
Lecture Slides for Linux System Programming
Edition 0.0

Michael D. Adams

Department of Electrical and Computer Engineering
University of Victoria

Victoria, British Columbia, Canada

To obtain the .. .most recent version of these lecture slides (with functional hyperlinks) or for additional
information and resources related to these slides (including errata), please visit:

https://www.ece.uvic.ca/~mdadams/cppbook

If you like these lecture slides, please consider posting a review of them at:

https://play.google.com/store/search?q=ISBN:9781990707032 or
https://books.google.com/books?vid=ISBN9781990707032

youtube.com/iamcanadian1867 github.com/mdadams @mdadams16

https://www.ece.uvic.ca/~mdadams/cppbook
https://www.ece.uvic.ca/~mdadams/cppbook
https://play.google.com/store/search?q=ISBN:9781990707032
https://books.google.com/books?vid=ISBN9781990707032
https://youtube.com/iamcanadian1867
https://github.com/mdadams
https://twitter.com/mdadams16

The author has taken care in the preparation of this document, but makes no expressed or implied warranty of any kind and assumes no
responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use
of the information or programs contained herein.

Copyright © 2022 Michael D. Adams

This document is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) License. A copy
of this license can be found on page iii of this document. For a simple explanation of the rights granted by this license, see:

https://creativecommons.org/licenses/by-nc-nd/3.0/

Linux is a registered trademark of Linus Torvalds. UNIX and X Window System are registered trademarks of The Open Group. Ubuntu is a
registered trademark of Canonical Ltd. Debian is a registered trademark of Software in the Public Interest, Inc. Fedora and Red Hat Enterprise
Linux are registered trademarks of Red Hat, Inc. Gentoo is a registered trademark of The Gentoo Foundation, Inc. OpenSUSE is a registered
trademark of SUSE LLC. RISC-V is a registered trademark of RISC-V International. Itanium is a registered trademark of Intel Corporation. The
YouTube logo is a registered trademark of Google, Inc. The GitHub logo is a registered trademark of GitHub, Inc. The Twitter logo is a registered
trademark of Twitter, Inc.

This document was typeset with LATEX.

ISBN 978-1-990707-03-2 (PDF)

https://creativecommons.org/licenses/by-nc-nd/3.0/

License I

Creative Commons Legal Code

Attribution-NonCommercial-NoDerivs 3.0 Unported

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR
DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY
COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS
AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE
TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY
BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS
CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND
CONDITIONS.

1. Definitions

a. "Adaptation" means a work based upon the Work, or upon the Work and
other pre-existing works, such as a translation, adaptation,
derivative work, arrangement of music or other alterations of a
literary or artistic work, or phonogram or performance and includes
cinematographic adaptations or any other form in which the Work may be
recast, transformed, or adapted including in any form recognizably
derived from the original, except that a work that constitutes a
Collection will not be considered an Adaptation for the purpose of
this License. For the avoidance of doubt, where the Work is a musical
work, performance or phonogram, the synchronization of the Work in
timed-relation with a moving image ("synching") will be considered an
Adaptation for the purpose of this License.

b. "Collection" means a collection of literary or artistic works, such as
encyclopedias and anthologies, or performances, phonograms or
broadcasts, or other works or subject matter other than works listed

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 iii

License II

in Section 1(f) below, which, by reason of the selection and
arrangement of their contents, constitute intellectual creations, in
which the Work is included in its entirety in unmodified form along
with one or more other contributions, each constituting separate and
independent works in themselves, which together are assembled into a
collective whole. A work that constitutes a Collection will not be
considered an Adaptation (as defined above) for the purposes of this
License.

c. "Distribute" means to make available to the public the original and
copies of the Work through sale or other transfer of ownership.

d. "Licensor" means the individual, individuals, entity or entities that
offer(s) the Work under the terms of this License.

e. "Original Author" means, in the case of a literary or artistic work,
the individual, individuals, entity or entities who created the Work
or if no individual or entity can be identified, the publisher; and in
addition (i) in the case of a performance the actors, singers,
musicians, dancers, and other persons who act, sing, deliver, declaim,
play in, interpret or otherwise perform literary or artistic works or
expressions of folklore; (ii) in the case of a phonogram the producer
being the person or legal entity who first fixes the sounds of a
performance or other sounds; and, (iii) in the case of broadcasts, the
organization that transmits the broadcast.

f. "Work" means the literary and/or artistic work offered under the terms
of this License including without limitation any production in the
literary, scientific and artistic domain, whatever may be the mode or
form of its expression including digital form, such as a book,
pamphlet and other writing; a lecture, address, sermon or other work
of the same nature; a dramatic or dramatico-musical work; a
choreographic work or entertainment in dumb show; a musical
composition with or without words; a cinematographic work to which are
assimilated works expressed by a process analogous to cinematography;
a work of drawing, painting, architecture, sculpture, engraving or
lithography; a photographic work to which are assimilated works
expressed by a process analogous to photography; a work of applied
art; an illustration, map, plan, sketch or three-dimensional work
relative to geography, topography, architecture or science; a
performance; a broadcast; a phonogram; a compilation of data to the
extent it is protected as a copyrightable work; or a work performed by
a variety or circus performer to the extent it is not otherwise
considered a literary or artistic work.

g. "You" means an individual or entity exercising rights under this

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 iv

License III

License who has not previously violated the terms of this License with
respect to the Work, or who has received express permission from the
Licensor to exercise rights under this License despite a previous
violation.

h. "Publicly Perform" means to perform public recitations of the Work and
to communicate to the public those public recitations, by any means or
process, including by wire or wireless means or public digital
performances; to make available to the public Works in such a way that
members of the public may access these Works from a place and at a
place individually chosen by them; to perform the Work to the public
by any means or process and the communication to the public of the
performances of the Work, including by public digital performance; to
broadcast and rebroadcast the Work by any means including signs,
sounds or images.

i. "Reproduce" means to make copies of the Work by any means including
without limitation by sound or visual recordings and the right of
fixation and reproducing fixations of the Work, including storage of a
protected performance or phonogram in digital form or other electronic
medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce,
limit, or restrict any uses free from copyright or rights arising from
limitations or exceptions that are provided for in connection with the
copyright protection under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License,
Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
perpetual (for the duration of the applicable copyright) license to
exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more
Collections, and to Reproduce the Work as incorporated in the
Collections; and,

b. to Distribute and Publicly Perform the Work including as incorporated
in Collections.

The above rights may be exercised in all media and formats whether now
known or hereafter devised. The above rights include the right to make
such modifications as are technically necessary to exercise the rights in
other media and formats, but otherwise you have no rights to make
Adaptations. Subject to 8(f), all rights not expressly granted by Licensor

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 v

License IV

are hereby reserved, including but not limited to the rights set forth in
Section 4(d).

4. Restrictions. The license granted in Section 3 above is expressly made
subject to and limited by the following restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms
of this License. You must include a copy of, or the Uniform Resource
Identifier (URI) for, this License with every copy of the Work You
Distribute or Publicly Perform. You may not offer or impose any terms
on the Work that restrict the terms of this License or the ability of
the recipient of the Work to exercise the rights granted to that
recipient under the terms of the License. You may not sublicense the
Work. You must keep intact all notices that refer to this License and
to the disclaimer of warranties with every copy of the Work You
Distribute or Publicly Perform. When You Distribute or Publicly
Perform the Work, You may not impose any effective technological
measures on the Work that restrict the ability of a recipient of the
Work from You to exercise the rights granted to that recipient under
the terms of the License. This Section 4(a) applies to the Work as
incorporated in a Collection, but this does not require the Collection
apart from the Work itself to be made subject to the terms of this
License. If You create a Collection, upon notice from any Licensor You
must, to the extent practicable, remove from the Collection any credit
as required by Section 4(c), as requested.

b. You may not exercise any of the rights granted to You in Section 3
above in any manner that is primarily intended for or directed toward
commercial advantage or private monetary compensation. The exchange of
the Work for other copyrighted works by means of digital file-sharing
or otherwise shall not be considered to be intended for or directed
toward commercial advantage or private monetary compensation, provided
there is no payment of any monetary compensation in connection with
the exchange of copyrighted works.

c. If You Distribute, or Publicly Perform the Work or Collections, You
must, unless a request has been made pursuant to Section 4(a), keep
intact all copyright notices for the Work and provide, reasonable to
the medium or means You are utilizing: (i) the name of the Original
Author (or pseudonym, if applicable) if supplied, and/or if the
Original Author and/or Licensor designate another party or parties
(e.g., a sponsor institute, publishing entity, journal) for
attribution ("Attribution Parties") in Licensor’s copyright notice,

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 vi

License V

terms of service or by other reasonable means, the name of such party
or parties; (ii) the title of the Work if supplied; (iii) to the
extent reasonably practicable, the URI, if any, that Licensor
specifies to be associated with the Work, unless such URI does not
refer to the copyright notice or licensing information for the Work.
The credit required by this Section 4(c) may be implemented in any
reasonable manner; provided, however, that in the case of a
Collection, at a minimum such credit will appear, if a credit for all
contributing authors of Collection appears, then as part of these
credits and in a manner at least as prominent as the credits for the
other contributing authors. For the avoidance of doubt, You may only
use the credit required by this Section for the purpose of attribution
in the manner set out above and, by exercising Your rights under this
License, You may not implicitly or explicitly assert or imply any
connection with, sponsorship or endorsement by the Original Author,
Licensor and/or Attribution Parties, as appropriate, of You or Your
use of the Work, without the separate, express prior written
permission of the Original Author, Licensor and/or Attribution
Parties.

d. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or
compulsory licensing scheme cannot be waived, the Licensor
reserves the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or
compulsory licensing scheme can be waived, the Licensor reserves
the exclusive right to collect such royalties for any exercise by
You of the rights granted under this License if Your exercise of
such rights is for a purpose or use which is otherwise than
noncommercial as permitted under Section 4(b) and otherwise waives
the right to collect royalties through any statutory or compulsory
licensing scheme; and,

iii. Voluntary License Schemes. The Licensor reserves the right to
collect royalties, whether individually or, in the event that the
Licensor is a member of a collecting society that administers
voluntary licensing schemes, via that society, from any exercise
by You of the rights granted under this License that is for a
purpose or use which is otherwise than noncommercial as permitted

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 vii

License VI

under Section 4(b).
e. Except as otherwise agreed in writing by the Licensor or as may be

otherwise permitted by applicable law, if You Reproduce, Distribute or
Publicly Perform the Work either by itself or as part of any
Collections, You must not distort, mutilate, modify or take other
derogatory action in relation to the Work which would be prejudicial
to the Original Author’s honor or reputation.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR
OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY
KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS,
WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION
OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE
LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR
ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate
automatically upon any breach by You of the terms of this License.
Individuals or entities who have received Collections from You under
this License, however, will not have their licenses terminated
provided such individuals or entities remain in full compliance with
those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
termination of this License.

b. Subject to the above terms and conditions, the license granted here is
perpetual (for the duration of the applicable copyright in the Work).
Notwithstanding the above, Licensor reserves the right to release the
Work under different license terms or to stop distributing the Work at
any time; provided, however that any such election will not serve to
withdraw this License (or any other license that has been, or is
required to be, granted under the terms of this License), and this

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 viii

License VII

License will continue in full force and effect unless terminated as
stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection,
the Licensor offers to the recipient a license to the Work on the same
terms and conditions as the license granted to You under this License.

b. If any provision of this License is invalid or unenforceable under
applicable law, it shall not affect the validity or enforceability of
the remainder of the terms of this License, and without further action
by the parties to this agreement, such provision shall be reformed to
the minimum extent necessary to make such provision valid and
enforceable.

c. No term or provision of this License shall be deemed waived and no
breach consented to unless such waiver or consent shall be in writing
and signed by the party to be charged with such waiver or consent.

d. This License constitutes the entire agreement between the parties with
respect to the Work licensed here. There are no understandings,
agreements or representations with respect to the Work not specified
here. Licensor shall not be bound by any additional provisions that
may appear in any communication from You. This License may not be
modified without the mutual written agreement of the Licensor and You.

e. The rights granted under, and the subject matter referenced, in this
License were drafted utilizing the terminology of the Berne Convention
for the Protection of Literary and Artistic Works (as amended on
September 28, 1979), the Rome Convention of 1961, the WIPO Copyright
Treaty of 1996, the WIPO Performances and Phonograms Treaty of 1996
and the Universal Copyright Convention (as revised on July 24, 1971).
These rights and subject matter take effect in the relevant
jurisdiction in which the License terms are sought to be enforced
according to the corresponding provisions of the implementation of
those treaty provisions in the applicable national law. If the
standard suite of rights granted under applicable copyright law
includes additional rights not granted under this License, such
additional rights are deemed to be included in the License; this
License is not intended to restrict the license of any rights under
applicable law.

Creative Commons Notice

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 ix

License VIII

Creative Commons is not a party to this License, and makes no warranty
whatsoever in connection with the Work. Creative Commons will not be
liable to You or any party on any legal theory for any damages
whatsoever, including without limitation any general, special,
incidental or consequential damages arising in connection to this
license. Notwithstanding the foregoing two (2) sentences, if Creative
Commons has expressly identified itself as the Licensor hereunder, it
shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the
Work is licensed under the CCPL, Creative Commons does not authorize
the use by either party of the trademark "Creative Commons" or any
related trademark or logo of Creative Commons without the prior
written consent of Creative Commons. Any permitted use will be in
compliance with Creative Commons’ then-current trademark usage
guidelines, as may be published on its website or otherwise made
available upon request from time to time. For the avoidance of doubt,
this trademark restriction does not form part of this License.

Creative Commons may be contacted at http://creativecommons.org/.

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 x

Other Textbooks and Lecture Slides by the Author I

1 M. D. Adams, Exercises for Programming in C++ (Version 2021-04-01),
Apr. 2021, ISBN 978-0-9879197-5-5 (PDF). Available from Google Books,
Google Play Books, and author’s web site
https://www.ece.uvic.ca/~mdadams/cppbook.

2 M. D. Adams, Lecture Slides for Programming in C++ (Version
2021-04-01), Apr. 2021, ISBN 978-0-9879197-4-8 (PDF). Available from
Google Books, Google Play Books, and author’s web site
https://www.ece.uvic.ca/~mdadams/cppbook.

3 M. D. Adams, Multiresolution Signal and Geometry Processing: Filter
Banks, Wavelets, and Subdivision (Version 2013-09-26), University of
Victoria, Victoria, BC, Canada, Sept. 2013, ISBN 978-1-55058-507-0
(print), ISBN 978-1-55058-508-7 (PDF). Available from Google Books,
Google Play Books, and author’s web site
https://www.ece.uvic.ca/~mdadams/waveletbook.

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 xi

https://www.ece.uvic.ca/~mdadams/cppbook
https://www.ece.uvic.ca/~mdadams/cppbook
https://www.ece.uvic.ca/~mdadams/waveletbook

Other Textbooks and Lecture Slides by the Author II

4 M. D. Adams, Lecture Slides for Multiresolution Signal and Geometry
Processing (Version 2015-02-03), University of Victoria, Victoria, BC,
Canada, Feb. 2015, ISBN 978-1-55058-535-3 (print), ISBN
978-1-55058-536-0 (PDF). Available from Google Books, Google Play
Books, and author’s web site
https://www.ece.uvic.ca/~mdadams/waveletbook.

5 M. D. Adams, Signals and Systems, Edition 5.0, Dec. 2022, ISBN
978-1-990707-00-1 (PDF). Available from Google Books, Google Play
Books, and author’s web site
https://www.ece.uvic.ca/~mdadams/sigsysbook.

6 M. D. Adams, Lecture Slides for Signals and Systems, Edition 5.0,
Dec. 2022, ISBN 978-1-990707-02-5 (PDF). Available from Google
Books, Google Play Books, and author’s web site
https://www.ece.uvic.ca/~mdadams/sigsysbook.

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 xii

https://www.ece.uvic.ca/~mdadams/waveletbook
https://www.ece.uvic.ca/~mdadams/sigsysbook
https://www.ece.uvic.ca/~mdadams/sigsysbook

Other Textbooks and Lecture Slides by the Author III

7 M. D. Adams, Lecture Slides for the Clang Libraries, Edition 0.0,
Dec. 2022, ISBN 978-1-990707-04-9 (PDF). Available from Google
Books, Google Play Books, and author’s web site
https://www.ece.uvic.ca/~mdadams/cppbook.

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 xiii

https://www.ece.uvic.ca/~mdadams/cppbook

Part 0

Preface

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 xiv

About These Lecture Slides

■ This document constitutes a set of lecture slides that covers various
aspects of system programming in Linux.

■ This document represents a work in progress and should be considered
an alpha release.

■ In spite of this, it is believed that this document will be of benefit to some
people. So, it is being made available in its current form.

■ This document is intended to supplement the following slide deck:
2 M. D. Adams, Lecture Slides for Programming in C++ (Version 2021-04-01),

Apr. 2021, ISBN 978-0-9879197-4-8 (PDF). Available from Google Books,
Google Play Books, and author’s web site
https://www.ece.uvic.ca/~mdadams/cppbook.

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 xv

https://www.ece.uvic.ca/~mdadams/cppbook

Typesetting Conventions

■ In a definition, the term being defined is often typeset in a font like this.

■ To emphasize particular words, the words are typeset in a font like this.

■ To show that particular text is associated with a hyperlink to an internal
target, the text is typesetlike this.

■ To show that particular text is associated with a hyperlink to an external
document, the text is typesetlike this.

■ URLs are typeset like https://www.ece.uvic.ca/~mdadams.

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 xvi

https://www.ece.uvic.ca/~mdadams
https://www.ece.uvic.ca/~mdadams

Companion Git Repository

■ These lecture slides have a companion Git repository.

■ Numerous code examples are available from this repository.

■ This repository is hosted by GitHub.
■ The URL of the main repository page on GitHub is:

2 https://github.com/mdadams/linux_companion

■ The URL of the actual repository itself is:
2 https://github.com/mdadams/linux_companion.git

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 xvii

https://github.com/mdadams/linux_companion
https://github.com/mdadams/linux_companion.git

Part 1

Introduction

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 1

Linux

■ open-source Unix-like operating system

■ originally developed by Linus Torvalds in 1991

■ monolithic kernel

■ some additional functionality can be loaded as system running (e.g., some
device drivers)

■ has been ported to many hardware architectures (e.g., x86-64, ARM,
RISC-V, Itanium, PowerPC, S390, and S390X)

■ in 2000, Linux Foundation, non-profit technology consortium founded to
standardize Linux, support its growth, and promote its commercial
adoption

■ some popular non-commercial Linux distributions include:
2 Ubuntu, Debian, Fedora, Gentoo, OpenSUSE

■ some popular commercial Linux distributions include:
2 Red Hat Enterprise Linux (RHEL) and SUSE Linux Enterprise

Server (SLES)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 2

Single UNIX Specification (SUS)

■ Single UNIX Specification (SUS) is collective name of family of standards
for operating systems

■ compliance with standard required to qualify for use of UNIX trademark

■ core specification of SUS developed and maintained by Austin Group,
which is joint working group of IEEE, ISO JTC 1 SC22, and The Open
Group

■ Austin Group web site: https://www.opengroup.org/austin/

■ specifies API for system calls and library functions

■ specifies utilities and shell

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 3

https://www.opengroup.org/austin/

Portable Operating System (POSIX) Standard

■ joint ISO/IEC/IEEE standard:
2 ISO/IEC/IEEE 9945:2009 — information technology — Portable Operating

System Interface (POSIX) base specifications, issue 7, 2009 [3807 pages].

■ intended to promote compatibility between variants of Unix and other
operating systems

■ defines application programming interface (API)

■ specifies command-line shells and utility interfaces
■ some variants of Unix have been certified as POSIX compliant, including

(amongst others):
2 MacOS, HP-UX, and AIX

■ many variants of Unix are mostly POSIX compliant:
2 Linux, DragonFly BSD, FreeBSD, NetBSD, OpenBSD

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 4

Linux Standard Base (LSB) Standard

■ joint ISO IEC standard, consisting of several parts
■ core specification:

2 ISO/IEC 23360-1:2006 — Linux Standard Base (LSB) core
specification 3.1 — part 1: Generic specification, 2006 [458 pages].

■ specification for AMD64 (x86-64) architecture:
2 ISO/IEC 23360-4:2006 — Linux Standard Base (LSB) core

specification 3.1 — part 4: Specification for AMD64 architecture, 2006.

■ joint project by several Linux distributions under organizational structure of
Linux Foundation (https://www.linuxfoundation.org)

■ defines application programming interface (API) and application binary
interface (ABI)

■ standardize software system structure, including filesystem hierarchy
■ standard covers several architectures, including:

2 AMD64 (x86-64), IA32, IA64, PPC32, PPC64, S390, and S390X

■ LSB based on POSIX specification, Single UNIX Specification (SUS), and
several other open standards

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 5

https://www.linuxfoundation.org

Part 2

Main Topics

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 6

Section 2.1

Preliminaries

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 7

System Calls

■ system call: mechanism by which program requests service from
operating system

■ for example, system calls used to:
2 open, close, read, and write files
2 create and terminate processes

■ typically, system call invoked by special CPU instruction

■ most system calls return integral type (e.g., int or long or type alias for
such type)

■ if system call fails, global variable errno set with reason for failure

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 8

Some errno Values

Signal Description

EACCES permission denied
EAGAIN resource temporarily unavailable
EBADF bad file descriptor
EBUSY device or resource busy
EDQUOT disk quota exceeded
EEXIST file exists
EFAULT bad address
EFBIG file too large
EINTR interrupted function call (due to signal)
EINVAL invalid argument
EIO I/O error
ELOOP too many levels of symbolic links
ENODEV no such device
ENOENT no such file or directory
ENOSPC no space left on device (e.g., file system full)
EPERM operation not permitted

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 9

Querying System Configuration

■ various parameters of system configuration can be queried using
sysconf system call

■ declaration:
long sysconf(int name);

■ upon success, returns value of parameter specified by name

■ upon failure (e.g., due to invalid value for name), returns -1

■ some values for name include those shown in following table:

name Description

_SC_ARG_MAX maximum length of arguments to exec
family of system calls

_SC_HOST_NAME_MAX maximum length of host name
_SC_LOGIN_NAME_MAX maximum length of login name
_SC_OPEN_MAX maximum number of open files per pro-

cess
_SC_NGROUPS_MAX maximum number of supplementary GIDs

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 10

[Example] Querying System Configuration [sysconf]

sysconf_1.cpp

1 #include <format>
2 #include <iostream>
3 #include <unistd.h>
4

5 int main() {
6 std::cout << std::format(
7 "POSIX version: {}\n"
8 "maximum login name length: {}\n"
9 "maximum host name length: {}\n"

10 "maximum length of arguments to exec: {}\n"
11 "maximum number of open files: {}\n"
12 "page size in bytes: {}\n",
13 sysconf(_SC_VERSION),
14 sysconf(_SC_LOGIN_NAME_MAX),
15 sysconf(_SC_HOST_NAME_MAX),
16 sysconf(_SC_ARG_MAX),
17 sysconf(_SC_OPEN_MAX),
18 sysconf(_SC_PAGESIZE));
19 }

■ program prints several system-configuration parameters

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 11

User Identification

■ each user identified by unique user ID (UID), which is nonnegative
integer

■ mapping of usernames to UIDs provided by system password file
/etc/passwd

■ each user can belong to one or more groups

■ in particular, each user belongs to one primary group and zero or more
supplementary groups

■ each group identified by unique group ID (GID), which is nonnegative
integer

■ mapping of groupnames to GIDs provided by system group file
/etc/group

■ UID 0 is reserved for superuser (i.e., system administrator)

■ UIDs from 0 to 99 for static use by system

■ UIDs from 100 to 499 for dynamic use by system

■ UIDs from 500 upwards for normal users

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 12

[Example] Password File /etc/passwd

/etc/passwd

1 root:x:0:0:root:/root:/bin/bash
2 bin:x:1:1:bin:/bin:/sbin/nologin
3 daemon:x:2:2:daemon:/sbin:/sbin/nologin
4 adm:x:3:4:adm:/var/adm:/sbin/nologin
5 lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
6 sync:x:5:0:sync:/sbin:/bin/sync
7 shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
8 halt:x:7:0:halt:/sbin:/sbin/halt
9 mail:x:8:12:mail:/var/spool/mail:/sbin/nologin

10 nobody:x:65534:65534:Kernel Overflow User:/:/sbin/nologin
11 jsmith:x:1000:1000::/home/jsmith:/bin/bash

■ root user has UID 0, primary GID 0, home directory /, and login shell
/bin/bash

■ jsmith user has UID 1000, primary GID 1000, home directory
/home/jsmith, and login shell /bin/bash

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 13

[Example] Group File /etc/group

/etc/group

1 root:x:0:
2 bin:x:1:
3 daemon:x:2:
4 sys:x:3:
5 adm:x:4:
6 tty:x:5:
7 disk:x:6:
8 lp:x:7:
9 mem:x:8:

10 kmem:x:9:
11 wheel:x:10:jsmith
12 users:x:100:jsmith
13 jsmith:x:1000:

■ wheel group has GID 0 and is supplementary group for user jsmith

■ jsmith group has GID 1000 and is supplementary group for no users

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 14

Processes

■ each process has unique process ID (PID), which is strictly positive
integer

■ processes have parent-child relationships (i.e., child process created by
its parent process)

■ init process is first process started as last step in system boot

■ init process is at root of parent-child tree

■ parent process ID (PPID) is PID of parent process

■ since each process must always have parent, process that is orphaned
due to its parent terminating must be assigned new parent

■ reaper/subreaper process: process that automatically adopts orphaned
processes

■ orphaned process always reparented to nearest still-living ancestor
reaper/subreaper

■ process can be made subreaper via prctl system call

■ init process is reaper and systemd process is typically subreaper

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 15

Process Groups and Sessions

■ related processes can be grouped using process group

■ each process belongs to exactly one process group

■ each process group named by unique process group ID (PGID), which
is nonnegative integer

■ can signal all processes in process group at once via kill system call

■ process groups can be grouped into sessions

■ each session named by unique session ID (SID), which is nonnegative
integer

■ often, session used to track all processes belonging to particular
user-login instance

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 16

Querying PID, PPID, PGID, and SID

■ can query PID with getpid system call, which has declaration:
pid_t getpid();

■ can query PPID with getppid system call, which has declaration:
pid_t getppid();

■ process can query its process group using getpgrp system call, which
has declaration:

pid_t getpgrp();

■ getpid, getppid, and getpgrp system calls cannot fail
■ process can query session of another process or itself using getsid

system call, which has declaration:
sid_t getsid(pid_t pid);

■ getsid returns SID of process specified by pid

■ upon failure, returns -1; otherwise returns requested SID

■ if pid is 0, getsid returns SID of calling process

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 17

Process Information from Shell and ps Program

■ ps command can be used to print information about processes/threads
running on system

■ example output from ps command:

PID TTY TIME CMD
771 pts/1 00:00:01 bash

15062 pts/1 00:00:00 ps

■ in Bash shell, $$ gives PID of shell

■ output PID, PPID, PGID, command and arguments for all processes,
sorted by PGID:

ps -e -o pid,ppid,pgid,comm,args | sort -k 3 -n

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 18

[Example] Querying PID, PPID, PGID, and SID

get_process_ids.cpp

1 #include <format>
2 #include <iostream>
3 #include <sys/types.h>
4 #include <unistd.h>
5

6 int main() {
7 std::cout << std::format(
8 "PID: {}; "
9 "parent PID: {}; "

10 "process group ID: {}; "
11 "session ID: {}\n",
12 getpid(), getppid(), getpgrp(), getsid(0));
13 }

■ program prints its PID, PPID, process group ID, and session ID

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 19

Use of Process Groups By Shell

■ shell must be capable of running many programs as child processes,
possibly with many running concurrently

■ single command line often requires running several programs concurrently

■ for convenience in managing processes that shell runs, typically process
groups used to collect together related processes

■ consider several different ways of running get_process_ids program
from previous slide:

./get_process_ids

./get_process_ids; ./get_process_ids

./get_process_ids 3>&1 1>&2- 2>&3- | ./get_process_ids
(./get_process_ids; ./get_process_ids)
./get_process_ids 2> >(./get_process_ids)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 20

Real and Effective Users and Groups

■ each process deemed belong to particular user and group, referred to as
real user and real group, respectively

■ real user and real group identified by real UID (RUID) and real GID
(RGID), respectively

■ for purposes of authorization checking (e.g., file permission checks),
however, process treated as if it belongs to particular user and group,
referred to as effective user and effective group, respectively

■ effective user and effective group identified by effective UID (EUID) and
effective GID (EGID), respectively

■ normally, real and effective users are same and real and effective groups
are same, but they need not be

■ effective user/group typically set differently from real user/group in
situations where one wants to have more or less privileges than normal

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 21

User and Group IDs for New Processes

■ child process inherits from parent process:
2 RUID and RGID
2 EUID and EGID
2 supplementary groups

■ login process sets user/group IDs of login shell as follows:
2 RUID and RGID set according to information in system password file
2 supplementary groups set according to information in system group file
2 EUID set to RUID
2 EGID set to RGID

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 22

Querying User and Group Information from Command Line

■ id command can be used to query user and group information

■ example output for id command:

uid=1000(jsmith) gid=1000(jsmith) groups=1000(jsmith)
↪→ ,10(wheel),100(users)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 23

Querying Real and Effective UIDs and GIDs

■ process can get its real UID using getuid system call, which has
declaration:

uid_t getuid();

■ process can get its real GID using getgid system call, which has
declaration:

gid_t getgid();

■ process can get its effective UID using geteuid system call, which has
declaration:

uid_t geteuid();

■ process can get its effective GID using getegid system call, which has
declaration:

gid_t getegid();

■ getuid, getgid, geteuid, and getegid system calls can never fail

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 24

Querying Supplementary GIDs

■ process can get its supplementary GIDs using getgroups system call,
which has declaration:

int getgroups(int size, gid_t* list);

■ upon success, returns supplementary GIDs of calling process in array
pointed to by list

■ size is maximum number of elements that array pointed to by list can
accommodate

■ if size is not large enough to hold all supplementary GIDs for process,
error results

■ upon success, returns number of GIDs placed in array

■ upon failure, returns -1

■ can query maximum number of supplementary groups to which any
process can belong via sysconf system call

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 25

[Example] Querying User/Group Information

get_user_group_ids.cpp

1 #include <format>
2 #include <iostream>
3 #include <vector>
4 #include <sys/types.h>
5 #include <unistd.h>
6
7 int main() {
8 std::cout << std::format(
9 "real UID: {}\n"

10 "real GID: {}\n"
11 "effective UID: {}\n"
12 "effective GID: {}\n",
13 getuid(), getgid(), geteuid(), getegid());
14 auto max_groups = sysconf(_SC_NGROUPS_MAX);
15 std::vector<gid_t> groups(max_groups);
16 if (int num_groups = getgroups(groups.size(), groups.data());
17 num_groups > 0) {
18 groups.resize(num_groups);
19 std::cout << "supplementary GIDs:";
20 for (auto gid : groups) {std::cout << std::format(" {}", gid);}
21 std::cout << ’\n’;
22 }
23 }

■ program prints real and effective UIDs and GIDs for process as well as
supplementary GIDs

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 26

Environment

■ each process has its own environment, which is collection of variables
called environment variables

■ some programs use values of certain environment variables to control
their behavior

■ PATH environment variable controls where shells and some library
functions looks for executable programs

■ normally, environment propagated from parent process to child

■ printenv command prints environment variables and their values

■ example of printenv output:

PWD=/home/jdoe
LOGNAME=jdoe
HOME=/home/jdoe
USER=jdoe
SHLVL=1
PATH=/usr/local/sbin:/usr/local/bin:/usr/local/games:/usr/sbin:/

↪→ usr/bin:/usr/games:/sbin:/bin

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 27

Section 2.2

File I/O

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 28

File Systems

■ file system views name of file and file contents/metadata as distinct

■ file contents plus file metadata constitute what is called inode
■ in addition to possible data for file, inode also has metadata, including:

2 file type
2 file mode (permissions and a few other attributes of file)
2 link count (number of names referencing inode)
2 UID of user who owns file
2 GID of group that owns file
2 size of file in bytes
2 last access time (atime)
2 file creation time (btime)
2 last modification time (mtime)
2 last status change time (ctime)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 29

File Systems (Continued)

■ file types:
2 regular file
2 directory
2 symbolic link
2 block device (e.g., disk)
2 character device (e.g., terminal)
2 socket (i.e., UNIX-domain socket)
2 FIFO (named pipe)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 30

File Permissions

■ three categories of user permissions:
2 user permissions: apply when process UID matches UID of file owner
2 group permissions: apply when user permissions do not apply; and GID of

process matches GID of file owner
2 other permissions: apply when user and group permissions do not apply

■ for file:
2 read permission required to read contents of file
2 write permission required to modify contents of file
2 execute permission required to run program stored in file

■ for directory:
2 read permission required to inspect contents of directory
2 write permission required to add, remove, or rename file/directory in

directory
2 execute permission is required to access (for any purpose) subdirectories of

directory

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 31

Set-UID and Set-GID Bits

■ meaning of each of set-UID and set-GID bits depends on file type (i.e.,
regular file versus directory)

■ for (regular) file:
2 if set-UID bit is set and user execute bit is set, program to be run with EUID

set to UID of file owner
2 if set-GID bit and group execute bit are set, program to be run with EGID

set to GID of group owner of file
2 if set-GID bit is set and group execute bit is not set, file uses mandatory

file/record locking
■ for directory:

2 set-UID bit usually ignored by most Unix and Linux systems
2 if set-GID bit is set, files created in directory inherit their GID from directory

not from EGID of creating process and any created directory will also have
set-GID bit set

■ set-UID and set-GID bits can be employed to allow users to run programs
with escalated privileges

■ for example, sudo program has set-UID bit set

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 32

Sticky Bits

■ meaning of sticky bit depends on file type (i.e., regular file versus
directory)

■ for directory: if sticky bit set, only file’s owner, directory’s owner, or root
can rename or delete file in directory

■ for (regular) file: sticky bit ignored by Linux and most other modern Unix
variants

■ in practice, sticky bit often set on system temporary directories (such as
/tmp or /var/tmp) so that one user cannot delete temporary files of
another user

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 33

Querying and Setting File Permissions From Command Line

■ can query ownership and permissions of file using stat and ls
commands

■ example output for ls -l /bin/mkdir:
-rwxr-xr-x 1 root root 182816 May 3 2019 /bin/mkdir

■ example output for stat /bin/mkdir:
File: /bin/mkdir
Size: 182816 Blocks: 360 IO Block: 4096 regular file

Device: 31h/49d Inode: 1094 Links: 1
Access: (0755/-rwxr-xr-x) Uid: (0/ root) Gid: (0/ root)
Access: 2019-11-13 10:50:26.254653816 -0800
Modify: 2019-05-03 07:41:27.000000000 -0700
Change: 2019-09-25 07:48:09.381732326 -0700
Birth: 2019-05-14 18:02:48.406664793 -0700

■ can set permissions of file (including set-UID, set-GID, and sticky bits)
using chmod command

■ can change user/group ownership of file using chown command

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 34

Files

■ files often identified through identifier known as file descriptor, which is
nonnegative integer

■ file descriptors only have meaning in context of single process

■ many operations involving files take file descriptors as parameters

■ by convention, three file descriptors have special meaning:

Value Description

0 standard input
1 standard output
2 standard error

■ system has upper bound on number of file descriptors that can be in use
by single process at any given time (which can be queried by sysconf
system call)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 35

Opening File

■ can open file using open, creat, and openat system calls

■ most commonly used function is open
■ declaration:

int open(const char* pathname, int oflags, mode_t mode);

■ pathname is pathname of file/directory to open

■ oflags is flags used to control open operations (see following slides for
list of flags)

■ mode is mode bits for file being created when O_CREAT or O_TMPFILE
flags specified (see following slides for list of modes)

■ creat(fd, mode) equivalent to
open(fd, O_CREAT | O_WRONLY | O_TRUNC, mode)

■ openat takes additional parameter relative to open which provides file
descriptor corresponding to directory to be used for interpreting relative
pathnames

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 36

Open Flags

Flag Description
O_APPEND always append to file
O_ASYNC enable signal-driven I/O
O_CLOEXEC enable close-on-exec flag for file descriptor
O_CREAT create file if it does not exist
O_DIRECT bypass cache
O_DIRECTORY fail if not directory
O_DSYNC write operations use synchronized I/O data integrity completion
O_EXCL ensure that call creates file
O_LARGEFILE allow large files to be opened
O_NOATIME do not update file last access time when file read
O_NOCTTY do not become controlling terminal
O_NOFOLLOW do not follow symbolic links
O_NONBLOCK enable nonblocking I/O
O_NDELAY same as O_NONBLOCK
O_PATH open path only
O_SYNC write operations use synchronized I/O file integrity completion
O_TMPFILE create unnamed temporary regular file
O_TRUNC truncate file

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 37

Open Modes

Flag Description

S_IRWXU user has read, write, and execute permission
S_IRUSR user has read permission
S_IWUSR user has write permission
S_IXUSR user has execute permission
S_IRWXG group has read, write, and execute permission
S_IRGRP group has read permission
S_IWGRP group has write permission
S_IXGRP group has execute permission
S_IRWXO others have read, write, and execute permission
S_IROTH others have read permission
S_IWOTH others have write permission
S_IXOTH others have execute permission
S_ISUID set-UID bit
S_ISGID set-GID bit
S_ISVTX sticky bit

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 38

Closing File

■ file is closed with close system call
■ declaration:

int close(int fd);

■ upon success, returns 0

■ upon failure (e.g., due to invalid file descriptor), returns -1

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 39

[Example] Opening and Closing Files

file_3.cpp

1 #include <iostream>
2 #include <fcntl.h>
3 #include <unistd.h>
4

5 int main() {
6 int fd = open("/etc/passwd", O_RDONLY);
7 if (fd < 0) {
8 std::cerr << "open failed\n";
9 return 1;

10 }
11 // ... (use fd)
12 close(fd); // note: we might forget to close
13 }

■ code structure like that above not recommended since prone to resource
leaks (i.e., leaking open file descriptors)

■ better to use RAII class to hold file descriptor

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 40

unique_handle Class Template

■ unique_handle class template holds opaque handle to resource (such as
open file, capability information, etc.) following unique-ownership model

■ similar to std::unique_ptr except can hold any resource, not only
pointer to memory

■ declaration:
template <class Policy> class unique_handle;

■ unique_handle object can hold non-null or null handle
■ non-null handle is object that refers to some resource that must be freed
■ null handle is dummy handle that does not refer to any resource
■ template parameter Policy is class specifying:

2 type of handle
2 function for freeing resource associated with non-null handle
2 function for testing if handle is null
2 function that returns null handle

■ if, when destructor invoked, non-null handle held by object, underlying
resource freed

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 41

unique_handle Class Template: Code

unique_handle.hpp

1 #include <utility>
2
3 template<typename Policy>
4 class unique_handle {
5 public:
6 using handle_type = typename Policy::handle_type;
7 unique_handle() : h_(Policy::get_null()) {}
8 unique_handle(handle_type handle) : h_(handle) {}
9 unique_handle(unique_handle&& other) noexcept

10 {h_ = other.h_; other.h_ = Policy::get_null();}
11 unique_handle& operator=(unique_handle&& other) noexcept
12 {reset(); h_ = other.h_; other.h_ = Policy::get_null(); return *this;}
13 unique_handle(const unique_handle&) = delete;
14 unique_handle& operator=(unique_handle&) = delete;
15 ~unique_handle() {reset();}
16 handle_type get() const {return h_;}
17 explicit operator bool() const {return !Policy::is_null(h_);}
18 void reset(handle_type new_handle = Policy::get_null()) {
19 handle_type old_handle = h_;
20 h_ = new_handle;
21 if(!Policy::is_null(old_handle)) {Policy::free(old_handle);}
22 }
23 void swap(unique_handle& other)
24 {using std::swap; swap(h_, other.h_);}
25 private:
26 handle_type h_;
27 };

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 42

unique_fd Class

unique_fd.hpp

1 #include "unique_handle.hpp"
2
3 struct fd_uh_policy {
4 using handle_type = int;
5 static void free(handle_type h) {close(h);}
6 static bool is_null(handle_type h) {return h < 0;}
7 static handle_type get_null() {return -1;}
8 };
9

10 using unique_fd = unique_handle<fd_uh_policy>;

■ unique_fd class used to manage file descriptors following
unique-ownership model

■ unique_fd class utilizes unique_handle class template introduced
earlier

■ if open file descriptor associated with unique_fd object when destructor
invoked, destructor automatically closes file descriptor

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 43

unique_fd Class: Usage Example

unique_fd_1.cpp

1 #include <string>
2 #include <iostream>
3 #include <fcntl.h>
4 #include <unistd.h>
5 #include "unique_fd.hpp"
6
7 int do_work() {
8 unique_fd fd(open("/dev/null", O_WRONLY));
9 if (!fd) {return 1;}

10 std::string text("Hello, World!\n");
11 if (write(fd.get(), text.data(), text.size()) != text.size()) {
12 // NOTE: no need to close file descriptor here
13 return 2;
14 }
15 // NOTE: no need to close file descriptor here
16 return 0;
17 } // NOTE: destruction of fd will close file descriptor (if open)
18
19 int main() {return do_work();}

■ no open file descriptors leaked in code shown above despite fact that
code does not explicitly close any file descriptors

■ close of open file descriptor implicitly performed by destructor of
unique_fd class

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 44

[Example] Opening and Closing Files Revised: Summary

■ use class template to rewrite earlier example application in manner that
greatly reduces chance of leaking file-descriptors

■ explicit close of file descriptor no longer needed (unless early close of file
desired)

■ object that owns file descriptor closes file descriptor upon destruction

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 45

[Example] Opening and Closing Files Revisited: Code

file_1.cpp

1 #include <iostream>
2 #include <fcntl.h>
3 #include <unistd.h>
4 #include "unique_fd.hpp"
5

6 int main() {
7 unique_fd fd(open("/etc/passwd", O_RDONLY));
8 if (!fd) {
9 std::cerr << "open failed\n";

10 return 1;
11 }
12 // ... (use fd)
13 /* when destructor for fd invoked, any open file descriptor
14 associated with fd is closed */
15 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 46

Reading from File

■ data can be read from file using read system call
■ declaration:

ssize_t read(int fd, void *buf, size_t count);

■ fd: file descriptor specifying file from which to read

■ buf: pointer to start of buffer in which to place data to be read

■ count: number of bytes of data to read

■ data is read starting from current position in file

■ upon failure, -1 is returned

■ upon success, number of bytes read is returned, which may be less than
count (e.g., due to end of file, fewer bytes being available when reading
from pipe or terminal, or interrupted system call)

■ if read takes place at end of file, 0 is returned

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 47

Writing to File

■ data can be written to file using write system call
■ declaration:

ssize_t write(int fd, const void *buf, size_t count);

■ fd: file descriptor specifying file to which to write

■ buf: pointer to buffer holding data to be written

■ count: number of bytes of data to written

■ data is written starting from current position in file

■ upon failure, -1 is returned

■ upon success, number of bytes written is returned, which may be less
than count (e.g., due no space left on disk or interrupted system call)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 48

[Example] Copying Files: Summary

■ program copies file from source to destination

■ pathname for source and destination files specified as command-line
arguments

■ code retries interrupted read/write system calls

■ note that not accounting for interrupted system calls is common source of
bugs

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 49

[Example] Copying Files: Code (1)

copy_file_1.cpp

1 #include <iostream>
2 #include <vector>
3 #include <fcntl.h>
4 #include <sys/types.h>
5 #include <unistd.h>
6 #include "unique_fd.hpp"
7
8 ssize_t read_with_retry(int fd, void* buf, ssize_t count) {
9 ssize_t n;

10 while ((n = read(fd, buf, count)) < 0 && errno == EINTR) {}
11 return n;
12 }
13
14 ssize_t write_with_retry(int fd, const void* buf, ssize_t count) {
15 ssize_t n;
16 while ((n = write(fd, buf, count)) < 0 && errno == EINTR) {}
17 return n;
18 }
19
20 ssize_t write_all(int fd, const void* buf, ssize_t count) {
21 const char* start = static_cast<const char*>(buf);
22 ssize_t remaining = count;
23 do {
24 ssize_t n = write_with_retry(fd, start, remaining);
25 if (n <= 0) {return -1;}
26 remaining -= n;
27 start += n;
28 } while (remaining > 0);
29 return count;
30 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 50

[Example] Copying Files: Code (2)

copy_file_1.cpp (Continued)
32 int copy(int source_fd, int destination_fd) {
33 std::vector<char> buffer(64 * 1024);
34 for (;;) {
35 ssize_t n = read_with_retry(source_fd, buffer.data(), buffer.size());
36 if (n < 0) {return -1;}
37 else if (!n) {break;}
38 if (write_all(destination_fd, buffer.data(), n) != n) {return -1;}
39 }
40 return 0;
41 }
42
43 int main(int argc, char** argv) {
44 if (argc < 3) {std::cerr << "invalid usage\n";}
45 unique_fd source_fd(open(argv[1], O_RDONLY));
46 if (!source_fd)
47 {std::cerr << "cannot open source file\n"; return 1;}
48 unique_fd destination_fd(open(argv[2], O_CREAT | O_TRUNC | O_WRONLY,
49 S_IRWXU));
50 if (!destination_fd)
51 {std::cerr << "cannot open destination file\n"; return 1;}
52 if (copy(source_fd.get(), destination_fd.get()))
53 {std::cerr << "copy failed\n"; return 1;}
54 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 51

Seeking in File

■ current position in file can be changed with lseek system call
■ declaration:

off_t lseek(int fd, off_t offset, int whence);

■ adjusts current location in file using offset and whence as follows:
whence Meaning
SEEK_SET offset set to offset bytes
SEEK_CUR offset set to current location plus offset bytes
SEEK_END offset set of size of file plus offset bytes

■ upon success, returns current location measured in bytes from start of file

■ upon failure, returns -1

■ some types of entities to which file descriptor might refer do not allow seek
operation (e.g., pipe, FIFO, or socket)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 52

[Example] Reading and Writing File

file_2.cpp

1 #include <iostream>
2 #include <string>
3 #include <fcntl.h>
4 #include <sys/stat.h>
5 #include <unistd.h>
6 #include "unique_fd.hpp"
7
8 int main() {
9 std::string buf{"Hello, World!\n"};

10 unique_fd fd(open("/tmp/foo", O_CREAT | O_TRUNC |
11 O_WRONLY, S_IRWXU));
12 if (!fd) {std::cout << "open failed\n";}
13 if (lseek(fd.get(), 1, SEEK_SET) < 0) {std::cerr << "lseek failed\n";}
14 if (write(fd.get(), &buf[1], buf.size() - 1) != buf.size() - 1)
15 {std::cerr << "write failed\n";}
16 if (lseek(fd.get(), 0, SEEK_SET) < 0) {std::cerr << "lseek failed\n";}
17 if (write(fd.get(), &buf[0], 1) != 1) {std::cerr << "write failed\n";};
18 }

■ program writes "Hello, World!\n" to file nonsequentially in two parts,
with help of seek operation

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 53

Vectored I/O

■ vectored I/O: single I/O operation transfers data between data stream
and multiple buffers in memory

■ scatter read: reads data from single data stream and sequentially writes
this data to multiple buffers in memory

■ gather write: sequentially reads data from multiple buffers in memory
and writes this data to single data stream

■ advantages of vectored I/O:
1 efficiency: fewer I/O operations required, since single read/write operation

can transfer data between file and multiple buffers in memory
2 atomicity: no risk of interleaving with I/O operations from other

processes/threads
3 convenience: eliminates need to write code to copy data into and out of

single contiguous buffer

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 54

Specifying Multiple Buffers for Vectored I/O

■ iovec used to specify single buffer for vectored I/O

■ array of iovec objects used to specify multiple buffers

■ declaration:

struct iovec {
void* iov_base; // start address of buffer
size_t iov_len; // size of buffer in bytes

};

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 55

Scatter Read from File

■ scatter read (i.e., read into multiple buffers) can be performed by readv
system call

■ declaration:
ssize_t readv(int fd, const iovec *iov, int iovcnt);

■ fd: file descriptor specifying file from which to read

■ iov: pointer to array of I/O vectors, where each I/O vector is description of
buffer

■ iovcnt: number of elements in I/O vector array

■ iovec struct describes single buffer by specifying start address of buffer
and its size in bytes

■ data is read starting from current position in file

■ upon failure, -1 is returned

■ upon success, number of bytes read is returned, which may be less than
total number of bytes requested to be transferred (for similar reasons as
in case of read system call)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 56

Gather Write from File

■ gather write (i.e., write from multiple buffers) can be performed by writev
system call

■ declaration:
ssize_t writev(int fd, const iovec *iov, int iovcnt);

■ fd: file descriptor specifying file to which to write

■ iov: pointer to array of I/O vectors, where each I/O vector is description of
buffer

■ iovcnt: number of elements in I/O vector array

■ iovec struct describes single buffer by specifying start address of buffer
and its size in bytes

■ data is written starting from current position in file

■ upon failure, -1 is returned

■ upon success, number of bytes written is returned, which may be less
than total number of bytes requested to be transferred (for similar
reasons as in case of write system call)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 57

[Example] Vectored I/O
vectored_io_1_a.cpp

1 #include <array>
2 #include <cstring>
3 #include <iostream>
4 #include <string>
5 #include <sys/types.h>
6 #include <sys/uio.h>
7 #include <unistd.h>
8

9 int main() {
10 std::string hello("Hello!");
11 char bonjour[] = "Bonjour!";
12 char newline = ’\n’;
13 std::array<iovec, 4> iov{{
14 {hello.data(), hello.size()}, {&newline, 1},
15 {bonjour, std::strlen(bonjour)}, {&newline, 1},
16 }};
17 /* note: successfull write operation may not necessarily
18 write all of data */
19 if (writev(1, &iov[0], iov.size()) < 0)
20 {std::cerr << "write failed\n";}
21 }

■ program writes "Hello!\nBonjour!\n" to standard output using single
write operation, where data to be written split across multiple buffers

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 58

[Example] Vectored I/O: Summary

■ code in previous example did not correctly handle case of writev being
interrupted (when output partially written)

■ on next slide, we consider code that correctly handles this case

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 59

[Example] Vectored I/O: Code

vectored_io_1_b.cpp

1 #include <array>
2 #include <cstring>
3 #include <iostream>
4 #include <string>
5 #include <sys/types.h>
6 #include <sys/uio.h>
7 #include <unistd.h>
8
9 ssize_t writev_all(int fd, iovec* iov, size_t count) {

10 ssize_t written = 0;
11 for (;;) {
12 ssize_t n;
13 while ((n = writev(fd, iov, count)) < 0 && errno == EINTR) {}
14 if (n < 0) {return -1;}
15 else if (!n) {return written;}
16 written += n;
17 for (; count > 0 && n >= iov->iov_len; ++iov, --count) {n -= iov->iov_len;}
18 if (!count) {return written;}
19 iov->iov_base = static_cast<char*>(iov->iov_base) + n;
20 iov->iov_len -= n;
21 }
22 }
23
24 int main() {
25 std::string hello("Hello!");
26 char bonjour[] = "Bonjour!";
27 char newline = ’\n’;
28 std::array<iovec, 4> iov{{
29 {hello.data(), hello.size()}, {&newline, 1},
30 {bonjour, std::strlen(bonjour)}, {&newline, 1},
31 }};
32 if (writev_all(1, &iov[0], iov.size()) < 0) {std::cerr << "write failed\n";}
33 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 60

Duplicating File Descriptors

■ can duplicate file descriptor with another file descriptor
■ dup duplicates file descriptor using lowest-numbered unused file

descriptor as new descriptor; declaration:
int dup(int oldfd);

■ dup2 duplicates file descriptor at specified file descriptor, closing it first if
open; declaration:

int dup2(int oldfd, int newfd);

■ dup3 provides functionality that is essentially superset of dup2;
declaration:

int dup3(int oldfd, int newfd, int flags);

■ dup3 similar as dup2, except flags can be used to specify close-on-exec
flag (and oldfd and newfd cannot be equal)

■ duplicating file descriptor typically used after fork but before exec in order
to handle I/O redirection

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 61

[Example] I/O Redirection: Summary

■ program runs another specified program as child process

■ child process has standard input and standard output redirected from/to
specified files

■ program has following command-line arguments (in order):
1 pathname of file to associate with standard input of program to be run
2 pathname of file to associate with standard output of program to be run
3 pathname of program to be run as child process
4 zero or more additional arguments to be passed as command-line

arguments to program to be run

■ for example, to run command “/bin/ls -al /” with standard input read
from /dev/null and standard output written to /tmp/output, use
command:

io_redirection_1 /dev/null /tmp/output /bin/ls -al /

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 62

[Example] I/O Redirection: Code

io_redirection_1.cpp

1 #include <cassert>
2 #include <format>
3 #include <iostream>
4 #include <sys/types.h>
5 #include <sys/wait.h>
6 #include <fcntl.h>
7 #include <unistd.h>
8
9 int main(int argc, char** argv) {

10 if (argc < 4) {std::cerr << "invalid usage\n"; std::exit(1);}
11 int stdin_fd = open(argv[1], O_RDONLY);
12 if (stdin_fd < 0) {std::cerr << "cannot open input\n"; return 1;}
13 int stdout_fd = open(argv[2], O_CREAT | O_TRUNC | O_WRONLY, S_IRUSR | S_IWUSR);
14 if (stdin_fd < 0) {std::cerr << "cannot open output\n"; return 1;}
15 if (pid_t child_pid = fork(); child_pid > 0) {
16 int status;
17 if (wait(&status) < 0) {std::cerr << "wait failed\n";}
18 std::cout << std::format("child exit status {}\n",
19 (WIFEXITED(status) ? WEXITSTATUS(status) : -1));
20 } else if (child_pid == 0) {
21 close(0);
22 dup2(stdin_fd, 0);
23 close(1);
24 dup2(stdout_fd, 1);
25 if (execve(argv[3], &argv[3], environ) < 0)
26 {std::cerr << "exec failed\n"; std::exit(1);}
27 } else {std::cerr << "fork failed\n"; std::exit(1);}
28 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 63

Pipes

■ pipe is form of inter-process communication mechanism

■ can think of it like pipe in plumbing sense

■ process at each end of pipe

■ data flows in one direction through pipe from process at sending end to
process at receiving end

■ named pipe is associated with FIFO file in file system

■ unnamed pipe is not associated with any file in file system (i.e., is
essentially FIFO buffer internal to operating system)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 64

Creating Pipes

■ unnamed pipe can be created with pipe system call

■ pipe system call returns pair of file descriptors that refer to sending and
receiving ends of pipe

■ declaration:
int pipe(int pipefd[2]);

■ pipefd: pointer to array of two file descriptors

■ pipefd[0] is receiving end of pipe (i.e., end from which data read)

■ pipefd[1] is sending end of pipe (i.e., end to which data written)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 65

[Example] I/O Redirection With Pipeline: Summary

■ program takes two command line arguments

■ each of first and second argument is pathname of program to be run

■ use fork and exec to create processes that run specified two programs

■ standard output of first program redirected to standard input of second
program

■ pipe system call to used generate unnamed pipe

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 66

[Example] I/O Redirection With Pipeline: Code (1)

pipe_1.cpp

1 #include <iostream>
2 #include <fcntl.h>
3 #include <sys/types.h>
4 #include <sys/wait.h>
5 #include <unistd.h>
6
7 template <class... Ts> void panic(const Ts&... args)
8 {(std::cerr << ... << args) << ’\n’; std::exit(255);}

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 67

[Example] I/O Redirection With Pipeline: Code (2)

pipe_1.cpp (Continued)
10 int main(int argc, char** argv) {
11 if (argc != 3) {panic("invalid usage");}
12 pid_t pids[2];
13 int pipe_fds[2];
14 if (pipe(pipe_fds)) {panic("pipe failed");}
15 pids[0] = fork();
16 if (pids[0] == 0) {
17 if (close(pipe_fds[0])) {panic("close failed");}
18 if (pipe_fds[1] != 1) {
19 if (dup2(pipe_fds[1], 1) != 1) {panic("dup2 failed");}
20 if (close(pipe_fds[1])) {panic("close failed");}
21 }
22 char *args[] = {argv[1], nullptr};
23 if (execve(argv[1], args, environ)) {panic("exec failed");}
24 } else if (pids[0] < 0) {panic("fork failed");}
25 if (close(pipe_fds[1])) {panic("close failed");}
26 pids[1] = fork();
27 if (pids[1] == 0) {
28 if (pipe_fds[0] != 0) {
29 if (dup2(pipe_fds[0], 0) != 0) {panic("dup2 failed");}
30 if (close(pipe_fds[0])) {panic("close failed");}
31 }
32 char *args[] = {argv[2], nullptr};
33 if (execve(argv[2], args, environ)) {panic("exec failed");}
34 return 1;
35 } else if (pids[1] < 0) {panic("fork failed");}
36 if (close(pipe_fds[0])) {panic("closed failed");}
37 int status;
38 if (waitpid(pids[0], &status, 0) < 0) {std::cerr << "wait failed\n";}
39 if (waitpid(pids[1], &status, 0) < 0) {std::cerr << "wait failed\n";}
40 return WIFEXITED(status) ? WEXITSTATUS(status) : -1;
41 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 68

Section 2.3

Sockets

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 69

Local and Network Communication

■ any communication requires two endpoints

■ messages or data that originates at one endpoint is transferred to other
endpoint

■ endpoints may be on same machine (i.e., local communication) or on
different machines (i.e., network communication)

■ protocol provides mechanism for communicating
■ protocol has several key defining characteristics:

2 is it connection-oriented or connectionless?
2 does it provide reliable data transmission (i.e., can data be lost)?
2 does it provide sequencing (i.e., data always arrives in order sent)?
2 is it datagram-based or stream-based (i.e., is data partitioned into

messages or just single stream of bytes)?

■ connection-oriented analogous to telephone call; only need to specify
recipient when first establishing connection

■ connectionless analogous to letter in postal mail; must specify recipient
each time data to be transferred

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 70

Sockets

■ socket is end point for communication

■ communication may be either local (i.e., endpoints on same machine) or
across network (i.e., endpoints on different machines)

■ underlying communication mechanism used by socket depends on its:
2 protocol domain (i.e., family of protocols used by socket)
2 type of communication functionality (e.g., connection-oriented versus

connectionless and reliable versus unreliable)
2 specific protocol in domain, if more than one supported particular type of

functionality

■ Unix-domain sockets can only be used for local communication and are
similar to message queues or pipes

■ IP-domain sockets can be used for network or local communication and
employ TCP and IP

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 71

Some Address Families

Family Description
AF_UNIX local communication
AF_INET IPv4 Internet protocols (e.g., TCP, IP)
AF_INET6 IPv6 Internet protocols (e.g., TCP, IP)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 72

Socket Types

Type Description
SOCK_STREAM provides sequenced, reliable, two-way

connection-based byte streams
SOCK_DGRAM supports datagrams (i.e., connectionless, unreli-

able messages of fixed maximum length)
SOCK_SEQPACKET provides sequenced, reliable, two-way

connection-based data transmission path for
datagrams of fixed maximum length

SOCK_RAW provides raw network protocol access
SOCK_RDM provides reliable datagram layer that does not

guarantee ordering

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 73

Creating a Socket

■ socket can be created with socket system call, which has declaration
int socket(int domain, int type, int protocol);

■ returns file descriptor for created socket

■ socket uses protocol from protocol family domain that has functionality
specified by type

■ in cases where protocol family has more than one protocol that supports
functionality specified by type, protocol used to identify which one of
these protocols to use

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 74

Socket Pair

■ can create pair of connected sockets
■ socket pair similar to pipe with following main differences:

2 socket pair constitutes bidirectional communication channel, whereas pipe
is unidirectional

2 sockets can be stream or datagram oriented, whereas pipes always stream
oriented

2 can send credentials and rights through socket pair using ancillary
messages like SCM_RIGHTS and SCM_CREDENTIALS, which is not possible
with pipes

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 75

Creating a Socket Pair

■ socket pair created with socketpair system call
■ declaration:

int socketpair(int domain, int type, int protocol, int
↪→ sv[2]);

■ domain domain of connection (e.g., AF_UNIX, AF_INET, and AF_INET6)

■ type type of connection (e.g., SOCK_STREAM and SOCK_DGRAM)

■ protocol protocol for connection for when more than one protocol is
supported

■ sv: pointer to array of two file descriptors

■ herein, only consider case where domain is AF_UNIX and type is
SOCK_STREAM

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 76

Message Header for sendmsg/recvmsg

■ msghdr data structure:
struct msghdr {

void *msg_name; // optional address
socklen_t msg_namelen; // size of address
struct iovec *msg_iov; // scatter/gather array
size_t msg_iovlen; // # elements in msg_iov
void *msg_control; // ancillary data, see below
size_t msg_controllen; // ancillary data buffer len
int msg_flags; // flags on received message

};

■ message has data part and control part

■ msg_iov and msg_iovlen specify data part using vectored I/O buffer

■ msg_control and msg_controllen specify control part of message

■ each of data part and control part can have zero length (if not used)

■ advisable to use length of at least one (otherwise, may be difficult to
distinguish message with no data from end of file)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 77

Sending Message Over Socket

■ can send message over socket using sendmsg system call

■ declaration:

ssize_t sendmsg(int sockfd, const msghdr *msg, int flags);

■ sockfd: file descriptor of socket to which to send message

■ msg: pointer to msghdr data structure for message to send

■ flags: flags that control behavior of send operation

■ upon success, number of bytes sent is returned

■ upon failure, -1 is returned

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 78

Receiving Message Over Socket

■ can receive message over socket using recvmsg system call

■ declaration:

ssize_t recvmsg(int sockfd, msghdr *msg, int flags);

■ sockfd: file descriptor of socket from which to receive message

■ msg: pointer to msghdr data structure for message to be received

■ flags: flags that control behavior of receive operation

■ upon success, number of bytes received is returned

■ upon failure, -1 is returned

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 79

Passing File Descriptors Via Sockets

■ sometimes need arises to pass descriptors between processes with
arbitrary relationships

■ can pass file descriptors between processes using Unix-domain sockets
and sendmsg and recvmsg system calls

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 80

[Example] Passing File Descriptors Via Sockets: Summary

■ program creates unnamed Unix-domain socket pair that is used to receive
file descriptor from child process created by forking

■ child process opens file /etc/passwd and then passes file descriptor to
parent process through socket connection

■ parent then uses file descriptor to output contents of associated file to
standard output

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 81

[Example] Passing File Descriptors Via Sockets: Code (1)

passing_descriptors_1.cpp

1 #include <iostream>
2 #include <stdexcept>
3 #include <unistd.h>
4 #include <fcntl.h>
5 #include <sys/types.h>
6 #include <sys/socket.h>
7 #include <string.h>
8
9 int copy(int source_fd, int destination_fd) {

10 char buf[512];
11 for (;;) {
12 int n = read(source_fd, buf, sizeof(buf));
13 if (n < 0) {return -1;}
14 else if (n == 0) {break;}
15 if (write(destination_fd, buf, n) != n) {return -1;}
16 }
17 return 0;
18 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 82

[Example] Passing File Descriptors Via Sockets: Code (2)

passing_descriptors_1.cpp (Continued)
20 int send_fd(int sd, int fd) {
21 struct msghdr msg = {0};
22 char cbuf[CMSG_SPACE(sizeof(int))]{};
23 char dbuf[1]{};
24 struct iovec iov;
25 iov.iov_base = dbuf;
26 iov.iov_len = sizeof(dbuf);
27 msg.msg_iov = &iov;
28 msg.msg_iovlen = 1;
29 msg.msg_control = cbuf;
30 msg.msg_controllen = sizeof(cbuf);
31 msg.msg_name = nullptr;
32 msg.msg_namelen = 0;
33 struct cmsghdr* cmsg = CMSG_FIRSTHDR(&msg);
34 cmsg->cmsg_level = SOL_SOCKET;
35 cmsg->cmsg_type = SCM_RIGHTS;
36 cmsg->cmsg_len = CMSG_LEN(sizeof(int));
37 memcpy(CMSG_DATA(cmsg), &fd, sizeof(int));
38 return (sendmsg(sd, &msg, 0) < 0) ? -1 : 0;
39 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 83

[Example] Passing File Descriptors Via Sockets: Code (3)

passing_descriptors_1.cpp (Continued)
41 int receive_fd(int sd) {
42 struct msghdr msg = {0};
43 char dbuf[1];
44 struct iovec iov;
45 iov.iov_base = dbuf;
46 iov.iov_len = sizeof(dbuf);
47 msg.msg_iov = &iov;
48 msg.msg_iovlen = 1;
49 char cbuf[256];
50 msg.msg_control = cbuf;
51 msg.msg_controllen = sizeof(cbuf);
52 msg.msg_name = nullptr;
53 msg.msg_namelen = 0;
54 ssize_t n = recvmsg(sd, &msg, 0);
55 if (n < 0) {return -1;}
56 struct cmsghdr* cmptr = CMSG_FIRSTHDR(&msg);
57 if (!cmptr) {return -2;}
58 if (cmptr->cmsg_len != CMSG_LEN(sizeof(int))) {return -10;}
59 if (cmptr->cmsg_level != SOL_SOCKET) {return -3;}
60 if (cmptr->cmsg_type != SCM_RIGHTS) {return -4;}
61 int fd;
62 memcpy(&fd, CMSG_DATA(cmptr), sizeof(int));
63 return fd;
64 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 84

[Example] Passing File Descriptors Via Sockets: Code (4)

passing_descriptors_1.cpp (Continued)
66 void child(int sd) {
67 int fd = open("/etc/passwd", O_RDONLY);
68 if (fd < 0) {throw std::runtime_error("[child] open failed");}
69 if (send_fd(sd, fd))
70 {throw std::runtime_error("[child] sending FD failed");}
71 }
72
73 void parent(int sd) {
74 int fd = receive_fd(sd);
75 if (fd < 0) {throw std::runtime_error("recv_fd failed");}
76 if (copy(fd, 1)) {throw std::runtime_error("copy failed");}
77 }
78
79 int main(int argc, char** argv) try {
80 int sock_fds[2];
81 if (socketpair(AF_UNIX, SOCK_STREAM, 0, sock_fds)) {
82 throw std::runtime_error("socketpair failed");}
83 pid_t pid = fork();
84 if (pid > 0) {
85 close(sock_fds[1]);
86 parent(sock_fds[0]);
87 } else if (pid == 0) {
88 close(sock_fds[0]);
89 child(sock_fds[1]);
90 } else {throw std::runtime_error("fork failed");}
91 } catch (std::exception& e) {std::cerr << e.what() << ’\n’;}

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 85

Binding a Socket to an Address

■ socket can be bound to address with bind system call, which has
declaration

int bind(int sockfd, const struct sockaddr *addr,
↪→ socklen_t addrlen);

■ sockaddr type is struct that starts with sa_family_t specifying address
family

■ number of remaining bytes and their contents depend on address family

■ bind operation used to associate address with socket communication
endpoint

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 86

Listening for Incoming Connections on a Socket

■ can cause incoming connections for address associated with socket to be
queued for later acceptance with listen system call, which has
declaration

int listen(int sockfd, int backlog);

■ can only be used for connection-oriented protocols (since there is no
notion of connection in connectionless protocol)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 87

Accepting an Incoming Connection on Socket

■ can accept incoming connection with accept system call, which has
declaration

int accept(int sockfd, struct sockaddr *addr, socklen_t
↪→ *addrlen);

■ can only be used for connection-oriented protocols (since there is no
notion of connection in connectionless protocol)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 88

Unix-Domain Sockets
■ Unix-domain sockets provide means to communicate local to machine
■ used to efficiently communicate between processes on same machine
■ Unix-domain sockets have address family AF_UNIX (also AF_LOCAL)
■ Unix-domain sockets can be unnamed, bound to pathname in file system,

or bound to abstract name (Linux only)
■ three socket types:

1 stream sockets (SOCK_STREAM), which are connection oriented and do not
preserve message boundaries

2 datagram sockets (SOCK_DGRAM), which are connectionless and preserve
message boundaries

3 sequenced-packet sockets (SOCK_SEQPACKET), which are connection
oriented and preserve message boundaries

■ all socket types provide reliable in-order delivery (including datagram)
■ Unix-domain sockets support passing of file descriptors and process

credentials (and SELinux security contexts) to other processes using
ancillary data

■ SOCK_SEQPACKET preserves message boundaries when used with
sendmsg/recvmsg

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 89

[Example] Datagram Server/Client: Summary

■ two programs: server and client

■ server loops accepting requests from client until special shutdown
message received

■ server creates socket and then binds it to agreed-upon address in order to
receive messages sent to this address

■ server then loops receiving messages sent to agreed-upon address

■ bind operation creates socket-type file in filesystem

■ server: socket −→ bind −→ recvfrom

■ client creates socket and then uses it to send messages to above
agreed-upon address

■ client: socket −→ sendto

■ since Unix-domain sockets always provide reliable in-order transmission
of data, do not have to worry about complications caused by
loss/reordering of data

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 90

[Example] Datagram Server/Client: Server Code
dgram_server.cpp

1 #include <cstring>
2 #include <format>
3 #include <iostream>
4 #include <errno.h>
5 #include <sys/socket.h>
6 #include <sys/types.h>
7 #include <sys/un.h>
8 #include <unistd.h>
9

10 int main(int argc, char** argv) {
11 std::string pathname("/tmp/socket_demo");
12 if (argc >= 2) {pathname = argv[1];}
13 int fd = socket(AF_UNIX, SOCK_DGRAM, 0);
14 struct sockaddr_un addr;
15 memset(&addr, 0, sizeof(struct sockaddr_un));
16 addr.sun_family = AF_UNIX;
17 strncpy(addr.sun_path, pathname.c_str(), sizeof(addr.sun_path) - 1);
18 if (bind(fd, (struct sockaddr *) &addr, sizeof(struct sockaddr_un)) == -1)
19 {std::cerr << "bind failed\n"; return 1;}
20 constexpr int bufsize = 256;
21 char buf[bufsize];
22 for (;;) {
23 int ret;
24 socklen_t addr_len = sizeof(sockaddr_un);
25 if ((ret = recvfrom(fd, buf, bufsize, 0, (struct sockaddr*) &addr,
26 &addr_len)) < 0) {std::cerr << "recvfrom failed\n"; return 1;}
27 buf[ret] = ’\0’;
28 if (ret == 0) {break;}
29 if (!strcmp(buf, "end")) {break;}
30 std::cout << std::format("{} {} {}\n", addr_len, ret, buf);
31 }
32 if (unlink(pathname.c_str()) == -1 && errno != ENOENT)
33 {std::cerr << "unlink failed\n"; return 1;}
34 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 91

[Example] Datagram Server/Client: Client Code

dgram_client.cpp

1 #include <cstdlib>
2 #include <cstring>
3 #include <iostream>
4 #include <string>
5 #include <errno.h>
6 #include <sys/socket.h>
7 #include <sys/types.h>
8 #include <sys/un.h>
9 #include <unistd.h>

10
11 int main(int argc, char** argv) {
12 std::string pathname("/tmp/socket_demo");
13 if (argc >= 2) {pathname = argv[1];}
14 int fd = socket(AF_UNIX, SOCK_DGRAM, 0);
15 if (fd < 0) {std::cerr << "socket failed\n"; return 1;}
16 std::string message;
17 while (std::cin >> message) {
18 struct sockaddr_un addr;
19 memset(&addr, 0, sizeof(struct sockaddr_un));
20 addr.sun_family = AF_UNIX;
21 strncpy(addr.sun_path, pathname.c_str(), sizeof(addr.sun_path) - 1);
22 int ret;
23 if ((ret = sendto(fd, message.c_str(), message.size(), 0,
24 (struct sockaddr*) &addr, sizeof(struct sockaddr_un))) < 0)
25 {std::cerr << "sendto failed\n"; return 1;}
26 }
27 close(fd);
28 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 92

[Example] Stream Server/Client: Summary

■ two programs: server and client

■ server loops accepting requests from client until zero-length message
received or error occurs

■ client loops reading word from standard input and then sending word to
server

■ server creates socket, binds it to agreed-upon address, asks that
incoming connections be queued, and then loops accepting connections
from queue

■ bind operation creates socket-type file in filesystem

■ server: socket −→ bind −→ listen −→ accept −→ recv

■ client connects to server using above agreed-upon address

■ client creates socket, connects socket to agreed-upon address, and sends
message over established connection

■ client: socket −→ connect −→ send

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 93

[Example] Stream Server/Client: Server Code

stream_server.cpp

1 #include <cstring>
2 #include <format>
3 #include <iostream>
4 #include <errno.h>
5 #include <sys/socket.h>
6 #include <sys/types.h>
7 #include <sys/un.h>
8 #include <unistd.h>
9

10 int main(int argc, char** argv) {
11 std::string pathname("/tmp/socket_demo");
12 if (argc >= 2) {pathname = argv[1];}
13 int sfd = socket(AF_UNIX, SOCK_SEQPACKET, 0);
14 struct sockaddr_un addr;
15 memset(&addr, 0, sizeof(struct sockaddr_un));
16 addr.sun_family = AF_UNIX;
17 strncpy(addr.sun_path, pathname.c_str(), sizeof(addr.sun_path) - 1);
18 if (bind(sfd, (struct sockaddr *) &addr, sizeof(struct sockaddr_un)) == -1)
19 {std::cerr << "bind failed\n"; return 1;}
20 constexpr int bufsize = 256;
21 char buf[bufsize];
22 if (listen(sfd, 1)) {std::cerr << "listen failed\n"; return 1;}
23 socklen_t addr_len = sizeof(sockaddr_un);
24 int fd = accept(sfd, (struct sockaddr*) &addr, &addr_len);
25 for (;;) {
26 int ret;
27 if ((ret = recv(fd, buf, bufsize, 0)) < 0)
28 {std::cerr << "recv failed\n"; return 1;}
29 buf[ret] = ’\0’;
30 if (ret == 0) {break;}
31 std::cout << std::format("{} {} {}\n", addr_len, ret, buf);
32 }
33 close(fd);
34 if (unlink(pathname.c_str()) == -1 && errno != ENOENT)
35 {std::cerr << "unlink failed\n"; return 1;}
36 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 94

[Example] Stream Server/Client: Client Code

stream_client.cpp

1 #include <iostream>
2 #include <string>
3 #include <cstring>
4 #include <errno.h>
5 #include <sys/socket.h>
6 #include <sys/types.h>
7 #include <sys/un.h>
8 #include <unistd.h>
9

10 int main(int argc, char** argv) {
11 std::string pathname("/tmp/socket_demo");
12 if (argc >= 2) {pathname = argv[1];}
13 int fd = socket(AF_UNIX, SOCK_SEQPACKET, 0);
14 if (fd < 0) {std::cerr << "socket failed\n"; return 1;}
15 struct sockaddr_un addr;
16 memset(&addr, 0, sizeof(struct sockaddr_un));
17 addr.sun_family = AF_UNIX;
18 strncpy(addr.sun_path, pathname.c_str(), sizeof(addr.sun_path) - 1);
19 if (connect(fd, (struct sockaddr*) &addr, sizeof(struct sockaddr_un)) < 0)
20 {std::cerr << "connect failed\n"; return 1;}
21 std::string message;
22 while (std::cin >> message) {
23 int ret;
24 if ((ret = send(fd, message.c_str(), message.size(), 0)) < 0 ||
25 ret != message.size())
26 {std::cerr << "send failed\n"; return 1;}
27 }
28 close(fd);
29 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 95

Section 2.4

Signals

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 96

Signals

■ signals are very limited form of inter-process communication (IPC)

■ signal is asynchronous notification sent to process or specific thread to
notify that event occurred

■ signals similar to interrupts, main difference being that interrupts mediated
by processor and handled by kernel, whereas signals mediated by kernel
and handled by processes

■ process/thread can register signal handler (i.e., function that handles
signals)

■ can register signal handler for each signal

■ if signal received, but no handler, process terminated

■ SIGKILL signal cannot be caught and results in process being terminated

■ system calls that can potentially block calling thread are typically
interruptible by signal

■ system call that fails as result of being interrupted indicates EINTR as
reason for failure

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 97

Some Common Signals

Signal Description

SIGINT interrupt (e.g., ctrl-c)
SIGQUIT quit (e.g., ctrl-backslash)
SIGABORT abort (e.g., std::abort
SIGKILL kill (cannot be caught)
SIGTERM terminate
SIGSEGV segmentation violation (e.g., invalid address)
SIGBUS bus error (e.g., incorrectly aligned memory access)
SIGFPE floating-point exception
SIGSTOP stop (i.e., temporarily suspend execution)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 98

Sending Signal to Process

■ can send signal to another process via kill system call
■ declaration:

int kill(pid_t pid, int sig);

■ sends signal sig to one or more processes

■ if pid greater than 0, signal sent to process with PID pid

■ if pid is -1, signal sent to every process for which calling process has
permission to send signals (except process with PID 1)

■ if pid is less than -1, signal sent to all processes in process group with
PGID -pid

■ can only send signals to processes associated with same user; otherwise
special privileges required

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 99

[Example] Forcing Termination of Child Process: Summary

■ program creates new child process via fork then sleeps for several
seconds

■ child process produces output for full duration of execution

■ when parent process wakes from sleep, terminates child process with
SIGKILL signal

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 100

[Example] Forcing Termination of Child Process: Code
kill_1.cpp

1 #include <cassert>
2 #include <format>
3 #include <iostream>
4 #include <sys/types.h>
5 #include <sys/wait.h>
6 #include <signal.h>
7 #include <unistd.h>
8
9 int main() {

10 pid_t parent_pid = getpid();
11 if (pid_t child_pid = fork(); child_pid > 0) {
12 // parent
13 sleep(5);
14 kill(child_pid, SIGKILL);
15 int status;
16 if (waitpid(child_pid, &status, 0) > 0) {
17 if (WIFSIGNALED(status)) {
18 std::cout << std::format("child terminated by signal {}\n",
19 WTERMSIG(status));
20 }
21 }
22 } else if (child_pid == 0) {
23 // child
24 while (true) {std::cout << ’.’ << std::flush; sleep(1);}
25 } else {
26 std::cout << "fork failed\n";
27 }
28 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 101

Signal Handling

■ can register handler for signal with signal function

■ declaration:

typedef void (*sighandler_t)(int);
sighandler_t signal(int signum, sighandler_t handler);

■ registers function handler as handler for signal signum

■ upon success, returns previous signal handler value

■ upon error, returns SIG_ERR

■ due to potential for race conditions (e.g., data races), signal handler very
limited in how it can access global state

■ signal handler can safely access (lock-free) atomic global variable

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 102

Suspending Thread for Period of Time

■ can temporarily suspend execution of thread for specified period of time
using nanosleep system call

■ declaration:
int nanosleep(const timespec *req, timespec *rem);

■ suspends execution of calling thread until at least time specified by *req
has elapsed

■ upon success, returns 0

■ upon failure, returns -1

■ if call interrupted by signal handler, returns -1 and sets errno to EINTR;
also, if rem is nonnull, writes time remaining into *rem

■ time duration specified by timespec type:

struct timespec {
time_t tv_sec; // seconds
long tv_nsec; // nanoseconds

};

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 103

[Example] Signal Handling: Summary

■ program registers signal handler for SIGINT signal

■ signal handler increments global (atomic) counter

■ program enters infinite loop

■ repeatedly sleeps for fixed interval using nanosleep

■ upon awaking from sleep, prints value of counter and then resets it

■ if sleep interrupted due to signal, sleep operation restarted with sleep
duration adjusted to compensate for time already spent sleeping

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 104

[Example] Signal Handling: Code
signal_1.cpp

1 #include <atomic>
2 #include <format>
3 #include <iostream>
4 #include <signal.h>
5 #include <time.h>
6 #include <unistd.h>
7
8 std::atomic<unsigned long> counter;
9

10 void handler(int sig_no) {++counter;}
11
12 int sleep_with_retry(int seconds) {
13 timespec t = {.tv_sec = seconds, .tv_nsec = 0};
14 int ret;
15 while ((ret = nanosleep(&t, &t)) < 0 && errno == EINTR) {}
16 if (ret < 0) {return -1;}
17 return 0;
18 }
19
20 int main() {
21 if (signal(SIGINT, handler) == SIG_ERR)
22 {std::cerr << "signal failed\n"; return 1;}
23 for (unsigned long i = 0;; ++i) {
24 counter = 0;
25 if (int ret = sleep_with_retry(5); ret < 0) {return 1;}
26 std::cout << std::format("\nsignal count: {}",
27 static_cast<unsigned long>(counter));
28 }
29 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 105

Remarks on Signal Handlers

■ for SIGTRAP, saved instruction pointer refers to instruction following one
that generated exception

■ for SIGSEGV, SIGBUS, SIGILL, saved instruction pointer refers to
instruction that generated exception

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 106

[Example] Breakpoint: Summary

■ example of using signal handler for SIGTRAP signals in order to handle
breakpoint instructions

■ registers signal handler for SIGTRAP signal

■ deliberately places breakpoint instructions in code

■ then forces breakpoint instructions to be executed (which result in
SIGTRAP signals being raised)

■ signal handler increments global counters to track number of signals
received and how many were due to encountering breakpoint instructions

■ information about counters are printed at various points during code
execution

■ assumes x86-64 architecture

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 107

[Example] Breakpoint: Code (1)

breakpoint_lib.hpp

1 #include <sys/ucontext.h>
2
3 extern "C" void breakpoint(int);
4
5 inline int breakpoint_type(void* ip) {
6 auto p = static_cast<unsigned char*>(ip);
7 if (p[-1] == 0xcc) {return 0;}
8 else if (p[-1] == 0x03 && p[-2] == 0xcd) {return 1;}
9 else {return -1;}

10 }
11
12 inline void* get_ip(void* context) {
13 ucontext_t* ucontext = static_cast<ucontext_t*>(context);
14 return reinterpret_cast<void*>(ucontext->uc_mcontext.gregs[REG_RIP]);
15 }

breakpoint_x86.s

1 .text
2 .globl breakpoint
3 # void breakpoint(int type)
4 breakpoint:
5 test %edi, %edi
6 jnz .L0
7 int3 # 1-byte breakpoint opcode (0xcc)
8 jmp .L1
9 .L0: # 2-byte breakpoint opcode

10 .byte 0xcd, 0x03
11 .L1:
12 ret

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 108

[Example] Breakpoint: Code (2)

breakpoint_main.cpp

1 #include <atomic>
2 #include <format>
3 #include <iostream>
4 #include <signal.h>
5 #include <unistd.h>
6 #include "breakpoint_lib.hpp"
7
8 std::atomic<int> sigtrap_count(0);
9 std::atomic<int> break_count(0);

10
11 void sigtrap_handler(int sig_no, siginfo_t* siginfo, void* context) {
12 if (breakpoint_type(get_ip(context)) >= 0) {++break_count;}
13 ++sigtrap_count;
14 }
15
16 void print_stats(const char* s) {
17 std::cout << std::format("{}: {}/{}\n", s, static_cast<int>(break_count),
18 static_cast<int>(sigtrap_count));
19 }
20
21 int main(int argc, char** argv) {
22 struct sigaction sa;
23 sa.sa_sigaction = &sigtrap_handler;
24 sigfillset(&sa.sa_mask);
25 sa.sa_flags = SA_SIGINFO;
26 if (sigaction(SIGTRAP, &sa, 0)) {abort();}
27 print_stats("initial values");
28 raise(SIGTRAP); print_stats("after sending SIGTRAP");
29 breakpoint(0); print_stats("after 1-byte breakpoint");
30 breakpoint(1); print_stats("after 2-byte breakpoint");
31 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 109

[Example] SIGILL: Summary

■ example of using signal handler for SIGILL signals in order to handle
illegal instructions

■ registers signal handler for SIGILL signal

■ deliberately places illegal instructions (using several distinct opcodes) in
code

■ then forces illegal instructions to be executed (which result in SIGILL
signals being raised)

■ signal handler increments counter and adjusts instruction pointer to skip
over remainder of illegal opcode

■ value of counter printed at several points during program execution

■ assumes x86-64 architecture

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 110

[Example] SIGILL: Code (1)

sigill_lib.hpp

1 #include <sys/ucontext.h>
2
3 extern "C" void illegal_instruction(int);
4
5 inline void* get_ip(void* context) {
6 ucontext_t* ucontext = static_cast<ucontext_t*>(context);
7 return reinterpret_cast<void*>(ucontext->uc_mcontext.gregs[REG_RIP]);
8 }
9

10 inline void set_ip(void* context, void* ip) {
11 ucontext_t* ucontext = static_cast<ucontext_t*>(context);
12 ucontext->uc_mcontext.gregs[REG_RIP] = reinterpret_cast<unsigned long>(ip);
13 }
14
15 inline int get_ins_length(void* ip) {
16 auto p = static_cast<unsigned char*>(ip);
17 if (p[0] == 0xf && p[1] == 0xb) {return 2;}
18 else if (p[0] == 0x48 && p[1] == 0x0f) {
19 if ((p[2] == 0xff && p[3] == 0xc0) || (p[2] == 0xb9 && p[3] == 0xc0))
20 {return 4;}
21 }
22 return -1;
23 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 111

[Example] SIGILL: Code (2)

sigill_x86.s

1 .text
2 .globl illegal_instruction
3 # void illegal_instruction(int type)
4 illegal_instruction:
5 test %eax, %eax
6 jnz .L1
7 ud2 # illegal instruction (2-byte opcode: 0x0f, 0x0b)
8 jmp .L_done
9 .L1:

10 cmp $1, %eax
11 jnz .L2
12 ud0 %rax, %rax # illegal instruction (4-byte opcode: 0x48, 0x0f, 0xff, 0xc0)
13 jmp .L_done
14 .L2:
15 cmp $2, %eax
16 jnz .L_done
17 ud1 %rax, %rax # illegal instruction (4-byte opcode: 0x48, 0x0f, 0xb9, 0xc0)
18 .L_done:
19 ret

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 112

[Example] SIGILL: Code (3)

sigill_main.cpp

1 #include <atomic>
2 #include <format>
3 #include <cassert>
4 #include <iostream>
5 #include <signal.h>
6 #include <sys/ucontext.h>
7 #include <unistd.h>
8 #include "sigill_lib.hpp"
9

10 std::atomic<unsigned int> sigill_count(0);
11
12 void sigill_handler(int sig_no, siginfo_t* siginfo, void* context) {
13 void* ip = get_ip(context);
14 int length = get_ins_length(ip);
15 if (length < 0) {abort();}
16 set_ip(context, static_cast<unsigned char*>(ip) + length);
17 ++sigill_count;
18 }
19
20 int main() {
21 struct sigaction sa;
22 sa.sa_sigaction = &sigill_handler;
23 sigfillset(&sa.sa_mask);
24 sa.sa_flags = SA_SIGINFO;
25 if (sigaction(SIGILL, &sa, 0)) {abort();}
26 for (int i = 0; i < 3; ++i) {
27 illegal_instruction(i);
28 std::cout << std::format("{}\n",
29 static_cast<unsigned int>(sigill_count));
30 }
31 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 113

[Example] SIGSEGV: Summary

■ example of using signal handler for SIGSEGV signals in order to safely
access memory locations that may be invalid

■ registers signal handler for SIGSEGV signal

■ safe memory access function works in conjunction with signal handler to
allow program to check if access to particular address is valid

■ program walks sequentially through pages in memory trying to access
them safely

■ when address is found that can be successfully accessed, program
terminates

■ information about failed/successful accesses are output

■ assumes x86-64 architecture

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 114

[Example] SIGSEGV: Code (1)

sigsegv_lib.hpp

1 #include <sys/ucontext.h>
2
3 extern "C" int safe_read(void* addr);
4 extern char safe_read_ins;
5
6 inline bool is_safe_read(void* context, void* addr) {
7 ucontext_t* ucontext = static_cast<ucontext_t*>(context);
8 unsigned char* rip = reinterpret_cast<unsigned char*>(
9 ucontext->uc_mcontext.gregs[REG_RIP]);

10 return rip == reinterpret_cast<unsigned char*>(&safe_read_ins) &&
11 reinterpret_cast<void*>(ucontext->uc_mcontext.gregs[REG_RDI]) == addr;
12 }
13
14 inline void safe_read_fail(void* context) {
15 ucontext_t* ucontext = static_cast<ucontext_t*>(context);
16 unsigned char* rip = reinterpret_cast<unsigned char*>(
17 ucontext->uc_mcontext.gregs[REG_RIP]);
18 unsigned long rax = ucontext->uc_mcontext.gregs[REG_RAX];
19 rip += 2;
20 rax = 0xffffffffU;
21 ucontext->uc_mcontext.gregs[REG_RIP] = reinterpret_cast<unsigned long>(rip);
22 ucontext->uc_mcontext.gregs[REG_RAX] = rax;
23 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 115

[Example] SIGSEGV: Code (2)

sigsegv_x86.s

1 .text
2 .globl safe_read
3 .globl safe_read_ins
4 safe_read:
5 mov $0, %eax
6 safe_read_ins:
7 mov (%rdi), %al
8 .L0:
9 # upon failure, %eax set to -1

10 ret
11 .data
12 .globl safe_read_ins_len
13 safe_read_ins_len:
14 .long .L0 - safe_read_ins

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 116

[Example] SIGSEGV: Code (3)

sigsegv_main.cpp

1 #include <atomic>
2 #include <format>
3 #include <iostream>
4 #include <signal.h>
5 #include <unistd.h>
6 #include "sigsegv_lib.hpp"
7
8 std::atomic<unsigned int> sigsegv_count(0);
9

10 void sigsegv_handler(int sig_no, siginfo_t* siginfo, void* context) {
11 if (siginfo->si_code == SI_USER) {return;}
12 if (!is_safe_read(context, siginfo->si_addr)) {std::abort();}
13 safe_read_fail(context);
14 ++sigsegv_count;
15 }
16
17 int main() {
18 long page_size = sysconf(_SC_PAGE_SIZE);
19 struct sigaction sa;
20 sa.sa_sigaction = &sigsegv_handler;
21 sigfillset(&sa.sa_mask);
22 sa.sa_flags = SA_SIGINFO;
23 if (sigaction(SIGSEGV, &sa, 0)) {std::abort();}
24 uintptr_t addr = 0;
25 int c;
26 for (;; addr += page_size) {
27 if ((c = safe_read(reinterpret_cast<void*>(addr))) >= 0) {break;}
28 std::cout << std::format("read failed {:#x}\n", addr);
29 }
30 std::cout << std::format("read success {:#x} {}\n", addr, c);
31 std::cout << std::format("number of faults: {}\n",
32 static_cast<unsigned int>(sigsegv_count));
33 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 117

Section 2.5

Processes

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 118

Process Creation

■ new process created by fork system call
■ declaration:

int fork();

■ creates new process (called child process) by duplicating calling process
(called parent process)

■ parent and child processes run in separate memory spaces

■ at time of fork, parent and child memory spaces have identical content

■ returns twice, once in calling (parent) process, once in newly created
(child) process

■ upon success, PID of child returned in parent and 0 returned in child

■ upon failure, -1 returned in parent and no child process created

■ regardless of number of threads in parent process, child process will have
exactly one thread, corresponding to thread that called fork

■ great care must be exercised when fork invoked from multithreaded
process

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 119

[Example] Creating Child Process: Summary

■ code example illustrates use of fork system call

■ program creates child process via fork

■ parent prints its PID and PID of child

■ child prints its PID and PPID

■ child also indicates if its PPID matches PID of creator (i.e., process that
created child via fork) or corresponds to PID of reaper process

■ race condition: PPID printed by child will correspond to reaper process if
parent terminates prior to child querying PPID via getppid

■ typically, if program run many times, will observe some instances where
child reports its PPID as belonging to creator and others where reported
to belong to reaper

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 120

[Example] Creating Child Process: Code

fork_1.cpp

1 #include <cassert>
2 #include <format>
3 #include <iostream>
4 #include <sys/types.h>
5 #include <unistd.h>
6
7 int main() {
8 pid_t parent_pid = getpid();
9 std::cout << std::format("[parent] PID: {}\n", parent_pid);

10 if (pid_t child_pid = fork(); child_pid > 0) {
11 // parent
12 assert(getpid() == parent_pid);
13 std::cout << std::format("[parent] PID of child: {}\n", child_pid);
14 } else if (child_pid == 0) {
15 // child
16 assert(getpid() != parent_pid);
17 std::cout << std::format("[child] PID: {}\n", getpid());
18 // note: if parent already terminated prior to getppid
19 // call, this call will not return parent_pid
20 pid_t ppid = getppid();
21 std::cout << std::format("[child] PID of parent: {} ({})\n",
22 ppid, ppid == parent_pid ? "creator" : "reaper");
23 std::exit(0);
24 } else {
25 std::cout << "fork failed\n";
26 }
27 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 121

Executing a Program

■ can execute program given either pathname or file descriptor referring to
program file

■ execve system call used to execute program file referred to by pathname
■ declaration:

int execve(const char* filename, char* const argv[],
↪→ char* const envp[]);

■ upon success, function does not return; upon failure, returns -1

■ fexecve function (which invokes execveat system call) used to execute
program file referred to by file descriptor

■ declaration:
int fexecve(int fd, char* const argv[], char* const
↪→ envp[]);

■ similar to execve except program file specified by file descriptor instead of
pathname

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 122

[Example] Running Program

exec_1.cpp

1 #include <cassert>
2 #include <iostream>
3 #include <string>
4 #include <vector>
5 #include <unistd.h>
6

7 int main() {
8 std::vector<std::string> s{"ls", "-al", "/"};
9 char* args[4]{&s[0][0], &s[1][0], &s[2][0], nullptr};

10 char** env = environ; // environ is global variable
11 if (execve("/bin/ls", &args[0], env) < 0) {
12 std::cerr << "exec failed\n";
13 return 1;
14 }
15 assert(false); // unreachable
16 }

■ example illustrates use of execve system call

■ program runs executable /bin/ls with arguments "ls", "-al", and "/"

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 123

Waiting for Changes in State of Child Process

■ several system calls provided for waiting for change in state of child
process (e.g., child terminated or stopped) and optionally return status of
child

■ wait system call waits for any child process to terminate; declaration:
pid_t wait(int* status);

■ on success, returns PID of child and, if status not null, sets *status to
child status; on failure, returns -1

■ child status provides indication about how child terminated (e.g., child
terminated normally with particular exit status or terminated abnormally
due to particular signal)

■ waitpid system call can be used to wait for specific child or any child
process to change state; declaration:

pid_t waitpid(pid_t pid, int* status, int options);
■ waitid system call can be used to wait for any child in process group, or

specific child, or any child to change state; declaration:
pid_t waitid(idtype_t idtype, id_t id, siginfo_t* infop,
↪→ int options);

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 124

Inspecting Wait Status

■ several macros provided for extracting information from child status
returned by wait family of system calls

■ WIFEXITED(status) returns true if child terminated normally (i.e.,
through exit system call)

■ WEXITSTATUS(status) returns exit status of child (assuming that child
exited normally)

■ WIFSIGNALED(status) returns true if child terminated by signal
■ WTERMSIG(status) returns number of signal that caused child to

terminate
■ WCOREDUMP(status) returns true if child produced core dump; can only

be used if process terminated due to signal
■ WIFSTOPPED(status) returns true if child stopped by delivery of signal
■ WIFCONTINUED(status) returns true if child resumed due to delivery of

SIGCONT signal
■ WSTOPSIG(status) returns number of signal that caused child to stop;

only valid if WIFSTOPPED(status) is true
Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 125

[Example] Waiting for Child Process Termination: Summary

■ code example illustrates use of wait system call as well as some macros
used to query child status returned by wait family of system calls

■ parent process creates child process via fork

■ then, parent waits for child to terminate via wait

■ parent prints exit status of child after child terminates

■ child process simply sleeps for short period and then terminates with exit
status 0

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 126

[Example] Waiting for Child Process Termination: Code

fork_wait_1.cpp

1 #include <format>
2 #include <iostream>
3 #include <sys/types.h>
4 #include <sys/wait.h>
5 #include <unistd.h>
6
7 int main() {
8 if (pid_t child_pid = fork(); child_pid > 0) {
9 // parent

10 int status;
11 if (wait(&status) < 0) {std::cerr << "wait failed\n";}
12 // or equivalently, waitpid(-1, &status, 0)
13 if (WIFEXITED(status)) {
14 std::cout << std::format("[parent] child exit status: {}\n",
15 WEXITSTATUS(status));
16 } else {std::cout << "[parent] unexpected child state change\n";}
17 } else if (child_pid == 0) {
18 // child
19 std::cout << "[child] sleeping\n";
20 sleep(2);
21 std::cout << "[child] exiting\n";
22 std::exit(0);
23 } else {
24 std::cerr << "fork failed\n";
25 }
26 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 127

[Example] Waiting for Specific Child Termination: Summary

■ code example illustrates use of waitpid system call as well as some
macros used to query child status returned by wait family of system calls

■ parent process creates several child processes via fork

■ each child process sleeps for different amounts of time before exiting with
different exit statuses

■ parent loops waiting for specific child to terminate via waitpid

■ parent prints exit status for each child when it terminates

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 128

[Example] Waiting for Specific Child Termination: Code
fork_wait_2.cpp

1 #include <format>
2 #include <iostream>
3 #include <vector>
4 #include <sys/types.h>
5 #include <sys/wait.h>
6 #include <unistd.h>
7
8 int exitstatus(int wstatus)
9 {return (WIFEXITED(wstatus) ? WEXITSTATUS(wstatus) : -1);}

10
11 int main() {
12 constexpr int num_children = 8;
13 std::vector<pid_t> child_pids;
14 for (int i = 0; i < num_children; ++i) {
15 if (pid_t child_pid = fork(); child_pid > 0) {
16 child_pids.push_back(child_pid);
17 } else if (child_pid == 0) {
18 std::cout << std::format("[child {}] sleeping {}\n", i, i);
19 sleep(i);
20 std::cout << std::format("[child {}] exiting\n", i);
21 std::exit(i);
22 } else {
23 std::cerr << "fork failed\n";
24 }
25 }
26 for (int i = 0; i < num_children; ++i) {
27 int status;
28 if (waitpid(child_pids[num_children - i], &status, 0) < 0)
29 {std::cerr << "wait failed\n";}
30 std::cout << std::format("[parent] child {} exit status: {}\n", i,
31 exitstatus(status));
32 }
33 std::cout << "[parent] exiting\n";
34 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 129

[Example] Running Program as Child Process: Summary

■ code example illustrates use of execve system call (as well as fork)

■ parent process creates child via fork

■ then, parent waits for child process to terminate and obtains its exit status

■ child process executes another program via execve

■ pattern of using fork followed by execve very common when process
wants to run another program (without actually transforming into instance
of that other program)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 130

[Example] Running Program as Child Process: Code

fork_exec_1.cpp

1 #include <cassert>
2 #include <iostream>
3 #include <sys/types.h>
4 #include <sys/wait.h>
5 #include <unistd.h>
6

7 int main(int argc, char** argv, char** envp) {
8 if (argc < 2) {std::cerr << "invalid usage\n"; std::exit(1);}
9 if (pid_t child_pid = fork(); child_pid > 0) {

10 // parent
11 int status;
12 if (wait(&status) < 0) {std::cerr << "wait failed\n";}
13 } else if (child_pid == 0) {
14 // child
15 if (execve(argv[1], &argv[1], envp) < 0) {
16 std::cerr << "exec failed\n";
17 std::exit(1);
18 }
19 } else {
20 std::cerr << "fork failed\n";
21 std::exit(1);
22 }
23 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 131

Section 2.6

Memory Mappings

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 132

Memory Mappings

■ in order to manage virtual memory of process, operating system provides
system calls for managing memory mappings

■ two types of mappings:
1 file mapping
2 anonymous mapping

■ file mapping: maps region of (regular or block device) file directly into
virtual address space of process; after file is mapped, its contents can be
accessed simply by accessing corresponding memory region

■ file mapping often referred to as memory-mapped file

■ anonymous mapping: maps zero-filled pages into virtual address space
of process

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 133

Sharing of Memory Mappings

■ memory in mapping of one process can be shared with mappings in other
processes

■ two or more processes may share pages (i.e., page-table entries of each
process refer to same pages of physical memory)

■ for example, sharing of pages can result from:
2 two processes mapping same region of same file
2 child process created by fork inherits copies of parent’s mappings

■ when page shared between two or more processes modified, resulting
behavior depends on whether page belongs to mapping that is private or
shared

■ private mapping: modification to contents of mapping not visible to other
processes and for file mapping not carried through to underlying file (i.e.,
copy-on-write semantics)

■ shared mapping: modification to contents of mapping are visible to other
processes that share same mapping and for file mapping are carried
through to underlying file

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 134

Use Cases for Various Kinds of Mappings

Mapping Modification Use Cases
Type Visibility

File Private initialize memory from contents of file (e.g., load-
ing parts of binary executables or shared libraries)

Anonymous Private allocate new (zero-filled) memory for process
File Shared memory-mapped I/O; sharing memory between

processes for (fast) IPC
Anonymous Shared sharing memory between related processes for

(fast) IPC

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 135

Memory Mappings and Fork/Exec

■ mappings inherited by child process of fork, including private/shared
attribute

■ mapping lost when process performs exec

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 136

/proc/$pid/maps File

■ information about process’s mapping visible in /proc/$pid/maps file,
where $pid denotes PID

■ example of maps file:

00400000-00402000 r-xp 00000000 fd:05 24775559 /home/jdoe/bin/hello
00402000-00404000 rw-p 00001000 fd:05 24775559 /home/jdoe/bin/hello
7ffe9b28f000-7ffe9b2b1000 rw-p 00000000 00:00 0 [stack]
7ffe9b30a000-7ffe9b30d000 r--p 00000000 00:00 0 [vvar]
7ffe9b30d000-7ffe9b30e000 r-xp 00000000 00:00 0 [vdso]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]

■ [stack] is mapping for process’s stack

■ [vvar], [vdso], and [vsyscall] are special mappings created by
kernel for every process

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 137

Creating Memory Mappings

■ memory mapping can be created with mmap system call, which has
declaration:

void *mmap(void *addr, size_t length, int prot,
int flags, int fd, off_t offset);

■ addr: address associated with mapping

■ length: length of mapping in bytes

■ prot: protection flags for mapping

■ flags: flags for mapping

■ fd: file descriptor specifying file to map

■ offset: starting offset within file to map

■ depending on value of flags, meaning of some other parameters may
change somewhat

■ creates anonymous mapping if MAP_ANONYMOUS bit set in flags;
otherwise, creates file mapping

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 138

Creating Memory Mappings (Continued)

■ mapped file can be regular or block device file

■ some constraints on alignment of region in file and region in memory

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 139

Memory-Mapping Access Values

Flag/Value Description

PROT_NONE contents of region cannot be accessed at all
PROT_READ contents of region can be read
PROT_WRITE contents of region can be modified (i.e., written)
PROT_EXEC contents of region can be executed
PROT_SEM memory can be used for atomic operations
PROT_SAO memory should have strong access ordering

(used by PowerPC architecture)
PROT_GROWSUP apply protection mode up to end of mapping that

grows upwards
PROT_GROWSDOWN apply protection mode down to beginning of map-

ping that grows downwards

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 140

Some Memory-Mapping Flags

Value Description

MAP_SHARED create shared mapping
MAP_SHARED_VALIDATE create shared mapping but fail if unknown flag

specified
MAP_PRIVATE create private mapping
MAP_FIXED mapping at fixed address
MAP_32BIT put mapping in first 4 GB of memory
MAP_ANONYMOUS create anonymous mapping
MAP_FIXED mapping at fixed address
MAP_FIXED_NOREPLACE mapping at fixed address but do not replace

existing mapping
MAP_LOCKED mapped region to be locked in same way as

mlock
MAP_STACK mapping is suitable for process or thread stack
MAP_UNINITIALIZED do not clear anonymous pages (usually only

enabled on embedded devices)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 141

Memory-Mapped File

add ress
re+r;rned by

rnrnap

nlaPPed

ceg to n

?rae€ss
Vtr t rJo I

rnefr ' |e fY

oP en

f t t e

o{{s*t leng+]-t

rTtopped

r e 3 r c o

■ address returned by mmap is always page aligned

■ offset must be integer multiple of page size

■ above diagram assumes that length is multiple of page size

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 142

[Example] Creating Memory Mapping: Summary

■ code example illustrates how to use mmap system call to access
memory-mapped file for reading

■ program computes System-V checksum on file whose pathname is
specified as command-line argument

■ file to be checksummed is mapped into address space of process

■ then, data to be checksummed accessed via normal memory reads
(instead of using read system calls)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 143

[Example] Creating Memory Mapping: Code
checksum_1.cpp

1 #include <format>
2 #include <iostream>
3 #include <numeric>
4 #include <fcntl.h>
5 #include <sys/mman.h>
6 #include <sys/stat.h>
7 #include <unistd.h>
8
9 unsigned int sysv_checksum(unsigned char* buf, size_t len) {

10 unsigned long sum = 0;
11 for (; len; ++buf, --len) {sum += *buf;}
12 unsigned long x = (sum & 0xffff) + ((sum & 0xffffffff) >> 16);
13 return (x & 0xffff) + (x >> 16);
14 }
15
16 int main(int argc, char** argv) {
17 if (argc < 2) {return 1;}
18 int fd;
19 if ((fd = open(argv[1], O_RDONLY)) < 0) {return 1;}
20 struct stat stat_buf;
21 if (fstat(fd, &stat_buf) < 0) {return 1;}
22 void* addr;
23 if ((addr = mmap(nullptr, stat_buf.st_size, PROT_READ, MAP_PRIVATE,
24 fd, 0)) == MAP_FAILED) {return 1;}
25 if (close(fd) < 0) {return 1;}
26 std::cout << std::format("{}\n", sysv_checksum(
27 static_cast<unsigned char*>(addr), stat_buf.st_size));
28 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 144

Deleting Memory Mappings

■ can delete memory mapping with munmap system call, which has
declaration:

int munmap(void *addr, size_t length);

■ deletes mapping for specified address range

■ addr: starting address of mapping (which must be page aligned)

■ length: length of mapping in bytes (which need not be multiple of page
size)

■ not error if indicated range does not contain any mapped pages

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 145

[Example] Deleting Memory Mappings: Summary

■ code example illustrates use of munmap system call

■ unmapping pages used as creative way for process to commit suicide

■ program first queries page size for system

■ then, program loops, unmapping exponentially-growing number of pages

■ program will inevitably crash violently, as it will eventually access address
in page that has been unmapped

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 146

[Example] Deleting Memory Mappings: Code

crash_1.cpp

1 #include <format>
2 #include <iostream>
3 #include <iomanip>
4 #include <sys/mman.h>
5 #include <unistd.h>
6
7 int main() {
8 char buf[256];
9 sprintf(buf, "cat /proc/%d/maps", getpid());

10 std::cout << "The memory mappings for this process are as follows:\n";
11 if (system(buf)) {std::cerr << "cat failed\n"; return 1;}
12 long page_size = sysconf(_SC_PAGE_SIZE);
13 size_t length = page_size;
14 std::cout << "WARNING: This program is likely going to crash very soon.\n";
15 for (size_t length = page_size; length; length <<= 1) {
16 std::cout << std::format("Deleting all memory mappings up to "
17 "(but not including) address {:#8x}.\n", length);
18 if (munmap(0, length)) {
19 std::cerr << "munmap failed\n";
20 return 1;
21 }
22 }
23 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 147

Changing Protection of Mapping

■ can change access protections for calling process’s memory pages using
mprotect system call, which has declaration:

int mprotect(void *addr, size_t len, int prot);

■ changes access protections for calling process’s memory pages
containing any part of address range [addr, addr+len)

■ addr must be page aligned

■ prot is combination of access flags

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 148

[Example] Memory Protection: Summary

■ code example illustrates use of mprotect system call

■ program allocates block of memory that is page aligned and contains
several pages

■ applies different memory protections to various pages in block

■ accesses pages in various ways to show consequences of memory
protections applied to those pages

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 149

[Example] Memory Protection: Code
mprotect_1.cpp

1 #include <algorithm>
2 #include <cstdlib>
3 #include <iostream>
4 #include <sys/mman.h>
5 #include <unistd.h>
6
7 int main(int argc, char** argv) {
8 long page_size = sysconf(_SC_PAGESIZE);
9 char* ptr = static_cast<char*>(

10 std::aligned_alloc(page_size, 4 * page_size));
11 std::fill_n(ptr, 4 * page_size, ’A’);
12 char* none_ptr = ptr;
13 char* ro_ptr = ptr + 1 * page_size;
14 char* wo_ptr = ptr + 2 * page_size;
15 char* rw_ptr = ptr + 3 * page_size;
16 if (mprotect(none_ptr, page_size, 0)) {abort();}
17 if (mprotect(ro_ptr, page_size, PROT_READ)) {abort();}
18 if (mprotect(wo_ptr, page_size, PROT_WRITE)) {abort();}
19 if (mprotect(rw_ptr, page_size, PROT_READ | PROT_WRITE)) {abort();}
20 char c;
21 // c = *none_ptr; // SEGFAULT (cannot read)
22 // *none_ptr = ’B’; // SEGFAULT (cannot write)
23 c = *ro_ptr; // OK (can read)
24 // *ro_ptr = ’B’; // SEGFAULT (cannot write)
25 // c = *wo_ptr; // may SEGFAULT (read may be disallowed)
26 *wo_ptr = ’B’; // OK (can write)
27 c = *rw_ptr; // OK (can read)
28 *rw_ptr = ’B’; // OK (can write)
29 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 150

Synchronizing Underlying File With Memory

■ can synchronize underlying file with memory using msync system call,
which has declaration:

int msync(void *addr, size_t length, int flags);

■ addr: start of memory area

■ length: length of memory area in bytes

■ flags: specify how synchronization should be performed

■ flag values that can be combined by OR-ing to form flags:
Flag Description

MS_ASYNC requests update but does not wait for it to complete
MS_SYNC requests update and waits for it to complete
MS_INVALIDATE asks to invalidate other mappings of same file (so they

can be updated with fresh values just written)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 151

Other System Calls Related to Memory Mappings

■ some other functions related to memory mappings:
2 mincore
2 madvise
2 mlock
2 mlock2
2 munlock
2 mlockall
2 munlockall
2 memfd_create

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 152

Remarks on Memory-Mapped Files

■ if I/O operation occurs on file operations initiated by read/write to
mmapped region, SIGSEGV or SIGBUS signal is generated

■ can be challenging to handle such failures in multithreaded applications

■ file-backed mappings less problematic when file opened only for reading
(e.g., as in case of DSOs used by dynamic linkers and loaders)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 153

[Example] Shared Mapping of File: Summary

■ code example illustrates use of shared file mapping

■ program creates/truncates file and writes "Hello, World!\n" to it

■ uses shared file mapping

■ file opened and truncated to size of data to be written

■ file mapped to pages in address space of process via mmap

■ pages written with data intended for file

■ memory pages flushed to disk via msync

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 154

[Example] Shared Mapping of File: Code

mmap_1.cpp

1 #include <iostream>
2 #include <string>
3 #include <fcntl.h>
4 #include <sys/mman.h>
5 #include <unistd.h>
6
7 int main(int argc, char** argv) {
8 if (argc < 2) {std::cerr << "bad usage\n"; return 1;}
9 const std::string hello("Hello, World!\n");

10 int fd = open(argv[1], O_CREAT | O_TRUNC | O_RDWR, S_IRUSR | S_IWUSR);
11 if (fd < 0) {std::cerr << "open failed\n"; return 1;}
12 if (ftruncate(fd, hello.size()) < 0)
13 {std::cerr << "ftruncate failed\n"; return 1;}
14 void* ptr = mmap(nullptr, hello.size(),
15 PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
16 if (ptr == MAP_FAILED) {std::cerr << "mmap failed\n"; return 1;}
17 if (close(fd) < 0) {std::cerr << "close failed\n"; return 1;}
18 char* cptr = static_cast<char*>(ptr);
19 cptr = std::copy(hello.begin(), hello.end(), cptr);
20 if (msync(ptr, hello.size(), MS_SYNC))
21 {std::cerr << "msync failed"; return 1;}
22 if (munmap(ptr, hello.size())) {std::cerr << "munmap failed\n"; return 1;}
23 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 155

[Example] Shared Anonymous Mapping: Summary

■ code example illustrates use of shared anonymous mapping

■ shared anonymous mapping used by child process to provide data to
parent via memory buffer

■ parent process creates shared anonymous mapping

■ parent process creates child process (via fork) and waits for child
process to terminate

■ child process copies string into buffer in pages of shared anonymous
mapping and exits

■ after child process terminates, parent process prints contents of buffer
(which contains data written by child process)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 156

[Example] Shared Anonymous Mapping: Code

mmap_2.cpp

1 #include <algorithm>
2 #include <cassert>
3 #include <iostream>
4 #include <string>
5 #include <sys/mman.h>
6 #include <sys/wait.h>
7 #include <unistd.h>
8
9 int main() {

10 long page_size = sysconf(_SC_PAGE_SIZE);
11 void* ptr = mmap(nullptr, page_size,
12 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
13 if (ptr == MAP_FAILED) {std::cerr << "mmap failed\n"; return 1;}
14 char* cptr = static_cast<char*>(ptr);
15 assert(*cptr == ’\0’);
16 if (int child_pid = fork(); child_pid > 0) {
17 int status;
18 if (waitpid(child_pid, &status, 0) < 0)
19 {std::cerr << "wait failed\n"; return 1;}
20 if (!(WIFEXITED(status) && WEXITSTATUS(status) == 0))
21 {std::cerr << "child failed\n"; return 1;}
22 std::cerr << cptr;
23 } else if (child_pid == 0) {
24 std::string hello("Hello, World!\n");
25 std::copy(hello.begin(), hello.end(), cptr);
26 } else {std::cerr << "fork failed\n"; return 1;}
27 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 157

[Example] Mmap Allocator: Summary

■ code example illustrates use of private anonymous mapping

■ class template mmap_allocator provides custom memory allocator
(compatible with allocators used by C++ standard library)

■ memory allocator ensures that each memory block is page aligned and
does not share any pages with other memory blocks

■ mmap_allocator could be practically useful if, for example, one wanted
allocator that provides page-aligned memory blocks so that different
memory protections could be used for data stored in different memory
blocks

■ allocation operation obtains storage via mmap

■ deallocation operation frees storage via munmap

■ to illustrate use of mmap_allocator, code uses mmap_allocator to
allocate page-aligned storage for std::vector container

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 158

[Example] Mmap Allocator: mmap_allocator Code
mmap_allocator.hpp

1 #include <cstddef>
2 #include <new>
3 #include <limits>
4 #include <sys/mman.h>
5 #include <unistd.h>
6
7 template <class T> struct mmap_allocator {
8 using value_type = T;
9 mmap_allocator() noexcept {}

10 template <class U> mmap_allocator(const mmap_allocator<U>&) noexcept {}
11 T* allocate(std::size_t n) const;
12 void deallocate(T* p, std::size_t n) const noexcept;
13 template <class U> bool operator==(const mmap_allocator<U>&)
14 const noexcept {return true;}
15 template <class U> bool operator!=(const mmap_allocator<U>&)
16 const noexcept {return false;}
17 };
18
19 template <class T>
20 T* mmap_allocator<T>::allocate(std::size_t n) const {
21 if (!n) {return nullptr;}
22 if (n > std::numeric_limits<std::size_t>::max() / sizeof(T))
23 {throw std::bad_array_new_length();}
24 void* ptr = mmap(nullptr, n * sizeof(T),
25 PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
26 if (ptr == MAP_FAILED) {throw std::bad_alloc();}
27 return static_cast<T*>(ptr);
28 }
29
30 template <class T>
31 void mmap_allocator<T>::deallocate(T* p, std::size_t n) const noexcept {
32 if (!n) {return;}
33 munmap(p, n * sizeof(T));
34 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 159

[Example] Mmap Allocator: User Code

mmap_allocator_main.cpp

1 #include <boost/align/is_aligned.hpp>
2 #include <cassert>
3 #include <format>
4 #include <iostream>
5 #include <vector>
6 #include "mmap_allocator.hpp"
7
8 int main() {
9 long page_size = sysconf(_SC_PAGE_SIZE);

10 std::vector<int, mmap_allocator<int>> v{1, 2, 3};
11 std::vector<int> w{1, 2, 3};
12 bool v_aligned = boost::alignment::is_aligned(page_size, v.data());
13 assert(v_aligned);
14 bool w_aligned = boost::alignment::is_aligned(page_size, w.data());
15 std::cout << std::format("{} {}\n", v_aligned,
16 static_cast<void*>(v.data()));
17 std::cout << std::format("{} {}\n", w_aligned,
18 static_cast<void*>(w.data()));
19 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 160

Section 2.7

Threads

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 161

Linux Threading Model

■ Linux kernel does not make any real distinction between process and
thread

■ as far as Linux kernel is concerned, any task that can be scheduled and
run is deemed process

■ to avoid confusion, will use term “Linux-kernel task” to refer to Linux kernel
notion of process

■ each thread is single Linux-kernel task

■ each process is simply collection of one or more Linux-kernel tasks, which
may share some resources amongst themselves (such as virtual
memory), with one of these Linux-kernel tasks designated as main one

■ each thread has system-unique thread ID (TID), which corresponds to
Linux-kernel task ID

■ each process has system-unique process ID (PID) and thread group ID
(TGID), which correspond to ID of main Linux-kernel task in collection of
tasks that comprise process

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 162

Creating New Threads/Processes

■ can create new threads/processes with clone system call

■ declaration:

int clone(int (*func)(void *), void* stack, int flags,
void* arg, ... /* pid_t* parent_tid,
void* tls, pid_t* child_tid */);

■ func: function for new thread to execute

■ stack: location of stack to be used for execution

■ flags: flags that control specific behavior of clone operation

■ arg: argument to be passed to function func

■ upon success, thread ID of child thread returned (in caller’s thread)

■ upon failure, no child thread is created and -1 returned (in caller’s thread)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 163

Commonly-Used Flags for clone System Call

Flag Description

CLONE_CHILD_CLEARTID if set, clear child TID at location pointed to by child_tid in
child memory when child exits and perform wakeup on futex
at that address

CLONE_FILES if set, calling process and child process share same file de-
scriptor table; otherwise, child process inherits copy of all
open file descriptors in calling process at time of clone call

CLONE_FS if set, caller and child process share same filesystem infor-
mation; otherwise, state copied at time of clone call

CLONE_PARENT_SETTID if set, store child thread ID at location pointed to by
parent_tid in parent’s memory

CLONE_SIGHAND if set, calling process and child process share same signal-
handler table; otherwise, child process inherits copy of table
at time of clone call

CLONE_THREAD if set, child is placed in same thread group as calling process
CLONE_VM if set, calling process and child process share same memory

space

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 164

[Example] Clone: Summary

■ code example illustrates how clone system call can be used to create
new thread or process (although primarily interested in new thread case)

■ command-line option used to determine whether to create new thread or
process

■ program creates new thread/process via clone

■ parent and child each print various process-related IDs

■ child additionally sleeps for short duration and prints message

■ in order to avoid race conditions (such as data races), parent must wait for
child thread to finish execution

■ some complexity in code example comes from need to detect when child
thread has finished executing, which necessitates use of futex

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 165

[Example] Clone: Code (1)

clone_1.cpp

1 #include <atomic>
2 #include <cassert>
3 #include <format>
4 #include <iostream>
5 #include <linux/futex.h>
6 #include <sched.h>
7 #include <syscall.h>
8 #include <sys/time.h>
9 #include <sys/types.h>

10 #include <sys/wait.h>
11 #include <unistd.h>
12
13 pid_t gettid() {return syscall(SYS_gettid);}
14
15 int futex(int *uaddr, int futex_op, int val, const struct timespec *timeout,
16 int *uaddr2, int val3)
17 {return syscall(SYS_futex, uaddr, futex_op, val, timeout, uaddr2, val3);}
18
19 int atomic_load_int(int* ptr) {
20 // WARNING: This is ugly and non-portable.
21 static_assert(sizeof(std::atomic<int>) == sizeof(int));
22 return reinterpret_cast<std::atomic<int>*>(ptr)->load();
23 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 166

[Example] Clone: Code (2)

clone_1.cpp

25 struct child_args {
26 bool make_thread; // invoker creating thread (as opposed to process)
27 pid_t tid; // TID of invoker of clone
28 pid_t pid; // PID of invoker of clone
29 pid_t ppid; // PPID of invoker of clone
30 int ret; // return value (used in thread case)
31 };
32
33 int child_func(void* arg) {
34 child_args* args = static_cast<child_args*>(arg);
35 assert(args->tid != gettid()); // not invoker of clone
36 if (args->make_thread) {
37 std::cerr << std::format("[thread] PID {}\n", getpid());
38 assert(args->pid == getpid()); // running in same process
39 assert(args->ppid == getppid()); // has same parent process
40 assert(gettid() != getpid()); // not main thread of process
41 } else {
42 std::cerr << std::format("[process] PID {}\n", getpid());
43 assert(args->pid != getpid()); // running in different process
44 assert(args->pid == getppid()); // child of invoker of clone
45 assert(gettid() == getpid()); // main thread of process
46 }
47 sleep(2);
48 std::cout << "Hello, World!\n" << std::flush;
49 args->ret = std::cout ? 0 : 1;
50 return args->ret;
51 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 167

[Example] Clone: Code (3)
clone_1.cpp

53 int main(int argc, char** argv) {
54 bool make_thread = argc < 2;
55 std::cerr << std::format("[main] PID {}\n", getpid());
56 constexpr std::size_t stack_size = 64 * 1024;
57 static char stack[stack_size];
58 int clone_flags = (make_thread) ? (CLONE_THREAD | CLONE_SIGHAND |
59 CLONE_VM | CLONE_FILES | CLONE_FS | CLONE_CHILD_CLEARTID |
60 CLONE_PARENT_SETTID) : SIGCHLD;
61 alignas(std::atomic<int>) int tid;
62 child_args arg = {make_thread, gettid(), getpid(), getppid(), -1};
63 pid_t child_tid;
64 if ((child_tid = clone(child_func, stack + stack_size, clone_flags, &arg,
65 &tid, 0, &tid)) < 0)
66 {std::cerr << "clone failed\n"; return 1;}
67 int exit_status;
68 if (make_thread) {
69 int tmp_tid;
70 while ((tmp_tid = atomic_load_int(&tid)) == child_tid) {
71 std::cerr << "[main] sleeping\n";
72 int ret;
73 while ((ret = futex(&tid, FUTEX_WAIT, tmp_tid, nullptr, 0, 0)) < 0
74 && ret == EAGAIN) {}
75 if (ret < 0) {std::cerr << "futex failed\n"; return 1;}
76 std::cerr << "[main] awoken\n";
77 }
78 exit_status = arg.ret;
79 } else {
80 int status;
81 if (waitpid(child_tid, &status, 0) != child_tid)
82 {std::cerr << "wait failed\n"; return 1;}
83 exit_status = (WIFEXITED(status)) ? WEXITSTATUS(status) : 1;
84 }
85 std::cerr << std::format("[main] exit status {}\n", exit_status);
86 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 168

Section 2.8

Futexes

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 169

Locks

■ lock is synchronization mechanism for providing mutual exclusion for
access to shared resource in multithreaded environment

■ lock has two basic operations:
2 acquire: takes lock
2 release: relinquishes lock

■ shared resource can only be accessed by thread if thread holds lock

■ how many threads may simultaneously acquire lock depends on type of
lock

■ in case of exclusive lock, only one thread can hold lock at any given time

■ if thread attempts to acquire lock and lock cannot currently be acquired,
operation either waits until lock can be acquired or fails with error

■ acquire operation may spin in loop waiting to acquire lock or block (where
blocking requires operating system intervention)

■ thread acquires lock before accessing shared resource and releases lock
when finished accessing resource

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 170

Compiler Intrinsics for Atomic Memory Operations

■ typically, compilers provide intrinsic (i.e., built-in) functions for atomic
memory operations, such as:

2 load operation
2 store operation
2 test-and-set (TAS) and clear operations
2 compare-and-swap (CAS) operation
2 swap operation

■ in what follows, we consider only intrinsics provided by GCC and Clang

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 171

Spinlocks

■ spinlock: lock for which thread trying to acquire it simply waits in loop,
repeatedly checking if lock is available

■ thread remains active while waiting to acquire lock

■ spinlock efficient when time required to acquire lock is very short

■ makes poor use of processor resources if wait time is long

■ use special processor instructions and typically do not need operating
system intervention

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 172

Atomic Test and Set (TAS) and Clear

■ intrinsic for atomic test-and-set (TAS) has declaration:
2 bool __atomic_test_and_set(void* ptr, int mem_order);

■ ptr: address of byte for operation

■ mem_order specifies memory order
■ atomically performs following:

1 reads *ptr
2 sets *ptr to “true”
3 returns boolean value indicating if value read was “true”

■ intrinsic for atomic clear has declaration:
2 void __atomic_clear(void* ptr, int mem_order);

■ atomically sets *ptr to “false”

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 173

Memory Orders

Memory Orders
Name Description

__ATOMIC_RELAXED implies no interthread ordering constraints
__ATOMIC_CONSUME not advisable to use
__ATOMIC_ACQUIRE creates interthread happens-before constraint from release (or

stronger order) store to this acquire load; can prevent hoisting
of code to before operation

__ATOMIC_RELEASE creates interthread happens-before constraint to acquire (or
stronger) loads that read from this store; can prevent sinking
of code to after operation

__ATOMIC_ACQ_REL combines effects of __ATOMIC_ACQUIRE and
__ATOMIC_RELEASE

__ATOMIC_SEQ_CST enforces total ordering with all other __ATOMIC_SEQ_CST oper-
ations (i.e., sequentially consistent)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 174

Atomic TAS and Clear on x86-64

atomic_tas.cpp

1 bool test_and_set(bool& x) noexcept {
2 return __atomic_test_and_set(&x, __ATOMIC_ACQUIRE); // GCC/Clang
3 }
4
5 void clear(bool& x) noexcept {
6 __atomic_clear(&x, __ATOMIC_RELEASE); // GCC/Clang
7 }

■ atomic test-and-set with acquire memory order maps to:
calling convention: rdi = &x
mov $1, %eax
xchg (%rdi), %al # swap x and al
ret

■ atomic clear with release memory order maps to:
calling convention: rdi = &x
movb $0, (%rdi)
ret

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 175

[Example] TAS-Based Spinlock: spinlock Class

spinlock1.hpp

1 class spinlock {
2 public:
3 spinlock() {clear(m_);}
4 spinlock(const spinlock&) = delete;
5 spinlock& operator=(const spinlock&) = delete;
6 void lock() noexcept {
7 while (test_and_set(m_)) {}
8 }
9 bool try_lock() noexcept {

10 return !test_and_set(m_);
11 }
12 void unlock() noexcept {
13 clear(m_);
14 }
15 private:
16 static bool test_and_set(bool& x) noexcept {
17 return __atomic_test_and_set(&x, __ATOMIC_ACQUIRE); // GCC/Clang
18 }
19 static void clear(bool& x) noexcept {
20 __atomic_clear(&x, __ATOMIC_RELEASE); // GCC/Clang
21 }
22 bool m_;
23 static_assert(__atomic_always_lock_free(sizeof(char), 0));
24 };

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 176

TAS-Based Spinlock: Why TAS Must Be Atomic

■ if test-and-set (TAS) operation not atomic, situations like following become
possible:

ree
5ts
q

I
. I

l [,

V

o(
: 5

+11
*e

f r

c1 L
; l f

clear

+h rtaA I'

Sebs {tag
And retu rn e
,$ ndm tocF

Is

+h c€ads 4- an d 2

h a \fg bcl t1 r c C lc e c{ rnrr*Ot

d $om€ -b i tne

' t G t

+ hreocl Z

sers {t-9
And rttucn s

{rcm toc k

4t -e
-[l"g
tnr t wl lY

cles(+ hreod Z.

teEts if

{lag clea c

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 177

[Example] TAS-Based Spinlock: User Code

spinlock1_app.cpp

1 #include <format>
2 #include <iostream>
3 #include <thread>
4 #include <vector>
5 #include "spinlock1.hpp"
6
7 spinlock m;
8 unsigned long long count = 0;
9

10 void worker() {
11 for (int i = 0; i < 10’000; ++i) {
12 m.lock();
13 ++count;
14 m.unlock();
15 }
16 }
17
18 int main() {
19 std::vector<std::jthread> threads;
20 for (int i = 0; i < 4; ++i) {
21 threads.emplace_back(worker);
22 }
23 for (auto&& t : threads) {t.join();}
24 std::cout << std::format("{}\n", count);
25 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 178

Atomic Compare and Swap (CAS)

■ intrinsic for atomic compare-and-swap (CAS) has declaration:
bool __atomic_compare_exchange_n(T* ptr, T* expected,
T desired, bool weak, int success_mem_order,
int fail_mem_order);

■ ptr: address of object (of type T) for CAS operation
■ expected: address of expected value
■ desired: desired value
■ weak: boolean flag indicating if weak CAS (i.e., operation allowed to fail

spuriously)
■ success_mem_order: memory order for read-modify-write operation in

case of success
■ fail_mem_order: memory order for read-modify-write operation in case

of failure
■ atomically performs following: tests if *ptr == *expected and

2 if true (i.e., success), sets *ptr to desired
2 otherwise (i.e., failure), sets *expected to *ptr

■ returns true upon success (i.e., *ptr written) and false otherwise
Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 179

Atomic CAS on x86-64

atomic_cas.cpp

1 int atomic_cas(int& x, int expected, int desired) noexcept {
2 __atomic_compare_exchange_n(&x, &expected, desired, false,
3 __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE); // GCC/Clang
4 return expected; // return initial value of *ptr
5 }
6
7 void atomic_store(int& x, int value) noexcept {
8 __atomic_store(&x, &value, __ATOMIC_RELEASE); // GCC/Clang
9 }

■ atomic compare-and-swap with acquire memory order maps to:
calling conventions: edi = &x; esi = &expected; edx = desired
mov %esi, %eax # eax = &expected
lock cmpxchg %edx, (%rdi)
eax = x; if eax == expected, x = desired

ret

■ atomic store with release memory order maps to:
calling conventions: edi = &x
mov %esi, (%rdi) # write value to *ptr
ret

■ on x86, all 32-bit loads/stores with 4-byte alignment are atomic

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 180

[Example] CAS-Based Spinlock: spinlock Class

spinlock2.hpp

1 class spinlock {
2 public:
3 spinlock() : m_(0) {}
4 spinlock(const spinlock&) = delete;
5 spinlock& operator=(const spinlock&) = delete;
6 void lock() noexcept {
7 while (atomic_cas(&m_, 0, 1) != 0) {}
8 }
9 bool try_lock() noexcept {

10 return atomic_cas(&m_, 0, 1) == 0;
11 }
12 void unlock() noexcept {
13 atomic_store(&m_, 0);
14 }
15 private:
16 static int atomic_cas(int* addr, int expected, int desired)
17 noexcept {
18 __atomic_compare_exchange_n(addr, &expected, desired, false,
19 __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE); // GCC/Clang
20 return expected; // return initial value of *ptr
21 }
22 static void atomic_store(int* addr, int value) noexcept {
23 __atomic_store(addr, &value, __ATOMIC_RELEASE); // GCC/Clang
24 }
25 int m_;
26 static_assert(__atomic_always_lock_free(sizeof(int), 0));
27 };

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 181

CAS-Based Spinlock: Why CAS Must Be Atomic

■ if compare-and-swap (CAS) operation not atomic, situations like following
become possible:

{h read I

ca nlpo r€s f t-9
" t o O

and garYlPP c tJ cr'>

s u c c e P c l s

threod L
r ; t i t tes 1-

4a { l -g { h r e o o l s X a n d e

h,Dv€ bo"lh loCred

mulex A+ 3art1€ trrne

Steq
I n r t 'o l ly
re.fo

+ ime

+hrcad 2
c<rm Pares { fag

*ao
7nd ec rnParl -sor\

S t receedJ

^ - r r . -(- -
I

+h ceoc{ ?

c,^Jrr{es 1-

4a -F lug

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 182

Ticket Spinlocks

■ ticket spinlock is type of spinlock that provides fairness guarantee

■ follows model used by some businesses to serve customers in order of
arrival without forcing customers to stand in a line

■ each customer issued ticket upon arrival with integer value

■ successive tickets issued have successive integer values

■ business serves customers in order of increasing ticket number

■ in case of ticket spinlock, each thread wanting to acquire lock given ticket
consisting of integer value

■ spinlock grants lock to threads in order of ticket number

■ ticket spinlocks used internally by some operating systems (e.g., Linux
kernel)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 183

Advantages/Disadvantages of Ticket Spinlocks

■ ticket spinlocks are fair in sense that thread cannot be indefinitely starved
out of acquiring mutex by other threads

■ do not need to know maximum number of threads that will attempt to
acquire mutex at given time

■ if number of threads trying to acquire mutex exceeds number of threads
that hardware can run simultaneously, performance can degrade
significantly (so called problem of preemption intolerance)

■ number of cache line invalidations triggered when acquiring/releasing lock
is O(n) where n is number of threads (whereas O(1) would be preferable)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 184

[Example] Ticket Spinlock: spinlock Class

ticketlock1.hpp

1 class ticketlock {
2 public:
3 ticketlock() : ticket_(0), current_(0) {}
4 ticketlock(const ticketlock&) = delete;
5 ticketlock& operator=(const ticketlock&) = delete;
6 void lock() noexcept {
7 unsigned int ticket = atomic_fetch_and_inc(ticket_);
8 while (atomic_load(current_) != ticket) {}
9 }

10 void unlock() noexcept {
11 atomic_fetch_and_inc(current_);
12 }
13 private:
14 static unsigned int atomic_fetch_and_inc(unsigned int& x) noexcept {
15 return __atomic_fetch_add(&x, 1, __ATOMIC_ACQ_REL); // GCC/Clang
16 }
17 static unsigned int atomic_load(unsigned int& x) noexcept {
18 return __atomic_load_n(&x, __ATOMIC_ACQUIRE); // GCC/Clang
19 }
20 static constexpr int cacheline_size = 128;
21 alignas(cacheline_size) unsigned int ticket_;
22 alignas(cacheline_size) unsigned int current_;
23 static_assert(__atomic_always_lock_free(sizeof(unsigned int), 0));
24 };

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 185

Fast Userspace Mutexes (Futexes)

■ futex mechanism allows kernelspace wait queue to be associated with
integer in userspace

■ perform operations on futex using futex system call, which has
declaration:

int futex(int *uaddr, int futex_op, int val,
const struct timespec *timeout, int *uaddr2, int val3);

■ meaning of various arguments and whether they are used depends on
type of operation specified by futex_op

■ types of futex operations that can be specified by futex_op:
FUTEX_WAIT, FUTEX_WAKE, FUTEX_FD, FUTEX_REQUEUE,
FUTEX_CMP_REQUEUE, FUTEX_WAKE_OP, FUTEX_WAIT_BITSET,
FUTEX_WAKE_BITSET

■ option flags that can be included in futex_op: FUTEX_PRIVATE_FLAG,
FUTEX_CLOCK_REALTIME

■ no glibc wrapper for futex system call, so must use syscall function

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 186

Futex Wait Operation

■ wait operation provides means for thread to block waiting on futex

■ recall declaration of futex system call:
int futex(int *uaddr, int futex_op, int val,
const struct timespec *timeout, int *uaddr2, int val3);

■ futex_op: FUTEX_WAIT, possibly with option flags added (e.g.,
FUTEX_PRIVATE_FLAG)

■ uaddr: address of futex

■ val: expected value for futex

■ timeout: if timeout not null, *timeout specifies maximum amount of
time to wait on futex

■ other arguments for futex system call are ignored

■ if futex has expected value, thread is blocked; otherwise, call fails,
returning immediately

■ returns nonzero value upon failure

■ spurious awakenings are permitted

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 187

Futex Wake Operation

■ wake operation provides means to awaken threads currently blocked
waiting on futex

■ recall declaration of futex system call:
int futex(int *uaddr, int futex_op, int val,
const struct timespec *timeout, int *uaddr2, int val3);

■ futex_op: FUTEX_WAKE, possibly with option flags added (e.g.,
FUTEX_PRIVATE_FLAG)

■ uaddr: address of futex

■ val: maximum number of waiters to awaken or INT_MAX to awaken all
waiters

■ other arguments for futex system call are ignored

■ no guarantee as to which waiters are awoken (e.g., waiter with higher
scheduling priority not guaranteed to be awoken in preference to waiter
with lower priority)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 188

[Example] Futex Wrapper

futex.hpp

1 #include <linux/futex.h>
2 #include <syscall.h>
3 #include <sys/time.h>
4 #include <unistd.h>
5
6 inline int futex_wait_private(int* addr, int expected,
7 struct timespec* timeout) noexcept {
8 return syscall(SYS_futex, addr, FUTEX_WAIT_PRIVATE, expected, timeout,
9 nullptr, 0);

10 }
11
12 inline int futex_wake_private(int* addr, int count) noexcept {
13 return syscall(SYS_futex, addr, FUTEX_WAKE_PRIVATE, count, nullptr,
14 nullptr, 0);
15 }

■ FUTEX_WAIT_PRIVATE equals FUTEX_WAIT | FUTEX_PRIVATE_FLAG

■ FUTEX_WAKE_PRIVATE equals FUTEX_WAKE | FUTEX_PRIVATE_FLAG

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 189

[Example] Mutex Version 1: Summary

■ first attempt at mutex implementation using futexes

■ use single futex
■ futex has one of two values:

2 0: mutex unlocked
2 1: mutex locked

■ in uncontested case:
2 lock operation does not make system call
2 unlock operation always makes unnecessary system call (futex wake)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 190

[Example] Mutex Version 1: Code (1)

mutex1.hpp

1 class mutex {
2 public:
3 mutex() : m_(0) {}
4 mutex(const mutex&) = delete;
5 mutex& operator=(const mutex&) = delete;
6 void lock() noexcept;
7 bool try_lock() noexcept;
8 void unlock() noexcept;
9 private:

10 static int atomic_cas(int* addr, int expected, int desired) noexcept;
11 static void atomic_store(int* addr, int value) noexcept;
12 int m_;
13 static_assert(__atomic_always_lock_free(sizeof(int), 0));
14 };

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 191

[Example] Mutex Version 1: Code (2)

mutex1.cpp

1 #include "futex.hpp"
2 #include "mutex1.hpp"
3
4 inline int mutex::atomic_cas(int* addr, int expected, int desired)
5 noexcept {
6 __atomic_compare_exchange_n(addr, &expected, desired, false,
7 __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE); // GCC/Clang
8 return expected; // return initial value of *ptr
9 }

10
11 inline void mutex::atomic_store(int* addr, int value) noexcept {
12 __atomic_store(addr, &value, __ATOMIC_RELEASE); // GCC/Clang
13 }
14
15 void mutex::lock() noexcept {
16 while (atomic_cas(&m_, 0, 1) != 0) {futex_wait_private(&m_, 1, nullptr);}
17 }
18
19 bool mutex::try_lock() noexcept {return atomic_cas(&m_, 0, 1) == 0;}
20
21 void mutex::unlock() noexcept {
22 atomic_store(&m_, 0);
23 futex_wake_private(&m_, 1);
24 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 192

[Example] Mutex Version 2: Summary

■ second attempt at mutex implementation using futexes

■ single futex used
■ futex has one of three values:

2 0: mutex unlocked
2 1: mutex locked with no waiters (i.e., no wake needed in unlock)
2 2: mutex locked with possibly one or more waiters (i.e., wake needed in

unlock)
■ in uncontested case:

2 lock operation does not make system call
2 unlock operation does not make system call (for futex wake)

■ in other words, this mutex implementation only makes system calls in
case that mutex is contested

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 193

[Example] Mutex Version 2: Code (1)

mutex2.hpp

1 class mutex {
2 public:
3 mutex() : m_(0) {}
4 void lock() noexcept;
5 void unlock() noexcept;
6 private:
7 static int atomic_cas(int* addr, int expected, int desired) noexcept;
8 static int atomic_dec(int* ptr) noexcept;
9 int m_;

10 };

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 194

[Example] Mutex Version 2: Code (2)
mutex2.cpp

1 #include "futex.hpp"
2 #include "mutex2.hpp"
3
4 inline int mutex::atomic_cas(int* addr, int expected, int desired)
5 noexcept {
6 __atomic_compare_exchange_n(addr, &expected, desired, false,
7 __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE); // GCC/Clang
8 return expected; // return initial value of *ptr
9 }

10
11 inline int mutex::atomic_dec(int* ptr) noexcept {
12 return __atomic_sub_fetch (ptr, 1, __ATOMIC_RELEASE) + 1; // GCC/Clang
13 }
14
15 void mutex::lock() noexcept {
16 if (int c = atomic_cas(&m_, 0, 1); c != 0) {
17 do {
18 if (c == 2 || atomic_cas(&m_, 1, 2) != 0)
19 futex_wait_private(&m_, 2, nullptr);
20 } while ((c = atomic_cas(&m_, 0, 2)) != 0);
21 }
22 }
23
24 void mutex::unlock() noexcept {
25 if (atomic_dec(&m_) != 1) {
26 m_ = 0;
27 futex_wake_private(&m_, 1);
28 }
29 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 195

Barriers

■ barrier is synchronization mechanism that allows set of threads to wait
until all threads in set have reached particular point in code execution
before any thread continues

■ barrier maintains two values:
1 number of threads associated with barrier
2 number of threads currently waiting on barrier

■ wait operation: block thread until all threads associated with barrier are
waiting on barrier

■ barriers useful for phased computation, in which threads executing same
code in parallel must compute one phase of computation before
proceeding to next

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 196

[Example] Barrier: Summary

■ code example illustrates how barrier can be implemented using futexes

■ barrier class provides futex-based implementation of barrier

■ each barrier uses two futexes (i.e., futex-based mutex plus one additional
futex)

■ sample multithreaded program using barrier class also provided to
show use of barrier

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 197

[Example] Barrier: barrier Class (1)

barrier.hpp

1 #include "mutex2.hpp"
2 #include <climits>
3
4 class barrier {
5 public:
6 barrier(unsigned int count) : m_(), event_(0), threshold_(count),
7 count_(count) {}
8 barrier(const barrier&) = delete;
9 barrier& operator=(const barrier&) = delete;

10 void wait() noexcept;
11 private:
12 mutex m_;
13 unsigned int event_;
14 unsigned int threshold_; // total number of threads
15 unsigned int count_; // number of threads currently waiting
16 };

■ mutex is futex-based mutex type from earlier example

■ event_ used for futex operations

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 198

[Example] Barrier: barrier Class (2)

barrier.cpp

1 #include <climits>
2 #include "barrier.hpp"
3 #include "futex.hpp"
4
5 void barrier::wait() noexcept {
6 m_.lock();
7 if (count_-- > 1) {
8 unsigned int e = event_;
9 m_.unlock();

10 do {
11 futex_wait_private(reinterpret_cast<int*>(&event_), e, nullptr);
12 } while (event_ == e);
13 } else {
14 ++event_;
15 count_ = threshold_;
16 futex_wake_private(reinterpret_cast<int*>(&event_), INT_MAX);
17 m_.unlock();
18 }
19 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 199

[Example] Barrier: User Code

barrier_app.cpp

1 #include <iostream>
2 #include <thread>
3 #include <vector>
4 #include <functional>
5 #include "barrier.hpp"
6
7 void worker(int instance, barrier& b) {
8 for (int i = 0; i < 10; ++i) {
9 b.wait();

10 std::cout << "1";
11 b.wait();
12 std::cout << "2";
13 b.wait();
14 if (!instance) {std::cout << ’\n’;}
15 }
16 }
17
18 int main() {
19 int num_threads = 16;
20 std::vector<std::jthread> threads;
21 barrier b(num_threads);
22 for (int i = 0; i < num_threads; ++i) {
23 threads.emplace_back(worker, i, std::ref(b));
24 }
25 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 200

References I

1 U. Drepper. Futexes are tricky (version 1.6). Technical report, Red Hat
Inc., Nov. 2011. https://www.akkadia.org/drepper/futex.pdf.

2 H. Franke, R. Russell, and M. Kirkwood. Fuss, futexes and furwocks: Fast
userlevel locking in Linux. In Proc. of Ottawa Linux Summit, 2002. https:
//www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf.

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 201

https://www.akkadia.org/drepper/futex.pdf
https://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf
https://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf

Section 2.9

Capabilities

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 202

Capabilities

■ capability: right to be able to perform particular type of privileged
operation

■ each privileged operation associated with capability

■ capabilities can be associated with thread or file

■ capability given to thread known as thread capability
■ each thread in process granted or denied privileges on per-capability basis

■ thread can perform particular privileged operation only if it has
corresponding capability

■ capability associated with file known as file capability
■ capabilities can be attached to executable program files so that when

program run corresponding process will be granted particular capabilities
regardless of user who invokes program

■ set of capabilities can be represented by bit mask

■ currently, about 40 capabilities

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 203

Capabilities

■ in case of normal user, login shell normally given no capabilities

■ in case of superuser, login shell normally given all capabilities

■ above two cases are extremes

■ many system processes granted only subset of capabilities

■ for security reasons, always preferable to grant capability only when
strictly needed for particular task

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 204

Some Examples of Capabilities

Capability Description

CAP_CHOWN can make arbitrary changes to file UIDs
and GIDs

CAP_DAC_OVERRIDE can bypass file read/write/execute per-
mission checks

CAP_SETUID make arbitrary manipulations of process
UIDs (via setuid, setreuid, setresuid, setf-
suid)

CAP_SETGID make arbitrary manipulations of process
GIDs and supplementary GID list

CAP_NET_ADMIN allow various network-related operations
to be performed (e.g., interface configura-
tion, modify routing tables)

CAP_NET_BIND_SERVICE allow binding socket to Internet domain
privileged ports (port numbers less than
1024)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 205

Thread Capabilities

■ kernel maintains five capability sets for each thread:
1 permitted set: set of capabilities that process permitted to employ (i.e., can

be added to effective set)
2 effective set: set of capabilities used by kernel to decide if process allowed

to perform each privileged operation
3 inheritable set: set of capabilities that may be propagated to permitted set

of program run by exec operation (propagated if not disallowed by file
capability)

4 bounding set: set of capabilities that are allowed to be given to process
(used to limit capabilities given to process via file capabilities)

5 ambient set: set of capabilities that are preserved across exec of program
that is not privileged; ambient set obeys invariant that no capability can ever
be ambient if not both permitted and inheritable (automatically adjusted to
ensure this)

■ permitted, effective, inheritable, bounding, and ambient sets preserved
across fork system call

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 206

File Capabilities

■ file may have no capability information at all or following three capability
settings:

1 effective bit
2 permitted mask
3 inheritable mask

■ file capabilities provide some control over capabilities of process after
exec operation

■ effective bit: if bit set, then during exec, capabilities that are enabled in
process’s new permitted set are also enabled in process’s new effective
set; if bit clear, then after exec, process’s new effective set initially empty

■ permitted set: set of capabilities that may be added to process’s
permitted set during exec operation, regardless of process’s existing
capabilities

■ inheritable set: set masked against process’s inheritable set to determine
set of capabilities to be enabled in process’s permitted set after exec

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 207

Thread Capabilities After Exec

■ let Px and P′
x denote capability set x of thread before and after exec,

respectively
■ let Fx denote file capability set x if file has capabilities and /0 otherwise
■ let Feffective denote file capability effective bit if file has capabilities and 0

otherwise
■ let Sall denote set of all existing capabilities
■ file said to be privileged if has capabilities or has set-UID or set-GID bit set
■ inheritable and bounding capability sets of thread preserved by exec
■ aside from some exceptional cases (considered later), capability sets after

exec given by:

P′
ambient =

{
/0 file is privileged

Pambient otherwise,
P′
permitted = (Pbounding∩Fpermitted)∪ (Pinheritable∩Finheritable)∪P′

ambient,

P′
effective =

{
P′
permitted Feffective ̸= 0

P′
ambient otherwise

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 208

Thread Capabilities After Exec (Continued 1)

■ in certain cases involving UID 0, equations from previous slide modified

■ let PRUID and PEUID respectively denote RUID and EUID of program run
by exec, after any modification made to EUID due to set-UID bit of
program file

■ if both 1) PRUID = 0 or PEUID = 0, and 2) file does not have capabilities or
PRUID = 0 or PEUID ̸= 0, then values of Finheritable and Fpermitted replaced
by Finheritable = Sall and Fpermitted = Sall (i.e., file inheritable and permitted
capability sets ignored)

■ if PEUID = 0, then value of Feffective replaced by Feffective = 1
■ consequently, when thread with nonzero UIDs execs set-UID 0 program

file that does not have capabilities, or when thread whose RUID and EUID
are 0 execs program, equations simplify to:

P′
permitted = Pbounding∪Pinheritable
P′
effective = P′

permitted

■ special treatment of UID 0 can be disabled via securebits mechanism

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 209

Thread Capabilities After Exec (Continued 2)

■ if file not privileged, equations simplify to:

P′
ambient = Pambient;

P′
permitted = Pambient;
P′
effective = Pambient

■ if Feffective ̸= 0, exec will fail if Fpermitted ̸⊂ P′
permitted

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 210

Querying and Setting Process/File Capabilities

■ can list capabilities of file using getcap command

■ example output for getcap /bin/ping:
/bin/ping = cap_net_admin,cap_net_raw+p

■ can set capabilities of file using setcap command

■ can get capabilities of process using getpcaps command

■ example output for getpcaps $$:
Capabilities for ‘25526’: = cap_chown,cap_dac_override,cap_dac_read_search,

↪→ cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,
↪→ cap_linux_immutable,cap_net_bind_service,cap_net_broadcast,
↪→ cap_net_admin,cap_net_raw,cap_ipc_lock,cap_ipc_owner,cap_sys_module
↪→ ,cap_sys_rawio,cap_sys_chroot,cap_sys_ptrace,cap_sys_pacct,
↪→ cap_sys_admin,cap_sys_boot,cap_sys_nice,cap_sys_resource,
↪→ cap_sys_time,cap_sys_tty_config,cap_mknod,cap_lease,cap_audit_write
↪→ ,cap_audit_control,cap_setfcap,cap_mac_override,cap_mac_admin,
↪→ cap_syslog,cap_wake_alarm,cap_block_suspend,cap_audit_read+i

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 211

[Example] Unique Handle for cap_t

unique_cap.hpp

1 #include "unique_handle.hpp"
2 #include <sys/capability.h>
3
4 struct cap_uh_policy {
5 using handle_type = cap_t;
6 static void free(handle_type h) {cap_free(h);}
7 static handle_type get_null() {return nullptr;}
8 static bool is_null(handle_type h) {return !h;}
9 };

10
11 using unique_cap = unique_handle<cap_uh_policy>;

■ new policy class for use with unique_handle class template (introduced
earlier) in order to allow managing cap_t objects

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 212

[Example] Querying Thread Capabilities: Summary

■ code example illustrates use of prctl as well as various functionality in
cap library (e.g., cap_get_proc and cap_get_flag) for querying thread
capabilities

■ program queries various thread capabilities and prints results

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 213

[Example] Querying Thread Capabilities: Code (1)
getpcap_1.cpp

1 #include <format>
2 #include <iostream>
3 #include <sys/capability.h>
4 #include <sys/prctl.h>
5 #include <sys/types.h>
6 #include "unique_cap.hpp"
7
8 int64_t getcapmask_cap(cap_t cap, cap_flag_t set) {
9 int64_t mask = 0;

10 for (int i = 0; i <= CAP_LAST_CAP; ++i) {
11 cap_flag_value_t value;
12 if (cap_get_flag(cap, i, set, &value)) {return -1;}
13 mask = (mask << 1) | value;
14 }
15 return mask;
16 }
17
18 int64_t getcapmask_prctl(int type) {
19 int64_t mask = 0;
20 for (int i = 0; i <= CAP_LAST_CAP; ++i) {
21 int value = -1;
22 if (type == PR_CAPBSET_READ) {value = prctl(PR_CAPBSET_READ, i);}
23 else if (type == PR_CAP_AMBIENT)
24 {value = prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_IS_SET, i, 0, 0);}
25 if (value < 0) {return -1;}
26 mask = (mask << 1) | value;
27 }
28 return mask;
29 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 214

[Example] Querying Thread Capabilities: Code (2)

getpcap_1.cpp (Continued)
31 int main() {
32 unique_cap cap(cap_get_proc());
33 if (!cap) {std::cerr << "cap_get_proc failed\n";}
34 int64_t all = (static_cast<int64_t>(1) << (CAP_LAST_CAP) + 1) - 1;
35 int64_t emask = getcapmask_cap(cap.get(), CAP_EFFECTIVE);
36 int64_t imask = getcapmask_cap(cap.get(), CAP_INHERITABLE);
37 int64_t pmask = getcapmask_cap(cap.get(), CAP_PERMITTED);
38 int64_t bmask = getcapmask_prctl(PR_CAPBSET_READ);
39 int64_t amask = getcapmask_prctl(PR_CAP_AMBIENT);
40 int sbits = prctl(PR_GET_SECUREBITS);
41 if (emask < 0 || imask < 0 || pmask < 0 || bmask < 0 || amask < 0 ||
42 sbits < 0)
43 {std::cerr << "cannot get capability information\n"; return 1;}
44 std::cout << std::format(
45 "all capabilities: {:#016x}\n"
46 " permitted set: {:#016x}\n"
47 " effective set: {:#016x}\n"
48 " inheritable set: {:#016x}\n"
49 " bounding set: {:#016x}\n"
50 " ambient set: {:#016x}\n"
51 " secure bits: {:#02x}\n",
52 all, pmask, emask, imask, bmask, amask, sbits);
53 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 215

[Example] Querying File Capabilities: Summary

■ code example illustrates use of various functionality in cap library (e.g.,
cap_get_file and cap_get_flag) for querying file capabilities

■ command-line argument used to specify pathname of file whose
capabilities to be queried

■ program queries various capabilities of specified file and prints results

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 216

[Example] Querying File Capabilities: Code
getfcap_1.cpp

1 #include <format>
2 #include <iostream>
3 #include <sys/capability.h>
4 #include <sys/types.h>
5 #include "unique_cap.hpp"
6
7 int64_t getcapmask(cap_t cap, cap_flag_t set) {
8 uint64_t mask = 0;
9 for (int i = 0; i <= CAP_LAST_CAP; ++i) {

10 cap_flag_value_t value;
11 if (cap_get_flag(cap, i, set, &value)) {return -1;}
12 mask = (mask << 1) | value;
13 }
14 return mask;
15 }
16
17 int main(int argc, char** argv) {
18 if (argc < 2) {std::cerr << "bad usage\n"; return 1;}
19 unique_cap cap(cap_get_file(argv[1]));
20 if (!cap) {
21 if (errno == ENODATA) {std::cout << "no capabilities\n"; return 0;}
22 else {std::cerr << "cap_get_proc failed\n"; return 1;}
23 }
24 int64_t pmask = getcapmask(cap.get(), CAP_PERMITTED);
25 int64_t emask = getcapmask(cap.get(), CAP_EFFECTIVE);
26 int64_t imask = getcapmask(cap.get(), CAP_INHERITABLE);
27 if (emask < 0 || imask < 0 || pmask < 0)
28 {std::cerr << "cannot get capabilities\n"; return 1;}
29 std::cout << std::format(
30 " permitted set: {:#016x}\n"
31 " effective bit: {:#01x}\n"
32 "inheritable set: {:#016x}\n",
33 pmask, emask, imask);
34 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 217

Section 2.10

Namespaces

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 218

Talks I

1 Michael Kerrisk. Containers Unplugged: Linux Namespaces. NDC
TechTown, Kongsberg, Norway, Sept. 4, 2019. Available online at
https://youtu.be/0kJPa-1FuoI.

2 Michael Kerrisk. Containers Unplugged: Understanding User
Namespaces. NDC TechTown, Kongsberg, Norway, Sept. 4, 2019.
Available online at https://youtu.be/73nB9-HYbAI.

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 219

https://youtu.be/0kJPa-1FuoI
https://youtu.be/73nB9-HYbAI

References I

1 Michael Kerrisk. Namespaces in operation, part 1: namespaces overview.
https://lwn.net/Articles/531114/, Jan. 4, 2013.

2 Michael Kerrisk. Namespaces in operation, part 2: the namespaces API.
https://lwn.net/Articles/531381/, Jan. 8, 2013.

3 Michael Kerrisk. Namespaces in operation, part 3: PID namespaces.
https://lwn.net/Articles/531419/, Jan. 16, 2013.

4 Michael Kerrisk. Namespaces in operation, part 4: more on PID
namespaces. https://lwn.net/Articles/532748/, Jan. 23, 2013.

5 Michael Kerrisk. Namespaces in operation, part 5: User namespaces.
https://lwn.net/Articles/532593/, Feb. 27, 2013.

6 Michael Kerrisk. Namespaces in operation, part 6: more on user
namespaces. https://lwn.net/Articles/540087/, March 6, 2013.

7 Jake Edge. Namespaces in operation, part 7: Network namespaces.
https://lwn.net/Articles/580893/, Jan. 22, 2014.

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 220

https://lwn.net/Articles/531114/
https://lwn.net/Articles/531381/
https://lwn.net/Articles/531419/
https://lwn.net/Articles/532748/
https://lwn.net/Articles/532593/
https://lwn.net/Articles/540087/
https://lwn.net/Articles/580893/

References II

8 Lizzie Dixon. Linux Containers in 500 Lines of Code.
https://blog.lizzie.io/linux-containers-in-500-loc.html,
Oct. 17, 2016.

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 221

https://blog.lizzie.io/linux-containers-in-500-loc.html

Section 2.11

Ptrace

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 222

Tracing/Controlling Execution of Other Processes

■ Linux allows for one process to trace/control execution of another process

■ such functionality associated with ptrace system call

■ process can cause thread in another process to suspend execution after
each instruction or when entering/exiting system calls

■ process can read/write memory of another process

■ process can intercept signals sent to another process

■ functionality like that listed above useful, for example, for implementing
source-level debuggers

■ for security reasons, many restrictions imposed on which processes
permitted to control execution of which other processes

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 223

Program Tracing

■ can trace execution of thread/process using ptrace system call
■ declaration:

long ptrace(enum __ptrace_request request, pid_t pid,
↪→ void *addr, void *data);

■ request: type of tracing operation to perform

■ pid: PID of process being traced

■ addr: address for trace operation

■ data: data for trace operation

■ meaning of addr and data depends on type of operation being performed

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 224

Ptrace Request Types

Attaching and Detaching Tracee
Request Type Description

PTRACE_ATTACH attach to specified process, making it tracee and stopping it
PTRACE_SEIZE attach to specified process, making it tracee without stopping it
PTRACE_DETACH restart stopped tracee and detach from it
PTRACE_TRACEME indicate process to be traced by parent

Resuming Execution of Tracee
Request Type Description

PTRACE_CONT restart stopped tracee
PTRACE_SYSCALL restart stopped tracee but stop at next system-call

entry/exit point
PTRACE_SINGLESTEP restart stopped tracee but stop at next instruction
PTRACE_SYSEMU continue and stop on entry to next system call,

which is not executed
PTRACE_SYSEMU_SINGLESTEP same as PTRACE_SYSEMU but also single step if

not system call

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 225

Ptrace Request Types (Continued 1)
Reading and Writing Tracee Memory and User Area

Request Type Description

PTRACE_PEEKTEXT read code memory in tracee
PTRACE_POKETEXT write code memory in tracee
PTRACE_PEEKDATA read data memory in tracee
PTRACE_POKEDATA write data memory in tracee
PTRACE_GET_THREAD_AREA reads thread area for tracee
PTRACE_SET_THREAD_AREA writes thread area for tracee
PTRACE_PEEKUSER read user area for tracee
PTRACE_POKEUSER write user area for tracee

Reading and Writing Processor Registers for Tracee
Request Type Description

PTRACE_GETREGS read general-purpose registers of tracee
PTRACE_SETREGS set general-purpose registers of tracee
PTRACE_GETFPREGS read floating-point registers of tracee
PTRACE_SETFPREGS set floating-point registers of tracee
PTRACE_GETREGSET read registers of tracee
PTRACE_SETREGSET set registers of tracee

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 226

Ptrace Request Types (Continued 2)

Get and Set Signal Mask of Tracee
Request Type Description

PTRACE_GETSIGMASK get mask of blocked signals in tracee
PTRACE_SETSIGMASK set mask of blocked signals

Query or Set Stop-Related Information
Request Type Description

PTRACE_GETSIGINFO get information about signal that caused stop
PTRACE_SETSIGINFO set signal information
PTRACE_PEEKSIGINFO retrieve siginfo_t structures without remov-

ing signals from queue
PTRACE_GETEVENTMSG retrieve message about ptrace event that

caused stop
PTRACE_GET_SYSCALL_INFO retrieve information about system call that

caused stop

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 227

Ptrace Requests (Continued 3)

Other
Request Type Description

PTRACE_SETOPTIONS set options for ptrace
PTRACE_LISTEN restart stopped tracee but prevent it from exe-

cuting
PTRACE_KILL send tracee SIGKILL signal to terminate it
PTRACE_INTERRUPT stop tracee, interrupting system call if neces-

sary
PTRACE_SECCOMP_GET_FILTER get BPF filters for tracee

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 228

Turning Thread into Tracee

■ PTRACE_TRACEME request turns calling thread into tracee with parent as
tracer

■ after PTRACE_TRACEME request, calling thread continues to run (i.e., does
not enter ptrace stop)

■ if exec performed, SIGSTOP signal sent just before new program starts
executing (causing tracee to enter ptrace stop)

■ often follow PTRACE_TRACEME request with raise(SIGSTOP) so that
parent (which is tracer) can observe signal-delivery stop

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 229

Tracing Options

Option Description

PTRACE_O_EXITKILL send SIGKILL signal to tracee if tracer exits
PTRACE_O_TRACECLONE stop tracee at next clone and start tracing

newly cloned process
PTRACE_O_TRACEEXEC stop tracee at next execve
PTRACE_O_TRACEEXIT stop tracee at exit
PTRACE_O_TRACEFORK stop tracee at next fork and automatically start

tracing newly forked process
PTRACE_O_TRACESYSGOOD distinguish normal traps from those caused by

system calls
PTRACE_O_TRACEVFORK stop tracee at next vfork and automatically

start tracing newly vforked process
PTRACE_O_TRACEVFORKDONE stop tracee at completion of next vfork
PTRACE_O_TRACESECCOMP stop tracee when seccomp

SECCOMP_RET_TRACE rule triggered
PTRACE_O_SUSPEND_SECCOMP suspend tracee’s seccomp protections

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 230

Reading and Writing Memory of Tracee

■ PTRACE_PEEKDATA, PTRACE_POKEDATA, PTRACE_PEEKTEXT,
PTRACE_POKETEXT access memory one long at time

■ address being accessed should be suitably aligned for long

■ although separate operations provided for accessing code and data, can
be used interchangeably

■ in case of PTRACE_PEEKTEXT and PTRACE_PEEKDATA, can distinguish
between read word with value -1 and failure by setting errno to 0 prior to
call and checking if errno set if -1 returned

■ read and write operations bypass memory protection (e.g., can write to
write-protected page)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 231

Program Tracing

■ ptrace system call provides means by which one process (called tracer)
can observe and control execution of another process (called tracee)

■ intended to be used for debuggers and system call tracing
■ tracee can be in one of two states:

1 running (which includes being blocked in system call)
2 stopped

■ when tracee moves from running to stopped state, ptrace stop said to
occur

■ ptrace stops can be subdivided into four categories:
1 signal-delivery stops
2 group stops
3 ptrace-event stops
4 syscall stops

■ most ptrace commands (all except PTRACE_ATTACH, PTRACE_TRACEME,
PTRACE_KILL, and PTRACE_SETOPTIONS) require tracee to be in ptrace
stop

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 232

Program Tracing (Continued)

■ tracer can receive ptrace-stop notifications via wait system call (i.e., wait,
waitpid, waitid, wait3, and wait4) in addition to usual child-death
notifications

■ since (by definition) ptrace stop means tracee has stopped, wait
notification for ptrace stop with status status always such that
WIFSTOPPED(status) is true

■ type of ptrace stop can be determined based on:
2 value of WSTOPSIG(status)
2 value of status >> 16
2 result of PTRACE_GETSIGINFO request

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 233

Signal-Delivery Stop

■ for any signal other than SIGKILL, kernel selects thread to handle signal

■ if thread being traced sent signal, enters signal-delivery stop

■ signal not yet delivered to thread and can be suppressed by tracer

■ if not suppressed, signal passed to tracee in next ptrace restart request

■ if signal blocked, signal-delivery stop does not happen until signal
unblocked (except for SIGSTOP which cannot be blocked)

■ in case of signal-delivery stop, WSTOPSIG(status) is signal being
delivered

■ how to determine if ptrace stop is signal-delivery stop considered later

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 234

Signal Injection and Suppression

■ after signal-delivery stop, tracer should restart with
ptrace(restart, pid, 0, sig) where restart is ptrace request to
resume tracee execution

■ if sig is 0, no signal delivered; otherwise, signal sig injected into thread

■ sig can be different from WSTOPSIG(status)

■ signals can only be injected by restarting ptrace command issued after
signal-delivery stop

■ for this reason, important to distinguish between group stop and
signal-delivery stop

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 235

Group Stop

■ when process receives stopping signal, all threads stop

■ if some threads traced, enter group stop

■ stopping signal will first cause signal-delivery stop

■ only after signal injected by tracer will group stop be initiated on all tracees
in process

■ in case of group stop, WSTOPSIG(status) is stopping signal

■ how to determine if ptrace stop is group stop considered later

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 236

Ptrace-Event Stops

■ ptrace-event stop used to notify certain types of events
■ ptrace stop is ptrace-event stop if WSTOPSIG(status) is SIGTRAP and

one of following bits in status is set:
2 PTRACE_EVENT_VFORK
2 PTRACE_EVENT_FORK
2 PTRACE_EVENT_CLONE
2 PTRACE_EVENT_VFORK_DONE
2 PTRACE_EVENT_EXEC
2 PTRACE_EVENT_EXIT
2 PTRACE_EVENT_STOP
2 PTRACE_EVENT_SECCOMP

■ particular type ptrace-event stop determined by which of above bits is set

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 237

Types of Ptrace-Event Stops

Type Description

PTRACE_EVENT_VFORK stop (in parent) before return from: 1) vfork or
2) clone with CLONE_VFORK flag

PTRACE_EVENT_FORK stop (in parent) before return from: 1) fork or
2) clone with exit signal set to SIGCHLD

PTRACE_EVENT_CLONE stop (in parent) before return from clone
PTRACE_EVENT_VFORK_DONE stop (in parent) after child unblocks tracee by

exiting/execing before return from: 1) vfork or
2) clone with CLONE_VFORK flag

PTRACE_EVENT_EXEC stop before return from execve
PTRACE_EVENT_EXIT stop before exit (including exit_group, signal

death, exit caused by execve in multithreaded
process)

PTRACE_EVENT_STOP stop induced by PTRACE_INTERRUPT com-
mand, group stop, initial ptrace-stop when
new child attached using PTRACE_SEIZE

PTRACE_EVENT_SECCOMP stop triggered by seccomp rule
on tracee syscall entry when
PTRACE_O_TRACESECCOMP flag set

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 238

Syscall Stops

■ when tracee enters or exits system call, tracee can enter syscall stop
■ two types of syscall stops:

1 syscall enter (tracee about to enter system call)
2 syscall exit (tracee about to leave system call)

■ if tracee restarted by PTRACE_SYSCALL or PTRACE_SYSEMU, tracee enters
syscall-enter stop just prior to entering any system call

■ if tracee in syscall-enter stop restarted with PTRACE_SYSCALL, tracee
enters syscall-exit stop just after system call completes

■ signal-delivery stop will never occur between syscall-enter and syscall-exit
stops

■ ptrace event stops may occur between syscall-enter and syscall-exit stops

■ if tracee in syscall-enter stop restarted with PTRACE_SYSEMU, no
syscall-exit stop occurs

■ particular system call can be determined by inspecting processor registers

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 239

Syscall Stops (Continued)

■ syscall-enter stop always followed by syscall-exit stop, ptrace-event stop,
or tracee’s death

■ seccomp ptrace-event stops can cause syscall-exit stop without preceding
syscall-entry stop

■ syscall-enter and syscall-exit stops can be distinguished by tracking which
syscall stop last occurred

■ how to determine if ptrace stop is syscall stop to be considered shortly

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 240

Distinguishing Signal-Delivery, Group, and Syscall Stops

■ if ptrace stop not ptrace-event stop, following approach can be used to
distinguish between remaining type of stops

■ if WSTOPSIG(status) is SIGTRAP, either signal-delivery stop or syscall
stop occurred

■ if WSTOPSIG(status) is stopping signal (i.e., SIGSTOP, SIGTSTP,
SIGTTIN, and SIGTTOU), either signal-delivery stop or group stop
occurred

■ otherwise, signal-delivery stop occurred

■ group stops can be distinguished from signal-delivery stops for stopping
signals by using PTRACE_GETSIGINFO request

■ if PTRACE_GETSIGINFO results in EINVAL, group stop

■ syscall-stops can be distinguished from signal-delivery stops with
SIGTRAP by querying PTRACE_GETSIGINFO or using
PTRACE_O_TRACESYSGOOD ptrace option (with latter being more efficient)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 241

Additional Remarks

■ if PTRACE_O_TRACESYSGOOD set, signal number ORed with 0x80 in case
of syscall-stop, allowing distinction to be made between SIGTRAP signal
for process and syscall-stop

■ syscall-enter stop has -ENOSYS in register used for return value (rax on
x86-64)

■ syscall-exit stop has actual return value in register

■ since system call never returns -ENOSYS, can distinguish syscall-enter
stop from syscall-exit stop based on this register

■ ptrace saves original rax register to orig_rax

■ at syscall-exit, orig_rax has original value on entry to system call

■ therefore, can tell which system call exiting

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 242

Additional Remarks (Continued 1)

■ restriction on what thread can trace another child/descendant same UID
CAP_SYS_ADMIN

■ particular setting can be found in
/proc/sys/kernel/yama/ptrace_scope

■ in case of many Linux distributions, kernel is configured by default to
prevent any process from calling ptrace on another process that it did not
create (e.g., via fork)

■ only one tracer of thread/process at any given time

■ to trace children, can use PTRACE_O_TRACEFORK,
PTRACE_O_TRACECLONE, and PTRACE_O_TRACEVFORK options

■ options inherited by new tracees that are created and auto-attached via
active PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK, and
PTRACE_O_TRACECLONE settings

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 243

[Example] Changing Tracee Memory: Summary

■ code example illustrates use of ptrace system call to read/write memory
of child process

■ parent process initializes integer variables x and y

■ then parent process creates child process via fork

■ before requesting to be traced, child process sets x and y to different
values (from those set by parent process)

■ then, child process requests to be traced via PTRACE_TRACEME request of
ptrace (which results in child process being stopped)

■ before parent process resumes execution of child process, parent process
prints value of x from child’s memory and also changes value of y in
child’s memory

■ then, parent process allows child process to continue execution

■ after being resumed, child process prints value of y to show that parent
did, in fact, change value of y in child’s memory

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 244

[Example] Changing Tracee Memory: Code

ptrace_2.cpp

1 #include <format>
2 #include <iostream>
3 #include <signal.h>
4 #include <sys/ptrace.h>
5 #include <sys/types.h>
6 #include <sys/wait.h>
7 #include <unistd.h>
8
9 int main() {

10 long x = -1;
11 long y = -1;
12 if (pid_t child_pid = fork(); child_pid > 0) {
13 int status;
14 if (waitpid(child_pid, &status, 0) != child_pid) {return 1;}
15 if (!WIFSTOPPED(status)) {return 1;}
16 if (ptrace(PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_EXITKILL))
17 {return 1;}
18 errno = 0;
19 long w = ptrace(PTRACE_PEEKDATA, child_pid, &x, 0);
20 if (w == -1 && errno) {return 1;}
21 if (ptrace(PTRACE_POKEDATA, child_pid, &y, w)) {return 1;}
22 if (ptrace(PTRACE_CONT, child_pid, 0, 0)) {return 1;}
23 } else if (child_pid == 0) {
24 x = 42;
25 y = 0;
26 if (ptrace(PTRACE_TRACEME, 0, 0, 0)) {return 1;}
27 if (raise(SIGSTOP)) {return 1;}
28 std::cout << std::format("value is {}\n", y);
29 } else {return 1;}
30 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 245

[Example] Single Stepping: Summary
■ code example illustrates use of PTRACE_SINGLESTEP request of ptrace

system call
■ program takes command-line arguments that specify another program to

run and zero or more arguments for that other program
■ process creates child process (via fork) so that child can run other

program (via execve)
■ parent process then waits for child to stop (due to request to be traced)
■ before calling execve, child process asks to be traced via

PTRACE_TRACEME request of ptrace
■ parent process loops issuing PTRACE_SINGLESTEP request of ptrace to

stop child execution after each instruction, at which point value of child’s
instruction pointer queried (via ptrace) and printed

■ after child process terminates, total number of instructions executed by
child is printed

■ for example, to single step through execution of /bin/true, use
command:

ptrace_3 /bin/true

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 246

[Example] Single Stepping: Code
ptrace_3.cpp

1 #include <chrono>
2 #include <format>
3 #include <iostream>
4 #include <sys/ptrace.h>
5 #include <sys/types.h>
6 #include <sys/user.h>
7 #include <sys/wait.h>
8 #include <unistd.h>
9

10 int main(int argc, char** argv) {
11 if (argc < 2) {std::cerr << "no program specified\n"; return 1;}
12 if (pid_t child_pid = fork(); child_pid > 0) {
13 struct user_regs_struct regs;
14 unsigned long long count = 0;
15 auto start_time = std::chrono::high_resolution_clock::now();
16 for (;;) {
17 int status;
18 if (waitpid(child_pid, &status, 0) < 0) {return 1;}
19 if (WIFEXITED(status)) {break;}
20 if (ptrace(PTRACE_GETREGS, child_pid, nullptr, ®s) < 0) {return 1;}
21 std::cerr << std::format("rip: {:#x}\n", regs.rip);
22 if (ptrace(PTRACE_SINGLESTEP, child_pid, nullptr, nullptr) < 0) {return 1;}
23 ++count;
24 }
25 double elapsed_time = std::chrono::duration<double>(
26 std::chrono::high_resolution_clock::now() - start_time).count();
27 std::cerr << std::format("instruction count: {}\n"
28 "elapsed time: {}\n"
29 "instructions/second: {}\n",
30 count, elapsed_time, count / elapsed_time);
31 } else if (child_pid == 0) {
32 if (ptrace(PTRACE_TRACEME, 0, nullptr, nullptr) < 0) {return 1;}
33 if (execve(argv[1], &argv[1], environ)) {return 1;}
34 } else {return 1;}
35 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 247

[Example] System Call Tracer: Summary

■ code example illustrates use of PTRACE_SYSCALL request of ptrace
system call

■ program takes command-line arguments that specify another program to
run and zero or more arguments for that other program

■ process creates child process (via fork) so that child can run other
program (via execve)

■ parent process then waits for child to stop (due to request to be traced)
■ before calling execve, child process asks to be traced via

PTRACE_TRACEME request of ptrace
■ parent process loops issuing PTRACE_SYSCALL request of ptrace to stop

child execution at each system call, at which point information about type
of system call recorded and printed

■ after child process terminates, which system calls used by child printed
(along with counts)

■ for example, to process execution of “/bin/ls /”, use command:
ptrace_1 /bin/ls /

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 248

[Example] System Call Tracer: Code (1)

ptrace_1.cpp (Continued)
1 #include <format>
2 #include <iostream>
3 #include <map>
4 #include <stdexcept>
5 #include <sys/ptrace.h>
6 #include <sys/types.h>
7 #include <sys/user.h>
8 #include <sys/wait.h>
9 #include <syscall.h>

10 #include <unistd.h>
11 #include "syscall_names.hpp"

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 249

[Example] System Call Tracer: Code (2)

ptrace_1.cpp (Continued)
13 void parent(int child_pid) {
14 std::map<long, size_t> syscall_counts;
15 int status;
16 if (waitpid(child_pid, &status, 0) < 0) {throw std::runtime_error("waitpid failed");}
17 if (!WIFSTOPPED(status)) {throw std::runtime_error("unexpected tracee state");}
18 if (ptrace(PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_EXITKILL))
19 {throw std::runtime_error("ptrace failed");}
20 for (;;) {
21 if (ptrace(PTRACE_SYSCALL, child_pid, 0, 0) < 0)
22 {throw std::runtime_error("ptrace failed");}
23 if (waitpid(child_pid, &status, 0) < 0)
24 {throw std::runtime_error("waitpid failed");}
25 if (!WIFSTOPPED(status)) {throw std::runtime_error("unexpected tracee state");}
26 struct user_regs_struct regs;
27 if (ptrace(PTRACE_GETREGS, child_pid, 0, ®s) < 0)
28 {throw std::runtime_error("cannot get registers");}
29 long syscall = regs.orig_rax;
30 syscall_counts[syscall]++;
31 std::cout << std::format("entering syscall {}\n", syscall_names[syscall]);
32 if (ptrace(PTRACE_SYSCALL, child_pid, 0, 0) < 0)
33 {throw std::runtime_error("ptrace failed");}
34 if (waitpid(child_pid, &status, 0) < 0)
35 {throw std::runtime_error("waitpid failed");}
36 if (WIFEXITED(status)) {break;}
37 if (!WIFSTOPPED(status)) {throw std::runtime_error("unexpected tracee state");}
38 }
39 std::cout << "total system call counts:\n";
40 for (auto [k, v] : syscall_counts)
41 {std::cout << std::format("{:9d} {:s}\n", v, syscall_names[k]);}
42 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 250

[Example] System Call Tracer: Code (3)

ptrace_1.cpp (Continued)
44 void child(int argc, char** argv) {
45 ptrace(PTRACE_TRACEME, 0, 0, 0);
46 if (execve(argv[1], &argv[1], environ) < 0)
47 {throw std::runtime_error("execve failed");}
48 }
49
50 int main(int argc, char** argv) try {
51 if (argc <= 1) {throw std::runtime_error("invalid usage");}
52 if (pid_t pid = fork(); pid > 0) {parent(pid);}
53 else if (pid == 0) {child(argc, argv);}
54 else {throw std::runtime_error("fork failed");}
55 } catch(const std::exception& e) {
56 std::cerr << "fatal error: " << e.what() << ’\n’;
57 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 251

References I

1 Pradeep Padala. Playing with ptrace, Part I. Linux Journal,
https://www.linuxjournal.com/article/6100, Oct. 31, 2002.

2 Pradeep Padala. Playing with ptrace, Part II. Linux Journal,
https://www.linuxjournal.com/article/6210, Nov. 30, 2002.

3 Eli Bendersky. How debuggers work: Part 1 - Basics. https://eli.
thegreenplace.net/2011/01/23/how-debuggers-work-part-1,
Jan. 23, 2011.

4 Eli Bendersky. How debuggers work: Part 2 - Breakpoints.
https://eli.thegreenplace.net/2011/01/27/
how-debuggers-work-part-2-breakpoints, Jan. 27, 2011.

5 Eli Bendersky. How debuggers work: Part 3 - Debugging information.
https://eli.thegreenplace.net/2011/02/07/
how-debuggers-work-part-3-debugging-information, Feb. 7,
2011.

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 252

https://www.linuxjournal.com/article/6100
https://www.linuxjournal.com/article/6210
https://eli.thegreenplace.net/2011/01/23/how-debuggers-work-part-1
https://eli.thegreenplace.net/2011/01/23/how-debuggers-work-part-1
https://eli.thegreenplace.net/2011/01/27/how-debuggers-work-part-2-breakpoints
https://eli.thegreenplace.net/2011/01/27/how-debuggers-work-part-2-breakpoints
https://eli.thegreenplace.net/2011/02/07/how-debuggers-work-part-3-debugging-information
https://eli.thegreenplace.net/2011/02/07/how-debuggers-work-part-3-debugging-information

Talks I

1 Michael Kerrisk. Strace: Monitoring The Kernel-User-Space Conversation.
NDC TechTown, Kongsberg, Norway, Aug. 29, 2018. Available online at
https://youtu.be/oFt6V56BOlo.

2 Greg Law and Dewang Li. Modern Linux C++ Debugging Tools - Under
the Covers. CppCon, Aurora, CO, USA, Sept. 20, 2019. Available online
at https://youtu.be/WoRmXjVxuFQ.

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 253

https://youtu.be/oFt6V56BOlo
https://youtu.be/WoRmXjVxuFQ

Section 2.12

Seccomp

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 254

Talks I

1 Paul Moore and Tom Hromatka. The Why and How of libseccomp. Linux
Security Summit North America, San Diego, CA, USA, Aug. 19, 2019.
Available online at https://youtu.be/6lRHK_LLUGI.

2 Tycho Andersen. Forwarding syscalls to userspace. linux.conf.au,
Christchurch, New Zealand, Jan. 22, 2019. Available online at
https://youtu.be/sqvF_Mdtzgg.

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 255

https://youtu.be/6lRHK_LLUGI
https://youtu.be/sqvF_Mdtzgg

Section 2.13

Shared Libraries and Dynamic Linking and Loading

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 256

[Example] Greet: Summary

■ code example illustrates use of dynamic loading

■ shared library provides greet function that prints greeting message

■ application program invokes greet function and exits

■ two versions of application program provided, one using dynamic loading
of library and one not

■ application using dynamic loading loads shared library and then resolves
greet symbol in order to locate function to call

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 257

[Example] Greet: CMakeLists.txt

CMakeLists.txt

1 cmake_minimum_required(VERSION 3.14)
2
3 project(greet LANGUAGES CXX)
4
5 set(CMAKE_VERBOSE_MAKEFILE true)
6 set(CMAKE_CXX_STANDARD 20)
7
8 add_library(greet_static STATIC greet.cpp)
9 set_target_properties(greet_static PROPERTIES OUTPUT_NAME greet)

10
11 add_library(greet_shared SHARED greet.cpp)
12 set_target_properties(greet_shared PROPERTIES OUTPUT_NAME greet)
13
14 add_executable(app_static app.cpp)
15 target_link_libraries(app_static PUBLIC greet_static)
16
17 add_executable(app_shared app.cpp)
18 target_link_libraries(app_shared PUBLIC greet_shared)
19
20 add_executable(app_dl app_dl.cpp)
21 target_link_libraries(app_dl PUBLIC dl)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 258

[Example] Greet: Library

greet.hpp

1 bool greet();

greet.cpp

1 #include <iostream>
2
3 bool greet() {
4 return bool(std::cout << "Hello, World\n" << std::flush);
5 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 259

[Example] Greet: Application Without Dynamic Loading

app.cpp

1 #include "greet.hpp"
2
3 int main() {
4 return greet() ? 0 : 1;
5 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 260

[Example] Greet: Application With Dynamic Loading

app_dl.cpp

1 #include <format>
2 #include <iostream>
3 #include <dlfcn.h>
4 #include <stdlib.h>
5
6 int main(void) {
7
8 using greet_func_t = bool (*)(void);
9

10 constexpr char lib[] = "libgreet.so";
11 const char *error;
12 void *module;
13 greet_func_t greet;
14
15 module = dlopen(lib, RTLD_LAZY);
16 if (!module) {
17 std::cerr << std::format("cannot open {}: {}\n", lib, dlerror());
18 return 1;
19 }
20
21 dlerror();
22 greet = reinterpret_cast<greet_func_t>(dlsym(module, "_Z5greetv"));
23 if ((error = dlerror())) {
24 std::cerr << std::format("cannot find greet: {}\n", error);
25 return 1;
26 }
27
28 bool status = greet();
29
30 dlclose(module);
31 return status ? 0 : 1;
32 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 261

[Example] PIE: Summary

■ consider simple C++ program that prints address of several variables and
functions in order to demonstrate address-space layout randomization
(ASLR)

■ CMake used to build code

■ print value of global function func, global variable var, and local variable
i in main function

■ in non-PIE case, address of func and var do not change across multiple
invocations of program

■ in PIE case, addresses of func and var change across multiple
invocations of program

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 262

[Example] PIE: CMakeLists File

CMakeLists.txt

1 # Needs CMake 3.14 for CMP0083 NEW
2 cmake_minimum_required(VERSION 3.14)
3 project(aslr_demo LANGUAGES CXX)
4
5 set(CMAKE_CXX_STANDARD 20)
6 set(CMAKE_VERBOSE_MAKEFILE true)
7
8 include(CheckPIESupported)
9 check_pie_supported()

10 if(NOT CMAKE_CXX_LINK_PIE_SUPPORTED)
11 message(FATAL_ERROR "PIE is not supported\n")
12 endif()
13
14 add_executable(aslr_nopie aslr.cpp)
15 set_property(TARGET aslr_nopie PROPERTY POSITION_INDEPENDENT_CODE false)
16 add_executable(aslr_pie aslr.cpp)
17 set_property(TARGET aslr_pie PROPERTY POSITION_INDEPENDENT_CODE true)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 263

[Example] PIE: Source Code

aslr.cpp

1 #include <iostream>
2 #include <iomanip>
3 #include <cstdint>
4
5 int var = 42;
6
7 int func() {return 42;}
8
9 int main() {

10 int i;
11 std::cout << std::hex << std::setfill(’0’)
12 << " addr(var): " << std::setw(16)
13 << reinterpret_cast<uintptr_t*>(&var) << ’\n’
14 << "addr(func): " << std::setw(16)
15 << reinterpret_cast<uintptr_t>(func) << ’\n’
16 << " addr(i): " << std::setw(16)
17 << reinterpret_cast<uintptr_t>(&i) << ’\n’
18 << "addr(var) - addr(func): " << std::setw(16)
19 << reinterpret_cast<uintptr_t>(&var) -
20 reinterpret_cast<uintptr_t>(&func) << ’\n’;
21 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 264

Part 3

Other Topics

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 265

Section 3.1

Assembly Language

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 266

Section 3.1.1

Basic Computer Architecture

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 267

Processors

■ core is independent processing unit that reads and executes program
instructions, and consists of:

2 registers
2 arithmetic logic unit (ALU)
2 control unit
2 usually cache

■ processor is computing element that consists of:
2 one or more cores
2 external bus interface
2 possibly shared cache

■ thread is sequence of instructions (which can be executed by core)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 268

Registers

■ register: very small memory (typically 32 or 64 bits in size) located on
processor itself

■ number of registers and their sizes varies from one processor architecture
to another

■ access to data contained in registers extremely fast, since registers inside
processor

■ modern processor architectures tend to use registers to hold operands for
most or all operations performed

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 269

Code Execution

■ each possible instruction represented by sequence of one or more bytes
called opcode (which stands for operation code)

■ instruction pointer is special register that holds address of next
instruction to execute

■ code execution consists of following steps repeated in infinite loop:
1 processor reads opcode from address pointed to by instruction pointer
2 operation specified by opcode is performed
3 based on instruction performed, instruction pointer updated

■ normally, instruction pointer updated to point to address immediately
following end of opcode of instruction just executed

■ some instructions, however, can cause code execution to deviate from this
normal linear path

■ other than loads and stores, operands for instructions usually taken from
registers (or instruction opcode itself)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 270

Types of Instructions
■ memory operations:

2 load: read value from memory (or immediate value) into register
2 store: write value in register (or immediate value) to memory

■ arithmetic and logic operations:
2 integer arithmetic (e.g., add, subtract, multiply, divide, increment,

decrement)
2 bitwise-logic and bit-shifting operations for integers (e.g., AND, OR, NOT,

XOR, logical shift, arithmetic shift)
2 comparison operations
2 floating-point arithmetic (e.g., add, subtract, multiply, divide, square root)

■ control-flow operations:
2 conditional and unconditional branches
2 subroutine call and return
2 system call and return

■ coprocessor instructions:
2 operations to move data to and from coprocessor
2 coprocessor operations (e.g., floating-point arithmetic operations for math

coprocessor)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 271

Call Stack

■ call stack (often simply called stack) is stack data structure used for
managing function calls

■ stack pointer holds address of element at top of stack

■ whether stack grows upwards or downwards in memory, depends on
particular processor architecture

■ call stack comprised of entries known as stack frames

■ each active function call has corresponding stack frame on call stack
■ stack frame for function call stores:

2 return address for function call
2 arguments to function call
2 local variables for function
2 saved copies of registers modified by function
2 return value produced by function call in cases where value not returned in

register

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 272

Stack Example

dlrrec{ron

a4
Stac K

grcxrlh

S*acY {na rn ?

1,ar call to

fuoc f rc^ S

StacE 1'-c,7n<-
{or cat | +o

-f,-roc+ rcio f

loca I Vana.b les fcr

f,rne"t {Cn I

re4u rn addregs lor

cat l $o trnciron g

Srgum€nts -fc.

ften&trdn g

Lop o f s laeK

lcree I u lor lob les {cr

{unstrc^ +

re*u rrl actds ess lcr

eal l {o { t*nLtron {

af,g urr.ent.3 4.r

{., oubl on +

■ some function (whose stack frame is not shown) calls function f which
then calls function g

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 273

Status Register

■ status register holds numerous condition/status flags and control settings

■ many processor instructions can set condition/status flags

■ particular state stored in status register will depend on particular
processor architecture

■ some common condition flags include:
2 zero (result zero)
2 carry/borrow (result generated carry or borrow)
2 negative (result negative)
2 parity (result has even/odd parity)
2 overflow (operation caused overflow)

■ for example, arithmetic operation that compares two values (i.e.,
computes their difference) would set zero flag in status register if result of
comparison is zero

■ conditional branches use condition flags in status register to decide if
branch should be taken

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 274

Calling Conventions

■ in order for mechanics of function calls to work correctly, caller and callee
must agree on numerous things:

2 how are arguments passed to functions (e.g., on stack or in registers, where
on stack, in which registers)

2 how return value propagated from callee to caller
2 what registers must be preserved by callee (i.e., callee-saved registers)
2 what registers must be saved by caller because they are allowed to be

changed by callee (i.e., caller-saved registers)

■ particular set of choices made in regard to above issues referred to as
calling conventions

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 275

Endianness

■ when storing multibyte values in memory, more than one choice possible
on how to order bytes in memory

■ big endian: multibyte values stored in order of most significant to least
significant byte (i.e., big end first)

■ little endian: multibyte values stored in order of least significant to most
significant byte (i.e., little end first)

■ consider 32-bit integer value DEADBEEF (in hexadecimal), which requires
4 bytes of storage:

Big Endian
Address Value

i DE
i+1 AD
i+2 BE
i+3 EF

Little Endian
Address Value

i EF
i+1 BE
i+2 AD
i+3 DE

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 276

Section 3.1.2

x86-64 Architecture

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 277

x86-64 Architecture

■ 16 64-bit general-purposes registers (including stack pointer):
2 rax, rbx, rcx, rdx, rbp, rsi, rdi, rsp, r8, r9, r10, r11, r12, r13, r14, r15

■ rsp is stack pointer

■ rbp normally used as frame pointer
■ 16 128-bit SSE (vector) registers:

2 xmm0 to xmm15

■ 64-bit instruction pointer register rip

■ status/control register
■ 6 segment registers:

2 cs, ds, es, ss, fs, gs

■ uses little-endian byte ordering

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 278

General-Purpose Registers

■ information in 64-bit general-purpose register can be accessed as:
2 64-bit register in its entirety
2 32-bit register comprised of 32 least significant bits (i.e., bits 0–31) of 64-bit

register
2 16-bit register comprised of 16 least significant bits (i.e., bits 0–15) of 64-bit

register
2 8-bit register comprised of 8 least significant bits (i.e., bits 0–7) of 64-bit

register

■ in some special cases, can access bits 8–15 of 64-bit register as 8-bit
register as well

■ for example, in case of (64-bit) rax register:
16 ,5 . . . - B 1 <r t \ O

I

l - rtaxi

fax

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 279

General-Purpose Registers (Continued)

64-Bit Bits Bits Bits Bits
Register 0–31 0–15 15–8 0–7

rax eax ax ah al
rbx ebx bx bh bl
rcx ecx cx ch cl
rdx edx dx dh dl
rbp ebp bp — bpl
rsi esi si — sil
rdi edi di — dil
rsp esp sp — spl
r8 r8d r8w — r8b
r9 r9d r9w — r9b
r10 r10d r10w — r10b
r11 r11d r11w — r11b
r12 r12d r12w — r12b
r13 r13d r13w — r13b
r14 r14d r14w — r14b
r15 r15d r15w — r15b

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 280

Flags Register

■ 64-bit rflags register holds condition/status flags and control information

■ eflags refers to 32 least-significant bits of rflags

■ flags refers to 16 least-significant bits of rflags

■ cannot directly read or write flags register as whole

■ flags register can be pushed on and popped off stack (and value on stack
can be modified)

■ some arithmetic and logical operations set one or more flags

■ conditional branch instructions decide if branch should take place based
on value of one or more flags

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 281

Some Condition Flags in Flags Register

Flag Description

carry flag (CF) set on high-order bit carry or borrow; clear other-
wise

parity flag (PF) set if low-order eight bits of result contain even
number of one bits; cleared otherwise

zero flag (ZF) set if result zero; cleared otherwise
sign flag (SF) set equal to high-order bit of result (0 if positive; 1

if negative)
overflow flag (OF) set if result too large in magnitude to fit in destina-

tion operand; clear otherwise

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 282

Conditional Branches
Instruction Description Signedness Flags

jo jump if overflow — OF = 1
jno jump if not overflow — OF = 0
js jump if sign — SF = 1
jns jump if not sign — SF = 0
je jump if equal — ZF = 1
jz jump if zero
jne jump if not equal — ZF = 0
jnz jump if not zero
jb jump if below unsigned CF = 1
jnae jump if not above or equal
jc jump if carry
jnb jump if not below unsigned CF = 0
jae jump if above or equal
jnc jump if not carry
jbe jump if below or equal unsigned CF = 1 or ZF = 1
jna jump if not above
ja jump if above unsigned CF = 0 and ZF = 0
jnbe jump if not below or equal
jl jump if less signed SF != OF
jnge jump if not greater or equal
jge jump if greater or equal signed SF = OF
jnl jump if not less
jle jump if less or equal signed ZF = 1 or SF != OF
jng jump if not greater
jg jump if greater signed ZF = 0 and SF = OF
jnle jump if not less or equal
jp jump if parity PF = 1
jpe jump if parity even
jnp jump if not parity PF = 0
jpo jump if parity odd
jcxz jump if cx is zero CX = 0
jecxz jump if ecx is zero ECX = 0

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 283

Function Calls

■ function invoked using call instruction

■ call instruction takes operand that specifies where start of function to be
called resides in memory

■ address of next instruction after call instruction pushed on stack; then
jumps to start address for function

■ return from function using ret instruction

■ pops new value for instruction pointer from stack

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 284

Calling Conventions

■ callee must preserve values of rbx, rbp, r12, r13, r14, and r15 registers
(i.e., value at exit from callee must be same as value at entry)

■ all other registers must be saved by caller if it wishes to preserve their
values

■ first six integer or pointer arguments passed (in order) in registers:
2 rdi, rsi, rdx, rcx, r8d, and r9d

■ first eight floating-point arguments passed (in order) in registers:
2 xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, and xmm7

■ other types of arguments and additional integer/pointer/floating-point
arguments passed on stack, pushed in right-to-left order

■ return value placed in:
2 rax for integer/pointer value
2 xmm0 for floating-point value
2 at location specified by hidden function parameter for other types

■ in C++, this is first argument

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 285

Calling Conventions (Continued)

■ stack pointer must have 16-byte alignment prior to making function call

■ implies that upon entry to function, stack pointer minus 8 always 16-byte
aligned

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 286

System Calls

■ service provided by operating system accessed via system call

■ system call performed via syscall instruction

■ syscall instruction allows code to transition from non-privileged
execution in user space to privileged execution in kernel space

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 287

System-Call Calling Conventions

■ system call allowed to modify rcx and r11 as well as rax (used for return
value) but other registers preserved

■ number of system call passed in rax

■ system calls limited to six arguments, which are always integers or
pointers

■ all arguments passed in registers (i.e., stack not used)
■ arguments assigned to registers in (left-to-right) order as follows:

2 rdi, rsi, rdx, r10, r8, and r9

■ note that above policy for assigning arguments to registers differs from
policy for user-level code

■ return value between -4095 and -1 indicates error that corresponds to
-errno

■ return value placed in rax

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 288

[Example] True Program: Source Code (C++ and Assembly Versions)

true_0.cpp (C++ version)
1 #include <cstdlib>
2 int main() {
3 std::exit(0);
4 // not reached
5 }

true_1.s (functionally equivalent to C++ version, but without C++ runtime)
1 .set SYS_exit, 60 # system call number for exit
2 .text
3 .globl _start
4 # _start is linker’s default entry point for program
5 _start:
6 # exit(0)
7 mov $0, %edi # note: xor %edi, %edi would have shorter opcode
8 mov $SYS_exit, %rax
9 syscall

10 # not reached

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 289

[Example] True Program: Disassembled Code

output of objdump -d true_1

1

2 true_1: file format elf64 -x86 -64
3

4

5 Disassembly of section .text:
6

7 0000000000401000 <_start >:
8 401000: bf 00 00 00 00 mov $0x0 ,%edi
9 401005: 48 c7 c0 3c 00 00 00 mov $0x3c ,%rax

10 40100c: 0f 05 syscall

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 290

[Example] Maximum Function

max_0.cpp

1 int max(int m, int n) noexcept {return (m > n) ? m : n;}

max_1.s

1 # note: sizeof(int) is 4
2 .text
3 .globl _Z3maxii
4 # int max(int, int)
5 _Z3maxii:
6 cmp %edi, %esi # esi - edi = ?
7 jle .L0 # branch if esi - edi <= 0 (i.e., esi <= edi)
8 mov %esi, %eax # set return value to esi
9 jmp .L1

10 .L0:
11 mov %edi, %eax # set return value to edi
12 .L1:
13 ret

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 291

[Example] Factorial Function
factorial_0.cpp

1 unsigned long long factorial(unsigned long long n) noexcept {
2 unsigned long long result = 1;
3 for (; n > 1; result *= n, --n) {}
4 return result;
5 }

factorial_1.s

1 # note: sizeof(unsigned long long) is 8
2 .text
3 .globl _Z9factorialy
4 # unsigned long long factorial(unsigned long long)
5 _Z9factorialy:
6 # note: clears upper 32 bits of eax
7 mov $1, %eax
8 .L_loop_start:
9 cmp $1, %rdi # rdi - 1 = ?

10 jbe .L_loop_end # branch if rdi - 1 <= 0 (i.e., rdi <= 1)
11 # note: signed multiply gives correct lower 64-bits of result
12 imul %rdi, %rax
13 sub $1, %rdi
14 jmp .L_loop_start
15 .L_loop_end:
16 ret

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 292

[Example] Hamming-Weight Function

hamming_weight_0.cpp

1 unsigned int hamming_weight(unsigned int n) {
2 unsigned int count = 0;
3 for (; n; count += n & 1, n >>= 1) {}
4 return count;
5 }

hamming_weight_1.s

1 # note: sizeof(unsigned int) is 4
2 .text
3 .globl _Z14hamming_weightj
4 # unsigned int hamming_weight(unsigned int)
5 _Z14hamming_weightj:
6 # note: xor %eax, %eax has shorter opcode than mov $0, %eax
7 xorl %eax, %eax
8 .L_loop_start:
9 # note: test %edi, %edi has shorter opcode than cmp $0, %edi

10 test %edi, %edi # edi & edi = edi = ?
11 jz .L_loop_end # branch if edi == 0
12 mov %edi, %edx
13 and $1, %edx
14 add %edx, %eax
15 shr %edi
16 jmp .L_loop_start
17 .L_loop_end:
18 ret

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 293

[Example] Hello World: Assembly Code

hello_2.s

1 .text
2 .globl _start
3 _start:
4 # n = write(1, hello, hello_len)
5 mov $1, %rdi
6 mov $hello, %rsi
7 mov $hello_len, %rdx
8 call write
9 # exit(n == hello_len ? 0 : 1)

10 mov $1, %rdi
11 cmp $hello_len, %rax # rax - $hello_len = ?
12 jne .L0 # branch if rax - $hello_len != 0 (i.e., rax != $hello_len)
13 mov $0, %rdi
14 .L0:
15 call exit # does not return
16 write:
17 .set SYS_write, 1 # system call number for write
18 mov $SYS_write, %rax
19 syscall
20 ret
21 exit:
22 .set SYS_exit, 60 # system call number for exit
23 mov $SYS_exit, %rax
24 syscall # does not return
25 .data
26 hello:
27 .ascii "Hello, World!\n"
28 .set hello_len, . - hello

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 294

[Example] Hello World: Disassembled Code

output of objdump -d hello_2

1
2 hello_2: file format elf64 -x86 -64
3
4
5 Disassembly of section .text:
6
7 0000000000401000 <_start >:
8 401000: 48 c7 c7 01 00 00 00 mov $0x1 ,%rdi
9 401007: 48 c7 c6 00 20 40 00 mov $0x402000 ,%rsi

10 40100e: 48 c7 c2 0e 00 00 00 mov $0xe ,%rdx
11 401015: e8 1b 00 00 00 callq 401035 <write >
12 40101a: 48 c7 c7 01 00 00 00 mov $0x1 ,%rdi
13 401021: 48 3d 0e 00 00 00 cmp $0xe ,%rax
14 401027: 75 07 jne 401030 <_start+0x30>
15 401029: 48 c7 c7 00 00 00 00 mov $0x0 ,%rdi
16 401030: e8 0a 00 00 00 callq 40103f <exit >
17
18 0000000000401035 <write >:
19 401035: 48 c7 c0 01 00 00 00 mov $0x1 ,%rax
20 40103c: 0f 05 syscall
21 40103e: c3 retq
22
23 000000000040103f <exit >:
24 40103f: 48 c7 c0 3c 00 00 00 mov $0x3c ,%rax
25 401046: 0f 05 syscall

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 295

[Example] Add Integers: Callee

addints_0_a.cpp

1 int add(int a0, int a1, int a2, int a3, int a4, int a5, int a6,
2 int a7, int a8, int a9) {
3 return a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9;
4 }

addints_1.s

1 .text
2 .globl _Z3addiiiiiiiiii
3 # int add(int a0, int a1, int a2, int a3,
4 # int a4, int a5, int a6, int a7, int a8,
5 # int a9)
6 _Z3addiiiiiiiiii:
7 mov %edi, %eax # result = a0
8 add %esi, %eax # result += a1
9 add %edx, %eax # result += a2

10 add %ecx, %eax # result += a3
11 add %r8d, %eax # result += a4
12 add %r9d, %eax # result += a5
13 add 8(%rsp), %eax # result += a6
14 add 16(%rsp), %eax # result += a7
15 add 24(%rsp), %eax # result += a8
16 add 32(%rsp), %eax # result += a9
17 ret

f-5?

rSp+B

"s?+
16

r4+?q

rsP + 3?,

re+ urn add rc-ss

-7+n
a(gurn(ttt

8+h arF,urnelt

9th aPg brneqt

fl+h angu rnart

5J ae? grcur,r 9

douJ n cuo rd

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 296

[Example] Add Integers: Caller

addints_0_b.cpp

1 int do_add() {
2 return add(1, 2, 3, 4, 5, -5, -4, -3, -2, -1);
3 }

addints_2.s

1 .text
2 .globl _Z6do_addv
3 _Z6do_addv:
4 # int add(1, 2, 3, 4, 5, -5, -4, -3, -2, -1)
5 # note: x86-64 cannot push 32-bit register
6 pushq $-1 # 10th argument
7 pushq $-2 # 9th argument
8 pushq $-3 # 8th argument
9 pushq $-4 # 7th argument

10 mov $-5, %r9d # 6th argument
11 mov $5, %r8d # 5th argument
12 mov $4, %ecx # 4th argument
13 mov $3, %edx # 3rd argument
14 mov $2, %esi # 2nd argument
15 mov $1, %edi # 1st argument
16 call _Z3addiiiiiiiiii
17 add $32, %rsp # remove arguments from stack
18 ret

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 297

[Example] Local Variables

example1_0.cpp

1 void foo(int& i, int& j, int& k);
2
3 int bar(int a, int b, int c) {
4 foo(a, b, c);
5 return a + b + c;
6 }

example1_1.s

1 .text
2 .globl _Z3bariii
3 # int bar(int a, int b, int c)
4 _Z3bariii:
5 subq $24, %rsp
6 movl %edi, 12(%rsp) # a
7 leaq 12(%rsp), %rdi
8 movl %esi, 8(%rsp) # b
9 leaq 8(%rsp), %rsi

10 movl %edx, 4(%rsp) # c
11 leaq 4(%rsp), %rdx
12 call _Z3fooRiS_S_
13 movl 8(%rsp), %eax # ret = b
14 addl 12(%rsp), %eax # ret += a
15 addl 4(%rsp), %eax # ret += c
16 addq $24, %rsp # free space
17 ret

r sg

r i - ? + 4

1 3 ? + €

r S V + t Z

r s p + , 6

rsP + z4

rsp + 3Z

+ l 6 - b d t
D l rg nlnenl

C---- /6- byle

a l r gn men D

e-

b

a

re lu r n addresr
saved by Cot t to

bac

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 298

Addressing Modes

■ immediate: operand specified in opcode itself
2 mov $16, %rax

■ register mode: operand in register
2 add %rax, %rax

■ register indirect: address of operand contained in register
2 mov %rax, (%edi)
2 call *%rax

■ direct addressing: address of operand contained in opcode itself
2 mov 1024, %rax

■ displacement addressing: address of operand obtained by adding
displacement in opcode to register

2 mov %rax, -4(%rbp)

■ relative addressing: address of operand specified relative to instruction
pointer

2 jne loop_start

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 299

Relative Addressing for Branches and Calls

tooo

2000

(tt"")

ca l l
tngtcvc- te o tc

cail func

star| o-f ,
n€>t* tnstru c-t lG n

o+ fuogf roQ lunc

■ absolute addressing would encode value of 2000 for call target

■ relative addressing would encode signed value of 1000 for call target

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 300

IP-Relative Addressing for Loads/Stores

t O g + r u C + r c n

?+ter load
tns t (4 c+ ton

■ absolute addressing would encode value of 1000 for load address

■ relative addressing would encode signed value of -1000 for load address

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 301

Relocatable and Position-Independent Code

■ absolute code: code that must be loaded at specific address in order to
function correctly

■ load-time locatable (LTL) code: code that can be modified at load time
to accommodate being run at specific memory location (by effectively
patching code to work correctly when loaded at particular address)

■ LTL code requires metadata in executable to specify how to perform
relocation

■ position-independent code (PIC): code that will work correctly (without
modification) when loaded at any address

■ PIC commonly used for shared libraries so that multiple processes can
share identical copy of library code

■ position-independent executable (PIE): executable that is made entirely
from PIC code

■ PIE binaries potentially advantageous in terms of security (due to address
space layout randomization)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 302

[Example] PIE: C++ Code

main.cpp

1 #include <sys/syscall.h>
2

3 int answer = 42;
4

5 extern "C" void exit(int status) {
6 /* invoke exit system call (SYS_exit) */
7 }
8

9 extern "C" int main() {
10 return answer;
11 }
12

13 extern "C" void _start() {
14 exit(main());
15 }

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 303

[Example] PIE: Non-PIE Case

no_pie.s

1 .text
2 # extern "C" void _start()
3 .globl _start
4 _start:
5 call main
6 mov %rax, %rdi
7 call exit # does not return
8 # extern "C" int main()
9 .globl main

10 main:
11 mov answer, %rax
12 ret
13 # extern "C" void exit(int status)
14 .globl exit
15 exit:
16 .set SYS_exit, 60 # system call number for exit
17 mov $SYS_exit, %rax
18 syscall # does not return
19 .data
20 # int answer = 42;
21 .globl answer
22 answer:
23 .align 4
24 .long 0x2a # 42

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 304

[Example] PIE: Non-PIE Executable

Output of objdump -d -r -s no_pie

1
2 nopie: file format elf64 -x86 -64
3
4 Contents of section .text:
5 401000 e8080000 004889c7 e8090000 00488b04H.......H..
6 401010 25002040 00c348c7 c03c0000 000f05 %. @..H..<.....
7 Contents of section .data:
8 402000 2a000000 *...
9

10 Disassembly of section .text:
11
12 0000000000401000 <_start >:
13 401000: e8 08 00 00 00 callq 40100d <main >
14 401005: 48 89 c7 mov %rax ,%rdi
15 401008: e8 09 00 00 00 callq 401016 <exit >
16
17 000000000040100d <main >:
18 40100d: 48 8b 04 25 00 20 40 mov 0x402000 ,%rax
19 401014: 00
20 401015: c3 retq
21
22 0000000000401016 <exit >:
23 401016: 48 c7 c0 3c 00 00 00 mov $0x3c ,%rax
24 40101d: 0f 05 syscall

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 305

[Example] PIE: PIE Case

pie.s

1 .text
2 # extern "C" void _start()
3 .globl _start
4 _start:
5 call main
6 mov %rax, %rdi
7 call exit # does not return
8 # extern "C" int main()
9 .globl main

10 main:
11 mov answer(%rip), %rax # NOTE: THIS LINE CHANGED!
12 ret
13 # extern "C" void exit(int status)
14 .globl exit
15 exit:
16 .set SYS_exit, 60 # system call number for exit
17 mov $SYS_exit, %rax
18 syscall # does not return
19 .data
20 # int answer = 42;
21 .globl answer
22 answer:
23 .align 4
24 .long 0x2a # 42

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 306

[Example] PIE: PIE Case Executable

objdump -d -r -s pie

1
2 pie: file format elf64 -x86 -64
3
4
5 Disassembly of section .text:
6
7 0000000000001000 <_start >:
8 1000: e8 08 00 00 00 callq 100d <main >
9 1005: 48 89 c7 mov %rax ,%rdi

10 1008: e8 08 00 00 00 callq 1015 <exit >
11
12 000000000000100d <main >:
13 100d: 48 8b 05 ec 1f 00 00 mov 0x1fec(%rip),%rax

↪→ # 3000 <answer >
14 1014: c3 retq
15
16 0000000000001015 <exit >:
17 1015: 48 c7 c0 3c 00 00 00 mov $0x3c ,%rax
18 101c: 0f 05 syscall

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 307

Breakpoints

■ int3 instruction intended to be used for breakpoints

■ has one-byte opcode (0xcc)

■ ensures opcode can be replaced with breakpoint instruction without
overwriting any other instructions (which could be branched to before
breakpoint is hit)

■ breakpoint instruction generates processor exception, which is translated
into SIGTRAP signal by operating system

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 308

Why Breakpoint Instruction Has Single-Byte Opcode

breakpoint_single_byte_opcode_1.s

1 # ...
2 jnz skip
3 xchg %eax, %ecx # consider placing breaking here
4 skip:
5 mov %ecx, (%rdi)
6 # ...

Machine code
1 Opcode Assembly
2

3 # ...
4 75 01 jne skip
5 91 xchg %eax ,%ecx # consider placing breakpoint here
6 skip:
7 89 0f mov %ecx ,(%rdi)
8 # ...

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 309

Local Variables

■ storage for local variables allocated on stack

■ on x86, stack grows downwards in memory

■ allocate space on stack by subtracting from stack pointer

■ free space on stack by adding to stack pointer

■ must ensure that stack pointer at function exit matches stack pointer at
function entry; otherwise, wrong return address will be taken from stack

■ if n bytes needed for local variables (plus padding for stack alignment),
subtract n from stack pointer at start of function and add n to stack pointer
at end of function

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 310

Local Variables Without Frame Pointer

without_frame_pointer.s

1 .text
2 .globl func
3 func:
4 # size of storage (in bytes) for local variables, which
5 # must be odd multiple of 8 if any function calls made
6 .set local_size, 64
7 # allocate storage for local variables
8 sub $local_size, %rsp
9 # locals at 0(%rsp) to local_size-1(%rsp)

10 # return address at local_size(%rsp)
11 # arguments passed on stack (if any) start at local_size+8(%rsp)
12 # Note that the addresses of the arguments depend on rsp and
13 # local_size, and the addresses of local variables depend on rsp.
14 # These dependencies are often undesirable.
15 # ... (do something useful)
16 add $local_size, %rsp
17 ret

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 311

Motivation for Use of Frame Pointer

■ when frame pointer not used:
2 address of function arguments depends on both stack pointer and size of

storage for locals
2 addresses of local variables depend on stack pointer

■ this type of dependence often not desirable, as it makes code more
cumbersome to write and also more error prone

■ dependence on size of local storage is bad because it may need to
change when code modified

■ dependence on stack pointer is bad because function may temporarily
push registers on stack which would change stack pointer

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 312

Use of Frame Pointer

■ frame pointer is register used to point to fixed position in stack frame

■ since frame pointer points to fixed position in stack frame, all items stored
in stack frame (e.g., function arguments and local variables) can be
accessed using fixed offsets relative to frame pointer

■ on x86-64, rbp normally used for frame pointer

■ enter and leave instructions assume rbp used for frame pointer

■ on entry to function, save frame-pointer register on stack and then move
stack pointer into frame-pointer register

■ additionally, can allocate storage for locals by subtracting from stack
pointer

■ at function exit, move frame pointer into stack pointer and then restore old
value of frame-pointer register by popping from stack

■ for performance reasons, enter instruction not normally used

■ leave instruction sometimes used

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 313

Local Variables With Frame Pointer

with_frame_pointer.s

1 .text
2 .globl func
3 func:
4 # size of storage (in bytes) for local variables, which
5 # must be multiple of 16 if any function calls made
6 .set local_size, 64
7 # establish rbp as frame pointer
8 push %rbp
9 mov %rsp, %rbp

10 # allocate storage for local variables
11 sub $local_size, %rsp
12 # locals at -local_size(%rbp) to -1(%rbp)
13 # saved rbp at 0(%rbp)
14 # return address at 8(%rbp)
15 # arguments passed on stack (if any) start at 16(%rbp)
16 # Note that the addresses of function arguments
17 # and local variables depend neither on rsp
18 # nor local_size, which is often desirable.
19 # ... (do something useful)
20 leave
21 # leave is equivalent to:
22 # mov %rbp, %rsp
23 # pop %rbp
24 ret

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 314

References I

1 Compiler Explorer, https://godbolt.org.

2 Online x86 / x64 Assembler and Disassembler,
https://defuse.ca/online-x86-assembler.htm.

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 315

https://godbolt.org
https://defuse.ca/online-x86-assembler.htm

Talks I

1 Matt Godbolt. What Has My Compiler Done for Me Lately? Unbolting the
Compiler’s Lid. CppCon, Sept. 29, 2017. Available online at
https://youtu.be/bSkpMdDe4g4.

2 Matt Godbolt, The Bits Between the Bits: How We Get to main(). CppCon,
Sept. 28, 2018. Available online at https://youtu.be/dOfucXtyEsU.

3 Matt Godbolt. What Else Has My Compiler Done For Me Lately? C++Now,
May 8, 2018. Available online at https://youtu.be/nAbCKa0FzjQ.

4 x86 Assembly Crash Course. Collegiate Cyber Defense Club, University
of Central Florida, Available online at https://youtu.be/75gBFiFtAb8.

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 316

https://youtu.be/bSkpMdDe4g4
https://youtu.be/dOfucXtyEsU
https://youtu.be/nAbCKa0FzjQ
https://youtu.be/75gBFiFtAb8

Section 3.2

Miscellany

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 317

Sandboxing

■ sandboxing: run untrusted and possibly malicious code in manner that it
cannot cause serious harm

■ interested in sandboxing techniques for Unix-based systems, such as
Linux

■ many different security features in Unix/Linux, including:
2 control groups (cgroups), namespaces, ptrace, seccomp, file/thread

capabilities, setuid/setgid programs, Berkeley packet filter (BPF), extended
Berkeley packet filter (eBPF), discretionary access control (DAC),
mandatory access control (MAC), SELinux, KVM, resource limits

■ containerization frameworks like Docker utilize many of above features

■ virtualization frameworks like KVM typically rely on hardware support for
virtualization

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 318

Security-Related Terminology

■ authentication: process of confirming identity of person or device

■ authorization: security mechanism used to determine user/client
privileges or access levels related to system resources (such as
programs, files, services, data and application features)

■ privacy: protecting against unauthorized sharing of information and
tracking of users

■ integrity: data is real, accurate, and safeguarded from unauthorized
modification

■ nonrepudiation: assurance that someone cannot deny something (e.g.,
sender cannot deny having sent email message or recipient cannot deny
having received it)

■ availability: ability of user to access information or resources (e.g.,
systems, applications)

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 319

Well-Known Ports

Well-Known TCP Ports
Port Number Protocol

7 Echo
21 FTP
22 SSH
23 Telnet
24 SMTP
80 HTTP
109 POP2
110 POP3
143 IMAP
220 IMAP v3
443 HTTPS
993 IMAP over SSL
995 POP3 over SSL

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 320

Part 4

References

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 321

Talks I

1 Michael Kerrisk. Using Seccomp to Limit the Kernel Attack Surface.
Embedded Linux Conference Europe, Edinburgh, UK, Oct. 22, 2018.
Available online at https://youtu.be/-hmG5An2bN8.

2 Michael Kerrisk. An Introduction to Linux IPC Facilities. linux.conf.au,
Canberra, Australia, Jan. 30, 2013. Available online at
https://youtu.be/vU2HDf5ZhO4.

3 Michael Kerrisk. What’s New in Control Groups (cgroups) Version 2?.
linux.conf.au, Christchurch, New Zealand, Jan. 23, 2019. Available online
at https://youtu.be/yZpNsDe4Qzg.

4 James Morris. Overview of the Linux Kernel Security Subsystem. Linux
Security Summit Europe, Edinburgh, Scotland, Oct. 25, 2018. Available
online at https://youtu.be/L7KHvKRfTzc.

5 Brendan Gregg. Linux 4.x Tracing: Performance Analysis with bcc/BPF
(eBPF). Southern California Linux Expo (SCALE), Pasadena, CA, USA,
March 4, 2017. Available online at https://youtu.be/w8nFRoFJ6EQ.

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 322

https://youtu.be/-hmG5An2bN8
https://youtu.be/vU2HDf5ZhO4
https://youtu.be/yZpNsDe4Qzg
https://youtu.be/L7KHvKRfTzc
https://youtu.be/w8nFRoFJ6EQ

Talks II

6 Greg Law. Modern Linux C++ Debugging Tools — Under the Covers.
CppCon, Aurora, CO, USA, Sept. 20, 2019. Available online at
https://youtu.be/WoRmXjVxuFQ.

7 Thomas Cameron. Security-Enhanced Linux for Mere Mortals. Red Hat
Summit, San Francisco, CA, USA, May 10, 2018. Available online at
https://youtu.be/_WOKRaM-HI4.

8 Stephane Graber. On the Way to Safe Containers. Linux Security Summit,
Toronto, ON, Canada, Aug. 25, 2016. Available online at
https://youtu.be/FJ2nDQ-aXHM.

9 Greg Law. Linux User/Kernel ABI: The Realities of How C and C++
Programs Really Talk to the OS. ACCU, Bristol, United Kingdom, Apr. 13,
2018. Available online at https://youtu.be/4CdmGxc5BpU.

10 Dave Martin. Moving the Linux ABI to Userspace. Linux Plumbers
Conference, Lisbon, Portugal, Sept. 11, 2019. Available online at
https://youtu.be/ZIcrT4dw1QE.

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 323

https://youtu.be/WoRmXjVxuFQ
https://youtu.be/_WOKRaM-HI4
https://youtu.be/FJ2nDQ-aXHM
https://youtu.be/4CdmGxc5BpU
https://youtu.be/ZIcrT4dw1QE

Talks III

11 Christian Brauner. pidfds: Process File Descriptors on Linux. Linux
Plumbers Conference, Lisbon, Portugal, Sept. 11, 2019. Available online
at https://youtu.be/aCrFujGG8MM.

12 Philip Guo. CDE: Using System Call Interposition to Automatically Create
Portable Software Packages. Google TechTalk, Feb. 11, 2011. Available
online at https://youtu.be/6XdwHo1BWwY.

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 324

https://youtu.be/aCrFujGG8MM
https://youtu.be/6XdwHo1BWwY

References I

1 Michael Kerrisk. Various conference presentations, slide decks, and
videos. Available online at https://man7.org/conf/index.html.

Copyright © 2022 Michael D. Adams Linux System Programming Edition 0.0 325

https://man7.org/conf/index.html

	Title Slide
	Copyright Page
	License
	Other Textbooks and Lecture Slides by the Author
	Preface
	About These Lecture Slides
	Typesetting Conventions

	Introduction
	Main Topics
	Preliminaries
	File I/O
	Sockets
	Signals
	Processes
	Memory Mappings
	Threads
	Futexes
	Capabilities
	Namespaces
	Ptrace
	Seccomp
	Shared Libraries and Dynamic Linking and Loading

	Other Topics
	Assembly Language
	Basic Computer Architecture
	x86-64 Architecture

	Miscellany

	References

