel 100 0.50
042 aardvark 100 0.50
043 zulu 100 0.50
001 beta 100 0.50
apple-0000 apple 10 1000
grape-0001 grape 10 0.10
grape-0002 grape 10 0.10

8.43 Consider the code in the program below that invokes the print_sorted_items function in order to print the
elements in a vector of Item objects in sorted order according to a specified sort key. Implement the function
print_sorted_items subject to the constraint that it is not permitted to copy/move elements of type Item.

1 #include <vector>
2 #include <string>
3 #include <iostream>
4

5 // Inventory item
6 struct Item {
7 // product name
8 std::string name;
9 // per unit cost of item

10 double cost;
11 // quantity of item in stock
12 std::size_t quantity;
13 };
14

15 // Sorting criterion
16 enum Sort_key : int {
17 // ascending order alphabetically
18 name,
19 // ascending order by cost
20 increasing_cost,
21 // descending order by quantity
22 decreasing_quantity,
23 };
24

25 /*
26 This function prints the items in the specified inventory in sorted order,
27 where the items are sorted in ascending order by the specified key.
28 If successful, the function returns true; otherwise false is returned.
29 */

Copyright © 2021 Michael D. Adams Version 2021-04-01

8.1. EXERCISES 87

30 bool print_sorted_items(std::ostream& out, const std::vector<Item>& inventory,
31 enum Sort_key key);
32

33 int main(int argc, char** argv)
34 {
35 std::vector<Item> inventory;
36 std::string name;
37 double cost;
38 std::size_t quantity;
39 while (std::cin >> name >> cost >> quantity) {
40 inventory.emplace_back(Item{name, cost, quantity});
41 }
42 if (!std::cin.eof()) {
43 std::cerr << "input error\n";
44 return 1;
45 }
46 if (!print_sorted_items(std::cout, inventory, Sort_key::name)) {
47 std::cerr << "error\n";
48 return 1;
49 }
50 std::cout << ’\n’;
51 if (!print_sorted_items(std::cout, inventory, Sort_key::increasing_cost)) {
52 std::cerr << "error\n";
53 return 1;
54 }
55 std::cout << ’\n’;
56 if (!print_sorted_items(std::cout, inventory, Sort_key::decreasing_quantity)) {
57 std::cerr << "error\n";
58 return 1;
59 }
60 std::cout << ’\n’;
61 return std::cout.flush() ? 0 : 1;
62 }

Version 2021-04-01 Copyright © 2021 Michael D. Adams

88 CHAPTER 8. MISCELLANY

Copyright © 2021 Michael D. Adams Version 2021-04-01

89

Chapter 9

C Language

9.1 Exercises

C Compatibility
9.1 Give an example of a program that is valid C but not valid C++.

9.2 Give an example of a program whose source code is valid in both C and C++ but has differing semantics.

Version 2021-04-01 Copyright © 2021 Michael D. Adams

90 CHAPTER 9. C LANGUAGE

Copyright © 2021 Michael D. Adams Version 2021-04-01

91

Appendix A

CGAL

A.1 Computational Geometry Algorithms Library (CGAL)

A.1.1 Reading

Before attempting any of the CGAL programming exercises, read the following from the most recent version of the
CGAL Manual (https://doc.cgal.org/latest):

• CGAL Manual Documentation (https://doc.cgal.org/latest/Manual/index.html)
• In Getting Started:

– Hello World (https://doc.cgal.org/latest/Manual/tutorial_hello_world.html)

– Organization of the Manual (https://doc.cgal.org/latest/Manual/manual.html)

– Preliminaries (https://doc.cgal.org/latest/Manual/preliminaries.html)

• In Package Overview — Geometry Kernels:

– 2D and 3D Linear Geometry Kernel (https://doc.cgal.org/latest/Kernel_23/index.html#Chapter_
2D_and_3D_Geometry_Kernel); read the User Manual section and study at least a few of the code ex-
amples in the Examples section

• In Package Overview — Triangulations and Delaunay Triangulations:

– 2D Triangulation (https://doc.cgal.org/latest/Triangulation_2/index.html#Chapter_2D_Triangulations);
read the User Manual section, study at least a few of the code examples in the Examples section, and look
at the Reference Manual section for the part related to the types:

* Triangulation_hierarchy_2 (https://doc.cgal.org/latest/Triangulation_2/classCGAL_1_
1Triangulation__hierarchy__2.html),

* Triangulation_2 (https://doc.cgal.org/latest/Triangulation_2/classCGAL_1_1Triangulation_
_2.html),

* Delaunay_triangulation_2 (https://doc.cgal.org/latest/Triangulation_2/classCGAL_1_
1Delaunay__triangulation__2.html),

* Constrained_Delaunay_triangulation_2 (https://doc.cgal.org/latest/Triangulation_2/classCGAL_
1_1Constrained__Delaunay__triangulation__2.html), and

* the face/vertex/edge classes corresponding to the above triangulation types
· Triangulation_vertex_base_2 (https://doc.cgal.org/latest/Triangulation_2/classCGAL_
1_1Triangulation__vertex__base__2.html)

· Triangulation_hierarchy_vertex_base_2 (https://doc.cgal.org/latest/Triangulation_
2/classCGAL_1_1Triangulation__hierarchy__vertex__base__2.html)

· Triangulation_face_base_2 (https://doc.cgal.org/latest/Triangulation_2/classCGAL_
1_1Triangulation__face__base__2.html)

Version 2021-04-01 Copyright © 2021 Michael D. Adams

https://doc.cgal.org/latest
https://doc.cgal.org/latest/Manual/index.html
https://doc.cgal.org/latest/Manual/tutorial_hello_world.html
https://doc.cgal.org/latest/Manual/manual.html
https://doc.cgal.org/latest/Manual/preliminaries.html
https://doc.cgal.org/latest/Kernel_23/index.html#Chapter_2D_and_3D_Geometry_Kernel
https://doc.cgal.org/latest/Kernel_23/index.html#Chapter_2D_and_3D_Geometry_Kernel
https://doc.cgal.org/latest/Triangulation_2/index.html#Chapter_2D_Triangulations
https://doc.cgal.org/latest/Triangulation_2/classCGAL_1_1Triangulation__hierarchy__2.html
https://doc.cgal.org/latest/Triangulation_2/classCGAL_1_1Triangulation__hierarchy__2.html
https://doc.cgal.org/latest/Triangulation_2/classCGAL_1_1Triangulation__2.html
https://doc.cgal.org/latest/Triangulation_2/classCGAL_1_1Triangulation__2.html
https://doc.cgal.org/latest/Triangulation_2/classCGAL_1_1Delaunay__triangulation__2.html
https://doc.cgal.org/latest/Triangulation_2/classCGAL_1_1Delaunay__triangulation__2.html
https://doc.cgal.org/latest/Triangulation_2/classCGAL_1_1Constrained__Delaunay__triangulation__2.html
https://doc.cgal.org/latest/Triangulation_2/classCGAL_1_1Constrained__Delaunay__triangulation__2.html
https://doc.cgal.org/latest/Triangulation_2/classCGAL_1_1Triangulation__vertex__base__2.html
https://doc.cgal.org/latest/Triangulation_2/classCGAL_1_1Triangulation__vertex__base__2.html
https://doc.cgal.org/latest/Triangulation_2/classCGAL_1_1Triangulation__hierarchy__vertex__base__2.html
https://doc.cgal.org/latest/Triangulation_2/classCGAL_1_1Triangulation__hierarchy__vertex__base__2.html
https://doc.cgal.org/latest/Triangulation_2/classCGAL_1_1Triangulation__face__base__2.html
https://doc.cgal.org/latest/Triangulation_2/classCGAL_1_1Triangulation__face__base__2.html

92 APPENDIX A. CGAL

· Constrained_triangulation_face_base_2 (https://doc.cgal.org/latest/Triangulation_
2/classCGAL_1_1Constrained__triangulation__face__base__2.html)

– 2D Triangulation Data Structure (https://doc.cgal.org/latest/TDS_2/index.html#Chapter_2D_
Triangulation_Data_Structure); read the User Manual section

A.2 Exercises

In all of these exercises, you should comment your code so that someone who is unfamiliar with your code can
understand what your code is doing without too much effort. Choosing good function/class/variable names will
probably help to reduce the number of comments needed. The code that you write should be reasonably efficient (i.e.,
avoid gross inefficiency).

Geometry Kernels

A.1 (a) What is a (geometry) kernel?

(b) What is a construction? Give at least three examples of constructions.

(c) What is a predicate? Give at least three examples of predicates.

A.2 (a) What is the difference between an exact and inexact construction?

(b) What is the difference between an exact and inexact predicate?

(c) What are the advantages and disadvantages of exact constructions relative to inexact ones?

A.3 (a) What is the difference between an exact and inexact construction kernel? Give an example of each.

(b) What is the difference between an exact and inexact predicate kernel? Give an example of each.

Triangulations

A.4 The Triangulation_hierarchy_2 class provides a similar interface as the other triangulation classes in CGAL
(such as Triangulation_2 and Delaunay_triangulation_2). What is the difference between a triangulation
hierarchy and a normal (i.e., non-hierarchy) triangulation? For example, what is the difference between a
Triangulation_hierarchy_2<Triangulation_2> and Triangulation_2? When would the former be preferred
over the latter?

A.5 Triangulation convex-hull example program (convex_hull).

(a) From the directory cgal/exercises in the Git repository for this book, obtain the file convex_hull.cpp .
Compile and run the code in the file convex_hull.cpp with the input dataset in the file convex_hull.dat.
Record the output.

(b) The convex_hull_1 program. Change the program in part (a) so that it can use either a basic triangulation
(e.g., Triangulation_2) or Delaunay triangulation (e.g., Delaunay_triangulation_2) for the convex-hull
computation. The new program should be called convex_hull_1. The command-line interface for the
program should provide a -d option to select the type of triangulation to use. If the -d option is specified, a
Delaunay triangulation should be used; otherwise, a basic triangulation should be employed. Your solution
must avoid unnecessary duplication of code.

Copyright © 2021 Michael D. Adams Version 2021-04-01

https://doc.cgal.org/latest/Triangulation_2/classCGAL_1_1Constrained__triangulation__face__base__2.html
https://doc.cgal.org/latest/Triangulation_2/classCGAL_1_1Constrained__triangulation__face__base__2.html
https://doc.cgal.org/latest/TDS_2/index.html#Chapter_2D_Triangulation_Data_Structure
https://doc.cgal.org/latest/TDS_2/index.html#Chapter_2D_Triangulation_Data_Structure

A.2. EXERCISES 93

(c) The convex_hull_2 program. Change the program in part (b) so that the selected triangulation type can
optionally be used with a triangulation hierarchy (e.g., Triangulation_hierarchy_2). The new program
should be called convex_hull_2. The command-line interface for the program should provide -d and
-h options. If the -d option is specified, a Delaunay triangulation should be used; otherwise, a basic
triangulation should be employed. If the -h option is specified, the selected triangulation type should be
used with a triangulation hierarchy; otherwise, the selected triangulation type should be used without a
triangulation hierarchy. The program must support all (four) possible combinations of either specifying or
not specifying each of the -d and -h options. Your solution must avoid unnecessary duplication of code.

A.6 Triangulation statistics program (triangulation_statistics). Write a program that does the following:

(a) Read 2-D points from standard input until the end-of-file is reached. (The input consists of pairs of x and
y coordinates separated by whitespace.)

(b) Compute the triangulation of the points (using the specified type of triangulation).

(c) Output the following in order:

i. the number of (finite) vertices in the triangulation
ii. the number of (finite) faces in the triangulation

iii. the minimum, maximum, and average valence of the (finite) vertices in the triangulation
iv. the minimum and maximum interior angle of the (finite) faces in the triangulation.

All angles should be output in units of degrees (not radians). The valence of a (finite) vertex is simply the
number of (finite) edges incident on that vertex.

(d) Output the vertices of a (finite) face that contains the point (0,0) if any such face exists.

If the program is run with no options, a basic (i.e., Triangulation_2) triangulation should be used. If the
program is run with the “-d” option, a Delaunay triangulation (i.e., Delaunay_triangulation_2) should be used.
To parse the command-line options, use the getopt function. You must avoid duplication of code between the
basic and Delaunay triangulation cases.

Record the output obtained with your program for the datasets in triangulation_statistics_1.dat

and triangulation_statistics_2.dat. The files triangulation_statistics_1.dat and
triangulation_statistics_2.dat are available from the Git repository for this book.

A.7 Triangulation output program (triangulation_ouput). Write a program that does the following:

(a) Read 2-D points from standard input until the end-of-file is reached.

(b) Compute a triangulation of the points (using the specified type of triangulation).

(c) Output the triangulation to standard output using the OFF format (which is described below).

If the program is run with no options, a basic (i.e., Triangulation_2) triangulation should be used. If the
program is run with the “-d” option, a Delaunay triangulation (i.e., Delaunay_triangulation_2) should be used.
To parse the command-line options, use the getopt function. You must avoid duplication of code between the
basic and Delaunay triangulation cases. A std::map might be useful for keeping track of the correspondence
between vertices and their indices when generating the OFF format data.

An example of a data file that could be used as input to the triangulation_output program is available from the
Git repository for this book. See the file triangulation_output_1.dat in the directory cgal/exercises . For
both the basic and Delaunay cases, run the program for the input dataset triangulation_output_1.dat and save
the triangulation output to a file. Use a polygon mesh viewer that supports the OFF format (such as meshlab or
geomview) to view the triangulation corresponding to the OFF file. Describe the difference in the appearance of
the triangulations obtained in basic and Delaunay cases.

OFF FORMAT. The OFF format consists of the following items (in order): a header, vertex information, face
information, and edge information. The header consists of the following whitespace-delimited fields (in order):

Version 2021-04-01 Copyright © 2021 Michael D. Adams

94 APPENDIX A. CGAL

(a) The character string “OFF”.

(b) The number of vertices.

(c) The number of faces.

(d) The number of edges, which may be specified as zero if no edge information is provided.

The vertex information has one line per vertex consisting of the following whitespace-delimited fields (in order):

(a) The x coordinate of the vertex.

(b) The y coordinate of the vertex.

(c) The z coordinate of the vertex, which can simply be chosen as zero for a triangulation in the xy-plane.

Each vertex is associated with an integer index, where the first vertex has index 0, the second vertex has index
1, and so on. The face information has one line per face consisting of the following whitespace-delimited fields
(in order):

(a) The number of vertices in the face, which is always three for a triangulation.

(b) The indices of the face’s vertices in CCW order.

The edge information can be omitted, by specifying the number of edges as zero in the header.

Rasterization

A.8 Triangle mesh rasterization program (triangle_mesh_rasterize). Rasterizing mesh models of images. In this
exercise, a program will be developed that rasterizes a mesh model of an image. For the purposes of this
exercise, a mesh model of an image is a representation of a function φ defined on Λ ⊂ R2 that is completely
characterized by:

(a) a set P = {pi} of sample points, where pi = (xi,yi) ∈ Z2; and

(b) the set Z = {zi} of the corresponding sample values (i.e., zi = φ(pi)), where zi ∈ Z.

The set P is always chosen to include all of the extreme convex hull points of Λ so that Λ is the convex hull
of P. This implies that any triangulation of P will completely cover Λ. From P and Z, the function φ is
defined as follows. First, we form the Delaunay triangulation of P, which is ensured to be uniquely determined
by a scheme such as symbolic perturbation (as is done in CGAL). Then, for each face of the triangulation with
vertices (xi,yi), (x j,y j), and (xk,yk), we form the unique linear function that passes through the points (xi,yi,zi),
(x j,y j,z j), and (xk,yk,zk). By combining the functions obtained for all of the faces, we obtain the continuous
piecewise-linear function φ .

Given the above definition of a mesh model, write a program that does the following:

(a) Read the mesh model of an image from standard input. The data is formatted as triplets of x, y, and z
coordinates separated by whitespace. The parameters xi, yi, and zi of the mesh model correspond to the x,
y, and z coordinates read for the ith point in the data, respectively.

(b) Compute the Delaunay trianguation of the points {(xi,yi)}.

(c) Compute the bounding box B of the points {(xi,yi)}.

(d) Sample the function φ defined by the mesh model at each point in Z2 ∩B in order to produce a digital
image.

(e) Write the digital image to standard output in PNM format.

Copyright © 2021 Michael D. Adams Version 2021-04-01

A.2. EXERCISES 95

Your solution must be reasonably efficient. On the topic of efficiency, a few comments are in order. First, an
orientation test (i.e., determining where a point lies with respect to a line) is relatively expensive. Second, point
location (i.e., finding the face in a triangulation that contains a point) typically requires many orientation tests.
Consequently, a solution to this exercise that performs many orientation tests (or point-location operations) will
be grossly inefficient.

The PNM format consists of the following (in order):

(a) the characters “P2” followed by a newline character;
(b) the width of the image, followed by the height of the image, followed by a newline character;
(c) the maximum sample value (which should be 255), followed by a newline character;
(d) each of the sample values in raster-scan order (i.e., left-to-right, top-to-bottom).

Run the program for the input dataset triangle_mesh_rasterize_1.dat and save the image output to a file. The
file triangle_mesh_rasterize_1.dat can be found in the directory cgal/exercises of the Git repository for
this book. You can use the xv or display command on Linux to display the image file.

Version 2021-04-01 Copyright © 2021 Michael D. Adams

96 APPENDIX A. CGAL

Copyright © 2021 Michael D. Adams Version 2021-04-01

97

Appendix B

CMake

B.1 Exercises

Basics
B.1 hello Exercise. Write a CMakeLists file that can be used with CMake to build the hello program in the

directory cmake/exercises/hello (in the Git repository for this book).

B.2 basic Exercise. Write a CMakeLists file that can be used with CMake to build the sinc and unit_step programs
in the directory cmake/exercises/basic (in the Git repository for this book).

Assertions and Code Sanitizers
B.3 assertions Exercise.

(a) Write a CMakeLists file that can be used with CMake to build the assert_false program in the directory
cmake/exercises/assertions (in the Git repository for this book). The CMakeLists file must provide

an option called ALWAYS_ENABLE_ASSERTIONS, with a default value of true. When this option is enabled,
your CMakeLists file must ensure that assertion checking is enabled, for the case of both release and
debug builds. (Normally, assertion checking will be enabled for debug builds and disabled for release
builds.) The disabling of assertion checking is accomplished by defining the preprocessor symbol NDEBUG,
at compile time. So, enabling assertion checking is accomplished by ensuring that NDEBUG is not defined
while compiling. Your solution need only handle the case of compilers that use a “-D” option to define a
preprocessor symbol (such as GCC and Clang).
The recommended approach for this exercise is to use the “REPLACE” (or “REGEX REPLACE”) operation
of the string function to remove any occurance of “-DNDEBUG” from the value of each of the fol-
lowing variables: CMAKE_CXX_FLAGS_DEBUG and CMAKE_CXX_FLAGS_RELEASE. (To be more thorough, the
CMAKE_CXX_FLAGS_MINSIZEREL and CMAKE_CXX_FLAGS_RELWITHDEBINFO variables should also be handled,
but this is not required in this exercise.)

(b) A quick inspection of the source code for the assert_false program will confirm that this program should
terminate with a failed assertion when run, if assertion checking is enabled. Using your CMakeLists
file, build the assert_false program for each of a release and debug build. For each build, confirm
that assertion checking is enabled by verifying that the assert_false program terminates with a failed
assertion, as expected.

(c) Move the functionality of the ALWAYS_ENABLE_ASSERTIONS option into a CMake module named
EnableAssertions. Then, use this module in your CMakeLists file. Confirm that your solution works
correctly.

Version 2021-04-01 Copyright © 2021 Michael D. Adams

98 APPENDIX B. CMAKE

B.4 sanitizers Exercise.

(a) Write a CMakeLists file that can be used with CMake to build the asan_fail and ubsan_fail programs
in the directory cmake/exercises/sanitizers (in the Git repository for this book). The CMakeLists file
must provide two options:

i. ENABLE_ASAN. This option has a boolean value, which defaults to false, indicating if the Address
Sanitizer (ASAN) should be enabled.

ii. ENABLE_UBSAN. This option has a boolean value, which defaults to false, indicating if the Undefined
Behavior Sanitizer (UBSAN) should be enabled.

The recommended approach to this exercise is to modify CMAKE_CXX_FLAGS and CMAKE_EXE_LINKER_FLAGS

as appropriate, depending on the values of ENABLE_ASAN and ENABLE_UBSAN. For the purposes of this exer-
cise, you may assume the following:

• ASAN requires the use of the “-fsanitize=address” flag for both the compiler and linker.
• UBSAN requires the use of the “-fsanitize=undefined” flag for both the compiler and linker.

The above assumptions are valid for the GCC and Clang compilers.

(b) An inspection of the code will verify that the program asan_fail should trigger a failure from ASAN and
the program ubsan_fail should trigger warnings/errors from UBSAN. Using your CMakeLists file, build
the code with ENABLE_ASAN and ENABLE_UBSAN set to true. To verify that the build process works correctly,
run the asan_fail and ubsan_fail programs and confirm that they behave as expected.

(c) Move the functionality of the ENABLE_ASAN and ENABLE_UBSAN options into a CMake module named
Sanitizers. Then, use this module in your CMakeLists file. Confirm that your solution still works
correctly.

Copyright © 2021 Michael D. Adams Version 2021-04-01

99

Appendix C

Git

C.1 Exercises
C.1 In this exercise, you will be creating several repositories and performing some basic tasks with these reposi-

tories. To begin, select an empty directory for use in this exercise. This directory will be henceforth denoted
$TOP_DIR. In this exercise, you need to perform the tasks listed below (in order). When performing these tasks
you are not permitted to use the git pull command (i.e., pull operations must be decomposed into separate
fetch and merge operations). Also, you should assume that the two users involved in this exercise do not know
about the changes each other is making. This implies that a user must attempt a push operation (and have it fail)
before they can know that a fetch operation is required. When a repository is first created and each time its com-
mit history changes, you should draw the commit history of the repository (including local and remote-tracking
branches and HEAD).

(a) Create an empty bare Git repository in the directory $TOP_DIR/hello_remote.git to be used as a remote
in this exercise. This can be accomplished by typing:

cd $TOP_DIR
git init --bare hello_remote.git

(b) User 1. Clone the repository $TOP_DIR/hello_remote.git to the directory $TOP_DIR/hello_1. In the
top-level directory of the repository $TOP_DIR/hello_1, create two files as follows:

i. a file numbers.txt with the following three lines of text:

4
5
6

ii. a file words.txt with the following six lines of text:

Alpha
Bravo
Charlie
Delta
Echo
Foxtrot

Propagate the changes to the remote repository $TOP_DIR/hello_remote.git. [Hint: You will need to use:
git add, git clone, git commit, and git push.]

(c) User 2. Clone the repository $TOP_DIR/hello_remote.git to the directory $TOP_DIR/hello_2. In the
repository $TOP_DIR/hello_2, modify the file numbers.txt by inserting the following three lines prior to
the first line in the file:

Version 2021-04-01 Copyright © 2021 Michael D. Adams

100 APPENDIX C. GIT

1
2
3

Propagate the changes to the remote repository $TOP_DIR/hello_remote.git. [Hint: You will need to use:
git add, git clone, git commit, and git push.]

(d) User 1. In the repository $TOP_DIR/hello_1, perform the following. Append the following lines to the file
numbers.txt:

7
8

Append the following lines to the file words.txt:

Golf
Hotel

Propagate the changes to the remote repository $TOP_DIR/hello_remote.git. [Hint: You will need to use:
git add, git commit, git fetch, git merge, and git push.]

(e) User 2. In the repository $TOP_DIR/hello_2, append the following line to the file words.txt:

Golf

If any merge conflicts arise, keep only the changes from user 1. Propagate the changes to the remote
repository $TOP_DIR/hello_remote.git. [Hint: You will need to use: git add, git commit, git fetch,
git merge, and git push.]

(f) Check that the repository $TOP_DIR/hello_remote.git now contains the desired contents. In particular,
the repository should contain the following two files:

i. the file numbers.txt with the following contents:

1
2
3
4
5
6
7
8

ii. the file words.txt with the following contents:

Alpha
Bravo
Charlie
Delta
Echo
Foxtrot
Golf
Hotel

[Hint: You will need to use git clone.]

Copyright © 2021 Michael D. Adams Version 2021-04-01

101

Appendix D

Video Lectures

D.1 Introduction

The author has prepared video lectures for some of the material covered in this book. All of the videos are hosted by
YouTube and available through the author’s YouTube channel:

• https://www.youtube.com/iamcanadian1867

The most up-to-date information about this video-lecture content can be found at:

• https://www.ece.uvic.ca/˜mdadams/cppbook/#video_lectures

For the convenience of the reader, some information on the video-lecture content available at the time of this writing
is provided in the remainder of this appendix.

D.2 2019-05 SENG 475 Video Lectures

The author prepared video lectures for all of the material covered in the 2019-05 offering of the course SENG 475
(titled “Advanced Programming Techniques for Robust Efficient Computing”) in the Department of Electrical and
Computer Engineering at the University of Victoria, Victoria, Canada. All of these videos are available from the
author’s YouTube channel. The video lectures for the above course can be found in the following YouTube playlist:

• https://www.youtube.com/playlist?list=PLbHYdvrWBMxazo1_B6vhW9gpd1wlkdeEW

An information package for the video lectures is available that includes:

• a copy of the edition of the lecture slides used in the video lectures (in PDF format);

• a copy of all of the supplemental handouts used in the video lectures (in PDF format); and

• a fully-cataloged list of the slides covered in the video lectures, where each slide in the list has a link to the
corresponding time offset in the YouTube video where the slide is covered.

This information package is available from the video lecture section of the web site for the book:

• https://www.ece.uvic.ca/˜mdadams/cppbook/#video_lectures

For the convenience of the reader, the catalog of the video lectures is also included in what follows.

Version 2021-04-01 Copyright © 2021 Michael D. Adams

https://www.youtube.com/iamcanadian1867
https://www.ece.uvic.ca/~mdadams/cppbook/#video_lectures
https://www.youtube.com/playlist?list=PLbHYdvrWBMxazo1_B6vhW9gpd1wlkdeEW
https://www.ece.uvic.ca/~mdadams/cppbook/#video_lectures

102 APPENDIX D. VIDEO LECTURES

D.2.1 Video-Lecture Catalog
To allow the content in the video lectures to be more easily located and navigated, a catalog of the video lectures is
included below. This catalog contains a list of all slides covered in the lectures, where each slide in the list has a link
to the corresponding time offset in the YouTube video where the slide is covered. By using this catalog, it is a trivial
exercise to jump to the exact point in the video lectures where a specific slide/topic is covered (i.e., simply click on
the appropriate hyperlink).

D.2.1.1 Lecture 1 (2019-05-07) — Course Introduction [2019-05-07]

The following is a link to the full video:
� https://youtu.be/-Jyf-U18_gI [duration: 00:48:37]

The following are links to particular offsets within the video:
� 00:00: [course intro] SENG 475 & ECE 596C
� 00:24: [course intro] Course Overview [multiple slides]
� 02:11: [course intro] Prerequisites and Requirements
� 05:33: [course intro] Course Topics
� 07:07: [course intro] Learning Outcomes
� 09:42: [course intro] Course Outline and Various Other Handouts
� 32:02: [course intro] Video Lectures
� 32:37: [course intro] Computer-Based Tutorial
� 37:10: [course intro] Plagiarism and Other Forms of Academic Misconduct
� 41:54: [course intro] Software Development Environment (SDE)
� 42:57: [course intro] Prelude to SDE Demonstration
� 45:55: [course intro] SDE Demonstration

D.2.1.2 Lecture 2 (2019-05-08) — Algorithms and Data Structures [2019-05-08]

The following is a link to the full video:
� https://youtu.be/JOUZZVLMJvI [duration: 00:49:42]

The following are links to particular offsets within the video:
� 00:00: [algorithms] Algorithms [title slide]
� 01:07: [algorithms] Software Performance
� 02:16: [algorithms] Random-Access Machine (RAM) Model
� 04:17: [algorithms] Worst-Case, Average, and Amortized Complexity
� 08:21: [algorithms] Asymptotic Analysis of Algorithms
� 09:55: [algorithms] Big Theta (Θ) Notation

� [algorithms] Big Theta (Θ) Notation (Continued)
� 12:12: [algorithms] Big Oh (O) Notation

� [algorithms] Big Oh (O) Notation (Continued)
� 13:01: [algorithms] Big Omega (Ω) Notation

� [algorithms] Big Omega (Ω) Notation (Continued)
� 15:32: [algorithms] Asymptotic Notation in Equations and Inequalities
� 17:06: [algorithms] Properties of Θ, O, and Ω

� 18:30: [algorithms] Additional Remarks
� 18:49: [algorithms] Remarks on Asymptotic Complexity
� 22:30: [algorithms] Some Common Complexities
� 23:32: [algorithms] Recurrence Relations
� 25:12: [algorithms] Solving Recurrence Relations
� 26:24: [algorithms] Solutions for Some Common Recurrence Relations
� 27:39: [algorithms] Iterative Fibonacci Algorithm: Time Complexity
� 30:10: [algorithms] Iterative Fibonacci Algorithm: Space Complexity
� 31:04: [algorithms] Recursive Fibonacci Algorithm: Time Complexity

Copyright © 2021 Michael D. Adams Version 2021-04-01

https://youtu.be/-Jyf-U18_gI
https://youtu.be/-Jyf-U18_gI?t=0
https://youtu.be/-Jyf-U18_gI?t=24
https://youtu.be/-Jyf-U18_gI?t=131
https://youtu.be/-Jyf-U18_gI?t=333
https://youtu.be/-Jyf-U18_gI?t=427
https://youtu.be/-Jyf-U18_gI?t=582
https://youtu.be/-Jyf-U18_gI?t=1922
https://youtu.be/-Jyf-U18_gI?t=1957
https://youtu.be/-Jyf-U18_gI?t=2230
https://youtu.be/-Jyf-U18_gI?t=2514
https://youtu.be/-Jyf-U18_gI?t=2577
https://youtu.be/-Jyf-U18_gI?t=2755
https://youtu.be/JOUZZVLMJvI
https://youtu.be/JOUZZVLMJvI?t=0
https://youtu.be/JOUZZVLMJvI?t=67
https://youtu.be/JOUZZVLMJvI?t=136
https://youtu.be/JOUZZVLMJvI?t=257
https://youtu.be/JOUZZVLMJvI?t=501
https://youtu.be/JOUZZVLMJvI?t=595
https://youtu.be/JOUZZVLMJvI?t=732
https://youtu.be/JOUZZVLMJvI?t=781
https://youtu.be/JOUZZVLMJvI?t=932
https://youtu.be/JOUZZVLMJvI?t=1026
https://youtu.be/JOUZZVLMJvI?t=1110
https://youtu.be/JOUZZVLMJvI?t=1129
https://youtu.be/JOUZZVLMJvI?t=1350
https://youtu.be/JOUZZVLMJvI?t=1412
https://youtu.be/JOUZZVLMJvI?t=1512
https://youtu.be/JOUZZVLMJvI?t=1584
https://youtu.be/JOUZZVLMJvI?t=1659
https://youtu.be/JOUZZVLMJvI?t=1810
https://youtu.be/JOUZZVLMJvI?t=1864

D.2. 2019-05 SENG 475 VIDEO LECTURES 103

� 32:47: [algorithms] Recursive Fibonacci Algorithm: Space Complexity
� 34:34: [algorithms] Amdahl’s Law
� 38:02: [data structures] Abstract Data Types (ADTs)
� 41:14: [data structures] Container ADTs
� 43:17: [data structures] Container ADTs (Continued)
� 45:35: [data structures] Iterator ADTs

D.2.1.3 Lecture 3 (2019-05-10) — Data Structures [2019-05-10]

The following is a link to the full video:
� https://youtu.be/1swLQCO-1Cg [duration: 00:46:23]

The following are links to particular offsets within the video:
� 00:00: [data structures] Container and Iterator Considerations
� 03:26: [data structures] Container and Iterator Considerations (Continued)
� 08:23: [data structures] List ADT
� 10:43: [data structures] Array-Based Lists

� [data structures] Array-Based Lists: Diagram
� 14:38: [data structures] Remarks on Array-Based Lists
� 19:15: [data structures] Singly-Linked Lists

� [data structures] Singly-Linked Lists: Code
� [data structures] Singly-Linked Lists: Diagram

� 29:52: [data structures] Remarks on Singly-Linked Lists
� 33:19: [data structures] Singly-Linked List With Header Node

� [data structures] Singly-Linked List With Header Node: Code
� [data structures] Singly-Linked List With Header Node: Diagram

� 40:52: [data structures] Remarks on Singly-Linked List With Header Node
� 41:49: [data structures] Doubly-Linked Lists

� [data structures] Doubly-Linked Lists: Code
� [data structures] Doubly-Linked Lists: Diagram

� 45:55: [data structures] Remarks on Doubly-Linked Lists [starting from end of preceding slide]

D.2.1.4 Lecture 4 (2019-05-14) — Data Structures, Some C++ Review (Const and Other Stuff) [2019-05-14]

The following is a link to the full video:
� https://youtu.be/hSEUXnb0cFY [duration: 00:49:38]

The following are links to particular offsets within the video:
� 00:00: [data structures] Doubly-Linked List With Sentinel Node

� [data structures] Doubly-Linked List With Sentinel Node: Code
� [data structures] Doubly-Linked List With Sentinel Node: Diagram

� 05:46: [data structures] Remarks on Doubly-Linked Lists With Sentinel Node
� 07:23: [data structures] Stack ADT
� 08:25: [data structures] Array Implementation of Stack

� [data structures] Array Implementation of Stack: Diagram
� 09:13: [data structures] Remarks on Array Implementation of Stack
� 10:52: [data structures] Node-Based Implementation of Stack

� [data structures] Node-Based Implementation of Stack: Diagram
� 11:29: [data structures] Remarks on Node-Based Implementation of Stack
� 13:28: [data structures] Queue ADT
� 14:43: [data structures] Array Implementation of Queue
� 16:32: [data structures] Remarks on Array Implementation of Queue
� 17:40: [data structures] Array of Arrays Implementation of Queue

� [data structures] Array of Arrays Implementation of Queue: Diagram

Version 2021-04-01 Copyright © 2021 Michael D. Adams

https://youtu.be/JOUZZVLMJvI?t=1967
https://youtu.be/JOUZZVLMJvI?t=2074
https://youtu.be/JOUZZVLMJvI?t=2282
https://youtu.be/JOUZZVLMJvI?t=2474
https://youtu.be/JOUZZVLMJvI?t=2597
https://youtu.be/JOUZZVLMJvI?t=2735
https://youtu.be/1swLQCO-1Cg
https://youtu.be/1swLQCO-1Cg?t=0
https://youtu.be/1swLQCO-1Cg?t=206
https://youtu.be/1swLQCO-1Cg?t=503
https://youtu.be/1swLQCO-1Cg?t=643
https://youtu.be/1swLQCO-1Cg?t=878
https://youtu.be/1swLQCO-1Cg?t=1155
https://youtu.be/1swLQCO-1Cg?t=1792
https://youtu.be/1swLQCO-1Cg?t=1999
https://youtu.be/1swLQCO-1Cg?t=2452
https://youtu.be/1swLQCO-1Cg?t=2509
https://youtu.be/1swLQCO-1Cg?t=2755
https://youtu.be/hSEUXnb0cFY
https://youtu.be/hSEUXnb0cFY?t=0
https://youtu.be/hSEUXnb0cFY?t=346
https://youtu.be/hSEUXnb0cFY?t=443
https://youtu.be/hSEUXnb0cFY?t=505
https://youtu.be/hSEUXnb0cFY?t=553
https://youtu.be/hSEUXnb0cFY?t=652
https://youtu.be/hSEUXnb0cFY?t=689
https://youtu.be/hSEUXnb0cFY?t=808
https://youtu.be/hSEUXnb0cFY?t=883
https://youtu.be/hSEUXnb0cFY?t=992
https://youtu.be/hSEUXnb0cFY?t=1060

104 APPENDIX D. VIDEO LECTURES

� 22:03: [data structures] Remarks on Array of Arrays Implementation of Queue
� 22:22: [data structures] Node-Based Implementation of Queue

� [data structures] Node-Based Implementation of Queue: Diagram
� 22:51: [data structures] Remarks on Node-Based Implementation of Queue
� 23:02: [data structures] Trees
� 24:11: [data structures] Tree Terminology (Continued 1)
� 24:42: [data structures] Tree Terminology (Continued 2)
� 25:20: [data structures] Binary Trees
� 25:58: [data structures] Perfect and Complete Trees
� 26:24: [data structures] Balanced Binary Trees
� 27:25: [data structures] Node-Based Binary Tree

� [data structures] Node-Based Binary Tree: Diagram
� [data structures] Remarks on Node-Based Binary Tree

� 29:11: [data structures] Array-Based Binary Tree
� 29:49: [data structures] Array-Based Binary Tree: Diagram

� [data structures] Remarks on Array-Based Binary Tree
� 31:19: [data structures] Binary Search Trees
� 33:33: [data structures] Heaps
� 34:34: [data structures] Set and Multiset ADTs
� 36:20: [data structures] Map and Multimap ADTs

� [data structures] Remarks on Implementation of Sets and Maps
� 38:04: [data structures] Priority Queue ADT
� 41:01: [data structures] Remarks on Priorty Queue Implementations
� 41:40: [basics] References Versus Pointers
� 45:15: [basics] The const Qualifier
� 45:34: [basics] The const Qualifier and Non-Pointer/Non-Reference Types

D.2.1.5 Lecture 5 (2019-05-15) — Some C++ Review (Const and Other Stuff) [2019-05-15]

The following is a link to the full video:
� https://youtu.be/1nDMJrwta24 [duration: 00:50:13]

The following are links to particular offsets within the video:
� 00:00: [basics] The const Qualifier and Non-Pointer/Non-Reference Types
� 01:27: [basics] The const Qualifier and Pointer Types
� 05:07: [basics] The const Qualifier and Reference Types
� 09:39: [basics] The constexpr Qualifier for Variables
� 16:08: [basics] The const Qualifier and Functions
� 20:43: [basics] String Length Example: Not Const Correct
� 20:53: [basics] Square Example: Not Const Correct

� [basics] Square Example: Const Correct
� 25:51: [basics] Square Example: Const Correct
� 27:29: [basics] Function Types and the const Qualifier
� 32:30: [exercises] [Q.1] What is Wrong With This Code?

� [exercises] [Q.1] Solution: Use Const Qualifier Correctly

D.2.1.6 Lecture 6 (2019-05-17) — Some C++ Review (Const and Other Stuff), Compile-Time Computation
[2019-05-17]

The following is a link to the full video:
� https://youtu.be/KTT9boX3wyg [duration: 00:51:14]

The following are links to particular offsets within the video:
� 00:00: [exercises] [Q.2] What is Wrong With This Code?

Copyright © 2021 Michael D. Adams Version 2021-04-01

https://youtu.be/hSEUXnb0cFY?t=1323
https://youtu.be/hSEUXnb0cFY?t=1342
https://youtu.be/hSEUXnb0cFY?t=1371
https://youtu.be/hSEUXnb0cFY?t=1382
https://youtu.be/hSEUXnb0cFY?t=1451
https://youtu.be/hSEUXnb0cFY?t=1482
https://youtu.be/hSEUXnb0cFY?t=1520
https://youtu.be/hSEUXnb0cFY?t=1558
https://youtu.be/hSEUXnb0cFY?t=1584
https://youtu.be/hSEUXnb0cFY?t=1645
https://youtu.be/hSEUXnb0cFY?t=1751
https://youtu.be/hSEUXnb0cFY?t=1789
https://youtu.be/hSEUXnb0cFY?t=1879
https://youtu.be/hSEUXnb0cFY?t=2013
https://youtu.be/hSEUXnb0cFY?t=2074
https://youtu.be/hSEUXnb0cFY?t=2180
https://youtu.be/hSEUXnb0cFY?t=2284
https://youtu.be/hSEUXnb0cFY?t=2461
https://youtu.be/hSEUXnb0cFY?t=2500
https://youtu.be/hSEUXnb0cFY?t=2715
https://youtu.be/hSEUXnb0cFY?t=2734
https://youtu.be/1nDMJrwta24
https://youtu.be/1nDMJrwta24?t=0
https://youtu.be/1nDMJrwta24?t=87
https://youtu.be/1nDMJrwta24?t=307
https://youtu.be/1nDMJrwta24?t=579
https://youtu.be/1nDMJrwta24?t=968
https://youtu.be/1nDMJrwta24?t=1243
https://youtu.be/1nDMJrwta24?t=1253
https://youtu.be/1nDMJrwta24?t=1551
https://youtu.be/1nDMJrwta24?t=1649
https://youtu.be/1nDMJrwta24?t=1950
https://youtu.be/KTT9boX3wyg
https://youtu.be/KTT9boX3wyg?t=0

D.2. 2019-05 SENG 475 VIDEO LECTURES 105

� [exercises] [Q.2] Solution: Use Const Qualifier Correctly
� 08:10: [exercises] [Q.3] What is Wrong With This Code?

� [exercises] [Q.3] Solution: Functions Should Be Inline
� 16:17: [exercises] [Q.4] What is Wrong With This Code?

� [exercises] [Q.4] Solution: Place Inline Function Definitions in Header File
� 19:22: [exercises] [Q.5] What is Wrong With This Code?

� [exercises] [Q.5] Solution 1: Explicit Template Instantiation
� [exercises] [Q.5] Solution 2: Define Function Template in Header File

� 27:07: [exercises] Remarks on Header Files and Function Declarations
� 32:33: [exercises] [Q.6] What is Wrong With This Code?

� [exercises] [Q.6] Solution: Place Default Arguments in Header File
� 41:02: [basics] The constexpr Qualifier for Functions

D.2.1.7 Lecture 7 (2019-05-21) — Compile-Time Computation [2019-05-21]

The following is a link to the full video:
� https://youtu.be/GZWsV7KpAw8 [duration: 00:48:50]

The following are links to particular offsets within the video:
� 00:30: [basics] Constexpr Function Example: power int (Iterative)
� 15:55: [basics] Compile-Time Versus Run-Time Computation
� 21:01: [classes] constexpr Member Functions
� 23:19: [classes] constexpr Constructors
� 24:49: [classes] Example: Constexpr Constructors and Member Functions
� 31:51: [classes] Why Constexpr Member Functions Are Not Implicitly Const
� 37:27: [classes] Literal Types
� 44:26: [classes] Example: Literal Types
� 46:48: [classes] Constexpr Variable Requirements

D.2.1.8 Lecture 8 (2019-05-22) — Compile-Time Computation, Temporary Objects [2019-05-22]

The following is a link to the full video:
� https://youtu.be/eULv_AiAFII [duration: 00:49:28]

The following are links to particular offsets within the video:
� 00:00: [classes] Example: Constexpr Variable Requirement Violations
� 02:03: [classes] Constexpr Function Requirements
� 06:22: [classes] Example: Constexpr Function Requirement Violations
� 10:50: [classes] Constexpr Constructor Requirements
� 12:42: [classes] Example: Constexpr Constructor Requirement Violations
� 15:16: [classes] Example: Constexpr and Accessing External State
� 18:15: [classes] Example: Constexpr and Immediate Initialization
� 21:55: [classes] Debugging Constexpr Functions
� 28:50: [classes] Example: Debugging Strategies for Constexpr Functions
� 30:55: [exercises] [Q.7] What is Wrong With This Code?

� [exercises] [Q.7] Solution: Define Constexpr Function in Header
� 33:25: [exercises] [Q.8] What is Wrong With This Code?

� [exercises] [Q.8] Answer: Invalid Constexpr Function
� 36:05: [exercises] [Q.9] What is Wrong With This Code?

� [exercises] [Q.9] Solution: Initialize Constexpr Function Variables
� 40:48: [exercises] [Q.10] What is Wrong With This Code?

� [exercises] [Q.10] Solution: Constexpr Requires Literal Types
� 42:16: [temporaries] Temporary Objects

Version 2021-04-01 Copyright © 2021 Michael D. Adams

https://youtu.be/KTT9boX3wyg?t=490
https://youtu.be/KTT9boX3wyg?t=977
https://youtu.be/KTT9boX3wyg?t=1162
https://youtu.be/KTT9boX3wyg?t=1627
https://youtu.be/KTT9boX3wyg?t=1953
https://youtu.be/KTT9boX3wyg?t=2462
https://youtu.be/GZWsV7KpAw8
https://youtu.be/GZWsV7KpAw8?t=30
https://youtu.be/GZWsV7KpAw8?t=955
https://youtu.be/GZWsV7KpAw8?t=1261
https://youtu.be/GZWsV7KpAw8?t=1399
https://youtu.be/GZWsV7KpAw8?t=1489
https://youtu.be/GZWsV7KpAw8?t=1911
https://youtu.be/GZWsV7KpAw8?t=2247
https://youtu.be/GZWsV7KpAw8?t=2666
https://youtu.be/GZWsV7KpAw8?t=2808
https://youtu.be/eULv_AiAFII
https://youtu.be/eULv_AiAFII?t=0
https://youtu.be/eULv_AiAFII?t=123
https://youtu.be/eULv_AiAFII?t=382
https://youtu.be/eULv_AiAFII?t=650
https://youtu.be/eULv_AiAFII?t=762
https://youtu.be/eULv_AiAFII?t=916
https://youtu.be/eULv_AiAFII?t=1095
https://youtu.be/eULv_AiAFII?t=1315
https://youtu.be/eULv_AiAFII?t=1730
https://youtu.be/eULv_AiAFII?t=1855
https://youtu.be/eULv_AiAFII?t=2005
https://youtu.be/eULv_AiAFII?t=2165
https://youtu.be/eULv_AiAFII?t=2448
https://youtu.be/eULv_AiAFII?t=2536

106 APPENDIX D. VIDEO LECTURES

D.2.1.9 Lecture 9 (2019-05-24) — Temporary Objects, Moving/Copying, Value Categories [2019-05-24]

The following is a link to the full video:
� https://youtu.be/LhCHHfMh4Gg [duration: 00:48:29]

The following are links to particular offsets within the video:
� 00:00: [temporaries] Temporary Objects
� 02:51: [temporaries] Temporary Objects (Continued)
� 06:51: [temporaries] Temporary Objects Example
� 07:54: [temporaries] Temporary Objects Example (Continued)
� 09:06: [temporaries] Prefix Versus Postfix Increment/Decrement
� 18:24: [rval refs] Propagating Values: Copying and Moving
� 22:04: [rval refs] Copying and Moving
� 23:50: [rval refs] Buffer Example: Moving Versus Copying
� 25:09: [rval refs] Buffer Example: Copying
� 27:49: [rval refs] Buffer Example: Moving
� 30:55: [rval refs] Moving Versus Copying
� 33:35: [lrvalues] Value Categories of Expressions
� 36:39: [lrvalues] Value Categories of Expressions (Continued)
� 40:36: [lrvalues] Lvalues
� 43:39: [lrvalues] Lvalues (Continued 1)

D.2.1.10 Lecture 10 (2019-05-28) — Value Categories, Moving/Copying [2019-05-28]

The following is a link to the full video:
� https://youtu.be/C1ONBX9-vdo [duration: 00:48:36]

The following are links to particular offsets within the video:
� 00:00: [lrvalues] Lvalues (Continued 2)
� 03:14: [lrvalues] Moving and Lvalues
� 07:17: [lrvalues] Rvalues
� 11:33: [lrvalues] Prvalues
� 14:11: [lrvalues] Prvalues (Continued)
� 19:38: [lrvalues] Xvalues
� 23:55: [lrvalues] Moving and Rvalues
� 34:43: [lrvalues] Moving and Lvalues/Rvalues
� 40:20: [lrvalues] Moving/Copying and Lvalues/Rvalues

D.2.1.11 Lecture 11 (2019-05-29) — Copy Elision [2019-05-29]

The following is a link to the full video:
� https://youtu.be/LCRKHycBhsQ [duration: 00:48:31]

The following are links to particular offsets within the video:
� 00:00: [copy elision] Copy Elision and Implicit Moving [title slide]
� 00:36: [copy elision] Copy Elision
� 06:55: [copy elision] Copy Elision and Returning by Value
� 31:11: [copy elision] Return-By-Value Example 1: Summary
� 35:32: [copy elision] Return-By-Value Example 2: Summary
� 38:54: [copy elision] Example Where Copy Elision Allowed But Likely Impossible
� 44:09: [copy elision] Copy Elision and Passing by Value

D.2.1.12 Lecture 12 (2019-05-31) — Copy Elision, Implicit Move [2019-05-31]

The following is a link to the full video:
� https://youtu.be/QgfH-RFAFhI [duration: 00:50:32]

Copyright © 2021 Michael D. Adams Version 2021-04-01

https://youtu.be/LhCHHfMh4Gg
https://youtu.be/LhCHHfMh4Gg?t=0
https://youtu.be/LhCHHfMh4Gg?t=171
https://youtu.be/LhCHHfMh4Gg?t=411
https://youtu.be/LhCHHfMh4Gg?t=474
https://youtu.be/LhCHHfMh4Gg?t=546
https://youtu.be/LhCHHfMh4Gg?t=1104
https://youtu.be/LhCHHfMh4Gg?t=1324
https://youtu.be/LhCHHfMh4Gg?t=1430
https://youtu.be/LhCHHfMh4Gg?t=1509
https://youtu.be/LhCHHfMh4Gg?t=1669
https://youtu.be/LhCHHfMh4Gg?t=1855
https://youtu.be/LhCHHfMh4Gg?t=2015
https://youtu.be/LhCHHfMh4Gg?t=2199
https://youtu.be/LhCHHfMh4Gg?t=2436
https://youtu.be/LhCHHfMh4Gg?t=2619
https://youtu.be/C1ONBX9-vdo
https://youtu.be/C1ONBX9-vdo?t=0
https://youtu.be/C1ONBX9-vdo?t=194
https://youtu.be/C1ONBX9-vdo?t=437
https://youtu.be/C1ONBX9-vdo?t=693
https://youtu.be/C1ONBX9-vdo?t=851
https://youtu.be/C1ONBX9-vdo?t=1178
https://youtu.be/C1ONBX9-vdo?t=1435
https://youtu.be/C1ONBX9-vdo?t=2083
https://youtu.be/C1ONBX9-vdo?t=2420
https://youtu.be/LCRKHycBhsQ
https://youtu.be/LCRKHycBhsQ?t=0
https://youtu.be/LCRKHycBhsQ?t=36
https://youtu.be/LCRKHycBhsQ?t=415
https://youtu.be/LCRKHycBhsQ?t=1871
https://youtu.be/LCRKHycBhsQ?t=2132
https://youtu.be/LCRKHycBhsQ?t=2334
https://youtu.be/LCRKHycBhsQ?t=2649
https://youtu.be/QgfH-RFAFhI

D.2. 2019-05 SENG 475 VIDEO LECTURES 107

The following are links to particular offsets within the video:
� 00:00: [copy elision] Pass-By-Value Example: Summary
� 04:11: [copy elision] Copy Elision and Initialization
� 21:27: [copy elision] Mandatory Copy Elision Example: Factory Function
� 25:02: [copy elision] Return Statements and Moving/Copying
� 36:36: [copy elision] Example: Return Statements and Moving/Copying
� 40:38: [copy elision] Use of std::move in Return Statements
� 43:03: [copy elision] Example: Moving/Copying, Copy Elision, and Implicit Move a.k.a. [exercises] [Q.MC1]

Copy, Move, or Copy Elision?

D.2.1.13 Lecture 13 (2019-06-04) — Copy Elision, Implicit Move, Exceptions [2019-06-04]

The following is a link to the full video:
� https://youtu.be/yoA7fFfBRII [duration: 00:52:24]

The following are links to particular offsets within the video:
� 00:00: [exericses] [Q.MC1] Answer
� 09:44: [rval refs] Allowing Move Semantics in Other Contexts via std::move
� 10:49: [rval refs] Old-Style Swap
� 12:20: [rval refs] Improved Swap
� 14:27: [rval refs] Implication of Rvalue-Reference Type Function Parameters
� 17:34: [exceptions] Exceptions
� 18:52: [exceptions] The Problem
� 20:35: [exceptions] Traditional Error Handling
� 23:24: [exceptions] Example: Traditional Error Handling
� 25:09: [exceptions] Error Handling With Exceptions
� 27:55: [exceptions] Example: Exceptions
� 29:55: [exceptions] safe divide Example: Traditional Error Handling
� 30:37: [exceptions] safe divide Example: Exceptions
� 31:29: [exceptions] Exceptions Versus Traditional Error Handling
� 34:28: [exceptions] Exceptions
� 36:58: [exceptions] Standard Exception Classes

� [exceptions] Standard Exception Classes (Continued 1)
� [exceptions] Standard Exception Classes (Continued 2)

� 37:42: [exceptions] Throwing Exceptions
� 38:39: [exceptions] Throwing Exceptions (Continued)
� 40:45: [exceptions] Catching Exceptions
� 41:41: [exceptions] Catching Exceptions (Continued)
� 43:29: [exceptions] Rethrowing Exceptions
� 44:23: [exceptions] Transfer of Control from Throw Site to Handler
� 50:22: [exceptions] Stack Unwinding Example

D.2.1.14 Lecture 14 (2019-06-05) — Exceptions [2019-06-05]

The following is a link to the full video:
� https://youtu.be/_jyR6uel2k4 [duration: 00:47:00]

The following are links to particular offsets within the video:
� 00:00: [exceptions] Stack Unwinding Example
� 08:38: [exceptions] Function Try Blocks
� 09:49: [exceptions] Exceptions and Construction/Destruction
� 14:06: [exceptions] Construction/Destruction Example
� 18:09: [exceptions] Function Try Block Example
� 24:53: [exceptions] The noexcept Specifier

Version 2021-04-01 Copyright © 2021 Michael D. Adams

https://youtu.be/QgfH-RFAFhI?t=0
https://youtu.be/QgfH-RFAFhI?t=251
https://youtu.be/QgfH-RFAFhI?t=1287
https://youtu.be/QgfH-RFAFhI?t=1502
https://youtu.be/QgfH-RFAFhI?t=2196
https://youtu.be/QgfH-RFAFhI?t=2438
https://youtu.be/QgfH-RFAFhI?t=2583
https://youtu.be/yoA7fFfBRII
https://youtu.be/yoA7fFfBRII?t=0
https://youtu.be/yoA7fFfBRII?t=584
https://youtu.be/yoA7fFfBRII?t=649
https://youtu.be/yoA7fFfBRII?t=740
https://youtu.be/yoA7fFfBRII?t=867
https://youtu.be/yoA7fFfBRII?t=1054
https://youtu.be/yoA7fFfBRII?t=1132
https://youtu.be/yoA7fFfBRII?t=1235
https://youtu.be/yoA7fFfBRII?t=1404
https://youtu.be/yoA7fFfBRII?t=1509
https://youtu.be/yoA7fFfBRII?t=1675
https://youtu.be/yoA7fFfBRII?t=1795
https://youtu.be/yoA7fFfBRII?t=1837
https://youtu.be/yoA7fFfBRII?t=1889
https://youtu.be/yoA7fFfBRII?t=2068
https://youtu.be/yoA7fFfBRII?t=2218
https://youtu.be/yoA7fFfBRII?t=2262
https://youtu.be/yoA7fFfBRII?t=2319
https://youtu.be/yoA7fFfBRII?t=2445
https://youtu.be/yoA7fFfBRII?t=2501
https://youtu.be/yoA7fFfBRII?t=2609
https://youtu.be/yoA7fFfBRII?t=2663
https://youtu.be/yoA7fFfBRII?t=3022
https://youtu.be/_jyR6uel2k4
https://youtu.be/_jyR6uel2k4?t=0
https://youtu.be/_jyR6uel2k4?t=518
https://youtu.be/_jyR6uel2k4?t=589
https://youtu.be/_jyR6uel2k4?t=846
https://youtu.be/_jyR6uel2k4?t=1089
https://youtu.be/_jyR6uel2k4?t=1493

108 APPENDIX D. VIDEO LECTURES

� 29:13: [exceptions] The noexcept Specifier (Continued 1)
� [exceptions] The noexcept Specifier (Continued 2)

� 30:34: [exceptions] The noexcept Specifier (Continued 3)
� 37:33: [exceptions] Exceptions and Function Calls
� 42:06: [exceptions] Avoiding Exceptions Due to Function Calls

D.2.1.15 Lecture 15 (2019-06-07) — Exceptions, Interval Arithmetic [2019-06-07]

The following is a link to the full video:
� https://youtu.be/xMZl2vghJF4 [duration: 00:48:56]

The following are links to particular offsets within the video:
� 00:00: [exceptions] noexcept Operator
� 08:34: [exceptions] noexcept Operator (Continued)
� 17:00: [arithmetic] Interval Arithmetic
� 21:21: [arithmetic] Applications of Interval Arithmetic
� 24:11: [arithmetic] Real Interval Arithmetic
� 26:22: [arithmetic] Addition and Subtraction
� 27:54: [arithmetic] Multiplication and Division
� 28:46: [arithmetic] Floating-Point Interval Arithmetic
� 31:52: [arithmetic] Floating-Point Interval Arithmetic (Continued)
� 34:12: [arithmetic] Floating-Point Interval Arithmetic Operations
� 35:35: [arithmetic] Comparisons
� 44:18: [arithmetic] Setting and Querying Rounding Mode

D.2.1.16 Lecture 16 (2019-06-11) — Interval Arithmetic, Geometric Predicates and Applications [2019-06-11]

The following is a link to the full video:
� https://youtu.be/EcOOzgwRPw4 [duration: 00:46:42]

The following are links to particular offsets within the video:
� 00:00: [arithmetic] Impact of Current Rounding Mode
� 03:55: [arithmetic] Rounding Mode Example
� 04:53: [arithmetic] Geometric Predicates
� 07:18: [arithmetic] Filtered Geometric Predicates
� 11:44: [arithmetic] Two-Dimensional Orientation Test
� 13:50: [arithmetic] Example: Two-Dimensional Orientation Test
� 14:16: [arithmetic] Convex Polygons
� 17:08: [arithmetic] Polygon Convexity Test
� 20:42: [arithmetic] Three-Dimensional Orientation Test
� 25:58: [arithmetic] Side-of-Oriented-Circle Test
� 28:37: [arithmetic] Preferred-Direction Test
� 30:32: [arithmetic] Triangulations
� 33:40: [arithmetic] Delaunay Triangulations
� 35:37: [arithmetic] Nonuniqueness of Delaunay Triangulations

� [arithmetic] Comments on Delaunay Triangulations
� 39:37: [arithmetic] Edge Flips
� 42:21: [arithmetic] Locally-Delaunay Test
� 45:49: [arithmetic] Locally Preferred-Directions Delaunay Test

D.2.1.17 Lecture 17 (2019-06-12) — Geometric Predicates and Applications, Memory Management [2019-06-
12]

The following is a link to the full video:
� https://youtu.be/x3Z7Kxb32ew [duration: 00:41:34]

Copyright © 2021 Michael D. Adams Version 2021-04-01

https://youtu.be/_jyR6uel2k4?t=1753
https://youtu.be/_jyR6uel2k4?t=1834
https://youtu.be/_jyR6uel2k4?t=2253
https://youtu.be/_jyR6uel2k4?t=2526
https://youtu.be/xMZl2vghJF4
https://youtu.be/xMZl2vghJF4?t=0
https://youtu.be/xMZl2vghJF4?t=514
https://youtu.be/xMZl2vghJF4?t=1020
https://youtu.be/xMZl2vghJF4?t=1281
https://youtu.be/xMZl2vghJF4?t=1451
https://youtu.be/xMZl2vghJF4?t=1582
https://youtu.be/xMZl2vghJF4?t=1674
https://youtu.be/xMZl2vghJF4?t=1726
https://youtu.be/xMZl2vghJF4?t=1912
https://youtu.be/xMZl2vghJF4?t=2052
https://youtu.be/xMZl2vghJF4?t=2135
https://youtu.be/xMZl2vghJF4?t=2658
https://youtu.be/EcOOzgwRPw4
https://youtu.be/EcOOzgwRPw4?t=0
https://youtu.be/EcOOzgwRPw4?t=235
https://youtu.be/EcOOzgwRPw4?t=293
https://youtu.be/EcOOzgwRPw4?t=438
https://youtu.be/EcOOzgwRPw4?t=704
https://youtu.be/EcOOzgwRPw4?t=830
https://youtu.be/EcOOzgwRPw4?t=856
https://youtu.be/EcOOzgwRPw4?t=1028
https://youtu.be/EcOOzgwRPw4?t=1242
https://youtu.be/EcOOzgwRPw4?t=1558
https://youtu.be/EcOOzgwRPw4?t=1717
https://youtu.be/EcOOzgwRPw4?t=1832
https://youtu.be/EcOOzgwRPw4?t=2020
https://youtu.be/EcOOzgwRPw4?t=2137
https://youtu.be/EcOOzgwRPw4?t=2377
https://youtu.be/EcOOzgwRPw4?t=2541
https://youtu.be/EcOOzgwRPw4?t=2749
https://youtu.be/x3Z7Kxb32ew

D.2. 2019-05 SENG 475 VIDEO LECTURES 109

The following are links to particular offsets within the video:
� 00:00: [arithmetic] Locally Preferred-Directions Delaunay Test [plus related slides]
� 08:08: [arithmetic] Lawson Local Optimization Procedure
� 11:32: [arithmetic] Finding Delaunay Triangulations with Lawson LOP
� 13:43: [data structures] Naive Triangle-Mesh Data Structure
� 16:04: [data structures] Naive Triangle-Mesh Data Structure Example
� 20:11: [data structures] Half-Edge Data Structure
� 20:46: [data structures] Half-Edge Data Structure (Continued)
� 30:05: [data structures] Object File Format (OFF)
� 30:40: [data structures] OFF Example (Triangle Mesh)
� 34:01: [memory management] Memory Management
� 36:18: [memory management] Potential Problems Arising in Memory Management
� 38:42: [memory management] Alignment
� 39:06: [memory management] The alignof Operator

D.2.1.18 Lecture 18 (2019-06-14) — Memory Management [2019-06-14]

The following is a link to the full video:
� https://youtu.be/E31oR6H-Lv8 [duration: 00:41:56]

The following are links to particular offsets within the video:
� 00:09: [memory management] The alignas Specifier
� 02:04: [memory management] New Expressions
� 03:07: [memory management] New Expressions (Continued)
� 05:49: [memory management] Delete Expressions
� 07:22: [memory management] Delete Expressions (Continued 1)
� 10:13: [memory management] Delete Expressions (Continued 2)
� 11:58: [memory management] Typical Strategy for Determining Array Size in Array Delete
� 19:21: [memory management] New Expressions and Allocation
� 22:54: [memory management] Allocation Function Overload Resolution
� 26:11: [memory management] Allocation Function Overload Resolution (Continued)
� 29:03: [memory management] New Expressions and Deallocation
� 30:37: [memory management] Delete Expressions and Deallocation
� 31:04: [memory management] Single-Object Operator New (i.e., operator new)
� 34:03: [memory management] Single-Object Operator New Overloads
� 36:34: [memory management] Single-Object Operator New Overloads (Continued)
� 37:28: [memory management] Single-Object Operator New Examples

D.2.1.19 Lecture 19 (2019-06-18) — Memory Management [2019-06-18]

The following is a link to the full video:
� https://youtu.be/W_GazLV6qcg [duration: 00:48:04]

The following are links to particular offsets within the video:
� 00:00: [memory management] Array Operator New (i.e., operator new[])
� 01:50: [memory management] Array Operator New Overloads
� 02:57: [memory management] Array Operator New Overloads (Continued)
� 03:31: [memory management] Array Operator New Examples
� 11:54: [memory management] Single-Object Operator Delete (i.e., operator delete)
� 13:44: [memory management] Single-Object Operator Delete Overloads
� 14:16: [memory management] Single-Object Operator Delete Examples
� 20:57: [memory management] Array Operator Delete (i.e., operator delete[])
� 21:36: [memory management] Array Operator Delete Overloads
� 21:42: [memory management] Array Operator Delete Examples

Version 2021-04-01 Copyright © 2021 Michael D. Adams

https://youtu.be/x3Z7Kxb32ew?t=0
https://youtu.be/x3Z7Kxb32ew?t=488
https://youtu.be/x3Z7Kxb32ew?t=692
https://youtu.be/x3Z7Kxb32ew?t=823
https://youtu.be/x3Z7Kxb32ew?t=964
https://youtu.be/x3Z7Kxb32ew?t=1211
https://youtu.be/x3Z7Kxb32ew?t=1246
https://youtu.be/x3Z7Kxb32ew?t=1805
https://youtu.be/x3Z7Kxb32ew?t=1840
https://youtu.be/x3Z7Kxb32ew?t=2041
https://youtu.be/x3Z7Kxb32ew?t=2178
https://youtu.be/x3Z7Kxb32ew?t=2322
https://youtu.be/x3Z7Kxb32ew?t=2346
https://youtu.be/E31oR6H-Lv8
https://youtu.be/E31oR6H-Lv8?t=9
https://youtu.be/E31oR6H-Lv8?t=124
https://youtu.be/E31oR6H-Lv8?t=187
https://youtu.be/E31oR6H-Lv8?t=349
https://youtu.be/E31oR6H-Lv8?t=442
https://youtu.be/E31oR6H-Lv8?t=613
https://youtu.be/E31oR6H-Lv8?t=718
https://youtu.be/E31oR6H-Lv8?t=1161
https://youtu.be/E31oR6H-Lv8?t=1374
https://youtu.be/E31oR6H-Lv8?t=1571
https://youtu.be/E31oR6H-Lv8?t=1743
https://youtu.be/E31oR6H-Lv8?t=1837
https://youtu.be/E31oR6H-Lv8?t=1864
https://youtu.be/E31oR6H-Lv8?t=2043
https://youtu.be/E31oR6H-Lv8?t=2194
https://youtu.be/E31oR6H-Lv8?t=2248
https://youtu.be/W_GazLV6qcg
https://youtu.be/W_GazLV6qcg?t=0
https://youtu.be/W_GazLV6qcg?t=110
https://youtu.be/W_GazLV6qcg?t=177
https://youtu.be/W_GazLV6qcg?t=211
https://youtu.be/W_GazLV6qcg?t=714
https://youtu.be/W_GazLV6qcg?t=824
https://youtu.be/W_GazLV6qcg?t=856
https://youtu.be/W_GazLV6qcg?t=1257
https://youtu.be/W_GazLV6qcg?t=1296
https://youtu.be/W_GazLV6qcg?t=1302

110 APPENDIX D. VIDEO LECTURES

� 22:14: [memory management] Motivation for Placement New
� [memory management] Motivation for Placement New: Diagram

� 31:00: [memory management] Placement New
� 36:59: [memory management] Placement New Examples
� 43:24: [memory management] Direct Destructor Invocation
� 46:15: [memory management] Pseudodestructors

D.2.1.20 Lecture 20 (2019-06-19) — Memory Management [2019-06-19]

The following is a link to the full video:
� https://youtu.be/xKObs70kzC8 [duration: 00:49:07]

The following are links to particular offsets within the video:
� 00:00: [memory management] std::addressof Function Template
� 02:29: [memory management] std::addressof Example
� 04:25: [memory management] The std::aligned storage Class Template
� 05:48: [memory management] Optional Value Example
� 07:17: [memory management] Optional Value Example: Diagram
� 08:12: [memory management] Optional Value Example: optval.hpp
� 19:57: [memory management] Optional Value Example: User Code
� 22:10: [memory management] Handling Uninitialized Storage
� 22:55: [memory management] Functions for Uninitialized Storage
� 26:37: [memory management] Functions for Uninitialized Storage (Continued)
� 27:47: [memory management] Some Example Implementations
� 31:04: [memory management] Bounded Array Example
� 31:19: [memory management] Bounded Array Example: Diagram
� 32:46: [memory management] Bounded Array Example: aligned buffer.hpp
� 34:44: [memory management] Bounded Array Example: array.hpp (1)
� 39:00: [memory management] Bounded Array Example: array.hpp (2)
� 44:22: [memory management] Bounded Array Example: array.hpp (3)
� 48:40: [memory management] Bounded Array Example: array.hpp (4)

D.2.1.21 Lecture 21 (2019-06-21) — Memory Management, Intrusive Containers, Pointers to Members [2019-
06-21]

The following is a link to the full video:
� https://youtu.be/Tlo0KliV-xY [duration: 00:49:10]

The following are links to particular offsets within the video:
� 00:00: [memory management] Vector Example
� 01:48: [memory management] Vector Example: Diagram
� 02:43: [memory management] Vector Example: vec.hpp (1)
� 06:55: [memory management] Vector Example: vec.hpp (2)
� 12:48: [memory management] Vector Example: vec.hpp (3)
� 17:01: [memory management] Vector Example: vec.hpp (4)
� 20:49: [memory management] Vector Example: vec.hpp (5)
� 24:02: [memory management] Vector Example: vec.hpp (6)
� 27:38: [data structures] Intrusive Containers
� 33:25: [data structures] Shortcomings of Non-Intrusive Containers
� 35:28: [data structures] Advantages of Intrusive Containers
� 38:27: [data structures] Disadvantages of Intrusive Containers
� 42:40: [data structures] Disadvantages of Intrusive Containers (Continued)
� 45:21: [classes] Pointers to Members
� 47:58: [classes] Pointers to Members (Continued)

Copyright © 2021 Michael D. Adams Version 2021-04-01

https://youtu.be/W_GazLV6qcg?t=1334
https://youtu.be/W_GazLV6qcg?t=1860
https://youtu.be/W_GazLV6qcg?t=2219
https://youtu.be/W_GazLV6qcg?t=2604
https://youtu.be/W_GazLV6qcg?t=2775
https://youtu.be/xKObs70kzC8
https://youtu.be/xKObs70kzC8?t=0
https://youtu.be/xKObs70kzC8?t=149
https://youtu.be/xKObs70kzC8?t=265
https://youtu.be/xKObs70kzC8?t=348
https://youtu.be/xKObs70kzC8?t=437
https://youtu.be/xKObs70kzC8?t=492
https://youtu.be/xKObs70kzC8?t=1197
https://youtu.be/xKObs70kzC8?t=1330
https://youtu.be/xKObs70kzC8?t=1375
https://youtu.be/xKObs70kzC8?t=1597
https://youtu.be/xKObs70kzC8?t=1667
https://youtu.be/xKObs70kzC8?t=1864
https://youtu.be/xKObs70kzC8?t=1879
https://youtu.be/xKObs70kzC8?t=1966
https://youtu.be/xKObs70kzC8?t=2084
https://youtu.be/xKObs70kzC8?t=2340
https://youtu.be/xKObs70kzC8?t=2662
https://youtu.be/xKObs70kzC8?t=2920
https://youtu.be/Tlo0KliV-xY
https://youtu.be/Tlo0KliV-xY?t=0
https://youtu.be/Tlo0KliV-xY?t=108
https://youtu.be/Tlo0KliV-xY?t=163
https://youtu.be/Tlo0KliV-xY?t=415
https://youtu.be/Tlo0KliV-xY?t=768
https://youtu.be/Tlo0KliV-xY?t=1021
https://youtu.be/Tlo0KliV-xY?t=1249
https://youtu.be/Tlo0KliV-xY?t=1442
https://youtu.be/Tlo0KliV-xY?t=1658
https://youtu.be/Tlo0KliV-xY?t=2005
https://youtu.be/Tlo0KliV-xY?t=2128
https://youtu.be/Tlo0KliV-xY?t=2307
https://youtu.be/Tlo0KliV-xY?t=2560
https://youtu.be/Tlo0KliV-xY?t=2721
https://youtu.be/Tlo0KliV-xY?t=2878

D.2. 2019-05 SENG 475 VIDEO LECTURES 111

D.2.1.22 Lecture 22 (2019-06-25) — Pointers to Members, Intrusive Containers, Caches [2019-06-25]

The following is a link to the full video:
� https://youtu.be/3rCHYD5VE2U [duration: 00:52:44]

The following are links to particular offsets within the video:
� 00:00: [classes] Pointers to Members for Data Members
� 06:05: [classes] Pointers to Members Example: Accumulate
� 14:53: [data structures] Intrusive Doubly-Linked List With Sentinel Node

� [data structures] Intrusive Doubly-Linked List With Sentinel Node: Code (Continued)
� [data structures] Intrusive Doubly-Linked List With Sentinel Node: Code
� [data structures] Intrusive Doubly-Linked List With Sentinel Node: Diagram

� 25:39: [data structures] Remarks on Intrusive Doubly-Linked List With Sentinel Node
� 25:52: [data structures] Examples of Intrusive Containers
� 27:03: [cache] The Memory Latency Problem
� 28:32: [cache] Principle of Locality
� 31:05: [cache] Memory Hierarchy
� 32:48: [cache] Caches
� 35:57: [cache] Memory and Cache
� 37:38: [cache] Block Placement
� 40:04: [cache] Block Placement (Continued)
� 42:35: [cache] Direct-Mapped Cache Example
� 43:31: [cache] K-Way Set-Associative Cache Example
� 44:28: [cache] Fully Associative Cache
� 45:03: [cache] Block Identificiation
� 46:43: [cache] Decomposition of Memory Address
� 48:53: [cache] Block Replacement
� 50:26: [cache] Write Policy

D.2.1.23 Lecture 23 (2019-06-26) — Caches, Cache-Efficient Algorithms [2019-06-26]

The following is a link to the full video:
� https://youtu.be/ZV3LOrsHuV0 [duration: 00:50:24]

The following are links to particular offsets within the video:
� 00:00: [cache] Cache Misses
� 02:14: [cache] Virtual Memory
� 03:20: [cache] Virtual Address Space
� 05:38: [cache] Address Translation
� 07:21: [supplemental] [Q.C2] Virtual Memory Exercise
� 08:39: [supplemental] [Q.C2] Virtual Memory Exercise (Continued)
� 14:03: [cache] Translation Lookaside Buffer (TLB)
� 15:59: [cache] Virtual and Physical Caches
� 17:28: [cache] Virtual Versus Physical Caches
� 19:37: [cache] Virtually-Indexed Physically-Tagged (VIPT) Caches
� 20:15: [cache] VIPT Cache Example
� 23:06: [cache] Cache Performance
� 23:50: [cache] Intel Core i7
� 24:42: [cache] ARM Cortex A8
� 25:43: [cache] Cache-Efficient Algorithms
� 26:56: [cache] Code Transformations to Improve Cache Efficiency
� 28:30: [data structures] Row-Major Versus Column-Major Order
� 29:42: [cache] Array Merging Example
� 31:50: [cache] Loop Interchange Example
� 33:17: [cache] Loop Fusion Example

Version 2021-04-01 Copyright © 2021 Michael D. Adams

https://youtu.be/3rCHYD5VE2U
https://youtu.be/3rCHYD5VE2U?t=0
https://youtu.be/3rCHYD5VE2U?t=365
https://youtu.be/3rCHYD5VE2U?t=893
https://youtu.be/3rCHYD5VE2U?t=1539
https://youtu.be/3rCHYD5VE2U?t=1552
https://youtu.be/3rCHYD5VE2U?t=1623
https://youtu.be/3rCHYD5VE2U?t=1712
https://youtu.be/3rCHYD5VE2U?t=1865
https://youtu.be/3rCHYD5VE2U?t=1968
https://youtu.be/3rCHYD5VE2U?t=2157
https://youtu.be/3rCHYD5VE2U?t=2258
https://youtu.be/3rCHYD5VE2U?t=2404
https://youtu.be/3rCHYD5VE2U?t=2555
https://youtu.be/3rCHYD5VE2U?t=2611
https://youtu.be/3rCHYD5VE2U?t=2668
https://youtu.be/3rCHYD5VE2U?t=2703
https://youtu.be/3rCHYD5VE2U?t=2803
https://youtu.be/3rCHYD5VE2U?t=2933
https://youtu.be/3rCHYD5VE2U?t=3026
https://youtu.be/ZV3LOrsHuV0
https://youtu.be/ZV3LOrsHuV0?t=0
https://youtu.be/ZV3LOrsHuV0?t=134
https://youtu.be/ZV3LOrsHuV0?t=200
https://youtu.be/ZV3LOrsHuV0?t=338
https://youtu.be/ZV3LOrsHuV0?t=441
https://youtu.be/ZV3LOrsHuV0?t=519
https://youtu.be/ZV3LOrsHuV0?t=843
https://youtu.be/ZV3LOrsHuV0?t=959
https://youtu.be/ZV3LOrsHuV0?t=1048
https://youtu.be/ZV3LOrsHuV0?t=1177
https://youtu.be/ZV3LOrsHuV0?t=1215
https://youtu.be/ZV3LOrsHuV0?t=1386
https://youtu.be/ZV3LOrsHuV0?t=1430
https://youtu.be/ZV3LOrsHuV0?t=1482
https://youtu.be/ZV3LOrsHuV0?t=1543
https://youtu.be/ZV3LOrsHuV0?t=1616
https://youtu.be/ZV3LOrsHuV0?t=1710
https://youtu.be/ZV3LOrsHuV0?t=1782
https://youtu.be/ZV3LOrsHuV0?t=1910
https://youtu.be/ZV3LOrsHuV0?t=1997

112 APPENDIX D. VIDEO LECTURES

� 35:25: [cache] Blocking Example
� 37:20: [cache] Blocking Example (Continued 0.5)
� 40:54: [cache] Blocking Example (Continued 1)
� 42:11: [cache] Blocking Example (Continued 2)
� 44:48: [cache] Cache-Aware Versus Cache-Oblivious Algorithms
� 47:24: [cache] Tall Caches

D.2.1.24 Lecture 24 (2019-06-28) — Cache-Efficient Algorithms [2019-06-28]

The following is a link to the full video:
� https://youtu.be/BC-eOhw6kAQ [duration: 00:44:45]

The following are links to particular offsets within the video:
� 00:00: [cache] Idealized Cache Model
� 02:20: [cache] Remarks on Assumption of Optimal-Replacement Policy
� 03:45: [cache] Cache-Oblivious Algorithms
� 04:32: [cache] Scanning
� 09:44: [cache] Array Reversal
� 14:48: [cache] Naive Matrix Transposition
� 16:29: [cache] Naive Matrix Transposition: Performance
� 21:31: [cache] Cache-Oblivious Matrix Transposition
� 22:50: [cache] Cache-Oblivious Matrix Transposition (Continued)
� 24:47: [cache] Cache-Oblivious Matrix Transposition Example 1A [Part 1]
� 26:52: [handout] Transpose Algorithm Pseudocode
� 29:38: [handout] Matrix Subblock Characterization
� 30:57: [cache] Cache-Oblivious Matrix Transposition Example 1A [Part 2]
� 32:48: [cache] Cache-Oblivious Matrix Transposition Example 2
� 34:47: [cache] Cache-Oblivious Matrix Transposition: Performance
� 36:40: [cache] Naive Matrix Multiplication
� 39:07: [cache] Naive Matrix Multiplication: Performance

D.2.1.25 Lecture 25 (2019-07-03) — Cache-Efficient Algorithms, Concurrency [2019-07-03]

The following is a link to the full video:
� https://youtu.be/NTUnun-YjyQ [duration: 00:46:39]

The following are links to particular offsets within the video:
� 00:00: [cache] Cache-Oblivious Matrix Multiplication
� 02:16: [cache] Cache-Oblivious Matrix Multiplication (Continued 1)
� 05:55: [cache] Cache-Oblivious Matrix Multiplication (Continued 2)
� 06:44: [cache] Cache-Oblivious Matrix Multiplication Example 1
� 13:02: [cache] Cache-Oblivious Matrix Multiplication: Performance
� 15:14: [cache] Cache-Oblivious Matrix Multiplication Revisited
� 17:52: [cache] Cache-Oblivious Matrix Multiplication Revisited Example 2
� 20:48: [cache] Discrete Fourier Transform (DFT)
� 24:03: [cache] Cache-Oblivious Fast Fourier Transform (FFT)
� 29:41: [cache] Example: Four-Point DFT
� 32:15: [cache] Example: Four-Point DFT (Continued 1)
� 33:41: [cache] Example: Four-Point DFT (Continued 2)
� 34:01: [cache] Cache-Oblivious FFT: Performance
� 37:40: [concurrency] Processors
� 39:38: [concurrency] Processors (Continued)
� 41:29: [concurrency] Why Multicore Processors?
� 44:35: [concurrency] Concurrency

Copyright © 2021 Michael D. Adams Version 2021-04-01

https://youtu.be/ZV3LOrsHuV0?t=2125
https://youtu.be/ZV3LOrsHuV0?t=2240
https://youtu.be/ZV3LOrsHuV0?t=2454
https://youtu.be/ZV3LOrsHuV0?t=2531
https://youtu.be/ZV3LOrsHuV0?t=2688
https://youtu.be/ZV3LOrsHuV0?t=2844
https://youtu.be/BC-eOhw6kAQ
https://youtu.be/BC-eOhw6kAQ?t=0
https://youtu.be/BC-eOhw6kAQ?t=140
https://youtu.be/BC-eOhw6kAQ?t=225
https://youtu.be/BC-eOhw6kAQ?t=272
https://youtu.be/BC-eOhw6kAQ?t=584
https://youtu.be/BC-eOhw6kAQ?t=888
https://youtu.be/BC-eOhw6kAQ?t=989
https://youtu.be/BC-eOhw6kAQ?t=1291
https://youtu.be/BC-eOhw6kAQ?t=1370
https://youtu.be/BC-eOhw6kAQ?t=1487
https://youtu.be/BC-eOhw6kAQ?t=1612
https://youtu.be/BC-eOhw6kAQ?t=1778
https://youtu.be/BC-eOhw6kAQ?t=1857
https://youtu.be/BC-eOhw6kAQ?t=1968
https://youtu.be/BC-eOhw6kAQ?t=2087
https://youtu.be/BC-eOhw6kAQ?t=2200
https://youtu.be/BC-eOhw6kAQ?t=2347
https://youtu.be/NTUnun-YjyQ
https://youtu.be/NTUnun-YjyQ?t=0
https://youtu.be/NTUnun-YjyQ?t=136
https://youtu.be/NTUnun-YjyQ?t=355
https://youtu.be/NTUnun-YjyQ?t=404
https://youtu.be/NTUnun-YjyQ?t=782
https://youtu.be/NTUnun-YjyQ?t=914
https://youtu.be/NTUnun-YjyQ?t=1072
https://youtu.be/NTUnun-YjyQ?t=1248
https://youtu.be/NTUnun-YjyQ?t=1443
https://youtu.be/NTUnun-YjyQ?t=1781
https://youtu.be/NTUnun-YjyQ?t=1935
https://youtu.be/NTUnun-YjyQ?t=2021
https://youtu.be/NTUnun-YjyQ?t=2041
https://youtu.be/NTUnun-YjyQ?t=2260
https://youtu.be/NTUnun-YjyQ?t=2378
https://youtu.be/NTUnun-YjyQ?t=2489
https://youtu.be/NTUnun-YjyQ?t=2675

D.2. 2019-05 SENG 475 VIDEO LECTURES 113

D.2.1.26 Lecture 26 (2019-07-05) — Concurrency [2019-07-05]

The following is a link to the full video:
� https://youtu.be/U__YDW14DA0 [duration: 00:47:06]

The following are links to particular offsets within the video:
� 00:00: [concurrency] Why Multithreading?
� 03:51: [concurrency] Memory Model
� 06:47: [concurrency] Sequential Consistency (SC)
� 09:36: [concurrency] Sequential-Consistency (SC) Memory Model
� 12:34: [concurrency] Load/Store Reordering Example: Single Thread
� 15:20: [concurrency] Load/Store Reordering Example: Multiple Threads
� 20:00: [concurrency] Atomicity of Memory Operations
� 21:46: [concurrency] Data Races
� 25:34: [concurrency] Torn Reads
� 28:57: [concurrency] Torn Writes
� 31:11: [concurrency] SC Data-Race Free (SC-DRF) Memory Model
� 34:36: [concurrency] C++ Memory Model
� 39:53: [concurrency] The std::thread Class
� 43:03: [concurrency] The std::thread Class (Continued)

D.2.1.27 Lecture 27 (2019-07-09) — Concurrency [2019-07-09]

The following is a link to the full video:
� https://youtu.be/1CkqUsDFPnE [duration: 00:45:55]

The following are links to particular offsets within the video:
� 00:00: [concurrency] std::thread Members
� 01:49: [concurrency] std::thread Members (Continued)
� 03:06: [concurrency] Example: Hello World With Threads [First Half]
� 05:15: [lambdas] Hello World Program Revisited
� 09:22: [lambdas] Linear-Function Functor Example
� 21:27: [concurrency] Example: Hello World With Threads [Second Hal]
� 23:00: [concurrency] Example: Thread-Function Argument Passing (Copy/Move Semantics)
� 25:23: [concurrency] Example: Thread-Function Argument Passing (Reference Semantics)
� 30:32: [concurrency] Example: Moving Threads
� 33:16: [concurrency] Example: Lifetime Bug
� 36:38: [concurrency] The std::thread Class and Exception Safety
� 38:21: [concurrency] The std::thread Class and Exception Safety (Continued)

D.2.1.28 Lecture 28 (2019-07-10) — Concurrency [2019-07-10]

The following is a link to the full video:
� https://youtu.be/U_hiEvfgf0Q [duration: 00:43:18]

The following are links to particular offsets within the video:
� 00:00: [concurrency] Happens-Before Relationships
� 03:12: [concurrency] “Earlier in Time” Versus Happens Before
� 09:02: [concurrency] Sequenced-Before Relationships
� 10:21: [concurrency] Sequenced-Before Relationships (Continued)
� 11:14: [concurrency] Inter-Thread Happens-Before Relationships
� 12:37: [concurrency] Summary of Happens-Before Relationships
� 13:15: [concurrency] Synchronizes-With Relationships
� 17:01: [concurrency] Examples of Synchronizes-With Relationships
� 17:50: [concurrency] Synchronizes-With Relationship: Thread Create and Join
� 23:19: [concurrency] Shared Data

Version 2021-04-01 Copyright © 2021 Michael D. Adams

https://youtu.be/U__YDW14DA0
https://youtu.be/U__YDW14DA0?t=0
https://youtu.be/U__YDW14DA0?t=231
https://youtu.be/U__YDW14DA0?t=407
https://youtu.be/U__YDW14DA0?t=576
https://youtu.be/U__YDW14DA0?t=754
https://youtu.be/U__YDW14DA0?t=920
https://youtu.be/U__YDW14DA0?t=1200
https://youtu.be/U__YDW14DA0?t=1306
https://youtu.be/U__YDW14DA0?t=1534
https://youtu.be/U__YDW14DA0?t=1737
https://youtu.be/U__YDW14DA0?t=1871
https://youtu.be/U__YDW14DA0?t=2076
https://youtu.be/U__YDW14DA0?t=2393
https://youtu.be/U__YDW14DA0?t=2583
https://youtu.be/1CkqUsDFPnE
https://youtu.be/1CkqUsDFPnE?t=0
https://youtu.be/1CkqUsDFPnE?t=109
https://youtu.be/1CkqUsDFPnE?t=186
https://youtu.be/1CkqUsDFPnE?t=315
https://youtu.be/1CkqUsDFPnE?t=562
https://youtu.be/1CkqUsDFPnE?t=1287
https://youtu.be/1CkqUsDFPnE?t=1380
https://youtu.be/1CkqUsDFPnE?t=1523
https://youtu.be/1CkqUsDFPnE?t=1832
https://youtu.be/1CkqUsDFPnE?t=1996
https://youtu.be/1CkqUsDFPnE?t=2198
https://youtu.be/1CkqUsDFPnE?t=2301
https://youtu.be/U_hiEvfgf0Q
https://youtu.be/U_hiEvfgf0Q?t=0
https://youtu.be/U_hiEvfgf0Q?t=192
https://youtu.be/U_hiEvfgf0Q?t=542
https://youtu.be/U_hiEvfgf0Q?t=621
https://youtu.be/U_hiEvfgf0Q?t=674
https://youtu.be/U_hiEvfgf0Q?t=757
https://youtu.be/U_hiEvfgf0Q?t=795
https://youtu.be/U_hiEvfgf0Q?t=1021
https://youtu.be/U_hiEvfgf0Q?t=1070
https://youtu.be/U_hiEvfgf0Q?t=1399

114 APPENDIX D. VIDEO LECTURES

� 24:50: [concurrency] Race Conditions
� 28:42: [concurrency] Critical Sections
� 30:43: [concurrency] Data-Race Example
� 32:33: [concurrency] Example: Data Race (Counter)
� 34:46: [concurrency] Example: Data Race and/or Race Condition (IntSet)

D.2.1.29 Lecture 29 (2019-07-12) — Concurrency [2019-07-12]

The following is a link to the full video:
� https://youtu.be/nHll640_vh0 [duration: 00:47:21]

The following are links to particular offsets within the video:
� 00:00: [concurrency] Mutexes
� 03:10: [concurrency] The std::mutex Class
� 05:44: [concurrency] std::mutex Members
� 08:02: [concurrency] Example: Avoiding Data Race Using Mutex (Counter) (mutex)
� 11:00: [concurrency] Synchronizes-With Relationships: Mutex Lock/Unlock
� 18:57: [concurrency] The std::scoped lock Template Class
� 21:22: [concurrency] std::scoped lock Members
� 22:14: [concurrency] Example: Avoiding Data Race Using Mutex (Counter) (scoped lock)
� 24:22: [concurrency] Example: Avoiding Data Race Using Mutex (IntSet) (scoped lock)
� 32:44: [concurrency] Acquisition of Multiple Locks
� 35:26: [concurrency] Example: Acquiring Two Locks for Swap (Incorrect)
� 38:56: [concurrency] Example: Acquiring Two Locks for Swap [scoped lock]
� 39:20: [concurrency] The std::unique lock Template Class
� 41:55: [concurrency] std::unique lock Members
� 43:28: [concurrency] std::unique lock Members (Continued)
� 43:55: [concurrency] Example: Avoiding Data Race Using Mutex (Counter) (unique lock)

D.2.1.30 Lecture 30 (2019-07-16) — Concurrency [2019-07-16]

The following is a link to the full video:
� https://youtu.be/0LT1FMvkIoA [duration: 00:44:37]

The following are links to particular offsets within the video:
� 00:00: [concurrency] The std::lock Template Function
� 01:01: [concurrency] Example: Acquiring Two Locks for Swap [unique lock and lock]
� 01:51: [concurrency] Static Local Variable Initialization and Thread Safety
� 03:16: [concurrency] Condition Variables
� 07:40: [concurrency] The std::condition variable Class
� 13:26: [concurrency] std::condition variable Members
� 14:30: [concurrency] std::condition variable Members (Continued)
� 15:32: [concurrency] Example: Condition Variable (IntStack)
� 27:50: [concurrency] Latches
� 29:56: [concurrency] Latch Example: User Code
� 32:03: [concurrency] Latch Example: latch 1.hpp
� 37:15: [concurrency] The std::condition variable any Class
� 38:44: [concurrency] Thread Pools
� 42:07: [concurrency] Simple Thread Pool Interface Example

D.2.1.31 Lecture 31 (2019-07-17) — Concurrency, More Exceptions [2019-07-17]

The following is a link to the full video:
� https://youtu.be/DeLPO3S_cVM [duration: 00:45:53]

The following are links to particular offsets within the video:

Copyright © 2021 Michael D. Adams Version 2021-04-01

https://youtu.be/U_hiEvfgf0Q?t=1490
https://youtu.be/U_hiEvfgf0Q?t=1722
https://youtu.be/U_hiEvfgf0Q?t=1843
https://youtu.be/U_hiEvfgf0Q?t=1953
https://youtu.be/U_hiEvfgf0Q?t=2086
https://youtu.be/nHll640_vh0
https://youtu.be/nHll640_vh0?t=0
https://youtu.be/nHll640_vh0?t=190
https://youtu.be/nHll640_vh0?t=344
https://youtu.be/nHll640_vh0?t=482
https://youtu.be/nHll640_vh0?t=660
https://youtu.be/nHll640_vh0?t=1137
https://youtu.be/nHll640_vh0?t=1282
https://youtu.be/nHll640_vh0?t=1334
https://youtu.be/nHll640_vh0?t=1462
https://youtu.be/nHll640_vh0?t=1964
https://youtu.be/nHll640_vh0?t=2126
https://youtu.be/nHll640_vh0?t=2336
https://youtu.be/nHll640_vh0?t=2360
https://youtu.be/nHll640_vh0?t=2515
https://youtu.be/nHll640_vh0?t=2608
https://youtu.be/nHll640_vh0?t=2635
https://youtu.be/0LT1FMvkIoA
https://youtu.be/0LT1FMvkIoA?t=0
https://youtu.be/0LT1FMvkIoA?t=61
https://youtu.be/0LT1FMvkIoA?t=111
https://youtu.be/0LT1FMvkIoA?t=196
https://youtu.be/0LT1FMvkIoA?t=460
https://youtu.be/0LT1FMvkIoA?t=806
https://youtu.be/0LT1FMvkIoA?t=870
https://youtu.be/0LT1FMvkIoA?t=932
https://youtu.be/0LT1FMvkIoA?t=1670
https://youtu.be/0LT1FMvkIoA?t=1796
https://youtu.be/0LT1FMvkIoA?t=1923
https://youtu.be/0LT1FMvkIoA?t=2235
https://youtu.be/0LT1FMvkIoA?t=2324
https://youtu.be/0LT1FMvkIoA?t=2527
https://youtu.be/DeLPO3S_cVM

D.2. 2019-05 SENG 475 VIDEO LECTURES 115

� 00:00: [concurrency] Simple Thread Pool Interface Example
� 03:44: [exceptions] Resource Management
� 05:31: [exceptions] Resource Leak Example
� 07:17: [exceptions] Cleanup
� 08:43: [exceptions] Exception Safety and Exception Guarantees
� 13:13: [exceptions] Exception Guarantees
� 20:24: [exceptions] Resource Acquisition Is Initialization (RAII)
� 21:43: [exceptions] Resource Leak Example Revisited
� 30:25: [exceptions] RAII Example: Stream Formatting Flags
� 35:15: [exceptions] Other RAII Examples
� 37:55: [exceptions] Appropriateness of Using Exceptions
� 41:40: [exceptions] Enforcing Invariants: Exceptions Versus Assertions

D.2.1.32 Lecture 32 (2019-07-19) — Smart Pointers [2019-07-19]

The following is a link to the full video:
� https://youtu.be/_VV1BlJ97ug [duration: 00:42:43]

The following are links to particular offsets within the video:
� 00:00: [smart ptrs] Memory Management, Ownership, and Raw Pointers
� 02:36: [smart ptrs] Smart Pointers
� 05:15: [smart ptrs] The std::unique ptr Template Class
� 08:27: [smart ptrs] The std::unique ptr Template Class (Continued)
� 10:37: [handout] Move Operation for unique ptr
� 13:17: [handout] Why unique ptr Is Not Copyable
� 16:16: [smart ptrs] std::unique ptr Member Functions
� 17:41: [smart ptrs] std::unique ptr Member Functions (Continued)
� 18:13: [smart ptrs] std::unique ptr Example 1
� 21:48: [smart ptrs] Temporary Heap-Allocated Objects
� 24:07: [smart ptrs] Decoupled Has-A Relationship
� 28:19: [smart ptrs] The std::shared ptr Template Class
� 31:25: [smart ptrs] The std::shared ptr Template Class (Continued)
� 39:09: [smart ptrs] std::shared ptr Reference Counting Example

� [smart ptrs] std::shared ptr Reference Counting Example (Continued 1)
� [smart ptrs] std::shared ptr Reference Counting Example (Continued 2)

D.2.1.33 Lecture 33 (2019-07-23) — Smart Pointers, Vectorization [2019-07-23]

The following is a link to the full video:
� https://youtu.be/D_8Hfchp09A [duration: 00:48:07]

The following are links to particular offsets within the video:
� 00:00: [smart ptrs] std::shared ptr Member Functions
� 00:48: [smart ptrs] std::shared ptr Member Functions (Continued)
� 02:23: [smart ptrs] Prefer Use of std::make shared
� 04:08: [smart ptrs] std::shared ptr Example
� 12:31: [smart ptrs] std::shared ptr and const
� 13:46: [smart ptrs] Factory Function
� 15:17: [smart ptrs] Example: Shared Pointer to Subobject of Managed Object
� 18:04: [smart ptrs] Example: Shared Pointer to Subobject of Managed Object (Continued 1)
� 20:51: [smart ptrs] Example: Shared Pointer to Subobject of Managed Object (Continued 2)
� 24:35: [smart ptrs] Example: Shared Pointer to Subobject of Managed Object (Continued 3)
� 25:17: [smart ptrs] Example: Shared Pointer to Subobject of Managed Object (Continued 4)
� 27:36: [smart ptrs] Example: std::shared ptr

Version 2021-04-01 Copyright © 2021 Michael D. Adams

https://youtu.be/DeLPO3S_cVM?t=0
https://youtu.be/DeLPO3S_cVM?t=224
https://youtu.be/DeLPO3S_cVM?t=331
https://youtu.be/DeLPO3S_cVM?t=437
https://youtu.be/DeLPO3S_cVM?t=523
https://youtu.be/DeLPO3S_cVM?t=793
https://youtu.be/DeLPO3S_cVM?t=1224
https://youtu.be/DeLPO3S_cVM?t=1303
https://youtu.be/DeLPO3S_cVM?t=1825
https://youtu.be/DeLPO3S_cVM?t=2115
https://youtu.be/DeLPO3S_cVM?t=2275
https://youtu.be/DeLPO3S_cVM?t=2500
https://youtu.be/_VV1BlJ97ug
https://youtu.be/_VV1BlJ97ug?t=0
https://youtu.be/_VV1BlJ97ug?t=156
https://youtu.be/_VV1BlJ97ug?t=315
https://youtu.be/_VV1BlJ97ug?t=507
https://youtu.be/_VV1BlJ97ug?t=637
https://youtu.be/_VV1BlJ97ug?t=797
https://youtu.be/_VV1BlJ97ug?t=976
https://youtu.be/_VV1BlJ97ug?t=1061
https://youtu.be/_VV1BlJ97ug?t=1093
https://youtu.be/_VV1BlJ97ug?t=1308
https://youtu.be/_VV1BlJ97ug?t=1447
https://youtu.be/_VV1BlJ97ug?t=1699
https://youtu.be/_VV1BlJ97ug?t=1885
https://youtu.be/_VV1BlJ97ug?t=2349
https://youtu.be/D_8Hfchp09A
https://youtu.be/D_8Hfchp09A?t=0
https://youtu.be/D_8Hfchp09A?t=48
https://youtu.be/D_8Hfchp09A?t=143
https://youtu.be/D_8Hfchp09A?t=248
https://youtu.be/D_8Hfchp09A?t=751
https://youtu.be/D_8Hfchp09A?t=826
https://youtu.be/D_8Hfchp09A?t=917
https://youtu.be/D_8Hfchp09A?t=1084
https://youtu.be/D_8Hfchp09A?t=1251
https://youtu.be/D_8Hfchp09A?t=1475
https://youtu.be/D_8Hfchp09A?t=1517
https://youtu.be/D_8Hfchp09A?t=1656

116 APPENDIX D. VIDEO LECTURES

� 30:00: [smart ptrs] Example: std::shared ptr (Continued)
� 32:58: [vectorization] Vector Processing
� 34:33: [vectorization] Scalar Versus Vector Instructions
� 36:10: [vectorization] Vector-Memory and Vector-Register Architectures
� 38:13: [vectorization] Vector-Register Architectures
� 40:56: [vectorization] Vector Extensions
� 42:53: [vectorization] Intel x86/x86-64 Streaming SIMD Extensions (SSE)
� 44:18: [vectorization] Intel x86/x86-64 Advanced Vector Extensions (AVX)
� 46:09: [vectorization] ARM NEON

D.2.1.34 Lecture 34 (2019-07-24) — Vectorization [2019-07-24]

The following is a link to the full video:
� https://youtu.be/Thv9FA60XH8 [duration: 00:47:52]

The following are links to particular offsets within the video:
� 00:00: [vectorization] Checking for Processor Vector Support on Linux
� 01:06: [vectorization] Vectorization
� 03:14: [vectorization] Conceptualizing Loop Vectorization
� 06:56: [vectorization] Approaches to Vectorization
� 14:17: [vectorization] Auto-Vectorization
� 16:34: [vectorization] GCC Compiler and Vectorization
� 17:36: [vectorization] GCC Compiler Options Related to Vectorization
� 18:58: [vectorization] GCC Compiler Options Related to Vectorization (Continued)
� 21:09: [vectorization] Clang Compiler and Vectorization
� 21:39: [vectorization] Clang Compiler Options Related to Vectorization
� 22:58: [vectorization] Assessing Quality of Vectorized Code
� 24:48: [vectorization] Assessing Quality of Vectorized Code (Continued)
� 27:57: [vectorization] Auto-Vectorization with Hints
� 29:43: [vectorization] Obstacles to Vectorization
� 34:04: [vectorization] Data Dependencies and Vectorization
� 35:05: [vectorization] Flow Dependencies
� 37:38: [vectorization] Flow Dependence Example 1
� 40:34: [vectorization] Flow Dependence Example 1: Sequential Loop
� 41:54: [vectorization] Flow Dependence Example 1: Vectorized Loop
� 44:38: [vectorization] Flow Dependence Example 2
� 46:55: [vectorization] Output Dependencies

D.2.1.35 Lecture 35 (2019-07-26) — Vectorization [2019-07-26]

The following is a link to the full video:
� https://youtu.be/dIpS5ME6SKs [duration: 00:49:29]

The following are links to particular offsets within the video:
� 00:00: [vectorization] Control-Flow Dependencies and Vectorization
� 02:07: [vectorization] Aliasing
� 04:15: [vectorization] Aliasing and Optimization: An Example
� 06:18: [vectorization] Aliasing and Vectorization: An Example
� 12:29: [vectorization] The restrict Keyword
� 19:13: [vectorization] Noncontiguous Memory Accesses
� 20:54: [vectorization] Data Alignment
� 24:57: [vectorization] Handling Misaligned Data
� 26:54: [handout] Example: Handling Misaligned Data
� 29:44: [vectorization] Controlling Alignment of Data

Copyright © 2021 Michael D. Adams Version 2021-04-01

https://youtu.be/D_8Hfchp09A?t=1800
https://youtu.be/D_8Hfchp09A?t=1978
https://youtu.be/D_8Hfchp09A?t=2073
https://youtu.be/D_8Hfchp09A?t=2170
https://youtu.be/D_8Hfchp09A?t=2293
https://youtu.be/D_8Hfchp09A?t=2456
https://youtu.be/D_8Hfchp09A?t=2573
https://youtu.be/D_8Hfchp09A?t=2658
https://youtu.be/D_8Hfchp09A?t=2769
https://youtu.be/Thv9FA60XH8
https://youtu.be/Thv9FA60XH8?t=0
https://youtu.be/Thv9FA60XH8?t=66
https://youtu.be/Thv9FA60XH8?t=194
https://youtu.be/Thv9FA60XH8?t=416
https://youtu.be/Thv9FA60XH8?t=857
https://youtu.be/Thv9FA60XH8?t=994
https://youtu.be/Thv9FA60XH8?t=1056
https://youtu.be/Thv9FA60XH8?t=1138
https://youtu.be/Thv9FA60XH8?t=1269
https://youtu.be/Thv9FA60XH8?t=1299
https://youtu.be/Thv9FA60XH8?t=1378
https://youtu.be/Thv9FA60XH8?t=1488
https://youtu.be/Thv9FA60XH8?t=1677
https://youtu.be/Thv9FA60XH8?t=1783
https://youtu.be/Thv9FA60XH8?t=2044
https://youtu.be/Thv9FA60XH8?t=2105
https://youtu.be/Thv9FA60XH8?t=2258
https://youtu.be/Thv9FA60XH8?t=2434
https://youtu.be/Thv9FA60XH8?t=2514
https://youtu.be/Thv9FA60XH8?t=2678
https://youtu.be/Thv9FA60XH8?t=2815
https://youtu.be/dIpS5ME6SKs
https://youtu.be/dIpS5ME6SKs?t=0
https://youtu.be/dIpS5ME6SKs?t=127
https://youtu.be/dIpS5ME6SKs?t=255
https://youtu.be/dIpS5ME6SKs?t=378
https://youtu.be/dIpS5ME6SKs?t=749
https://youtu.be/dIpS5ME6SKs?t=1153
https://youtu.be/dIpS5ME6SKs?t=1254
https://youtu.be/dIpS5ME6SKs?t=1497
https://youtu.be/dIpS5ME6SKs?t=1614
https://youtu.be/dIpS5ME6SKs?t=1784

D.3. RUDIMENTARY C++ 117

� 32:07: [vectorization] Informing Compiler of Data Alignment
� 35:56: [vectorization] Profitability of Vectorization
� 38:00: [vectorization] Vectorization Example: Version 1
� 40:12: [vectorization] Vectorization Example: Version 2
� 41:31: [vectorization] Vectorization Example: Version 3
� 45:33: [vectorization] Vectorization Example: Invoking add Function
� 47:02: [vectorization] Basic Requirements for Vectorizable Loops

D.2.1.36 Lecture 36 (2019-07-30) — Vectorization [2019-07-30]

The following is a link to the full video:
� https://youtu.be/gjnI4khPj5k [duration: 00:14:39]

The following are links to particular offsets within the video:
� 00:00: [vectorization] OpenMP SIMD Constructs
� 02:09: [vectorization] OpenMP simd Pragma
� 05:28: [vectorization] OpenMP declare simd Pragma
� 07:05: [vectorization] OpenMP SIMD-Related Pragma Clauses
� 08:29: [vectorization] OpenMP SIMD-Related Pragma Clauses (Continued)
� 08:50: [vectorization] Example: Vectorized Loop
� 12:34: [vectorization] Example: Vectorized Loop and Function

D.2.1.37 Lecture 37 (2019-07-31) — Final Course Wrap-Up [2019-07-31]

The following is a link to the full video:
� https://youtu.be/li216eCidB0 [duration: 00:30:16]

The following are links to particular offsets within the video:
� 00:00: [wrapup] Any Questions About the Final Exam?
� 14:31: [wrapup] Open Discussion on Ways to Improve Course
� 15:56: [wrapup] Lecture Slides and Videos
� 20:45: [wrapup] Course Experience Survey (CES)

D.2.1.38 Extra (2019-07-25) — Preliminary Information for Final Exam [2019-07-25]

The following is a link to the full video:
� https://youtu.be/HQx3F--UzYA [duration: 00:13:48]

The following are links to particular offsets within the video:
� 00:00: Final Exam Information

D.3 Rudimentary C++

The sections that follow have some information on video lectures that cover the basics of the C++ programming
language and standard library.

D.3.1 Video-Lecture Catalog

To allow the content in the video lectures to be more easily located and navigated, a catalog of the video lectures is
included below. This catalog contains a list of all slides covered in the lectures, where each slide in the list has a link
to the corresponding time offset in the YouTube video where the slide is covered. By using this catalog, it is a trivial
exercise to jump to the exact point in the video lectures where a specific slide/topic is covered (i.e., simply click on
the appropriate hyperlink).

Version 2021-04-01 Copyright © 2021 Michael D. Adams

https://youtu.be/dIpS5ME6SKs?t=1927
https://youtu.be/dIpS5ME6SKs?t=2156
https://youtu.be/dIpS5ME6SKs?t=2280
https://youtu.be/dIpS5ME6SKs?t=2412
https://youtu.be/dIpS5ME6SKs?t=2491
https://youtu.be/dIpS5ME6SKs?t=2733
https://youtu.be/dIpS5ME6SKs?t=2822
https://youtu.be/gjnI4khPj5k
https://youtu.be/gjnI4khPj5k?t=0
https://youtu.be/gjnI4khPj5k?t=129
https://youtu.be/gjnI4khPj5k?t=328
https://youtu.be/gjnI4khPj5k?t=425
https://youtu.be/gjnI4khPj5k?t=509
https://youtu.be/gjnI4khPj5k?t=530
https://youtu.be/gjnI4khPj5k?t=754
https://youtu.be/li216eCidB0
https://youtu.be/li216eCidB0?t=0
https://youtu.be/li216eCidB0?t=871
https://youtu.be/li216eCidB0?t=956
https://youtu.be/li216eCidB0?t=1245
https://youtu.be/HQx3F--UzYA
https://youtu.be/HQx3F--UzYA?t=0

118 APPENDIX D. VIDEO LECTURES

D.3.1.1 Getting Started — Compiling and Linking [2017-04-13]

The following is a link to the full video:
� https://youtu.be/w5s7XgnLHoo [duration: 00:13:19]

The following are links to particular offsets within the video:
� 00:00: [start] Title
� 00:16: [start] Section: Getting Started
� 00:42: [start] Section: Building Programs: Compiling and Linking
� 00:45: [start] hello Program: hello.cpp
� 02:52: [start] Software Build Process
� 03:26: [start] Software Build Process
� 05:10: [start] GNU Compiler Collection (GCC) C++ Compiler
� 05:54: [start] GNU Compiler Collection (GCC) C++ Compiler
� 11:28: [start] Manually Building hello Program

D.3.1.2 Version Control — Introduction [2017-04-06]

The following is a link to the full video:
� https://youtu.be/9s9_DLH1jaY [duration: 00:06:50]

The following are links to particular offsets within the video:
� 00:00: [vcs] Title
� 00:16: [vcs] Section: Version Control Systems
� 00:21: [vcs] Version Control Systems
� 01:46: [vcs] Centralized Version Control
� 03:38: [vcs] Distributed Version Control
� 04:34: [vcs] Pros and Cons of Distributed Version Control

D.3.1.3 Git — Introduction [2017-04-08]

The following is a link to the full video:
� https://youtu.be/scm2kxsX_Rk [duration: 00:17:25]

The following are links to particular offsets within the video:
� 00:00: [git] Title
� 00:16: [git] Section: Git
� 00:22: [git] Git
� 01:30: [git] Users of Git
� 01:55: [git] Repositories
� 02:42: [git] Revision History and Directed Acyclic Graphs
� 04:31: [git] Branching Workflows
� 05:48: [git] Local Picture
� 07:32: [git] Local and Remote Picture
� 09:21: [git] HEAD
� 10:46: [git] Remote-Tracking Branches
� 11:57: [git] Remote-Tracking Branches (Continued)
� 14:27: [git] Git Configuration
� 15:16: [git] Git on One Slide

D.3.1.4 Git — Demonstration [2017-04-05]

The following is a link to the full video:
� https://youtu.be/8VHC7vzWihw [duration: 00:13:10]

The following are links to particular offsets within the video:
� 00:00: [git] Title

Copyright © 2021 Michael D. Adams Version 2021-04-01

https://youtu.be/w5s7XgnLHoo
https://youtu.be/w5s7XgnLHoo?t=0
https://youtu.be/w5s7XgnLHoo?t=16
https://youtu.be/w5s7XgnLHoo?t=42
https://youtu.be/w5s7XgnLHoo?t=45
https://youtu.be/w5s7XgnLHoo?t=172
https://youtu.be/w5s7XgnLHoo?t=206
https://youtu.be/w5s7XgnLHoo?t=310
https://youtu.be/w5s7XgnLHoo?t=354
https://youtu.be/w5s7XgnLHoo?t=688
https://youtu.be/9s9_DLH1jaY
https://youtu.be/9s9_DLH1jaY?t=0
https://youtu.be/9s9_DLH1jaY?t=16
https://youtu.be/9s9_DLH1jaY?t=21
https://youtu.be/9s9_DLH1jaY?t=106
https://youtu.be/9s9_DLH1jaY?t=218
https://youtu.be/9s9_DLH1jaY?t=274
https://youtu.be/scm2kxsX_Rk
https://youtu.be/scm2kxsX_Rk?t=0
https://youtu.be/scm2kxsX_Rk?t=16
https://youtu.be/scm2kxsX_Rk?t=22
https://youtu.be/scm2kxsX_Rk?t=90
https://youtu.be/scm2kxsX_Rk?t=115
https://youtu.be/scm2kxsX_Rk?t=162
https://youtu.be/scm2kxsX_Rk?t=271
https://youtu.be/scm2kxsX_Rk?t=348
https://youtu.be/scm2kxsX_Rk?t=452
https://youtu.be/scm2kxsX_Rk?t=561
https://youtu.be/scm2kxsX_Rk?t=646
https://youtu.be/scm2kxsX_Rk?t=717
https://youtu.be/scm2kxsX_Rk?t=867
https://youtu.be/scm2kxsX_Rk?t=916
https://youtu.be/8VHC7vzWihw
https://youtu.be/8VHC7vzWihw?t=0

D.3. RUDIMENTARY C++ 119

� 00:16: [git] Section: Git Demonstration
� 00:21: [git] Demonstration

D.3.1.5 Build Systems — Introduction [2017-04-12]

The following is a link to the full video:
� https://youtu.be/FPcK_swg-f8 [duration: 00:03:25]

The following are links to particular offsets within the video:
� 00:00: [build] Title
� 00:16: [build] Section: Build Tools
� 00:25: [build] Build Tools
� 02:23: [build] Examples of Build Tools

D.3.1.6 Make — Introduction [2017-04-12]

The following is a link to the full video:
� https://youtu.be/FsGAM2pXP_Y [duration: 00:27:56]

The following are links to particular offsets within the video:
� 00:00: [make] Title
� 00:16: [make] Section: Make
� 00:20: [make] Make
� 02:34: [make] make Command
� 05:47: [make] Makefiles
� 07:18: [make] Makefiles (Continued 1)
� 09:46: [make] Makefiles (Continued 2)
� 11:43: [make] Makefile for hello Program
� 17:00: [make] Makefile for hello Program
� 17:49: [make] Makefile for hello Program
� 18:48: [make] Makefile for hello Program
� 26:47: [make] Commentary on Makefile for hello Program

D.3.1.7 CMake — Introduction [2017-04-16]

The following is a link to the full video:
� https://youtu.be/Ak6cGZshduY [duration: 00:22:13]

The following are links to particular offsets within the video:
� 00:00: [cmake] Title
� 00:16: [cmake] Section: CMake
� 00:21: [cmake] CMake
� 01:30: [cmake] Users of CMake
� 01:47: [cmake] Build Process
� 03:16: [cmake] Build Process (Diagram)
� 03:43: [cmake] CMake Basics
� 06:41: [cmake] In-Source Versus Out-of-Source Builds
� 08:37: [cmake] The cmake Command
� 09:41: [cmake] The cmake Command (Options)
� 10:37: [cmake] The cmake Command (Continued 1)
� 12:18: [cmake] The cmake Command for Building
� 13:28: [cmake] The cmake Command for Building (Command Usage)
� 14:59: [cmake] Hello World Example [Part 1]
� 17:19: [cmake] Hello World Example [Part 2]
� 17:56: [cmake] Hello World Demonstration [Part 1]
� 20:03: [cmake] Hello World Demonstration [Part 2]

Version 2021-04-01 Copyright © 2021 Michael D. Adams

https://youtu.be/8VHC7vzWihw?t=16
https://youtu.be/8VHC7vzWihw?t=21
https://youtu.be/FPcK_swg-f8
https://youtu.be/FPcK_swg-f8?t=0
https://youtu.be/FPcK_swg-f8?t=16
https://youtu.be/FPcK_swg-f8?t=25
https://youtu.be/FPcK_swg-f8?t=143
https://youtu.be/FsGAM2pXP_Y
https://youtu.be/FsGAM2pXP_Y?t=0
https://youtu.be/FsGAM2pXP_Y?t=16
https://youtu.be/FsGAM2pXP_Y?t=20
https://youtu.be/FsGAM2pXP_Y?t=154
https://youtu.be/FsGAM2pXP_Y?t=347
https://youtu.be/FsGAM2pXP_Y?t=438
https://youtu.be/FsGAM2pXP_Y?t=586
https://youtu.be/FsGAM2pXP_Y?t=703
https://youtu.be/FsGAM2pXP_Y?t=1020
https://youtu.be/FsGAM2pXP_Y?t=1069
https://youtu.be/FsGAM2pXP_Y?t=1128
https://youtu.be/FsGAM2pXP_Y?t=1607
https://youtu.be/Ak6cGZshduY
https://youtu.be/Ak6cGZshduY?t=0
https://youtu.be/Ak6cGZshduY?t=16
https://youtu.be/Ak6cGZshduY?t=21
https://youtu.be/Ak6cGZshduY?t=90
https://youtu.be/Ak6cGZshduY?t=107
https://youtu.be/Ak6cGZshduY?t=196
https://youtu.be/Ak6cGZshduY?t=223
https://youtu.be/Ak6cGZshduY?t=401
https://youtu.be/Ak6cGZshduY?t=517
https://youtu.be/Ak6cGZshduY?t=581
https://youtu.be/Ak6cGZshduY?t=637
https://youtu.be/Ak6cGZshduY?t=738
https://youtu.be/Ak6cGZshduY?t=808
https://youtu.be/Ak6cGZshduY?t=899
https://youtu.be/Ak6cGZshduY?t=1039
https://youtu.be/Ak6cGZshduY?t=1076
https://youtu.be/Ak6cGZshduY?t=1203

120 APPENDIX D. VIDEO LECTURES

D.3.1.8 CMake — Examples [2017-04-18]

The following is a link to the full video:
� https://youtu.be/cDWOECgupDg [duration: 00:27:43]

The following are links to particular offsets within the video:
� 00:00: [cmake] Title
� 00:16: [cmake] Section: Examples
� 00:21: [cmake] OpenGL/GLUT Example
� 00:44: [cmake] OpenGL/GLUT Example: Source Code
� 01:05: [cmake] OpenGL/GLUT Example: CMakeLists File
� 03:48: [cmake] OpenGL/GLUT Example: Demonstration
� 05:25: [cmake] CGAL Example
� 05:57: [cmake] CGAL Example: Source Code
� 06:20: [cmake] CGAL Example: CMakeLists File
� 08:43: [cmake] CGAL Example: Demonstration
� 10:25: [cmake] HG2G Example: Overview
� 11:09: [cmake] HG2G Example: Library Source Code
� 12:36: [cmake] HG2G Example: Application Source Code
� 13:13: [cmake] HG2G Example: CMakeLists Files
� 16:13: [cmake] HG2G Example: CMakeLists Files
� 17:24: [cmake] HG2G Example: CMakeLists Files (Continued 1)
� 21:01: [cmake] HG2G Example: Demonstration [Part 1]
� 25:46: [cmake] HG2G Example: Demonstration [Part 2]

D.3.1.9 Basics — Introduction [2015-04-06]

The following is a link to the full video:
� https://youtu.be/mP1wuVWKQmg [duration: 00:06:07]

The following are links to particular offsets within the video:
� 00:00: [basics] Title
� 00:17: [basics] Disclaimer
� 00:40: [basics] Section: C++ Basics
� 00:45: [basics] The C++ Programming Language
� 02:59: [basics] Comments
� 04:10: [basics] Identifiers
� 05:44: [basics] Reserved Keywords

D.3.1.10 Basics — Objects, Types, and Values [2015-04-08]

The following is a link to the full video:
� https://youtu.be/FlbBgg5IamY [duration: 01:09:06]

The following are links to particular offsets within the video:
� 00:00: [basics] Title
� 00:17: [basics] Section: Objects, Types, and Values
� 00:23: [basics] Fundamental Types
� 02:08: [basics] Fundamental Types (Continued)
� 04:21: [basics] Literals
� 05:02: [basics] Character Literals
� 06:34: [basics] Character Literals (Continued)
� 07:20: [basics] String Literals
� 09:11: [basics] Integer Literals
� 11:39: [basics] Integer Literals (Continued)
� 14:02: [basics] Floating-Point Literals

Copyright © 2021 Michael D. Adams Version 2021-04-01

https://youtu.be/cDWOECgupDg
https://youtu.be/cDWOECgupDg?t=0
https://youtu.be/cDWOECgupDg?t=16
https://youtu.be/cDWOECgupDg?t=21
https://youtu.be/cDWOECgupDg?t=44
https://youtu.be/cDWOECgupDg?t=65
https://youtu.be/cDWOECgupDg?t=228
https://youtu.be/cDWOECgupDg?t=325
https://youtu.be/cDWOECgupDg?t=357
https://youtu.be/cDWOECgupDg?t=380
https://youtu.be/cDWOECgupDg?t=523
https://youtu.be/cDWOECgupDg?t=625
https://youtu.be/cDWOECgupDg?t=669
https://youtu.be/cDWOECgupDg?t=756
https://youtu.be/cDWOECgupDg?t=793
https://youtu.be/cDWOECgupDg?t=973
https://youtu.be/cDWOECgupDg?t=1044
https://youtu.be/cDWOECgupDg?t=1261
https://youtu.be/cDWOECgupDg?t=1546
https://youtu.be/mP1wuVWKQmg
https://youtu.be/mP1wuVWKQmg?t=0
https://youtu.be/mP1wuVWKQmg?t=17
https://youtu.be/mP1wuVWKQmg?t=40
https://youtu.be/mP1wuVWKQmg?t=45
https://youtu.be/mP1wuVWKQmg?t=179
https://youtu.be/mP1wuVWKQmg?t=250
https://youtu.be/mP1wuVWKQmg?t=344
https://youtu.be/FlbBgg5IamY
https://youtu.be/FlbBgg5IamY?t=0
https://youtu.be/FlbBgg5IamY?t=17
https://youtu.be/FlbBgg5IamY?t=23
https://youtu.be/FlbBgg5IamY?t=128
https://youtu.be/FlbBgg5IamY?t=261
https://youtu.be/FlbBgg5IamY?t=302
https://youtu.be/FlbBgg5IamY?t=394
https://youtu.be/FlbBgg5IamY?t=440
https://youtu.be/FlbBgg5IamY?t=551
https://youtu.be/FlbBgg5IamY?t=699
https://youtu.be/FlbBgg5IamY?t=842

D.3. RUDIMENTARY C++ 121

� 15:38: [basics] Boolean and Pointer Literals
� 16:24: [basics] Declarations and Definitions
� 18:25: [basics] Examples of Declarations and Definitions
� 20:18: [basics] Arrays
� 22:20: [basics] Array Example
� 24:23: [basics] Pointers
� 28:28: [basics] Pointer Example
� 32:22: [basics] References
� 36:28: [basics] References Example
� 39:29: [basics] Addresses, Pointers, and References
� 49:24: [basics] Type Aliases with typedef Keyword
� 50:47: [basics] Type Aliases with using Statement
� 52:40: [basics] The extern Keyword
� 54:21: [basics] The const Qualifier
� 01:03:46: [basics] The volatile Qualfier
� 01:06:26: [basics] The auto Keyword

D.3.1.11 Basics — Operators and Expressions [2016-03-20]

The following is a link to the full video:
� https://youtu.be/hwI4IHEUMZs [duration: 00:22:11]

The following are links to particular offsets within the video:
� 00:00: [basics] Title
� 00:16: [basics] Section: Operators and Expressions
� 00:25: [basics] Operators
� 01:00: [basics] Operators (Continued 1)
� 02:09: [basics] Operators (Continued 2)
� 02:49: [basics] Operators (Continued 3)
� 03:05: [basics] Operators (Continued 4)
� 03:22: [basics] Operator Precedence
� 04:47: [basics] Operator Precedence (Continued 1)
� 04:52: [basics] Operator Precedence (Continued 2)
� 05:55: [basics] Operator Precedence (Continued 3)
� 06:00: [basics] Operator Precedence (Continued 4)
� 06:30: [basics] Alternative Tokens
� 06:55: [basics] Expressions
� 09:56: [basics] Short-Circuit Evaluation
� 13:42: [basics] The sizeof Operator
� 15:08: [basics] The constexpr Qualifier for Variables
� 20:11: [basics] The static assert Statement

D.3.1.12 Basics — Control-Flow Constructs [2015-04-09]

The following is a link to the full video:
� https://youtu.be/kEKy_TwNbEE [duration: 00:23:20]

The following are links to particular offsets within the video:
� 00:00: [basics] Title
� 00:17: [basics] Section: Control-Flow Constructs: Selection and Looping
� 00:29: [basics] The if Statement
� 01:24: [basics] The if Statement (Continued)
� 02:43: [basics] The if Statement: Example
� 03:51: [basics] The switch Statement

Version 2021-04-01 Copyright © 2021 Michael D. Adams

https://youtu.be/FlbBgg5IamY?t=938
https://youtu.be/FlbBgg5IamY?t=984
https://youtu.be/FlbBgg5IamY?t=1105
https://youtu.be/FlbBgg5IamY?t=1218
https://youtu.be/FlbBgg5IamY?t=1340
https://youtu.be/FlbBgg5IamY?t=1463
https://youtu.be/FlbBgg5IamY?t=1708
https://youtu.be/FlbBgg5IamY?t=1942
https://youtu.be/FlbBgg5IamY?t=2188
https://youtu.be/FlbBgg5IamY?t=2369
https://youtu.be/FlbBgg5IamY?t=2964
https://youtu.be/FlbBgg5IamY?t=3047
https://youtu.be/FlbBgg5IamY?t=3160
https://youtu.be/FlbBgg5IamY?t=3261
https://youtu.be/FlbBgg5IamY?t=3826
https://youtu.be/FlbBgg5IamY?t=3986
https://youtu.be/hwI4IHEUMZs
https://youtu.be/hwI4IHEUMZs?t=0
https://youtu.be/hwI4IHEUMZs?t=16
https://youtu.be/hwI4IHEUMZs?t=25
https://youtu.be/hwI4IHEUMZs?t=60
https://youtu.be/hwI4IHEUMZs?t=129
https://youtu.be/hwI4IHEUMZs?t=169
https://youtu.be/hwI4IHEUMZs?t=185
https://youtu.be/hwI4IHEUMZs?t=202
https://youtu.be/hwI4IHEUMZs?t=287
https://youtu.be/hwI4IHEUMZs?t=292
https://youtu.be/hwI4IHEUMZs?t=355
https://youtu.be/hwI4IHEUMZs?t=360
https://youtu.be/hwI4IHEUMZs?t=390
https://youtu.be/hwI4IHEUMZs?t=415
https://youtu.be/hwI4IHEUMZs?t=596
https://youtu.be/hwI4IHEUMZs?t=822
https://youtu.be/hwI4IHEUMZs?t=908
https://youtu.be/hwI4IHEUMZs?t=1211
https://youtu.be/kEKy_TwNbEE
https://youtu.be/kEKy_TwNbEE?t=0
https://youtu.be/kEKy_TwNbEE?t=17
https://youtu.be/kEKy_TwNbEE?t=29
https://youtu.be/kEKy_TwNbEE?t=84
https://youtu.be/kEKy_TwNbEE?t=163
https://youtu.be/kEKy_TwNbEE?t=231

122 APPENDIX D. VIDEO LECTURES

� 05:21: [basics] The switch Statement: Example
� 06:47: [basics] The while Statement
� 07:50: [basics] The while Statement: Example
� 09:02: [basics] The for Statement
� 11:01: [basics] The for Statement (Continued)
� 11:50: [basics] The for Statement: Example
� 13:45: [basics] The Range-Based for Statement
� 15:55: [basics] The do Statement
� 17:14: [basics] The do Statement: Example
� 18:05: [basics] The break Statement
� 19:37: [basics] The continue Statement
� 21:06: [basics] The goto Statement

D.3.1.13 Basics — Functions [2016-03-20]

The following is a link to the full video:
� https://youtu.be/NHS1726zvmE [duration: 01:00:57]

The following are links to particular offsets within the video:
� 00:00: [basics] Title
� 00:16: [basics] Section: Functions
� 00:24: [basics] Parameters and Arguments
� 02:08: [basics] Function Declarations and Definitions
� 03:52: [basics] Functions
� 06:15: [basics] Functions (Continued)
� 07:15: [basics] Function: Examples
� 08:28: [basics] The main Function
� 10:15: [basics] The main Function (Continued)
� 11:43: [basics] The main Function (Continued)
� 12:58: [basics] Lifetime
� 14:15: [basics] Pass-By-Value Versus Pass-By-Reference
� 16:00: [basics] Pass-By-Value Versus Pass-By-Reference
� 18:26: [basics] Pass By Value
� 20:43: [basics] Pass By Reference
� 22:51: [basics] Pass-By-Reference Example
� 26:19: [basics] Pass-By-Reference Example (Continued)
� 30:02: [basics] Inline Functions
� 32:13: [basics] Inlining of a Function
� 33:44: [basics] The constexpr Qualifier for Functions
� 37:01: [basics] Constexpr Function Example: power int (Iterative)
� 39:53: [basics] Compile-Time Versus Run-Time Computation
� 42:59: [basics] Function Overloading
� 46:19: [basics] Default Arguments
� 48:13: [basics] Argument Matching
� 51:17: [basics] Argument Matching: Example
� 58:01: [basics] The assert Macro

D.3.1.14 Basics — Input/Output [2016-03-21]

The following is a link to the full video:
� https://youtu.be/MFSAl-ld2Bc [duration: 00:12:42]

The following are links to particular offsets within the video:
� 00:00: [basics] Title

Copyright © 2021 Michael D. Adams Version 2021-04-01

https://youtu.be/kEKy_TwNbEE?t=321
https://youtu.be/kEKy_TwNbEE?t=407
https://youtu.be/kEKy_TwNbEE?t=470
https://youtu.be/kEKy_TwNbEE?t=542
https://youtu.be/kEKy_TwNbEE?t=661
https://youtu.be/kEKy_TwNbEE?t=710
https://youtu.be/kEKy_TwNbEE?t=825
https://youtu.be/kEKy_TwNbEE?t=955
https://youtu.be/kEKy_TwNbEE?t=1034
https://youtu.be/kEKy_TwNbEE?t=1085
https://youtu.be/kEKy_TwNbEE?t=1177
https://youtu.be/kEKy_TwNbEE?t=1266
https://youtu.be/NHS1726zvmE
https://youtu.be/NHS1726zvmE?t=0
https://youtu.be/NHS1726zvmE?t=16
https://youtu.be/NHS1726zvmE?t=24
https://youtu.be/NHS1726zvmE?t=128
https://youtu.be/NHS1726zvmE?t=232
https://youtu.be/NHS1726zvmE?t=375
https://youtu.be/NHS1726zvmE?t=435
https://youtu.be/NHS1726zvmE?t=508
https://youtu.be/NHS1726zvmE?t=615
https://youtu.be/NHS1726zvmE?t=703
https://youtu.be/NHS1726zvmE?t=778
https://youtu.be/NHS1726zvmE?t=855
https://youtu.be/NHS1726zvmE?t=960
https://youtu.be/NHS1726zvmE?t=1106
https://youtu.be/NHS1726zvmE?t=1243
https://youtu.be/NHS1726zvmE?t=1371
https://youtu.be/NHS1726zvmE?t=1579
https://youtu.be/NHS1726zvmE?t=1802
https://youtu.be/NHS1726zvmE?t=1933
https://youtu.be/NHS1726zvmE?t=2024
https://youtu.be/NHS1726zvmE?t=2221
https://youtu.be/NHS1726zvmE?t=2393
https://youtu.be/NHS1726zvmE?t=2579
https://youtu.be/NHS1726zvmE?t=2779
https://youtu.be/NHS1726zvmE?t=2893
https://youtu.be/NHS1726zvmE?t=3077
https://youtu.be/NHS1726zvmE?t=3481
https://youtu.be/MFSAl-ld2Bc
https://youtu.be/MFSAl-ld2Bc?t=0

D.3. RUDIMENTARY C++ 123

� 00:16: [basics] Section: Input/Output (I/O)
� 00:22: [basics] Basic I/O
� 02:33: [basics] Basic I/O Example
� 04:55: [basics] I/O Manipulators
� 06:26: [basics] I/O Manipulators (Continued)
� 08:23: [basics] I/O Manipulators Example

D.3.1.15 Basics — Miscellany [2016-03-21]

The following is a link to the full video:
� https://youtu.be/IcPgHnmWy-8 [duration: 00:08:13]

The following are links to particular offsets within the video:
� 00:00: [basics] Title
� 00:16: [basics] Section: Miscellany
� 00:23: [basics] Namespaces
� 02:28: [basics] Namespaces: Example
� 05:11: [basics] Memory Allocation: new and delete

D.3.1.16 Classes — Introduction [2016-03-05]

The following is a link to the full video:
� https://youtu.be/8XIdrmAS4Aw [duration: 00:02:10]

The following are links to particular offsets within the video:
� 00:00: [classes] Title
� 00:16: [classes] Section: Classes
� 00:25: [classes] Classes

D.3.1.17 Classes — Members and Access Specifiers [2016-03-05]

The following is a link to the full video:
� https://youtu.be/ZdtqC6zASEI [duration: 00:35:14]

The following are links to particular offsets within the video:
� 00:00: [classes] Title
� 00:16: [classes] Section: Members and Access Specifiers
� 00:25: [classes] Class Members
� 01:47: [classes] Access Specifiers
� 03:04: [classes] Class Example
� 06:19: [classes] Default Member Access
� 06:58: [classes] The struct Keyword
� 07:54: [classes] Data Members
� 09:23: [classes] Function Members
� 12:59: [classes] The this Keyword
� 16:34: [classes] const Member Functions
� 25:39: [classes] Definition of Function Members in Class Body
� 27:31: [classes] Type Members
� 29:56: [classes] Friends
� 31:59: [classes] Class Example

D.3.1.18 Classes — Constructors and Destructors [2016-03-06]

The following is a link to the full video:
� https://youtu.be/9NVA6AGtccc [duration: 00:30:27]

The following are links to particular offsets within the video:

Version 2021-04-01 Copyright © 2021 Michael D. Adams

https://youtu.be/MFSAl-ld2Bc?t=16
https://youtu.be/MFSAl-ld2Bc?t=22
https://youtu.be/MFSAl-ld2Bc?t=153
https://youtu.be/MFSAl-ld2Bc?t=295
https://youtu.be/MFSAl-ld2Bc?t=386
https://youtu.be/MFSAl-ld2Bc?t=503
https://youtu.be/IcPgHnmWy-8
https://youtu.be/IcPgHnmWy-8?t=0
https://youtu.be/IcPgHnmWy-8?t=16
https://youtu.be/IcPgHnmWy-8?t=23
https://youtu.be/IcPgHnmWy-8?t=148
https://youtu.be/IcPgHnmWy-8?t=311
https://youtu.be/8XIdrmAS4Aw
https://youtu.be/8XIdrmAS4Aw?t=0
https://youtu.be/8XIdrmAS4Aw?t=16
https://youtu.be/8XIdrmAS4Aw?t=25
https://youtu.be/ZdtqC6zASEI
https://youtu.be/ZdtqC6zASEI?t=0
https://youtu.be/ZdtqC6zASEI?t=16
https://youtu.be/ZdtqC6zASEI?t=25
https://youtu.be/ZdtqC6zASEI?t=107
https://youtu.be/ZdtqC6zASEI?t=184
https://youtu.be/ZdtqC6zASEI?t=379
https://youtu.be/ZdtqC6zASEI?t=418
https://youtu.be/ZdtqC6zASEI?t=474
https://youtu.be/ZdtqC6zASEI?t=563
https://youtu.be/ZdtqC6zASEI?t=779
https://youtu.be/ZdtqC6zASEI?t=994
https://youtu.be/ZdtqC6zASEI?t=1539
https://youtu.be/ZdtqC6zASEI?t=1651
https://youtu.be/ZdtqC6zASEI?t=1796
https://youtu.be/ZdtqC6zASEI?t=1919
https://youtu.be/9NVA6AGtccc

124 APPENDIX D. VIDEO LECTURES

� 00:00: [classes] Title
� 00:16: [classes] Section: Constructors and Destructors
� 00:27: [classes] Propagating Values: Copying and Moving
� 01:42: [classes] Propagating Values: Copying Versus Moving
� 04:31: [classes] Constructors
� 06:21: [classes] Default Constructor
� 09:30: [classes] Copy Constructor
� 13:32: [classes] Move Constructor
� 16:56: [classes] Constructor Example
� 21:02: [classes] Initializer Lists
� 22:32: [classes] Initialize List Example
� 26:23: [classes] Destructors
� 28:07: [classes] Destructor Example

D.3.1.19 Classes — Operator Overloading [2016-03-09]

The following is a link to the full video:
� https://youtu.be/kpIJzSEIe4Y [duration: 00:41:05]

The following are links to particular offsets within the video:
� 00:00: [classes] Title
� 00:16: [classes] Section: Operator Overloading
� 00:24: [classes] Operator Overloading
� 01:32: [classes] Operator Overloading (Continued 1)
� 06:02: [classes] Operator Overloading (Continued 2)
� 07:59: [classes] Operator Overloading (Continued 3)
� 09:50: [classes] Operator Overloading Example: Vector
� 14:17: [classes] Operator Overloading Example: Array10
� 22:34: [classes] Operator Overloading: Member vs. Nonmember Functions
� 24:07: [classes] Operator Overloading: Member vs. Nonmember Functions
� 28:29: [classes] Copy Assignment Operator
� 31:55: [classes] Self-Assignment Example
� 34:09: [classes] Move Assignment Operator
� 36:20: [classes] Copy/Move Assignment Operator Example: Complex

D.3.1.20 Classes — More on Classes [2016-03-22]

The following is a link to the full video:
� https://youtu.be/esPOG-FQhdc [duration: 00:12:25]

The following are links to particular offsets within the video:
� 00:00: [classes] Title
� 00:16: [classes] Section: Miscellany
� 00:23: [classes] Explicitly Deleted/Defaulted Special Member Functions
� 03:07: [classes] Static Data Members
� 05:16: [classes] Static Member Functions
� 08:22: [classes] Stream Inserters
� 10:31: [classes] Stream Extractors

D.3.1.21 Classes — Temporary Objects [2016-03-24]

The following is a link to the full video:
� https://youtu.be/TT0TcIUo88E [duration: 00:14:01]

The following are links to particular offsets within the video:
� 00:00: [classes] Title

Copyright © 2021 Michael D. Adams Version 2021-04-01

https://youtu.be/9NVA6AGtccc?t=0
https://youtu.be/9NVA6AGtccc?t=16
https://youtu.be/9NVA6AGtccc?t=27
https://youtu.be/9NVA6AGtccc?t=102
https://youtu.be/9NVA6AGtccc?t=271
https://youtu.be/9NVA6AGtccc?t=381
https://youtu.be/9NVA6AGtccc?t=570
https://youtu.be/9NVA6AGtccc?t=812
https://youtu.be/9NVA6AGtccc?t=1016
https://youtu.be/9NVA6AGtccc?t=1262
https://youtu.be/9NVA6AGtccc?t=1352
https://youtu.be/9NVA6AGtccc?t=1583
https://youtu.be/9NVA6AGtccc?t=1687
https://youtu.be/kpIJzSEIe4Y
https://youtu.be/kpIJzSEIe4Y?t=0
https://youtu.be/kpIJzSEIe4Y?t=16
https://youtu.be/kpIJzSEIe4Y?t=24
https://youtu.be/kpIJzSEIe4Y?t=92
https://youtu.be/kpIJzSEIe4Y?t=362
https://youtu.be/kpIJzSEIe4Y?t=479
https://youtu.be/kpIJzSEIe4Y?t=590
https://youtu.be/kpIJzSEIe4Y?t=857
https://youtu.be/kpIJzSEIe4Y?t=1354
https://youtu.be/kpIJzSEIe4Y?t=1447
https://youtu.be/kpIJzSEIe4Y?t=1709
https://youtu.be/kpIJzSEIe4Y?t=1915
https://youtu.be/kpIJzSEIe4Y?t=2049
https://youtu.be/kpIJzSEIe4Y?t=2180
https://youtu.be/esPOG-FQhdc
https://youtu.be/esPOG-FQhdc?t=0
https://youtu.be/esPOG-FQhdc?t=16
https://youtu.be/esPOG-FQhdc?t=23
https://youtu.be/esPOG-FQhdc?t=187
https://youtu.be/esPOG-FQhdc?t=316
https://youtu.be/esPOG-FQhdc?t=502
https://youtu.be/esPOG-FQhdc?t=631
https://youtu.be/TT0TcIUo88E
https://youtu.be/TT0TcIUo88E?t=0

D.3. RUDIMENTARY C++ 125

� 00:16: [classes] Section: Temporary Objects
� 00:27: [classes] Temporary Objects
� 04:10: [classes] Temporary Objects (Continued)
� 06:56: [classes] Temporary Objects Example
� 07:37: [classes] Temporary Objects Example (Continued)
� 10:08: [classes] Prefix Versus Postfix Increment/Decrement

D.3.1.22 Classes — Functors [2016-03-24]

The following is a link to the full video:
� https://youtu.be/qM2kvcSW4_E [duration: 00:08:14]

The following are links to particular offsets within the video:
� 00:00: [classes] Title
� 00:16: [classes] Section: Functors
� 00:22: [classes] Functors
� 01:50: [classes] Functor Example: Less Than
� 04:05: [classes] Functor Example With State

D.3.1.23 Templates — Introduction [2016-03-14]

The following is a link to the full video:
� https://youtu.be/q9Wx-kB7MRw [duration: 00:01:25]

The following are links to particular offsets within the video:
� 00:00: [templates] Title
� 00:16: [templates] Section: Templates
� 00:24: [templates] Templates

D.3.1.24 Templates — Function Templates [2016-03-17]

The following is a link to the full video:
� https://youtu.be/hD9MN9aVfi4 [duration: 00:25:49]

The following are links to particular offsets within the video:
� 00:00: [templates] Title
� 00:16: [templates] Section: Function Templates
� 00:30: [templates] Motivation for Function Templates
� 02:29: [templates] Function Templates
� 06:05: [templates] Function Templates (Continued)
� 10:47: [templates] Function Template Examples
� 13:14: [templates] Template Function Overload Resolution
� 18:29: [templates] Qualified Names
� 19:27: [templates] Dependent Names
� 20:29: [templates] Qualified Dependent Names
� 23:12: [templates] Why typename is Needed

D.3.1.25 Templates — Class Templates [2016-03-17]

The following is a link to the full video:
� https://youtu.be/NXUR5tfiHtE [duration: 00:18:56]

The following are links to particular offsets within the video:
� 00:00: [templates] Title
� 00:16: [templates] Section: Class Templates
� 00:30: [templates] Motivation for Class Templates
� 03:13: [templates] Class Templates

Version 2021-04-01 Copyright © 2021 Michael D. Adams

https://youtu.be/TT0TcIUo88E?t=16
https://youtu.be/TT0TcIUo88E?t=27
https://youtu.be/TT0TcIUo88E?t=250
https://youtu.be/TT0TcIUo88E?t=416
https://youtu.be/TT0TcIUo88E?t=457
https://youtu.be/TT0TcIUo88E?t=608
https://youtu.be/qM2kvcSW4_E
https://youtu.be/qM2kvcSW4_E?t=0
https://youtu.be/qM2kvcSW4_E?t=16
https://youtu.be/qM2kvcSW4_E?t=22
https://youtu.be/qM2kvcSW4_E?t=110
https://youtu.be/qM2kvcSW4_E?t=245
https://youtu.be/q9Wx-kB7MRw
https://youtu.be/q9Wx-kB7MRw?t=0
https://youtu.be/q9Wx-kB7MRw?t=16
https://youtu.be/q9Wx-kB7MRw?t=24
https://youtu.be/hD9MN9aVfi4
https://youtu.be/hD9MN9aVfi4?t=0
https://youtu.be/hD9MN9aVfi4?t=16
https://youtu.be/hD9MN9aVfi4?t=30
https://youtu.be/hD9MN9aVfi4?t=149
https://youtu.be/hD9MN9aVfi4?t=365
https://youtu.be/hD9MN9aVfi4?t=647
https://youtu.be/hD9MN9aVfi4?t=794
https://youtu.be/hD9MN9aVfi4?t=1109
https://youtu.be/hD9MN9aVfi4?t=1167
https://youtu.be/hD9MN9aVfi4?t=1229
https://youtu.be/hD9MN9aVfi4?t=1392
https://youtu.be/NXUR5tfiHtE
https://youtu.be/NXUR5tfiHtE?t=0
https://youtu.be/NXUR5tfiHtE?t=16
https://youtu.be/NXUR5tfiHtE?t=30
https://youtu.be/NXUR5tfiHtE?t=193

126 APPENDIX D. VIDEO LECTURES

� 06:14: [templates] Class Templates (Continued)
� 10:36: [templates] Class Template Example
� 13:16: [templates] Class-Template Default Parameters
� 15:22: [templates] Qualified Dependent Names

D.3.1.26 Templates — Variable Templates [2016-03-14]

The following is a link to the full video:
� https://youtu.be/tb1e6t8uFGk [duration: 00:04:04]

The following are links to particular offsets within the video:
� 00:00: [templates] Title
� 00:16: [templates] Section: Variable Templates
� 00:26: [templates] Variable Templates
� 02:05: [templates] Variable Template Example: pi

D.3.1.27 Templates — Alias Templates [2016-03-14]

The following is a link to the full video:
� https://youtu.be/mzM0MHQIQcI [duration: 00:04:51]

The following are links to particular offsets within the video:
� 00:00: [templates] Title
� 00:16: [templates] Section: Alias Templates
� 00:26: [templates] Alias Templates
� 02:56: [templates] Alias Template Example

D.3.1.28 Standard Library — Introduction [2016-03-30]

The following is a link to the full video:
� https://youtu.be/-TY7_GniLig [duration: 00:10:16]

The following are links to particular offsets within the video:
� 00:00: [lib] Title
� 00:16: [lib] Section: C++ Standard Library
� 00:22: [lib] C++ Standard Library
� 00:57: [lib] C++ Standard Library (Continued)
� 03:11: [lib] Commonly-Used Header Files
� 04:24: [lib] Commonly-Used Header Files (Continued 1)
� 05:48: [lib] Commonly-Used Header Files (Continued 2)
� 07:14: [lib] Commonly-Used Header Files (Continued 3)
� 07:53: [lib] Commonly-Used Header Files (Continued 4)
� 09:19: [lib] Commonly-Used Header Files (Continued 5)

D.3.1.29 Standard Library — Containers, Iterators, and Algorithms [2016-04-05]

The following is a link to the full video:
� https://youtu.be/TxufBysSPK0 [duration: 00:38:57]

The following are links to particular offsets within the video:
� 00:00: [lib] Title
� 00:16: [lib] Section: Containers, Iterators, and Algorithms
� 00:22: [lib] Standard Template Library (STL)
� 01:05: [lib] Containers
� 02:13: [lib] Sequence Containers and Container Adapters
� 03:18: [lib] Associative Containers
� 04:50: [lib] Typical Container Member Functions

Copyright © 2021 Michael D. Adams Version 2021-04-01

https://youtu.be/NXUR5tfiHtE?t=374
https://youtu.be/NXUR5tfiHtE?t=636
https://youtu.be/NXUR5tfiHtE?t=796
https://youtu.be/NXUR5tfiHtE?t=922
https://youtu.be/tb1e6t8uFGk
https://youtu.be/tb1e6t8uFGk?t=0
https://youtu.be/tb1e6t8uFGk?t=16
https://youtu.be/tb1e6t8uFGk?t=26
https://youtu.be/tb1e6t8uFGk?t=125
https://youtu.be/mzM0MHQIQcI
https://youtu.be/mzM0MHQIQcI?t=0
https://youtu.be/mzM0MHQIQcI?t=16
https://youtu.be/mzM0MHQIQcI?t=26
https://youtu.be/mzM0MHQIQcI?t=176
https://youtu.be/-TY7_GniLig
https://youtu.be/-TY7_GniLig?t=0
https://youtu.be/-TY7_GniLig?t=16
https://youtu.be/-TY7_GniLig?t=22
https://youtu.be/-TY7_GniLig?t=57
https://youtu.be/-TY7_GniLig?t=191
https://youtu.be/-TY7_GniLig?t=264
https://youtu.be/-TY7_GniLig?t=348
https://youtu.be/-TY7_GniLig?t=434
https://youtu.be/-TY7_GniLig?t=473
https://youtu.be/-TY7_GniLig?t=559
https://youtu.be/TxufBysSPK0
https://youtu.be/TxufBysSPK0?t=0
https://youtu.be/TxufBysSPK0?t=16
https://youtu.be/TxufBysSPK0?t=22
https://youtu.be/TxufBysSPK0?t=65
https://youtu.be/TxufBysSPK0?t=133
https://youtu.be/TxufBysSPK0?t=198
https://youtu.be/TxufBysSPK0?t=290

D.3. RUDIMENTARY C++ 127

� 05:54: [lib] Container Example
� 07:36: [lib] Motivation for Iterators
� 09:47: [lib] Motivation for Iterators (Continued)
� 12:43: [lib] Iterators
� 15:03: [lib] Abilities of Iterator Categories
� 17:03: [lib] Input Iterators
� 17:45: [lib] Output Iterators
� 18:34: [lib] Forward Iterators
� 19:17: [lib] Bidirectional Iterators
� 19:36: [lib] Random-Access Iterators
� 21:17: [lib] Iterator Example
� 24:17: [lib] Iterator Gotchas
� 25:13: [lib] Algorithms
� 26:43: [lib] Functions
� 27:19: [lib] Functions (Continued 1)
� 28:03: [lib] Functions (Continued 2)
� 28:27: [lib] Functions (Continued 3)
� 29:13: [lib] Functions (Continued 4)
� 29:34: [lib] Functions (Continued 5)
� 29:42: [lib] Functions (Continued 6)
� 30:04: [lib] Functions (Continued 7)
� 30:37: [lib] Algorithms Example
� 33:40: [lib] Prelude to Functor Example
� 35:52: [lib] Functor Example

D.3.1.30 Standard Library — The vector Class Template [2016-03-30]

The following is a link to the full video:
� https://youtu.be/T8uaiYTIwjc [duration: 00:27:44]

The following are links to particular offsets within the video:
� 00:00: [lib] Title
� 00:16: [lib] Section: The vector Class Template
� 00:23: [lib] The vector Class Template
� 01:35: [lib] Member Types
� 04:08: [lib] Member Functions
� 05:36: [lib] Member Functions (Continued 1)
� 07:48: [lib] Member Functions (Continued 2)
� 09:14: [lib] Invalidation of References, Iterators, and Pointers
� 11:23: [lib] Iterator Invalidation Example
� 14:55: [lib] vector Example: Constructors
� 16:50: [lib] vector Example: Iterators
� 21:32: [lib] vector Example
� 24:40: [lib] vector Example: Emplace

D.3.1.31 Standard Library — The basic string Class Template [2016-04-01]

The following is a link to the full video:
� https://youtu.be/J6POJIHactU [duration: 00:15:16]

The following are links to particular offsets within the video:
� 00:00: [lib] Title
� 00:16: [lib] Section: The basic string Class Template
� 00:24: [lib] The basic string Class Template

Version 2021-04-01 Copyright © 2021 Michael D. Adams

https://youtu.be/TxufBysSPK0?t=354
https://youtu.be/TxufBysSPK0?t=456
https://youtu.be/TxufBysSPK0?t=587
https://youtu.be/TxufBysSPK0?t=763
https://youtu.be/TxufBysSPK0?t=903
https://youtu.be/TxufBysSPK0?t=1023
https://youtu.be/TxufBysSPK0?t=1065
https://youtu.be/TxufBysSPK0?t=1114
https://youtu.be/TxufBysSPK0?t=1157
https://youtu.be/TxufBysSPK0?t=1176
https://youtu.be/TxufBysSPK0?t=1277
https://youtu.be/TxufBysSPK0?t=1457
https://youtu.be/TxufBysSPK0?t=1513
https://youtu.be/TxufBysSPK0?t=1603
https://youtu.be/TxufBysSPK0?t=1639
https://youtu.be/TxufBysSPK0?t=1683
https://youtu.be/TxufBysSPK0?t=1707
https://youtu.be/TxufBysSPK0?t=1753
https://youtu.be/TxufBysSPK0?t=1774
https://youtu.be/TxufBysSPK0?t=1782
https://youtu.be/TxufBysSPK0?t=1804
https://youtu.be/TxufBysSPK0?t=1837
https://youtu.be/TxufBysSPK0?t=2020
https://youtu.be/TxufBysSPK0?t=2152
https://youtu.be/T8uaiYTIwjc
https://youtu.be/T8uaiYTIwjc?t=0
https://youtu.be/T8uaiYTIwjc?t=16
https://youtu.be/T8uaiYTIwjc?t=23
https://youtu.be/T8uaiYTIwjc?t=95
https://youtu.be/T8uaiYTIwjc?t=248
https://youtu.be/T8uaiYTIwjc?t=336
https://youtu.be/T8uaiYTIwjc?t=468
https://youtu.be/T8uaiYTIwjc?t=554
https://youtu.be/T8uaiYTIwjc?t=683
https://youtu.be/T8uaiYTIwjc?t=895
https://youtu.be/T8uaiYTIwjc?t=1010
https://youtu.be/T8uaiYTIwjc?t=1292
https://youtu.be/T8uaiYTIwjc?t=1480
https://youtu.be/J6POJIHactU
https://youtu.be/J6POJIHactU?t=0
https://youtu.be/J6POJIHactU?t=16
https://youtu.be/J6POJIHactU?t=24

128 APPENDIX D. VIDEO LECTURES

� 02:01: [lib] Member Types
� 04:47: [lib] Member Functions
� 05:51: [lib] Member Functions (Continued 1)
� 07:46: [lib] Member Functions (Continued 2)
� 08:47: [lib] Member Functions (Continued 3)
� 10:37: [lib] Member Functions (Continued 4)
� 10:51: [lib] Non-Member Functions
� 11:48: [lib] string Example
� 14:07: [lib] Numeric/String Conversion Example

D.3.1.32 Standard Library — Time Measurement [2016-04-02]

The following is a link to the full video:
� https://youtu.be/UeCiNGRZAyA [duration: 00:04:58]

The following are links to particular offsets within the video:
� 00:00: [lib] Title
� 00:16: [lib] Section: Time Measurement
� 00:24: [lib] Time Measurement
� 01:35: [lib] std::chrono Types
� 02:47: [lib] std::chrono Example: Measuring Elapsed Time

D.3.1.33 Concurrency — Preliminaries [2015-02-12]

The following is a link to the full video:
� https://youtu.be/oM1VxfrTQWg [duration: 01:01:50]

The following are links to particular offsets within the video:
� 00:00: [concurrency] Title
� 00:22: [concurrency] Disclaimer
� 00:32: [concurrency] Disclaimer
� 01:17: [concurrency] Section: Concurrency
� 01:41: [concurrency] Section: Preliminaries
� 02:08: [concurrency] Processors
� 03:58: [concurrency] Processors (Continued)
� 05:15: [concurrency] Memory Hierarchy
� 08:55: [concurrency] Examples of Multicore Processors
� 09:47: [concurrency] Examples of Multicore SoCs
� 10:57: [concurrency] Why Multicore Processors?
� 13:28: [concurrency] Section: Multithreaded Programming
� 13:35: [concurrency] Concurrency
� 17:58: [concurrency] Memory Model
� 21:00: [concurrency] Sequential Consistency (SC)
� 24:15: [concurrency] Sequential-Consistency (SC) Memory Model
� 27:51: [concurrency] Load/Store Reordering Example: Single Thread
� 30:28: [concurrency] Load/Store Reordering Example: Multiple Threads
� 35:10: [concurrency] Store-Buffer Example: Store Buffer
� 36:54: [concurrency] Store-Buffer Example: Without Store Buffer
� 40:18: [concurrency] Store-Buffer Example: With Store Buffer (Not SC)
� 46:21: [concurrency] Atomicity of Memory Operations
� 48:19: [concurrency] Data Races
� 51:40: [concurrency] Torn Reads
� 54:29: [concurrency] Torn Writes
� 56:53: [concurrency] SC Data-Race Free (SC-DRF) Memory Model

Copyright © 2021 Michael D. Adams Version 2021-04-01

https://youtu.be/J6POJIHactU?t=121
https://youtu.be/J6POJIHactU?t=287
https://youtu.be/J6POJIHactU?t=351
https://youtu.be/J6POJIHactU?t=466
https://youtu.be/J6POJIHactU?t=527
https://youtu.be/J6POJIHactU?t=637
https://youtu.be/J6POJIHactU?t=651
https://youtu.be/J6POJIHactU?t=708
https://youtu.be/J6POJIHactU?t=847
https://youtu.be/UeCiNGRZAyA
https://youtu.be/UeCiNGRZAyA?t=0
https://youtu.be/UeCiNGRZAyA?t=16
https://youtu.be/UeCiNGRZAyA?t=24
https://youtu.be/UeCiNGRZAyA?t=95
https://youtu.be/UeCiNGRZAyA?t=167
https://youtu.be/oM1VxfrTQWg
https://youtu.be/oM1VxfrTQWg?t=0
https://youtu.be/oM1VxfrTQWg?t=22
https://youtu.be/oM1VxfrTQWg?t=32
https://youtu.be/oM1VxfrTQWg?t=77
https://youtu.be/oM1VxfrTQWg?t=101
https://youtu.be/oM1VxfrTQWg?t=128
https://youtu.be/oM1VxfrTQWg?t=238
https://youtu.be/oM1VxfrTQWg?t=315
https://youtu.be/oM1VxfrTQWg?t=535
https://youtu.be/oM1VxfrTQWg?t=587
https://youtu.be/oM1VxfrTQWg?t=657
https://youtu.be/oM1VxfrTQWg?t=808
https://youtu.be/oM1VxfrTQWg?t=815
https://youtu.be/oM1VxfrTQWg?t=1078
https://youtu.be/oM1VxfrTQWg?t=1260
https://youtu.be/oM1VxfrTQWg?t=1455
https://youtu.be/oM1VxfrTQWg?t=1671
https://youtu.be/oM1VxfrTQWg?t=1828
https://youtu.be/oM1VxfrTQWg?t=2110
https://youtu.be/oM1VxfrTQWg?t=2214
https://youtu.be/oM1VxfrTQWg?t=2418
https://youtu.be/oM1VxfrTQWg?t=2781
https://youtu.be/oM1VxfrTQWg?t=2899
https://youtu.be/oM1VxfrTQWg?t=3100
https://youtu.be/oM1VxfrTQWg?t=3269
https://youtu.be/oM1VxfrTQWg?t=3413

D.3. RUDIMENTARY C++ 129

� 01:00:31: [concurrency] C++ Memory Model

D.3.1.34 Concurrency — Threads [2015-02-17]

The following is a link to the full video:
� https://youtu.be/fqG8BgVbmcM [duration: 00:33:45]

The following are links to particular offsets within the video:
� 00:00: [concurrency] Title
� 00:22: [concurrency] Disclaimer
� 00:32: [concurrency] Disclaimer
� 01:17: [concurrency] Section: Thread Management
� 01:40: [concurrency] The std::thread Class
� 04:38: [concurrency] The std::thread Class (Continued)
� 07:14: [concurrency] std::thread Members
� 07:52: [concurrency] std::thread Members (Continued)
� 09:52: [concurrency] Example: Hello World With Threads
� 12:24: [concurrency] Example: Thread-Function Argument Passing (Copy Semantics)
� 14:49: [concurrency] Example: Thread-Function Argument Passing (Reference Semantics)
� 17:58: [concurrency] Example: Thread-Function Argument Passing (Move Semantics)
� 18:43: [concurrency] Example: Moving Threads
� 21:46: [concurrency] The std::this thread Namespace
� 23:12: [concurrency] Example: Identifying Threads
� 25:38: [concurrency] Example: Lifetime Bug
� 28:47: [concurrency] Thread Local Storage
� 30:47: [concurrency] Example: Thread Local Storage

D.3.1.35 Concurrency — Mutexes [2015-02-23]

The following is a link to the full video:
� https://youtu.be/Vm-Jsno58Y0 [duration: 01:25:24]

The following are links to particular offsets within the video:
� 00:00: [concurrency] Title
� 00:22: [concurrency] Disclaimer
� 00:32: [concurrency] Disclaimer
� 01:17: [concurrency] Section: Sharing Data Between Threads
� 01:30: [concurrency] Shared Data
� 02:46: [concurrency] Race Conditions
� 09:01: [concurrency] Critical Sections
� 11:02: [concurrency] Data-Race Example
� 12:46: [concurrency] Example: Data Race (Counter)
� 14:09: [concurrency] Example: Data Race and/or Race Condition (IntSet)
� 17:49: [concurrency] Section: Mutexes
� 18:16: [concurrency] Mutexes
� 22:01: [concurrency] The std::mutex Class
� 23:32: [concurrency] std::mutex Members
� 24:39: [concurrency] Example: Avoiding Data Race Using Mutex (Counter) (mutex)
� 27:38: [concurrency] Example: Avoiding Data Race Using Mutex (Counter) (mutex)
� 28:54: [concurrency] The std::lock guard Template Class
� 32:15: [concurrency] std::lock guard Members
� 32:54: [concurrency] Example: Avoiding Data Race Using Mutex (Counter) (lock guard)
� 36:47: [concurrency] Example: Avoiding Data Race Using Mutex (IntSet) (lock guard)
� 42:05: [concurrency] The std::unique lock Template Class

Version 2021-04-01 Copyright © 2021 Michael D. Adams

https://youtu.be/oM1VxfrTQWg?t=3631
https://youtu.be/fqG8BgVbmcM
https://youtu.be/fqG8BgVbmcM?t=0
https://youtu.be/fqG8BgVbmcM?t=22
https://youtu.be/fqG8BgVbmcM?t=32
https://youtu.be/fqG8BgVbmcM?t=77
https://youtu.be/fqG8BgVbmcM?t=100
https://youtu.be/fqG8BgVbmcM?t=278
https://youtu.be/fqG8BgVbmcM?t=434
https://youtu.be/fqG8BgVbmcM?t=472
https://youtu.be/fqG8BgVbmcM?t=592
https://youtu.be/fqG8BgVbmcM?t=744
https://youtu.be/fqG8BgVbmcM?t=889
https://youtu.be/fqG8BgVbmcM?t=1078
https://youtu.be/fqG8BgVbmcM?t=1123
https://youtu.be/fqG8BgVbmcM?t=1306
https://youtu.be/fqG8BgVbmcM?t=1392
https://youtu.be/fqG8BgVbmcM?t=1538
https://youtu.be/fqG8BgVbmcM?t=1727
https://youtu.be/fqG8BgVbmcM?t=1847
https://youtu.be/Vm-Jsno58Y0
https://youtu.be/Vm-Jsno58Y0?t=0
https://youtu.be/Vm-Jsno58Y0?t=22
https://youtu.be/Vm-Jsno58Y0?t=32
https://youtu.be/Vm-Jsno58Y0?t=77
https://youtu.be/Vm-Jsno58Y0?t=90
https://youtu.be/Vm-Jsno58Y0?t=166
https://youtu.be/Vm-Jsno58Y0?t=541
https://youtu.be/Vm-Jsno58Y0?t=662
https://youtu.be/Vm-Jsno58Y0?t=766
https://youtu.be/Vm-Jsno58Y0?t=849
https://youtu.be/Vm-Jsno58Y0?t=1069
https://youtu.be/Vm-Jsno58Y0?t=1096
https://youtu.be/Vm-Jsno58Y0?t=1321
https://youtu.be/Vm-Jsno58Y0?t=1412
https://youtu.be/Vm-Jsno58Y0?t=1479
https://youtu.be/Vm-Jsno58Y0?t=1658
https://youtu.be/Vm-Jsno58Y0?t=1734
https://youtu.be/Vm-Jsno58Y0?t=1935
https://youtu.be/Vm-Jsno58Y0?t=1974
https://youtu.be/Vm-Jsno58Y0?t=2207
https://youtu.be/Vm-Jsno58Y0?t=2525

130 APPENDIX D. VIDEO LECTURES

� 45:11: [concurrency] std::unique lock Members
� 46:48: [concurrency] Example: Avoiding Data Race Using Mutex (Counter) (unique lock)
� 49:36: [concurrency] The std::lock Template Function
� 50:07: [concurrency] Example: Acquiring Two Locks for Swap (Incorrect)
� 55:51: [concurrency] Example: Acquiring Two Locks for Swap
� 58:32: [concurrency] The std::timed mutex Class
� 59:42: [concurrency] Example: Acquiring Mutex With Timeout (std::timed mutex)
� 01:03:10: [concurrency] Recursive Mutexes
� 01:06:08: [concurrency] Recursive Mutex Classes
� 01:07:13: [concurrency] Shared Mutexes
� 01:09:49: [concurrency] The std::shared timed mutex Class
� 01:10:04: [concurrency] std::shared timed mutex Members
� 01:11:53: [concurrency] The std::shared lock Template Class
� 01:13:29: [concurrency] Example: std::shared timed mutex
� 01:18:18: [concurrency] std::once flag and std::call once
� 01:19:12: [concurrency] Example: One-Time Action
� 01:20:57: [concurrency] Example: One-Time Initialization
� 01:23:39: [concurrency] Static Local Variable Initialization and Thread Safety

D.3.1.36 Concurrency — Condition Variables [2015-02-27]

The following is a link to the full video:
� https://youtu.be/Wsk56vrKOng [duration: 00:17:37]

The following are links to particular offsets within the video:
� 00:00: [concurrency] Title
� 00:22: [concurrency] Disclaimer
� 00:32: [concurrency] Disclaimer
� 01:17: [concurrency] Section: Condition Variables
� 01:43: [concurrency] Condition Variables
� 05:27: [concurrency] The std::condition variable Class
� 08:43: [concurrency] std::condition variable Members
� 09:14: [concurrency] std::condition variable Members (Continued)
� 10:12: [concurrency] Example: Condition Variable (IntStack)
� 16:38: [concurrency] The std::condition variable any Class

D.3.1.37 Concurrency — Promises and Futures [2015-04-02]

The following is a link to the full video:
� https://youtu.be/hic5W_UMjqU [duration: 00:47:45]

The following are links to particular offsets within the video:
� 00:00: [concurrency] Title
� 00:22: [concurrency] Disclaimer
� 00:32: [concurrency] Disclaimer
� 01:17: [concurrency] Section: Promises and Futures
� 01:25: [concurrency] Promises and Futures
� 04:35: [concurrency] Promises and Futures (Continued)
� 06:28: [concurrency] The std::promise Template Class
� 09:39: [concurrency] std::promise Members
� 10:03: [concurrency] std::promise Members (Continued)
� 11:44: [concurrency] The std::future Template Class
� 14:05: [concurrency] std::future Members
� 16:00: [concurrency] Example: Promises and Futures (Without std::async)

Copyright © 2021 Michael D. Adams Version 2021-04-01

https://youtu.be/Vm-Jsno58Y0?t=2711
https://youtu.be/Vm-Jsno58Y0?t=2808
https://youtu.be/Vm-Jsno58Y0?t=2976
https://youtu.be/Vm-Jsno58Y0?t=3007
https://youtu.be/Vm-Jsno58Y0?t=3351
https://youtu.be/Vm-Jsno58Y0?t=3512
https://youtu.be/Vm-Jsno58Y0?t=3582
https://youtu.be/Vm-Jsno58Y0?t=3790
https://youtu.be/Vm-Jsno58Y0?t=3968
https://youtu.be/Vm-Jsno58Y0?t=4033
https://youtu.be/Vm-Jsno58Y0?t=4189
https://youtu.be/Vm-Jsno58Y0?t=4204
https://youtu.be/Vm-Jsno58Y0?t=4313
https://youtu.be/Vm-Jsno58Y0?t=4409
https://youtu.be/Vm-Jsno58Y0?t=4698
https://youtu.be/Vm-Jsno58Y0?t=4752
https://youtu.be/Vm-Jsno58Y0?t=4857
https://youtu.be/Vm-Jsno58Y0?t=5019
https://youtu.be/Wsk56vrKOng
https://youtu.be/Wsk56vrKOng?t=0
https://youtu.be/Wsk56vrKOng?t=22
https://youtu.be/Wsk56vrKOng?t=32
https://youtu.be/Wsk56vrKOng?t=77
https://youtu.be/Wsk56vrKOng?t=103
https://youtu.be/Wsk56vrKOng?t=327
https://youtu.be/Wsk56vrKOng?t=523
https://youtu.be/Wsk56vrKOng?t=554
https://youtu.be/Wsk56vrKOng?t=612
https://youtu.be/Wsk56vrKOng?t=998
https://youtu.be/hic5W_UMjqU
https://youtu.be/hic5W_UMjqU?t=0
https://youtu.be/hic5W_UMjqU?t=22
https://youtu.be/hic5W_UMjqU?t=32
https://youtu.be/hic5W_UMjqU?t=77
https://youtu.be/hic5W_UMjqU?t=85
https://youtu.be/hic5W_UMjqU?t=275
https://youtu.be/hic5W_UMjqU?t=388
https://youtu.be/hic5W_UMjqU?t=579
https://youtu.be/hic5W_UMjqU?t=603
https://youtu.be/hic5W_UMjqU?t=704
https://youtu.be/hic5W_UMjqU?t=845
https://youtu.be/hic5W_UMjqU?t=960

D.3. RUDIMENTARY C++ 131

� 20:26: [concurrency] The std::shared future Template Class
� 21:54: [concurrency] Example: std::shared future
� 25:11: [concurrency] The std::async Template Function
� 28:44: [concurrency] The std::async Template Function (Continued)
� 29:54: [concurrency] Example: Promises and Futures (With std::async)
� 34:11: [concurrency] Example: Futures and Exceptions
� 37:50: [concurrency] The std::packaged task Template Class
� 39:40: [concurrency] std::packaged task Members
� 41:09: [concurrency] Example: Packaged Task
� 44:01: [concurrency] Example: Packaged Task With Arguments

D.3.1.38 CGAL — Introduction [2015-06-29]

The following is a link to the full video:
� https://youtu.be/Mk-NH2-_hMo [duration: 00:08:04]

The following are links to particular offsets within the video:
� 00:00: [cgal] Title
� 00:24: [cgal] Section: Computational Geometry Algorithms Library (CGAL)
� 00:33: [cgal] Computational Geometry Algorithms Library (CGAL)
� 02:29: [cgal] CGAL (Continued)
� 03:35: [cgal] Handles
� 04:27: [cgal] Linear Sequences Versus Circular Sequences
� 06:14: [cgal] Circulators

D.3.1.39 CGAL — Polygon Meshes [2015-07-02]

The following is a link to the full video:
� https://youtu.be/R8hlJCR4xO0 [duration: 00:33:54]

The following are links to particular offsets within the video:
� 00:00: [cgal] Title
� 00:24: [cgal] Section: Polygon Meshes
� 00:30: [cgal] Polyhedron 3 Class
� 02:53: [cgal] Polyhedron 3 Type Members
� 04:27: [cgal] Polyhedron 3 Type Members (Continued 1)
� 06:13: [cgal] Polyhedron 3 Type Members (Continued 2)
� 07:34: [cgal] Polyhedron 3 Function Members
� 09:40: [cgal] Polyhedron 3 Function Members (Continued 1)
� 10:31: [cgal] Polyhedron 3 Function Members (Continued 2)
� 12:51: [cgal] Polyhedron 3::Facet
� 14:43: [cgal] Facet Function Members
� 16:11: [cgal] Polyhedron 3::Vertex
� 17:54: [cgal] Vertex Function Members
� 19:21: [cgal] Polyhedron 3::Halfedge
� 21:04: [cgal] Polyhedron 3::Halfedge (Continued)
� 22:36: [cgal] Halfedge Function Members
� 23:52: [cgal] Halfedge Function Members (Continued 1)
� 25:32: [cgal] Halfedge Function Members (Continued 2)
� 26:25: [cgal] Adjacency Example
� 31:12: [cgal] Polyhedron 3 I/O
� 31:37: [cgal] Polyhedron 3 Gotchas

Version 2021-04-01 Copyright © 2021 Michael D. Adams

https://youtu.be/hic5W_UMjqU?t=1226
https://youtu.be/hic5W_UMjqU?t=1314
https://youtu.be/hic5W_UMjqU?t=1511
https://youtu.be/hic5W_UMjqU?t=1724
https://youtu.be/hic5W_UMjqU?t=1794
https://youtu.be/hic5W_UMjqU?t=2051
https://youtu.be/hic5W_UMjqU?t=2270
https://youtu.be/hic5W_UMjqU?t=2380
https://youtu.be/hic5W_UMjqU?t=2469
https://youtu.be/hic5W_UMjqU?t=2641
https://youtu.be/Mk-NH2-_hMo
https://youtu.be/Mk-NH2-_hMo?t=0
https://youtu.be/Mk-NH2-_hMo?t=24
https://youtu.be/Mk-NH2-_hMo?t=33
https://youtu.be/Mk-NH2-_hMo?t=149
https://youtu.be/Mk-NH2-_hMo?t=215
https://youtu.be/Mk-NH2-_hMo?t=267
https://youtu.be/Mk-NH2-_hMo?t=374
https://youtu.be/R8hlJCR4xO0
https://youtu.be/R8hlJCR4xO0?t=0
https://youtu.be/R8hlJCR4xO0?t=24
https://youtu.be/R8hlJCR4xO0?t=30
https://youtu.be/R8hlJCR4xO0?t=173
https://youtu.be/R8hlJCR4xO0?t=267
https://youtu.be/R8hlJCR4xO0?t=373
https://youtu.be/R8hlJCR4xO0?t=454
https://youtu.be/R8hlJCR4xO0?t=580
https://youtu.be/R8hlJCR4xO0?t=631
https://youtu.be/R8hlJCR4xO0?t=771
https://youtu.be/R8hlJCR4xO0?t=883
https://youtu.be/R8hlJCR4xO0?t=971
https://youtu.be/R8hlJCR4xO0?t=1074
https://youtu.be/R8hlJCR4xO0?t=1161
https://youtu.be/R8hlJCR4xO0?t=1264
https://youtu.be/R8hlJCR4xO0?t=1356
https://youtu.be/R8hlJCR4xO0?t=1432
https://youtu.be/R8hlJCR4xO0?t=1532
https://youtu.be/R8hlJCR4xO0?t=1585
https://youtu.be/R8hlJCR4xO0?t=1872
https://youtu.be/R8hlJCR4xO0?t=1897

132 APPENDIX D. VIDEO LECTURES

D.3.1.40 CGAL — Subdivision Surface Methods [2015-06-29]

The following is a link to the full video:
� https://youtu.be/t_zvp9dTTBY [duration: 00:03:23]

The following are links to particular offsets within the video:
� 00:00: [cgal] Title
� 00:24: [cgal] Section: Surface Subdivision Methods
� 00:29: [cgal] Subdivision Methods
� 01:23: [cgal] Subdivision Functions

D.3.1.41 CGAL — Example Programs [2015-07-01]

The following is a link to the full video:
� https://youtu.be/sTfG7tStFvI [duration: 00:34:03]

The following are links to particular offsets within the video:
� 00:00: [cgal] Title
� 00:24: [cgal] Section: Example Programs
� 00:31: [cgal] Mesh Generation Program: makeMesh
� 00:55: [cgal] meshMake Source-Code Walkthrough
� 09:40: [cgal] Mesh Information Program: meshInfo
� 10:20: [cgal] meshInfo Source-Code Walkthrough
� 25:36: [cgal] Mesh Subdivision Program: meshSubdivide
� 26:12: [cgal] meshSubdivide Source-Code Walkthrough

D.3.1.42 Text Formatting in C++20 [2021-02-03]

The following is a link to the full video:
� https://youtu.be/E8456triH_g [duration: 00:55:23]

The following are links to particular offsets within the video:
� 00:00: [format] Text Formatting in C++20
� 01:02: [format] Text Formatting
� 02:27: [format] Motivating Example 1: sprintf Family Functions
� 05:58: [format] Motivating Example 2: I/O Streams
� 09:52: [format] Text Formatting and std::format Family Functions
� 12:07: [format] std::format Family of Functions
� 13:46: [format] Format Strings
� 17:31: [format] Format String (Continued)
� 21:09: [format] Format Specifiers
� 22:48: [format] Type Options for Integer Types
� 25:07: [format] Type Options for Character Types
� 26:12: [format] Type Options for Boolean Types
� 27:14: [format] Type Options for Floating-Point Types
� 30:03: [format] Type Options for String Types
� 30:17: [format] Sign Options
� 32:13: [format] Field Width and Precision Options
� 36:36: [format] Fill Characters and Alignment Options
� 38:08: [format] Locale-Specific Formatting
� 39:12: [format] Locale-Specific Formatting Example
� 41:06: [format] Example: Formatting to a Buffer [format to, format to n, formatted size]
� 46:21: [format] Formatting User-Defined Types
� 48:11: [format] Point Formatter Example: custom 1.hpp [1]
� 48:15: [format] Point Formatted Example: User [1]
� 48:19: [format] Point Formatter Example: custom 1.hpp [2]

Copyright © 2021 Michael D. Adams Version 2021-04-01

https://youtu.be/t_zvp9dTTBY
https://youtu.be/t_zvp9dTTBY?t=0
https://youtu.be/t_zvp9dTTBY?t=24
https://youtu.be/t_zvp9dTTBY?t=29
https://youtu.be/t_zvp9dTTBY?t=83
https://youtu.be/sTfG7tStFvI
https://youtu.be/sTfG7tStFvI?t=0
https://youtu.be/sTfG7tStFvI?t=24
https://youtu.be/sTfG7tStFvI?t=31
https://youtu.be/sTfG7tStFvI?t=55
https://youtu.be/sTfG7tStFvI?t=580
https://youtu.be/sTfG7tStFvI?t=620
https://youtu.be/sTfG7tStFvI?t=1536
https://youtu.be/sTfG7tStFvI?t=1572
https://youtu.be/E8456triH_g
https://youtu.be/E8456triH_g?t=0
https://youtu.be/E8456triH_g?t=62
https://youtu.be/E8456triH_g?t=147
https://youtu.be/E8456triH_g?t=358
https://youtu.be/E8456triH_g?t=592
https://youtu.be/E8456triH_g?t=727
https://youtu.be/E8456triH_g?t=826
https://youtu.be/E8456triH_g?t=1051
https://youtu.be/E8456triH_g?t=1269
https://youtu.be/E8456triH_g?t=1368
https://youtu.be/E8456triH_g?t=1507
https://youtu.be/E8456triH_g?t=1572
https://youtu.be/E8456triH_g?t=1634
https://youtu.be/E8456triH_g?t=1803
https://youtu.be/E8456triH_g?t=1817
https://youtu.be/E8456triH_g?t=1933
https://youtu.be/E8456triH_g?t=2196
https://youtu.be/E8456triH_g?t=2288
https://youtu.be/E8456triH_g?t=2352
https://youtu.be/E8456triH_g?t=2466
https://youtu.be/E8456triH_g?t=2781
https://youtu.be/E8456triH_g?t=2891
https://youtu.be/E8456triH_g?t=2895
https://youtu.be/E8456triH_g?t=2899

D.4. MISCELLANEOUS VIDEO PRESENTATIONS 133

� 48:59: [format] Point Formatted Example: User [2]
� 49:52: [format] Point Formatter Example: custom 1.hpp [3]
� 53:16: [format] Point Formatted Example: User [3]
� 53:47: [format] References
� 54:37: [format] Questions

D.4 Miscellaneous Video Presentations

The sections that follow have some information on video lectures that cover various miscellaneous topics.

D.4.1 Video-Lecture Catalog

A catalog of the video lectures in this category is provided in the sections that follow.

D.4.1.1 Meshlab/Geomview Demo [2019-06-16]

The following is a link to the full video:
� https://youtu.be/X7A_7REjrsk [duration: 00:02:08]

The following are links to particular offsets within the video:
� 00:00: [misc] meshlab/geomview Demo

D.4.1.2 Accessing the SDE Using VM Software [2020-04-26]

The following is a link to the full video:
� https://youtu.be/Sv6dpmZWxgE [duration: 00:04:59]

The following are links to particular offsets within the video:
� 00:00: [sde] Demonstration: Accessing the SDE Using a VM

D.4.1.3 Assertions and CMake Build Types Demonstration [2020-04-30]

The following is a link to the full video:
� https://youtu.be/lwp7BZpHrog [duration: 00:08:12]

The following are links to particular offsets within the video:
� 00:00: [cmake] Assertions and CMake Build Types Demonstration

D.4.1.4 Address Sanitizer (ASan) Demonstration [2020-04-26]

The following is a link to the full video:
� https://youtu.be/nkxGxWo2THo [duration: 00:07:28]

The following are links to particular offsets within the video:
� 00:00: [asan] Address Sanitizer Demo

D.4.1.5 Undefined-Behavior Sanitizer (UBSan) Demonstration [2020-04-26]

The following is a link to the full video:
� https://youtu.be/HvYn5pHgVsg [duration: 00:05:19]

The following are links to particular offsets within the video:
� 00:00: [ubsan] Undefined-Behavior Sanitizer Demo

Version 2021-04-01 Copyright © 2021 Michael D. Adams

https://youtu.be/E8456triH_g?t=2939
https://youtu.be/E8456triH_g?t=2992
https://youtu.be/E8456triH_g?t=3196
https://youtu.be/E8456triH_g?t=3227
https://youtu.be/E8456triH_g?t=3277
https://youtu.be/X7A_7REjrsk
https://youtu.be/X7A_7REjrsk?t=0
https://youtu.be/Sv6dpmZWxgE
https://youtu.be/Sv6dpmZWxgE?t=0
https://youtu.be/lwp7BZpHrog
https://youtu.be/lwp7BZpHrog?t=0
https://youtu.be/nkxGxWo2THo
https://youtu.be/nkxGxWo2THo?t=0
https://youtu.be/HvYn5pHgVsg
https://youtu.be/HvYn5pHgVsg?t=0

134 APPENDIX D. VIDEO LECTURES

D.4.1.6 Lcov Demonstration [2020-04-30]

The following is a link to the full video:
� https://youtu.be/_KM0rDQYFSg [duration: 00:14:48]

The following are links to particular offsets within the video:
� 00:00: [lcov] Lcov Demonstration

Copyright © 2021 Michael D. Adams Version 2021-04-01

https://youtu.be/_KM0rDQYFSg
https://youtu.be/_KM0rDQYFSg?t=0

135

Bibliography

[1] D. Abrahams and A. Gurtovoy. C++ Template Metaprogramming: Concepts, Tools, and Techniques from Boost
and Beyond. Addison Wesley, Boston, MA, USA, 2004.

[2] A. Alexandrescu. Modern C++ Design. Addison Wesley, Upper Saddle River, NJ, USA, 2001.

[3] Boost web site. http://www.boost.org, 2021.

[4] B. Eckel. Thinking in C++—Volume 1: Introduction to Standard C++. Prentice Hall, 2nd edition, 2000.

[5] B. Eckel and C. Allison. Thinking in C++—Volume 2: Practical Programming. Prentice Hall, 1st edition, 2003.

[6] D. Di Gennaro. Advanced C++ Metaprogramming. CreateSpace Independent Publishing Platform, 2011.

[7] ISO/IEC 14882:1998 — programming languages — C++, September 1998.

[8] ISO/IEC 14882:2003 — programming languages — C++, October 2003.

[9] ISO/IEC 14882:2011 — information technology — programming languages — C++, September 2011.

[10] ISO/IEC 14882:2014 — information technology — programming languages — C++, December 2014.

[11] ISO/IEC 14882:2017 — information technology — programming languages — C++, December 2017.

[12] ISO/IEC 14882:2020 — information technology — programming languages — C++, December 2020.

[13] N. M. Josuttis. The C++ Standard Library: A Tutorial and Reference. Addison Wesley, Upper Saddle River,
NJ, USA, 2nd edition, 2012.

[14] B. Karlsson. Beyond the C++ Standard Library: An Introduction to Boost. Addison Wesley, Upper Saddle
River, NJ, USA, 2005.

[15] M. Kilpelainen. Overload resolution — selecting the function. Overload, 66:22–25, April 2005. Available
online at http://accu.org/index.php/journals/268.

[16] A. Koenig and B. E. Moo. Accelerated C++: Practical Programming by Example. Addison Wesley, Upper
Saddle River, NJ, USA, 2000.

[17] A. Langer and K. Kreft. Standard C++ IOStreams and Locales. Addison Wesley, 2000.

[18] S. B. Lippman, J. Lajoie, and B. E. Moo. C++ Primer. Addison Wesley, Upper Saddle River, NJ, USA, 4th
edition, 2005.

[19] S. Meyers. Effective C++: 50 Specific Ways to Improve Your Programs and Designs. Addison Wesley, Menlo
Park, California, 1992.

[20] S. Meyers. More Effective C++: 35 New Ways to Improve Your Programs and Designs. Addison Wesley, Menlo
Park, California, 1996.

Version 2021-04-01 Copyright © 2021 Michael D. Adams

http://www.boost.org
http://accu.org/index.php/journals/268

136 BIBLIOGRAPHY

[21] S. Meyers. Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library. Addison
Wesley, 2001.

[22] S. Meyers. Effective Modern C++: 42 Specific Ways to Improve Your Use of C++11 and C++14. O’Reilly
Media, Cambridge, MA, USA, 2015.

[23] V. A. Punathambekar. How to interpret complex C/C++ declarations. http://www.codeproject.com/
Articles/7042/How-to-interpret-complex-C-C-declarations, 2004.

[24] B. Schaling. The Boost C++ Libraries. XML Press, 2nd edition, 2014.

[25] Standard C++ Foundation web site. http://www.isocpp.org, 2021.

[26] B. Stroustrup. Programming: Principles and Practice Using C++. Addison Wesley, Upper Saddle River, NJ,
USA, 2009.

[27] B. Stroustrup. The C++ Programming Language. Addison Wesley, 4th edition, 2013.

[28] H. Sutter. Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solutions. Addison Wesley,
1999.

[29] H. Sutter. More Exceptional C++: 40 New Engineering Puzzles, Programming Problems, and Solutions. Addi-
son Wesley, 2001.

[30] H. Sutter. Exceptional C++ Style: 40 New Engineering Puzzles, Programming Problems, and Solutions. Addi-
son Wesley, 2004.

[31] H. Sutter and A. Alexandrescu. C++ Coding Standards: 101 Rules, Guidelines, and Best Practices. Addison
Wesley, 2004.

[32] D. Vandevoorde and N. M. Josuttis. C++ Templates: The Complete Guide. Addison Wesley, 2002.

[33] A. Williams. C++ Concurrency in Action. Manning Publications, Shelter Island, NY, USA, 2nd edition, 2019.

Copyright © 2021 Michael D. Adams Version 2021-04-01

http://www.codeproject.com/Articles/7042/How-to-interpret-complex-C-C-declarations
http://www.codeproject.com/Articles/7042/How-to-interpret-complex-C-C-declarations
http://www.isocpp.org

	Front Cover
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	List of Listings
	License
	Preface
	Acknowledgments

	About the Author
	Other Works by the Author
	1 Introduction
	1.1 Disclaimer
	1.2 Important Comment on Hyperlinks
	1.3 About This Book
	1.4 Lecture Slides
	1.5 Book Web Site
	1.6 Git Repository
	1.7 Virtual Machine (VM) Disk Images
	1.8 Study Plan

	2 Basics
	2.1 Exercises

	3 Classes
	3.1 Exercises

	4 Templates
	4.1 Exercises

	5 Library
	5.1 Exercises

	6 Exceptions
	6.1 Exercises

	7 Concurrency
	7.1 Exercises

	8 Miscellany
	8.1 Exercises

	9 C Language
	9.1 Exercises

	A CGAL
	A.1 Computational Geometry Algorithms Library (CGAL)
	A.1.1 Reading

	A.2 Exercises

	B CMake
	B.1 Exercises

	C Git
	C.1 Exercises

	D Video Lectures
	D.1 Introduction
	D.2 2019-05 SENG 475 Video Lectures
	D.2.1 Video-Lecture Catalog
	D.2.1.1 Lecture 1 (2019-05-07) — Course Introduction [2019-05-07]
	D.2.1.2 Lecture 2 (2019-05-08) — Algorithms and Data Structures [2019-05-08]
	D.2.1.3 Lecture 3 (2019-05-10) — Data Structures [2019-05-10]
	D.2.1.4 Lecture 4 (2019-05-14) — Data Structures, Some C++ Review (Const and Other Stuff) [2019-05-14]
	D.2.1.5 Lecture 5 (2019-05-15) — Some C++ Review (Const and Other Stuff) [2019-05-15]
	D.2.1.6 Lecture 6 (2019-05-17) — Some C++ Review (Const and Other Stuff), Compile-Time Computation [2019-05-17]
	D.2.1.7 Lecture 7 (2019-05-21) — Compile-Time Computation [2019-05-21]
	D.2.1.8 Lecture 8 (2019-05-22) — Compile-Time Computation, Temporary Objects [2019-05-22]
	D.2.1.9 Lecture 9 (2019-05-24) — Temporary Objects, Moving/Copying, Value Categories [2019-05-24]
	D.2.1.10 Lecture 10 (2019-05-28) — Value Categories, Moving/Copying [2019-05-28]
	D.2.1.11 Lecture 11 (2019-05-29) — Copy Elision [2019-05-29]
	D.2.1.12 Lecture 12 (2019-05-31) — Copy Elision, Implicit Move [2019-05-31]
	D.2.1.13 Lecture 13 (2019-06-04) — Copy Elision, Implicit Move, Exceptions [2019-06-04]
	D.2.1.14 Lecture 14 (2019-06-05) — Exceptions [2019-06-05]
	D.2.1.15 Lecture 15 (2019-06-07) — Exceptions, Interval Arithmetic [2019-06-07]
	D.2.1.16 Lecture 16 (2019-06-11) — Interval Arithmetic, Geometric Predicates and Applications [2019-06-11]
	D.2.1.17 Lecture 17 (2019-06-12) — Geometric Predicates and Applications, Memory Management [2019-06-12]
	D.2.1.18 Lecture 18 (2019-06-14) — Memory Management [2019-06-14]
	D.2.1.19 Lecture 19 (2019-06-18) — Memory Management [2019-06-18]
	D.2.1.20 Lecture 20 (2019-06-19) — Memory Management [2019-06-19]
	D.2.1.21 Lecture 21 (2019-06-21) — Memory Management, Intrusive Containers, Pointers to Members [2019-06-21]
	D.2.1.22 Lecture 22 (2019-06-25) — Pointers to Members, Intrusive Containers, Caches [2019-06-25]
	D.2.1.23 Lecture 23 (2019-06-26) — Caches, Cache-Efficient Algorithms [2019-06-26]
	D.2.1.24 Lecture 24 (2019-06-28) — Cache-Efficient Algorithms [2019-06-28]
	D.2.1.25 Lecture 25 (2019-07-03) — Cache-Efficient Algorithms, Concurrency [2019-07-03]
	D.2.1.26 Lecture 26 (2019-07-05) — Concurrency [2019-07-05]
	D.2.1.27 Lecture 27 (2019-07-09) — Concurrency [2019-07-09]
	D.2.1.28 Lecture 28 (2019-07-10) — Concurrency [2019-07-10]
	D.2.1.29 Lecture 29 (2019-07-12) — Concurrency [2019-07-12]
	D.2.1.30 Lecture 30 (2019-07-16) — Concurrency [2019-07-16]
	D.2.1.31 Lecture 31 (2019-07-17) — Concurrency, More Exceptions [2019-07-17]
	D.2.1.32 Lecture 32 (2019-07-19) — Smart Pointers [2019-07-19]
	D.2.1.33 Lecture 33 (2019-07-23) — Smart Pointers, Vectorization [2019-07-23]
	D.2.1.34 Lecture 34 (2019-07-24) — Vectorization [2019-07-24]
	D.2.1.35 Lecture 35 (2019-07-26) — Vectorization [2019-07-26]
	D.2.1.36 Lecture 36 (2019-07-30) — Vectorization [2019-07-30]
	D.2.1.37 Lecture 37 (2019-07-31) — Final Course Wrap-Up [2019-07-31]
	D.2.1.38 Extra (2019-07-25) — Preliminary Information for Final Exam [2019-07-25]

	D.3 Rudimentary C++
	D.3.1 Video-Lecture Catalog
	D.3.1.1 Getting Started — Compiling and Linking [2017-04-13]
	D.3.1.2 Version Control — Introduction [2017-04-06]
	D.3.1.3 Git — Introduction [2017-04-08]
	D.3.1.4 Git — Demonstration [2017-04-05]
	D.3.1.5 Build Systems — Introduction [2017-04-12]
	D.3.1.6 Make — Introduction [2017-04-12]
	D.3.1.7 CMake — Introduction [2017-04-16]
	D.3.1.8 CMake — Examples [2017-04-18]
	D.3.1.9 Basics — Introduction [2015-04-06]
	D.3.1.10 Basics — Objects, Types, and Values [2015-04-08]
	D.3.1.11 Basics — Operators and Expressions [2016-03-20]
	D.3.1.12 Basics — Control-Flow Constructs [2015-04-09]
	D.3.1.13 Basics — Functions [2016-03-20]
	D.3.1.14 Basics — Input/Output [2016-03-21]
	D.3.1.15 Basics — Miscellany [2016-03-21]
	D.3.1.16 Classes — Introduction [2016-03-05]
	D.3.1.17 Classes — Members and Access Specifiers [2016-03-05]
	D.3.1.18 Classes — Constructors and Destructors [2016-03-06]
	D.3.1.19 Classes — Operator Overloading [2016-03-09]
	D.3.1.20 Classes — More on Classes [2016-03-22]
	D.3.1.21 Classes — Temporary Objects [2016-03-24]
	D.3.1.22 Classes — Functors [2016-03-24]
	D.3.1.23 Templates — Introduction [2016-03-14]
	D.3.1.24 Templates — Function Templates [2016-03-17]
	D.3.1.25 Templates — Class Templates [2016-03-17]
	D.3.1.26 Templates — Variable Templates [2016-03-14]
	D.3.1.27 Templates — Alias Templates [2016-03-14]
	D.3.1.28 Standard Library — Introduction [2016-03-30]
	D.3.1.29 Standard Library — Containers, Iterators, and Algorithms [2016-04-05]
	D.3.1.30 Standard Library — The vector Class Template [2016-03-30]
	D.3.1.31 Standard Library — The basic_string Class Template [2016-04-01]
	D.3.1.32 Standard Library — Time Measurement [2016-04-02]
	D.3.1.33 Concurrency — Preliminaries [2015-02-12]
	D.3.1.34 Concurrency — Threads [2015-02-17]
	D.3.1.35 Concurrency — Mutexes [2015-02-23]
	D.3.1.36 Concurrency — Condition Variables [2015-02-27]
	D.3.1.37 Concurrency — Promises and Futures [2015-04-02]
	D.3.1.38 CGAL — Introduction [2015-06-29]
	D.3.1.39 CGAL — Polygon Meshes [2015-07-02]
	D.3.1.40 CGAL — Subdivision Surface Methods [2015-06-29]
	D.3.1.41 CGAL — Example Programs [2015-07-01]
	D.3.1.42 Text Formatting in C++20 [2021-02-03]

	D.4 Miscellaneous Video Presentations
	D.4.1 Video-Lecture Catalog
	D.4.1.1 Meshlab/Geomview Demo [2019-06-16]
	D.4.1.2 Accessing the SDE Using VM Software [2020-04-26]
	D.4.1.3 Assertions and CMake Build Types Demonstration [2020-04-30]
	D.4.1.4 Address Sanitizer (ASan) Demonstration [2020-04-26]
	D.4.1.5 Undefined-Behavior Sanitizer (UBSan) Demonstration [2020-04-26]
	D.4.1.6 Lcov Demonstration [2020-04-30]

	Back Cover

