Lecture Slides for Programming in C++
[The C++ Language, Libraries, Tools, and Other Topics]

(Version: 2019-09-01-SENG475)

GO0

Michael D. Adams

Department of Electrical and Computer Engineering
University of Victoria
Victoria, British Columbia, Canada

To obtain the most recent version of these lecture slides or for additional information and resources
related to these slides (including errata and lecture videos), please visit:

http://www.ece.uvic.ca/~mdadams/cppbook

E youtube.com/iamcanadian1867 E github.com/mdadams u @mdadams16

NEXT SLIDE: Algorithms

http://www.ece.uvic.ca/~mdadams/cppbook
http://youtube.com/iamcanadian1867
http://github.com/mdadams
http://twitter.com/mdadams16

The author has taken care in the preparation of this document, but makes no expressed or implied warranty of any kind and assumes no
responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use
of the information or programs contained herein.

Copyright (© 2015, 2016, 2017, 2018, 2019 Michael D. Adams

This document is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) License. A copy
of this license can be found on page iii of this document. For a simple explanation of the rights granted by this license, see:

http://creativecommons.org/licenses/by-

c-nd/3

UNIX and X Window System are registered trademarks of The Open Group. Windows is a registered trademark of Microsoft Corporation.
Fedora is a registered trademark of Red Hat, Inc. Ubuntu is a registered trademark of Canonical Ltd. MATLAB is a registered trademark of The
MathWorks, Inc. OpenGL is a registered trademark of Hewlett Packard Enterprise. The YouTube logo is a registered trademark of Google, Inc.
The GitHub logo is a registered trademark of GitHub, Inc. The Twitter logo is a registered trademark of Twitter, Inc.

This document was typeset with IATEX.

http://creativecommons.org/licenses/by-nc-nd/3.0/

License |

Creative Commons Legal Code
Attribution-NonCommercial-NoDerivs 3.0 Unported

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR
DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY
COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS
AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE
TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY
BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS
CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND
CONDITIONS.

1. Definitions

a. "Adaptation" means a work based upon the Work, or upon the Work and
other pre-existing works, such as a translation, adaptation
derivative work, arrangement of music or other alterations of a
literary or artistic work, or phonogram or performance and includes
cinematographic adaptations or any other form in which the Work may be
recast, transformed, or adapted including in any form recognizably
derived from the original, except that a work that constitutes a
Collection will not be considered an Adaptation for the purpose of
this License. For the avoidance of doubt, where the Work is a musical
work, performance or phonogram, the synchronization of the Work in
timed-relation with a moving image ("synching") will be considered an
Adaptation for the purpose of this License.

b. "Collection" means a collection of literary or artistic works, such as
encyclopedias and anthologies, or performances, phonograms or
broadcasts, or other works or subject matter other than works listed

2019 Michael D. Adam:

License I

in Section 1(f) below, which, by reason of the selection and
arrangement of their contents, constitute intellectual creations, in
which the Work is included in its entirety in unmodified form along
with one or more other contributions, each constituting separate and
independent works in themselves, which together are assembled into a
collective whole. A work that constitutes a Collection will not be
considered an Adaptation (as defined above) for the purposes of this
License.

c. "Distribute" means to make available to the public the original and
copies of the Work through sale or other transfer of ownership.

d. "Licensor" means the individual, individuals, entity or entities that
offer(s) the Work under the terms of this License.

e. "Original Author" means, in the case of a literary or artistic work,
the individual, individuals, entity or entities who created the Work
or if no individual or entity can be identified, the publisher; and in
addition (i) in the case of a performance the actors, singers,
musicians, dancers, and other persons who act, sing, deliver, declaim,
play in, interpret or otherwise perform literary or artistic works or
expressions of folklore; (ii) in the case of a phonogram the producer
being the person or legal entity who first fixes the sounds of a
performance or other sounds; and, (iii) in the case of broadcasts, the
organization that transmits the broadcast.

f. "Work" means the literary and/or artistic work offered under the terms
of this License including without limitation any production in the
literary, scientific and artistic domain, whatever may be the mode or
form of its expression including digital form, such as a book
pamphlet and other writing; a lecture, address, sermon or other work
of the same nature; a dramatic or dramatico-musical work; a
choreographic work or entertainment in dumb show; a musical
composition with or without words; a cinematographic work to which are
assimilated works expressed by a process analogous to cinematography;
a work of drawing, painting, architecture, sculpture, engraving or
lithography; a photographic work to which are assimilated works
expressed by a process analogous to photography; a work of applied
art; an illustration, map, plan, sketch or three-dimensional work
relative to geography, topography, architecture or science; a
performance; a broadcast; a phonogram; a compilation of data to the
extent it is protected as a copyrightable work; or a work performed by
a variety or circus performer to the extent it is not otherwise
considered a literary or artistic work.

g. "You" means an individual or entity exercising rights under this

019 Michael D. Adam:

License Il

License who has not previously violated the terms of this License with
respect to the Work, or who has received express permission from the
Licensor to exercise rights under this License despite a previous
violation.

h. "Publicly Perform" means to perform public recitations of the Work and
to communicate to the public those public recitations, by any means or
process, including by wire or wireless means or public digital
performances; to make available to the public Works in such a way that
members of the public may access these Works from a place and at a
place individually chosen by them; to perform the Work to the public
by any means or process and the communication to the public of the
performances of the Work, including by public digital performance; to
broadcast and rebroadcast the Work by any means including signs,
sounds or images.

i. "Reproduce" means to make copies of the Work by any means including
without limitation by sound or visual recordings and the right of
fixation and reproducing fixations of the Work, including storage of a
protected performance or phonogram in digital form or other electronic
medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce
limit, or restrict any uses free from copyright or rights arising from
limitations or exceptions that are provided for in connection with the
copyright protection under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License
Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
perpetual (for the duration of the applicable copyright) license to
exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more
Collections, and to Reproduce the Work as incorporated in the
Collections; and,

b. to Distribute and Publicly Perform the Work including as incorporated
in Collections.

The above rights may be exercised in all media and formats whether now
known or hereafter devised. The above rights include the right to make
such modifications as are technically necessary to exercise the rights in
other media and formats, but otherwise you have no rights to make
Adaptations. Subject to 8(f), all rights not expressly granted by Licensor

019 Michael D. Adam:

License IV

are hereby reserved, including but not limited to the rights set forth in
Section 4(d)

4. Restrictions. The license granted in Section 3 above is expressly made
subject to and limited by the following restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms
of this License. You must include a copy of, or the Uniform Resource
Identifier (URI) for, this License with every copy of the Work You
Distribute or Publicly Perform. You may not offer or impose any terms
on the Work that restrict the terms of this License or the ability of
the recipient of the Work to exercise the rights granted to that
recipient under the terms of the License. You may not sublicense the
Work. You must keep intact all notices that refer to this License and
to the disclaimer of warranties with every copy of the Work You
Distribute or Publicly Perform. When You Distribute or Publicly
Perform the Work, You may not impose any effective technological
measures on the fork that restrict the ability of a recipient of the
Work from You to exercise the rights granted to that recipient under
the terms of the License. This Section 4(a) applies to the Work as
incorporated in a Collection, but this does not require the Collection
apart from the Work itself to be made subject to the terms of this
License. If You create a Collection, upon notice from any Licensor You
must, to the extent practicable, remove from the Collection any credit
as required by Section 4(c), as requested.

b. You may not exercise any of the rights granted to You in Section 3
above in any manner that is primarily intended for or directed toward
commercial advantage or private monetary compensation. The exchange of
the Work for other copyrighted works by means of digital file-sharing
or otherwise shall not be considered to be intended for or directed
toward commercial advantage or private monetary compensation, provided
there is no payment of any monetary compensation in connection with
the exchange of copyrighted works.

c. If You Distribute, or Publicly Perform the Work or Collections, You
must, unless a request has been made pursuant to Section 4(a), keep
intact all copyright notices for the Work and provide, reasonable to
the medium or means You are utilizing: (i) the name of the Original
Author (or pseudonym, if applicable) if supplied, and/or if the
Original Author and/or Licensor designate another party or parties
(e.g., a sponsor institute, publishing entity, journal) for
attribution ("Attribution Parties") in Licensor’s copyright notice

019 Michael D. Adam:

License V

terms of service or by other reasonable means, the name of such party
or parties; (ii) the title of the Work if supplied; (iii) to the
extent reasonably practicable, the URI, if any, that Licensor
specifies to be associated with the Work unless such URI does not
refer to the copyright notice or llcenslng information for the Work.
The credit required by this Section 4(c) may be implemented in any
reasonable manner; provided, however, that in the case of a
Collection, at a minimum such credit will appear, if a credit for all
contributing authors of Collection appears, then as part of these
credits and in a manner at least as prominent as the credits for the
other contributing authors. For the avoidance of doubt, You may only
use the credit required by this Section for the purpose of attribution
in the manner set out above and, by exercising Your rights under this
License, You may not implicitly or explicitly assert or imply any
connection with, sponsorship or endorsement by the Original Author
Licensor and/or Attribution Parties, as appropriate, of You or Your
use of the Work, without the separate, express prior written
permission of the Original Author, Licensor and/or Attribution
Parties.

d. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or
compulsory licensing scheme cannot be waived, the Licensor
reserves the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or
compulsory licensing scheme can be waived, the Licensor reserves
the exclusive right to collect such royalties for any exercise by
You of the rights granted under this License if Your exercise of
such rights is for a purpose or use which is otherwise than
noncommercial as permitted under Section 4(b) and otherwise waives
the right to collect royalties through any statutory or compulsory
licensing scheme; and

iii. Voluntary License Schemes. The Licensor reserves the right to
collect royalties, whether individually or, in the event that the
Licensor is a member of a collecting society that administers
voluntary licensing schemes, via that society, from any exercise
by You of the rights granted under this License that is for a
purpose or use which is otherwise than noncommercial as permitted

019 Michael D. Adam:

License VI

under Section 4 (b).

e. Except as otherwise agreed in writing by the Licensor or as may be
otherwise permitted by applicable law, if You Reproduce, Distribute or
Publicly Perform the Work either by itself or as part of any
Collections, You must not distort, mutilate, modify or take other
derogatory action in relation to the Work which would be prejudicial
to the Original Author’s honor or reputation.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR
OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY
KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE
INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS
WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION
OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE
LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR
ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate
automatically upon any breach by You of the terms of this License.
Individuals or entities who have received Collections from You under
this License, however, will not have their licenses terminated
provided such individuals or entities remain in full compliance with
those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
termination of this License.

b. Subject to the above terms and conditions, the license granted here is
perpetual (for the duration of the applicable copyright in the Work).
Notwithstanding the above, Licensor reserves the right to release the
Work under different license terms or to stop distributing the Work at
any time; provided, however that any such election will not serve to
withdraw this License (or any other license that has been, or is
required to be, granted under the terms of this License), and this

2019 Michael D. Adam:

License VII

License will continue in full force and effect unless terminated as
stated above.

8. Miscellaneous

a.

Each time You Distribute or Publicly Perform the Work or a Collection
the Licensor offers to the recipient a license to the Work on the same
terms and conditions as the license granted to You under this License.
If any provision of this License is invalid or unenforceable under
applicable law, it shall not affect the validity or enforceability of
the remainder of the terms of this License, and without further action
by the parties to this agreement, such provision shall be reformed to
the minimum extent necessary to make such provision valid and
enforceable.

. No term or provision of this License shall be deemed waived and no

breach consented to unless such waiver or consent shall be in writing
and signed by the party to be charged with such waiver or consent.
This License constitutes the entire agreement between the parties with
respect to the Work licensed here. There are no understandings,
agreements or representations with respect to the Work not specified
here. Licensor shall not be bound by any additional provisions that
may appear in any communication from You. This License may not be
modified without the mutual written agreement of the Licensor and You.
The rights granted under, and the subject matter referenced, in this
License were drafted utilizing the terminology of the Berne Convention
for the Protection of Literary and Artistic Works (as amended on
September 28, 1979), the Rome Convention of 1961, the WIPO Copyright
Treaty of 1996, the WIPO Performances and Phonograms Treaty of 1996
and the Universal Copyright Convention (as revised on July 24, 1971).
These rights and subject matter take effect in the relevant
jurisdiction in which the License terms are sought to be enforced
according to the corresponding provisions of the implementation of
those treaty provisions in the applicable national law. If the
standard suite of rights granted under applicable copyright law
includes additional rights not granted under this License, such
additional rights are deemed to be included in the License; this
License is not intended to restrict the license of any rights under
applicable law.

Creative Commons Notice

019 Michael D. Adam:

License VIlI

Creative Commons is not a party to this License, and makes no warranty
whatsoever in connection with the Work. Creative Commons will not be
liable to You or any party on any legal theory for any damages
whatsoever, including without limitation any general, special,
incidental or consequential damages arising in connection to this
license. Notwithstanding the foregoing two (2) sentences, if Creative
Commons has expressly identified itself as the Licensor hereunder, it
shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the
Work is licensed under the CCPL, Creative Commons does not authorize
the use by either party of the trademark "Creative Commons" or any
related trademark or logo of Creative Commons without the prior
written consent of Creative Commons. Any permitted use will be in
compliance with Creative Commons’ then-current trademark usage
guidelines, as may be published on its website or otherwise made
available upon request from time to time. For the avoidance of doubt,
this trademark restriction does not form part of this License.

Creative Commons may be contacted at http://creativecommons.org/.

019 Michael D. Adam:

Other Textbooks and Lecture Slides by the Author |

M. D. Adams, Multiresolution Signal and Geometry Processing: Filter
Banks, Wavelets, and Subdivision (Version 2013-09-26), University of
Victoria, Victoria, BC, Canada, Sept. 2013, xxxviii + 538 pages, ISBN
978-1-55058-507-0 (print), ISBN 978-1-55058-508-7 (PDF). Available
from Google Books, Google Play Books, University of Victoria Bookstore,
and author’s web site
http://www.ece.uvic.ca/~mdadams/waveletbook

M. D. Adams, Lecture Slides for Multiresolution Signal and Geometry
Processing (Version 2015-02-03), University of Victoria, Victoria, BC,
Canada, Feb. 2015, xi + 587 slides, ISBN 978-1-55058-535-3 (print),
ISBN 978-1-55058-536-0 (PDF). Available from Google Books, Google
Play Books, University of Victoria Bookstore, and author’s web site
http://www.ece.uvic.ca/~mdadams/waveletbook

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

http://www.ece.uvic.ca/~mdadams/waveletbook
http://www.ece.uvic.ca/~mdadams/waveletbook

Other Textbooks and Lecture Slides by the Author Il

M. D. Adams, Continuous-Time Signals and Systems (Version
2013-09-11), University of Victoria, Victoria, BC, Canada, Sept. 2013, xxx
+ 308 pages, ISBN 978-1-55058-495-0 (print), ISBN 978-1-55058-506-3
(PDF). Available from Google Books, Google Play Books, University of
Victoria Bookstore, and author’s web site
http://www.ece.uvic.ca/~mdadams/sigsysbook.

B M. D. Adams, Lecture Slides for Continuous-Time Signals and Systems
(Version 2013-09-11), University of Victoria, Victoria, BC, Canada, Dec.
2013, 286 slides, ISBN 978-1-55058-517-9 (print), ISBN
978-1-55058-518-6 (PDF). Available from Google Books, Google Play
Books, University of Victoria Bookstore, and author’s web site
http://www.ece.uvic.ca/~mdadams/sigsysbook.

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

http://www.ece.uvic.ca/~mdadams/sigsysbook
http://www.ece.uvic.ca/~mdadams/sigsysbook

Other Textbooks and Lecture Slides by the Author

M. D. Adams, Lecture Slides for Signals and Systems (Version
2016-01-25), University of Victoria, Victoria, BC, Canada, Jan. 2016, xvi +
481 slides, ISBN 978-1-55058-584-1 (print), ISBN 978-1-55058-585-8
(PDF). Available from Google Books, Google Play Books, University of
Victoria Bookstore, and author’s web site
http://www.ece.uvic.ca/~mdadams/sigsysbook.

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

http://www.ece.uvic.ca/~mdadams/sigsysbook

Part 0

Preface

About These Lecture Slides

B This document constitutes a detailed set of lecture slides on the C++
programming language and is current with the C'++17 standard.

B Many aspects of the C++ language are covered from introductory to more
advanced.

B Some aspects of the C++ standard library are also introduced.

B |n addition, various general programming-related topics are considered.

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/full

Acknowledgments

B The author would like to thank Robert Leahy for reviewing various drafts of
many of these slides and providing many useful comments that allowed
the quality of these materials to be improved significantly.

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Disclaimer

B Many code examples are included throughout these slides.

B Often, in order to make an example short enough to fit on a slide,
compromises had to be made in terms of good programming style.

B These deviations from good style include (but are not limited to) such
things as:
H frequently formatting source code in unusual ways to conserve vertical
space in listings;
not fully documenting source code with comments;
using short meaningless identifier names;
omitting include guards from headers; and
engaging in various other evil behavior such as: using many global
variables and employing constructs like “using namespace std;”.

EEEN

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Typesetting Conventions

In a definition, the term being defined is often typeset

To emphasize particular text, the text is typeset like this.

To show that particular text is associated with a hyperlink to an internal
target, the text is typeset

To show that particular text is associated with a hyperlink to an external
document, the text is typeset

URLs are typeset like http://www.ece.uvic.ca/~mdadams.

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

http://www.ece.uvic.ca/~mdadams
http://www.ece.uvic.ca/~mdadams

Companion Web Site

B The author of the lecture slides maintains a companion web site for the
slides.
B The most recent version of the slides can be downloaded from this site.
B Additional information related to the slides is also available from this site,
including:
o errata for the slides; and

o information on the companion web site, companion Git repository, and
companion YouTube channel for the slides.

B The URL of this web site is:
o http://www.ece.uvic.ca/~mdadams/cppbook

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

http://www.ece.uvic.ca/~mdadams/cppbook

Companion Git Repository

These lecture slides have a companion Git repository.
Numerous code examples and exercises are available from this repository.
This repository is hosted by GitHub.
The URL of the main repository page on GitHub is:
o https://github.com/mdadams/cppbook_companion
The URL of the actual repository itself is:
o https://github.com/mdadams/cppbook_companion.git

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

https://github.com/mdadams/cppbook_companion
https://github.com/mdadams/cppbook_companion.git

Companion YouTube Channel

B Video lectures for some of the material covered by these lecture slides
can be found on the author’s YouTube channel.
B The URL of the author’s YouTube channel is:

o0 https://www.youtube.com/user/iamcanadianl867

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

https://www.youtube.com/user/iamcanadian1867

Software Development Environment (SDE)

B The Software Development Environment (SDE) is a collection of tools that
can be used to provide a basic up-to-date environment for C++ code
development.

B The SDE should work with most Linux distributions, provided that the
necessary software dependencies are installed.

B Amongst other things, the SDE software provides a collection of scripts for
installing packages like:

o Boost, Catch2, CGAL, Clang, CMake, GCC, Gcovr, GDB, GSL, Lcov,
Libcxx, TeX Live, Vim, Vim LSP, and YCM
B The SDE software has a Git repository hosted by GitHub.
B The URL of the main repository page on GitHub is:
0 https://github.com/mdadams/sde
B The URL of the actual repository itself is:
o https://github.com/mdadams/sde.qgit
B For more information about the SDE, refer to the main repository page on
GitHub.

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

https://github.com/mdadams/sde
https://github.com/mdadams/sde.git

Part 1

9 Michael D. Adal Version: 2019-09

Why |Is Software Important?

B almost all electronic devices run some software

B gutomobile engine control system, implantable medical devices, remote
controls, office machines (e.g., photocopiers), appliances (e.g.,
televisions, refrigerators, washers/dryers, dishwashers, air conditioner),
power tools, toys, mobile phones, media players, computers, printers,
photocopies, disk drives, scanners, webcams, MRI machines

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Why Software-Based Solutions?

B more cost effective to implement functionality in software than hardware
B software bugs easy to fix, give customer new software upgrade

B hardware bugs extremely costly to repair, customer sends in old device
and manufacturer sends replacement

B systems increasingly complex, bugs unavoidable
B allows new features to be added later

B implement only absolute minimal functionality in hardware, do the rest in
software

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Software-Related Jobs

B many more software jobs than hardware jobs
B relatively small team of hardware designers produce platform like iPhone
B thousands of companies develop applications for platform

B only implement directly in hardware when absolutely necessary (e.g., for
performance reasons)

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

B created by Dennis Ritchie, AT&T Bell Labs in 1970s
B international standard ISO/IEC 9899:2018 (informally known as “C18”)

B available on wide range of platforms, from microcontrollers to
supercomputers; very few platforms for which C compiler not available

B procedural, provides language constructs that map efficiently to machine
instructions

B does not directly support object-oriented or generic programming

B gpplication domains: system software, device drivers, embedded
applications, application software

B greatly influenced development of C++

B when something lasts in computer industry for more than 40 years
(outliving its creator), must be good

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

C++

B created by Bjarne Stroustrup, Bell Labs
B originally C with Classes, renamed as C++ in 1983

B most recent specification of language in ISO/IEC 14882:2017 (informally
known as “C++17”)

procedural

loosely speaking is superset of C

directly supports object-oriented and generic programming
maintains efficiency of C

application domains: systems software, application software, device
drivers, embedded software, high-performance server and client
applications, entertainment software such as video games, native code for
Android applications

B greatly influenced development of C# and Java

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Java

B developed in 1990s by James Gosling at Sun Microsystems (later bought
by Oracle Corporation)

de facto standard but not international standard

usually less efficient than C and C++

simplified memory management (with garbage collection)
direct support for object-oriented programming

application domains: web applications, Android applications

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

B designed by John Backus, IBM, in 1950s

B international standard ISO/IEC 1539-1:2010 (informally known as "Fortran
2008")

B application domain: scientific and engineering applications, intensive
supercomputing tasks such as weather and climate modelling, finite
element analysis, computational fluid dynamics, computational physics,
computational chemistry

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

B developed by Microsoft, team led by Anders Hejlsberg
B ECMA-334 and ISO/IEC 23270:2006

B most recent language specifications not standardized by ECMA or
ISO/IEC

B intellectual property concerns over Microsoft patents
B object oriented

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Objective C

B developed by Tom Love and Brad Cox of Stepstone (later bought by NeXT
and subsequently Apple)

used primarily on Apple Mac OS X and iOS
strict superset of C
no official standard that describes Objective C

authoritative manual on Objective-C 2.0 available from Apple

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

MATLAB

proprietary language, developed by The MathWorks
not general-purpose programming language
application domain: numerical computing

used to design and simulate systems

not used to implement real-world systems

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Why Learn C++7?

vendor neutral
international standard

]
]

B general purpose
B powerful yet efficient
]

loosely speaking, includes C as subset; so can learn two languages (C++
and C) for price of one

easy to move from C++ to other languages but often not in other direction
many other popular languages inspired by C++
popular language

consistently ranks amongst top languages in TIOBE Software
Programming Community Index
(https://www.tiobe.com/tiobe-index/)

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

https://www.tiobe.com/tiobe-index/

Part 2

C++

Section 2.1

History of C++

Copyright (©) 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

B developed by Bjarne Stroustrup starting in 1979 at Computing Science
Research Center of Bell Laboratories, Murray Hill, NJ, USA

B doctoral work in Computing Laboratory of University of Cambridge,
Cambridge, UK

B study alternatives for organization of system software for distributed
systems

B required development of relatively large and detailed simulator

B dissertation:

B. Stroustrup. Communication and Control in Distributed Computer
Systems.
PhD thesis, University of Cambridge, Cambridge, UK, 1979.

B in 1979, joined Bell Laboratories after having finished doctorate

B work started with attempt to analyze UNIX kernel to determine to what
extent it could be distributed over network of computers connected by LAN

B needed way to model module structure of system and pattern of
communication between modules

B no suitable tools available

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

B had bad experiences writing simulator during Ph.D. studies; originally
used Simula for simulator; later forced to rewrite in BCPL for speed; more
low level than C; BCPL was horrible to use

B notion of what properties good tool would have motivated by these
experiences

B suitable tool for projects like simulator, operating system, other systems
programming tasks should:

o support for effective program organization (like in Simula) (i.e., classes,
some form of class hierarchies, some form of support for concurrency,
strong checking of type system based on classes)

o produce programs that run fast (like with BCPL)

o be able to easily combine separately compilable units into program (like
with BCPL)

o have simple linkage convention, essential for combining units written in
languages such as C, Algol68, Fortran, BCPL, assembler into single
program

o allow highly portable implementations (only very limited ties to operating
system)

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Timeline for C with Classes (1979-1983) |

May 1979 work on C with Classes starts

Oct 1979 Iinitial version of Cpre, preprocessor that added Simula-like
classes to C; language accepted by preprocessor later started
being referred to as C with Classes

Mar 1980 Cpre supported one real project and several experiments (used
on about 16 systems)

Apr 1980 first internal Bell Labs paper on C with Classes published (later
to appear in ACM SIGPLAN Notices in Jan. 1982)

B. Stroustrup. Classes: An abstract data type facility for the
C language.

Bell Laboratories Computer Science Technical Report
CSTR-84, Apr. 1980.

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Timeline for C with Classes (1979-1983) II

1980 initial 1980 implementation had following features:

classes

derived classes

public/private access control

constructors and destructors

call and return functions (call function implicitly called before
every call of every member function; return function implicitly
called after every return from every member function; can be
used for synchronization)

friend classes

type checking and conversion of function arguments

1981 in 1981, added:

inline functions
default arguments
overloading of assignment operator

Jan 1982 first external paper on C with Classes published

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Timeline for C with Classes (1979—-1983) Ili

B. Stroustrup. Classes: An abstract data type facility for the
C language.
ACM SIGPLAN Notices, 17(1):42-51, Jan. 1982.

Feb 1983 more detailed paper on C with Classes published
B. Stroustrup. Adding classes to the C language: An
exercise in language evolution.
Software: Practice and Experience, 13(2):139—-161, Feb.
1983.
B C with Classes proved very successful; generated considerable interest
B first real application of C with Classes was network simulators

Copyright © 20152019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Timeline for C84 to C++98 (1982—1998) |

B started to work on cleaned up and extended successor to C with Classes,
initially called C84 and later renamed C++

Spring 1982 started work on Cfront compiler front-end for C84;
initially written in C with Classes and then transcribed to C84;
traditional compiler front-end performing complete check of
syntax and semantics of language, building internal
representation of input, analyzing and rearranging
representation, and finally producing output for some code
generator;
generated C code as output;
difficult to bootstrap on machine without C84 compiler; Cfront
software included special “half-processed” version of C code
resulting from compiling Cfront, which could be compiled with
native C compiler and resulting executable then used to compile
Cfront

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Timeline for C84 to C++98 (1982—-1998) Il

Dec 1983 C84 (C with Classes) renamed C++;
name used in following paper prepared in Dec. 1983

B. Stroustrup. Data abstraction in C.
Bell Labs Technical Journal, 63(8):1701-1732, Oct. 1984.
(name C++ suggested by Rick Mascitti)
1983 virtual functions added

Note: going from C with Classes to C84 added: virtual functions,
function name and operator overloading, references, constants
(const), user-controlled free-store memory control, improved
type checking

Jan 1984 first C++ manual

B. Stroustrup. The C++ reference manual.
AT&T Bell Labs Computer Science Technical Report No.
108, Jan. 1984.

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Timeline for C84 to C++98 (1982—-1998) Il

Sep 1984 paper describing operator overloading published

B. Stroustrup. Operator overloading in C++.
In Proc. IFIP WG2.4 Conference on System Implementation
Languages: Experience & Assessment, Sept. 1984.

1984 stream I/O library first implemented and later presented in
B. Stroustrup. An extensible 1/O facility for C++.

In Proc. of Summer 1985 USENIX Conference, pages
57-70, June 1985.

Feb 1985 Cfront Release E (first external release); “E” for “Educational”;
available to universities

Oct 1985 Cfront Release 1.0 (first commercial release)
Oct 1985 first edition of C++PL written

B. Stroustrup. The C++ Programming Language.
Addison Wesley, 1986.

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Timeline for C84 to C++98 (1982—-1998) IV

(Cfront Release 1.0 corresponded to language as defined in this
book)

Oct 1985 tutorial paper on C++

B. Stroustrup. A C++ tutorial.
In Proceedings of the ACM annual conference on the range
of computing: mid-80’s perspective, pages 56—64, Oct.
1985.

Jun 1986 Cfront Release 1.1; mainly bug fix release

Aug 1986 first exposition of set of techniques for which C++ was aiming to
provide support (rather than what features are already
implemented and in use)

B. Stroustrup. What is object-oriented programming?
In Proc. of 14th Association of Simula Users Conference,
Stockholm, Sweden, Aug. 1986.

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Timeline for C84 to C++98 (1982-1998) V

Sep 1986 first Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA) conference (start of OO hype centered
on Smalltalk)

Nov 1986 first commercial Cfront PC port (Cfront 1.1, Glockenspiel [in
Ireland])

Feb 1987 Cfront Release 1.2; primarily bug fixes but also added:
B pointers to members
B protected members

Nov 1987 first conference devoted to C++:
USENIX C++ conference (Santa Fe, NM, USA)

Dec 1987 first GNU C++ release (1.13)
Jan 1988 first Oregon Software (a.k.a. TauMetric) C++ release
Jun 1988 first Zortech C++ release

Oct 1988 first presented templates at USENIX C++ conference (Denver,
CO, USA) in paper:

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Timeline for C84 to C++98 (1982—1998) VI

B. Stroustrup. Parameterized types for C++.
In Proc. of USENIX C++ Conference, pages 1—18, Denver,
CO, USA, Oct. 1988.

Oct 1988 first USENIX C++ implementers workshop (Estes Park, CO,
USA)

Jan 1989 first C++ journal “The C++ Report” (from SIGS publications)
started publishing

Jun 1989 Cfront Release 2.0 major cleanup; new features included:

multiple inheritance

type-safe linkage

better resolution of overloaded functions

recursive definition of assignment and initialization
better facilities for user-defined memory management
abstract classes

static member functions

const member functions

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Timeline for C84 to C++98 (1982—1998) VI

B protected member functions (first provided in release 1.2)
B overloading of operator —>
B pointers to members (first provided in release 1.2)

1989 main features of Cfront 2.0 summarized in
B. Stroustrup. The evolution of C++: 1985-1989.
USENIX Computer Systems, 2(3), Summer 1989.
first presented in
B. Stroustrup. The evolution of C++: 1985-1987.

In Proc. of USENIX C++ Conference, pages 1—22, Santa
Fe, NM, USA, Nov. 1987.

Nov 1989 paper describing exceptions published

A. Koenig and B. Stroustrup. Exception handling for C++.
In Proc. of “C++ at Work” Conference, Nov. 1989.

followed up by

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Timeline for C84 to C++98 (1982—-1998) VIII

A. Koenig and B. Stroustrup. Exception handling for C++.
In Proc. of USENIX C++ Conference, Apr. 1990.

Dec 1989 ANSI X3J16 organizational meeting (Washington, DC, USA)
Mar 1990 first ANSI X3J16 technical meeting (Somerset, NJ, USA)

Apr 1990 Cfront Release 2.1; bug fix release to bring Cfront mostly into
line with ARM

May 1990 annotated reference manual (ARM) published
M. A. Ellis and B. Stroustrup. The Annotated C++

Reference Manual.
Addison Wesley, May 1990.

(formed basis for ANSI standardization)
May 1990 first Borland C++ release
Jul 1990 templates accepted (Seattle, WA, USA)
Nov 1990 exceptions accepted (Palo Alto, CA, USA)

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Timeline for C84 to C++98 (1982—-1998) IX

Jun 1991 second edition of C++PL published
B. Stroustrup. The C++ Programming Language.
Addison Wesley, 2nd edition, June 1991.
Jun 1991 first ISO WG21 meeting (Lund, Sweden)
Sep 1991 Cfront Release 3.0; added templates (as specified in ARM)
Oct 1991 estimated number of C++ users 400,000
Feb 1992 first DEC C++ release (including templates and exceptions)
Mar 1992 run-time type identification (RTTI) described in
B. Stroustrup and D. Lenkov. Run-time type identification for

C++.
The C++ Report, Mar. 1992.

(RTTI in C++ based on this paper)

Mar 1992 first Microsoft C++ release (did not support templates or
exceptions)

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Timeline for C84 to C++98 (1982—-1998) X

May 1992 first IBM C++ release (including templates and exceptions)
Mar 1993 RTTI accepted (Portland, OR, USA)
Jul 1993 namespaces accepted (Munich, Germany)

1993 further work on Cfront Release 4.0 abandoned after failed
attempt to add exception support

Aug 1994 ANSI/ISO Committee Draft registered

Aug 1994 Standard Template Library (STL) accepted (Waterloo, ON, CA);
described in

A. Stepanov and M. Lee. The standard template library.
Technical Report HPL-94-34 (R.1), HP Labs, Aug. 1994.

Aug 1996 export accepted (Stockholm, Sweden)
1997 third edition of C++PL published

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Timeline for C84 to C++98 (1982—1998) XI

B. Stroustrup. The C++ Programming Language.
Addison Wesley Longman, Reading, MA, USA, 3rd edition,
1997.
Nov 1997 final committee vote on complete standard (Morristown, NJ,
USA)
Jul 1998 Microsoft releases VC++ 6.0, first Microsoft compiler to provide
close-to-complete set of ISO C++
Sep 1998 ISO/IEC 14882:1998 (informally known as C++98) published
ISO/IEC 14882:1998 — programming languages — C++,
Sept. 1998.
1998 Beman Dawes starts Boost (provides peer-reviewed portable
C++ source libraries)

Feb 2000 special edition of C++PL published

B. Stroustrup. The C++ Programming Language.
Addison Wesley, Reading, MA, USA, special edition, Feb.
2000.

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Timeline After C++98 (1998—Present) |

Apr 2001 motion passed to request new work item: technical report on
libraries (Copenhagen, Denmark); later to become ISO/IEC TR
19768:2007

Oct 2003 ISO/IEC 14882:2003 (informally known as C++03) published;
essentially bug fix release; no changes to language from
programmer’s point of view

ISO/IEC 14882:2003 — programming languages — C++,
Oct. 20083.

2003 work on C++0x (now known as C++11) starts
Oct 2004 estimated number of C++ users 3,270,000
Apr 2005 first votes on features for C++0x (Lillehammer, Norway)
2005 auto, static_assert, and rvalue references accepted in
principle
Apr 2006 first full committee (official) votes on features for C++0x (Berlin,
Germany)

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Timeline After C++98 (1998—Present) I

Sep 2006 performance technical report (TR 18015) published:

ISO/IEC TR 18015:2006 — information technology —
programming languages, their environments and system
software interfaces — technical report on C++ performance,
Sept. 2006.
work spurred by earlier proposal to standardize subset of C++
for embedded systems called Embedded C++ (or just EC++);
EC++ motivated by performance concerns

Apr 2006 decision to move special mathematical functions to separate 1ISO
standard (Berlin, Germany); deemed too specialized for most
programmers

Nov 2007 ISO/IEC TR 19768:2007 (informally known as C++TR1)
published;

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Timeline After C++98 (1998—Present) Il

ISO/IEC TR 19768:2007 — information technology —
programming languages — technical report on C++ library
extensions, Nov. 2007.

specifies series of library extensions to be considered for
adoption later in C++

2009 another particularly notable book on C++ published
B. Stroustrup. Programming: Principles and Practice Using

C++.
Addison Wesley, Upper Saddle River, NJ, USA, 2009.

Aug 2011 ISO/IEC 14882:2011 (informally known as C++11) ratified

ISO/IEC 14882:2011 — information technology —
programming languages — C++, Sept. 2011.

2013 fourth edition of C++PL published

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Timeline After C++98 (1998—Present) IV

B. Stroustrup. The C++ Programming Language.
Addison Wesley, 4th edition, 2013.

2014 1SO/IEC 14882:2014 (informally known as C++14) ratified
ISO/IEC 14882:2014 — information technology —
programming languages — C++, Dec. 2014.

2017 ISO/IEC 14882:2017 (informally known as C++17) ratified

ISO/IEC 14882:2017 — information technology —
programming languages — C++, Dec. 2017.

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Additional Comments

B reasons for using C as starting point:
o flexibility (can be used for most application areas)
o efficiency
o availability (C compilers available for most platforms)
o portability (source code relatively portable from one platform to another)

B main sources for ideas for C++ (aside from C) were Simula, Algol68,
BCPL, Ada, Clu, ML; in particular:
o Simula gave classes
o Algol68 gave operator overloading, references, ability to declare variables
anywhere in block
o BCPL gave // comments
o exceptions influenced by ML
o templates influenced by generics in Ada and parameterized modules in Clu

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

C++ User Population

Time Estimated Number of Users

Oct 1979 | 1

Oct 1980 | 16

Oct 1981 | 38

Oct 1982 | 85

Oct 1983 | ??+2 (no Cpre count)

Oct 1984 | ??+50 (no Cpre count)

Oct 1985 | 500

Oct 1986 | 2,000

Oct 1987 | 4,000

Oct 1988 | 15,000

Oct 1989 | 50,000

Oct 1990 | 150,000

Oct 1991 | 400,000

Oct 2004 | over 3,270,000

B above numbers are conservative

B 1979 to 1991: C++ user population doubled approximately every 7.5
months

B stable growth thereafter

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Success of C++

B C++ very successful programming language
B not luck or solely because based on C

B efficient, provides low-level access to hardware, but also supports
abstraction

B non-proprietary: in 1989, all rights to language transferred to standards
bodies (first ANSI and later ISO) from AT&T

B multi-paradigm language, supporting procedural, object-oriented, generic,
and functional (e.g., lambda functions) programming

B does not force particular programming style
B reasonably portable

B has continued to evolve, incorporating new ideas (e.g., templates,
exceptions, STL)

B stable: high degree of compatibility with earlier versions of language

B very strong bias towards providing general-purpose facilities rather than
more application-specific ones

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Application Areas

banking and financial (funds transfer, financial modelling, teller machines)

classical systems programming (compilers, operating systems, device
drivers, network layers, editors, database systems)

small business applications (inventory systems)

desktop publishing (document viewers/editors, image editing)
embedded systems (cameras, cell phones, airplanes, medical systems,
appliances, space technologies)

entertainment (games)

graphics programming

hardware design and verification

scientific and numeric computation (physics, engineering, simulations,
data analysis, geometry processing)

servers (web servers, billing systems)

telecommunication systems (phones, networking, monitoring, billing,
operations systems)

middleware

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Section 2.1.1

References

2015-2019 Michael D. Adams i 019-09-01-SENG475

Evolution of C++

B B. Stroustrup. A history of C++: 1979—1991.
In Proc. of ACM History of Programming Languages Conference, pages
271-298, Mar. 1993

B B. Stroustrup. The Design and Evolution of C++.
Addison Wesley, Mar. 1994,

B B. Stroustrup. Evolving a language in and for the real world: C++
1991-2006.
In Proc. of the ACM SIGPLAN Conference on History of Programming
Languages, pages 4—1-4-59, 2007.

B Cfront software available from Computer History Museum’s Software
Preservation Group http://www.softwarepreservation.org.
(See http://www.softwarepreservation.org/projects/c_plus_
plus/cfront).

B |SO JTC1/SC22/WG21 web site.
http://www.open-std.org/Jjtcl/sc22/wg2l/.

Copyright © 20152019 Michael D. Adams C++ Version: 2019-09-01-SENG475

http://www.softwarepreservation.org
http://www.softwarepreservation.org/projects/c_plus_plus/cfront
http://www.softwarepreservation.org/projects/c_plus_plus/cfront
http://www.open-std.org/jtc1/sc22/wg21/

Standards Documents |

B [SO/IEC 14882:1998 — programming languages — C++, Sept. 1998.
B |SO/IEC 14882:2003 — programming languages — C++, Oct. 2003.

B |SO/IEC TR 18015:2006 — information technology — programming
languages, their environments and system software interfaces —
technical report on C++ performance, Sept. 2006.

B |ISO/IEC TR 19768:2007 — information technology — programming
languages — technical report on C++ library extensions, Nov. 2007.

B |SO/IEC 29124:2010 — information technology — programming
languages, their environments and system software interfaces —
extensions to the C++ library to support mathematical special functions,
Sept. 2010.

B |SO/IEC TR 24733:2011 — information technology — programming
languages, their environments and system software interfaces —
extensions for the programming language C++ to support decimal
floating-point arithmetic, Nov. 2011.

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Standards Documents I

ISO/IEC 14882:2011 — information technology — programming
languages — C++, Sept. 2011.

ISO/IEC 14882:2014 — information technology — programming
languages — C++, Dec. 2014.

ISO/IEC TS 18822:2015 — programming languages — C++ — file system
technical specification, July 2015.

ISO/IEC TS 19570:2015 — programming languages — technical
specification for C++ extensions for parallelism, July 2015.

ISO/IEC TS 19841:2015 — technical specification for C++ extensions for
transactional memory, Oct. 2015.

ISO/IEC TS 19568:2015 — programming languages — C++ extensions
for library fundamentals, Oct. 2015.

ISO/IEC TS 19217:2015 — programming languages — C++ extensions
for concepts, Nov. 2015.

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Standards Documents Il

B |SO/IEC TS 19571:2016 — programming languages — technical
specification for C++ extensions for concurrency, Feb. 2016.

B |SO/IEC TS 19568:2017 — programming languages — C++ extensions
for library fundamentals, Mar. 2017.

B |SO/IEC TS 21425:2017 — programming languages — C++ extensions
for ranges, Nov. 2017.

B [SO/IEC TS 22277:2017 — technical specification — C++ extensions for
coroutines, Nov. 2017.

B |SO/IEC 14882:2017 — information technology — programming
languages — C++, Dec. 2017.

B |SO/IEC TS 19216:2018 — programming languages — C++ extensions
for networking, Apr. 2018.

B |SO/IEC TS 21544:2018 — programming languages — extensions to C++
for modules, May 2018.

B |SO JTC1/SC22/WG21 web site.
http://www.open-std.org/jtcl/sc22/wg21/.

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

http://www.open-std.org/jtc1/sc22/wg21/

Section 2.2

Getting Started

015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

hello Program: hello.cpp

#include <iostream>

int main()
{

std::cout << "Hello, world!\n";

o o A W N o=

}

B program prints message “Hello, world!” and then exits

B starting point for execution of C++ program is function called main; every
C++ program must define function called main

B #include preprocessor directive to include complete contents of file

B iostream standard header file that defines various types and variables
related to I/O

B std::cout is standard output stream (defaults to user’s terminal)
B operator << is used for output

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Software Build Process

Source Code Compile
File
(-cpp, -hpp)

Object File Link Executable
(.0) Program

Source Code Compile
File
(-cpp, .hpp)

Object File
(.0)

Source Code Compile
File
(-cpp, .hpp)

Object File
(0)

start with C++ source code files (. cpp, . hpp)
compile: convert source code to object code
object code stored in object file (. o)

link: combine contents of one or more object files (and possibly some
libraries) to produce executable program

B executable program can then be run directly

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

GNU Compiler Collection (GCC) C++ Compiler

g++ command provides both compiling and linking functionality

command-line usage:
g++ [options] input_file . ..

many command-line options are supported

some particularly useful command-line options listed on next slide

compile C++ source file file.cpp to produce object code file file.o:
g++ -c file.cpp

link object files file_1.0, file_2.0, ... to produce executable file executable:
gt++ -o executable file_l.0 file_ 2.0 ...

web site:
http://www.gnu.org/software/gcc

C++ standards support in GCC:
https://gcc.gnu.org/projects/cxx-status.html

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

http://www.gnu.org/software/gcc
https://gcc.gnu.org/projects/cxx-status.html

Common g++ Command-Line Options

H

o compile only (i.e., do not link)
B —ofile

o use file file for output
B g

o include debugging information
® -On

o set optimization level to n (0 almost none; 3 full)
B -std=c++17
o conform to C++17 standard

B -Idir

o specify additional directory dir to search for include files
B -Ldir

o specify additional directory dir to search for libraries
B -1/ib

o link with library lib

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Common g++ Command-Line Options (Continued 1)

B -pthread

o enable concurrency support (via pthreads library)
B -pedantic-errors

o strictly enforce compliance with standard

B -Wall
o enable most warning messages
B -Wextra

o enable some extra warning messages not enabled by -Wall
B -lpedantic

o warn about deviations from strict standard compliance
B -Werror

o treat all warnings as errors

-fno-elide-constructors

o in contexts where standard allows (but does not require) optimization that
omits creation of temporary, do not attempt to perform this optimization

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Common g++ Command-Line Options (Continued 2)

B -fconstexpr-loop-limit=n

o set maximum number of iterations for loop in constexpr functions to n
B -fconstexpr-depth=n

o set maximum nested evaluation depth for constexpr functions to n

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Clang C++ Compiler

B clang++ command provides both compiling and linking functionality
B command-line usage:
clang++ [options] input_file . ..
B many command-line options are supported
B command-line interface is largely compatible with that of GCC g++
command
B web site:
http://clang.llvm.org
B C++ standards support in Clang:
http://clang.llvm.org/cxx_status.html

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

http://clang.llvm.org
http://clang.llvm.org/cxx_status.html

Common clang++ Command-Line Options

B many of more frequently used command-line options for clang++
identical to those for g++
B consequently, only small number of clang++ options given below
B -fconstexpr-steps=n
o sets maximum number of computation steps in constexpr functions to n
B -fconstexpr-depth=n
o sets maximum nested evaluation depth for constexpr functions to n

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Manually Building hello Program

B numerous ways in which hello program could be built

B often advantageous to compile each source file separately
B can compile and link as follows:
H compile source code file hello.cpp to produce object file hello.o:
g+t -c hello.cpp
link object file hello.o to produce executable program hello:
g+t -0 hello hello.o

B generally, manual building of program is quite tedious, especially when
program consists of multiple source files and additional compiler options
need to be specified

B in practice, we use tools to automate build process (e.g., CMake and
Make)

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Section 2.3

C++ Basics

The C++ Programming Language

B created by Bjarne Stroustrup of Bell Labs
B originally known as C with Classes; renamed as C++ in 1983

B most recent specification of language in ISO/IEC 14882:2017 (informally
known as “C++17”)

B next version of standard expected in approximately 2020 (informally
known as “C++20")

procedural

loosely speaking is superset of C

directly supports object-oriented and generic programming
maintains efficiency of C

application domains: systems software, application software, device
drivers, embedded software, high-performance server and client
applications, entertainment software such as video games, native code for
Android applications

B greatly influenced development of C# and Java

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Comments

B two styles of comments provided
B comment starts with // and proceeds to end of line
B comment starts with /+ and proceeds to first */

// This is an example of a comment.
/* This is another example of a comment. */
/* This 1is an example of a comment that
spans
multiple lines. #*/

B comments of /x --- */ style do not nest

/ *

/* This sentence is part of a comment. x/
This sentence is not part of any comment and
will probably cause a compile error.

*

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Identifiers

B identifiers used to name entities such as: types, objects (i.e., variables),
and functions
B valid identifier is sequence of one or more letters, digits, and underscore
characters that does not begin with a digit
B identifiers that begin with underscore (in many cases) or contain double
underscores are reserved for use by C++ implementation and should be
avoided
B examples of valid identifiers:
0 event_counter
o eventCounter
0 sqrt_2
o f o o b ar 4?2

B identifiers are case sensitive (e.g., counter and cOuNtEr are distinct
identifiers)

B identifiers cannot be any of reserved keywords (see next slide)

u of identifier is context in which identifier is valid (e.g., block,
function, global)

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/lex.name#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/lex.name#3

Reserved Keywords

alignas default
alignof delete
and do
and_eq double
asm dynamic_cast
auto else
bitand enum
bitor explicit
bool export
break extern
case false
catch float
char for
charlé_t friend
char32 t goto
class if

compl inline
const int

constexpr long
const_cast mutable
continue namespace
decltype new

*Note: context sensitive

noexcept
not

not_eq
nullptr
operator
or

or_eq
private
protected
public
register
reinterpret_cast
return
short
signed
sizeof
static
static_assert
static_cast
struct
switch
template

Copyright (© 2015-2019 Michael D. Adams Version: 2019-09-01-SENG475

this
thread local
throw
true

try
typedef
typeid
typename
union
unsigned
using
virtual
void
volatile
wchar_ t
while
Xor
Xor_eq
override*
final*®

Section 2.3.1

Preprocessor

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The Preprocessor

prior to compilation, source code transformed by preprocessor
preprocessor output then passed to compiler for compilation

preprocessor behavior can be controlled by preprocessor directives
preprocessor directive occupies single line and consists of:
H hash character (i.e., “#”)
preprocessor instruction (i.e., define, undef, include, if, ifdef,
ifndef, else, elif, endif, line, error, and pragma)
arguments (depending on instruction)
line break
B preprocessor can be used to:
o conditionally compile parts of source file
define macros and perform macro expansion
include other files
force error to be generated

a

]

(m]

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Source-File Inclusion

B can include contents of another file in source using preprocessor
#include directive
B syntax:
#include <path_specifier>
or
#include "path_specifier"
B path_specifier is pathname (which may include directory) identifying file
whose content is to be substituted in place of include directive
B typically, angle brackets used for system header files and double quotes
used otherwise
B example:

#include <iostream>

#include <boost/tokenizer.hpp>

#include "my_header_file.hpp"

#include "some_directory/my_header_file.hpp"

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Defining Macros

B can define macros using #define directive
B syntax:
#define name value
B name is name of macro and value is value of macro
B example:
#define DEBUG_LEVEL 10

B macros can also take arguments

B generally, macros should be avoided when possible (i.e., when other
better mechanisms are available to achieve desired effect)

B for example, although macros can be used as way to accomplish inlining

of functions, such usage should be avoided since language mechanism
exists for specifying inline functions

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Conditional Compilation

B can conditionally include code through use of if-elif-else construct
B conditional preprocessing block consists of following (in order)
0 #if, #ifdef, or #ifndef directive
B optionally any number of #elif directives
at most one #else directive
B #endif directive
B code in taken branch of if-elif-else construct passed to compiler, while
code in other branches discarded

B example:

#if DEBUG_LEVEL ==
/..
#elif DEBUG_LEVEL ==

#else
S/ ..
#tendif

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Preprocessor Predicate __has_include

B preprocessor predicate __has_include can be used in expressions for
preprocessor to test for existence of header files

B example:

#ifdef _ has_include

if _ has_include (<optional>)
include <optional>
define have_optional 1

elif _ has_include (<experimental/optional>)
include <experimental/optional>
define have_optional 1
define experimental_optional

else
define have_optional 0

endif

#endif

HHHHHHHHHH

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Section 2.3.2

Objects, Types, and Values

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Fundamental Types

B boolean type: bool

B character types:
o char (may be signed or unsigned)
o signed char
o unsigned char
o charl6é_t
o char32_t
o wchar t

B char is distinct type from signed char and unsigned char

B standard signed integer types:

0 signed char

0 signed short int

0 signed int

o signed long int

o signed long long int

B standard unsigned integer types:
0 unsigned char
0 unsigned short int
0 unsigned int
0 unsigned long int
o unsigned long long int

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.fundamental#2

Fundamental Types (Continued)

B “int” may be omitted from names of (non-character) integer types (e.g.,
“unsigned” equivalent o “unsigned int” and “signed’ equivalent
to “signed int”)

B “signed’ may be omitted from names of signed integer types, excluding
signed char (e.g., “int” equivalent to “signed int”)

B boolean, character, and (signed and unsigned) integer types collectively
called

B integral types must use binary positional representation; two’s
complement, one’s complement, and sign magnitude representations
permitted

B floating-point types:

o float

o double
0 long double

B void (i.e., incomplete/valueless) type: void
B null pointer type: std: :nullptr_t (defined in header file cstddef)

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.fundamental#7

u (a.k.a. literal constant) is value written exactly as it is meant to be
interpreted

B examples of literals:
"Hello, world"
"Bjarne"

4 al

IAI

123

123U
17000"000"000
3.1415

1.0L
1.23456789e-10

Copyright (© 2015-2019 Michael D. Adams Version: 2019-09-01-SENG475

Character Literals

B character literal consists of optional prefix followed by one or more
characters enclosed in single quotes

B type of character literal determined by prefix (or lack thereof) as follows:

Prefix | Literal Type
None | ordinary | normally char (in special cases int)
u8 UTF-8 char
u ucCs-2 charlé_t
U UCS-4 char32_t
L wide wchar_t
B special characters can be represented by escape sequence:
Escape Escape
Character Sequence ch t S P
newline (LF) n aracter . Squenee
horizontal tab (HT) | \t 2#197201321‘, § ?) i;
vertical tab (VT) \v dogbleq bote (° N
backspace (BS) \b tal a b \
carriage return (CR) | \r octal number 000 000
form feed (FF) \f hex num_ber hhh \xhhh
alert (BEL) \a code point nnnn \unnnn
backslash (\) \\ code point nnnnnnnn | \Unnnnnnnn
B examples of character literals:
lal Ill ’ !I l\nl ulal Ulal Llal u8,a’

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Character Literals (Continued)

B decimal digit characters guaranteed to be consecutive in value (e.g., ' 1’
must equal ' 0’ + 1)

B in case of ordinary character literals, alphabetic characters are not
guaranteed to be consecutive in value (e.g., ' b’ is not necessarily
Ial + l)

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/lex.charset#3

String Literals

B (non-raw) string literal consists of optional prefix followed by zero or more
characters enclosed in double quotes
B string literal has character array type

B type of string literal determined by prefix (or lack thereof) as follows:
Prefix | Literal Type
None | narrow const char]]

u8 UTF-8 const char|]

u UTF-16 | const charlé6_t][]
U UTF-32 | const char32_t[]
L wide const wchar_t/[]

B examples of string literals:

"Hello, World!\n"
"123"
"ABCDEFG"

B adjacent string literals are concatenated (e.g., "Hel" "1o" equivalent to
"Hello")

B string literals implicitly terminated by null character (i.e., ' \0")

so, for example, "Hi" means ' H’ followed by ' i’ followed by "\ 0’

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Raw String Literals

interpretation of escape sequences (e.g., “\n”) inside string literal can be
avoided by using raw literal
raw literal has form:

o prefix R"delimiter (raw_characters) delimiter"

B optional prefix is string-literal prefix (e.g., u8)

B optional delimiter is sequence of characters used to assist in delimiting

string
raw_characters is sequence of characters comprising string
escape sequences not processed inside raw literal
raw literal can also contain newline characters
examples of raw string literals:
R" (He said, "No.")"
u8R" (He said, "No. ") "

R"foo (The answer is 42.)foo"
R"((+]-)?[[:digit:]]+)"

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Integer Literals

B can be specified in decimal, binary, hexadecimal, and octal

B number base indicated by prefix (or lack thereof) as follows:

Prefix Number Base
None decimal
Leading 0 | octal

Ob or 0B binary

Ox or 0X hexadecimal

B various suffixes can be specified to control type of literal:
o uorU
o lorL
bothuorUand 1 orL
11 or LL
both uorUand 11 or LL
B can use single quote as digit separator (e.g., 1/ 000’ 000)
B examples of integer literals:
42
1700070007000" 000ULL
OxdeadU
B integer literal always nonnegative; so, for example, -1 is integer literal 1
with negation operation applied

(]

[m]

a

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/lex.icon
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/lex.fcon

Integer Literals (Continued)

Suffix Decimal Literal Non-Decimal Literal
None int int
long int unsigned int
long long int long int
unsigned long int
long long int
unsigned long long int
uorU unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int | unsigned long long int
lorL long int long int
long long int unsigned long int
long long int
unsigned long long int
Bothuorvu unsigned long int unsigned long int
andlorL unsigned long long int | unsigned long long int
1lorLL long long int long long int
unsigned long long int
Bothuorvu unsigned long long int | unsigned long long int
and 11 or LL

Copyright © 2015-2019 Michael D. Adams

C++

Version: 2019-09-01-SENG475

Floating-Point Literals

B type of literal indicated by suffix (or lack thereof) as follows:

Suffix | Type

None | double

forF | float

lorlL | long double

B examples of double literals:
1.414
1.25e-8
B examples of £loat literals:
1.414f
1.25e-8f
B examples of long double literals:

1.5L
1.25e-20L

B floating-point literals always nonnegative; so, for example, -1.0 is literal
1.0 with negation operator applied

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Hexadecimal Floating-Point Literals

B hexadecimal floating-point literal has general form:

H prefix 0x or 0X

hexadecimal digits for integer part of number (optional if at least one digit
after radix point)

period character (i.e., radix point)

hexadecimal digits for fractional part of number (optional if at least one digit
before radix point)

p character (which designates exponent to follow)

@ one or more decimal digits for base-16 exponent

optional floating-point literal suffix (e.g., £ or 1)

B examples of hexadecimal floating-point literals:

| Literal | Type | Value (Decimal) |
0x.8p0 double 0.5
0x10.cp0 | double 16.75
0x.8p0f float 0.5
0xf.fp0f | float 15.9375
0x1plOL long double | 1024

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Boolean and Pointer Literals

B boolean literals:

true
false

B pointer literal:
nullptr

Copyright (© 2015-2019 Michael D. Adams Version: 2019-09-01-SENG475

Declarations and Definitions

u introduces identifier for type, object (i.e., variable), or function
(without necessarily providing full information about identifier)
o in case of object, specifies type (of object)
o in case of function, specifies number of parameters, type of each
parameter, and type of return value (if not automatically deduced)
B each identifier must be declared before it can be used (i.e., referenced)
u provides full information about identifier and causes entity
associated with identifier (if any) to be created

o in case of type, provides full details about type

o in case of object, causes storage to be allocated for object and object to be
created

o in case of function, provides code for function body

B in case of objects, in most (but not all) contexts, declaring object also
defines it

B can declare identifier multiple times but can define only once

B above terminology often abused, with “declaration” and “definition” being
used interchangeably

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Examples of Declarations and Definitions

int count; // declare and define count
extern double alpha; // (only) declare alpha

void func() { // declare and define func
int n; // declare and define n
double x = 1.0; // declare and define x
//

}

bool isOdd(int); // declare isOdd
bool is0dd(int x); // declare is0Odd (x ignored)

bool is0dd(int x) { // declare and define 1isOdd
return x % 2;

}
struct Thing; // declare Thing

struct Vector2 { // declare and define Vector?2
double x;
double y;

}i

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Variable Declarations and Definitions

u (a.k.a. object declaration) introduces identifier that
names object and specifies type of object

u (a.k.a. object definition) provides all information
included in variable declaration and also causes object to be created (e.g.,
storage allocated for object)

B example:

int count;
// declare and define count
double alpha;
// declare and define alpha
extern double gamma;
// declare (but do not define) gamma

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

L is collection of one or more objects of same type that are stored
contiguously in memory

B each element in array identified by (unique) integer index, with indices
starting from zero

B array denoted by []

B example:

double x[10]; // array of 10 doubles
int data(512]([512]; // 512 by 512 array of ints

B elements of array accessed using subscripting operator []
B example:

int x[10];
// elements of arrays are x[0], x[1], ..., x[9]

B often preferable to use user-defined type for representing array instead of
array type

B for example, std::array and std: :vector types (to be discussed later)
have numerous practical advantages over array types

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Array Example

B code:

int al4] = {1, 2, 3, 4};
B assumptions (for some completely fictitious C++ language
implementation):

0 sizeof(int) is4
o array a starts at address 1000

B memory layout:

Address Name
1000 1 al0]
1004 2 alll]
1008 3 al2]
1012 4 al3]

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

u is object whose value is address in memory where another object
is stored

B pointer to object of type T denoted by T*

is special pointer value that does not refer to any valid
memory location

null pointer value provided by nullptr keyword
accessing object to which pointer refers called
dereferencing pointer performed by indirection operator (i.e., “*”)

if p is pointer, *p is object to which pointer refers

if x is object of type T, &x is (normally) address of object, which has type
T*
B example:

char c;
char* cp = nullptr; // cp is pointer to char
char* cp2 = &c; // cp2 is pointer to char

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Pointer Example

B code:
int i = 42;
int* p = &i;
assert (*p == 42);

B assumptions (for some completely fictitious C++ language
implementation):
0 sizeof (int) is4
o sizeof (int*) is4
o &iis ((int*)1000)
o gpis ((int*)1004)

B memory layout:

Address Name
1000 42 i
1004 1000 p

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

References

L is alias (i.e., nickname) for already existing object
two kinds of references:

H Ivalue reference
rvalue reference

Ivalue reference to object of type T denoted by T&
rvalue reference to object of type T denoted by Ts&
initializing reference called

Ivalue and rvalue references differ in their binding properties (i.e., to what

kinds of objects reference can be bound)

B in most contexts, Ivalue references usually needed

B rvalue references used in context of move constructors and move
assignment operators (to be discussed later)

B example:

int x;
ints v = x; // y is lvalue reference to int
intes tmp = 3; // tmp is rvalue reference to int

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

References Example

B code:
int 1 = 42;
ints § = i;
assert (j == 42);
B assumptions (for some completely fictitious C++ language
implementation):

0 sizeof(int) is4
o &iis ((int*)1000)

B memory layout:

Address Name

1000 i,3

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

References Versus Pointers

B references and pointers similar in that both can be used to refer to some
other entity (e.g., object or function)

B two key differences between references and pointers:

E reference must refer to something, while pointer can have null value
(nullptr)

references cannot be rebound, while pointers can be changed to point to
different entity

B references have cleaner syntax than pointers, since pointers must be
dereferenced upon each use (and dereference operations tend to clutter
code)

B yse of pointers often implies need for memory management (i.e., memory
allocation, deallocation, etc.), and memory management can introduce
numerous kinds of bugs when done incorrectly

B often faced with decision of using pointer or reference in code

B generally advisable to prefer use of references over use of pointers unless
compelling reason to do otherwise, such as:

o must be able to handle case of referring to nothing

o must be able to change entity being referenced
NEXT SLIDE: const qualifier

el D. Adams C++ Version: 2019-09-01-SENG475

Unscoped Enumerations

u provides way to describe range of values that are
represented by named constants called

object of enumerated type can take any one of enumerators as value
enumerator values represented by some integral type

enumerator can be assigned specific value (which may be negative)
if enumerator not assigned specific value, value defaults to zero if first
enumerator in enumeration and one greater than value for previous
enumerator otherwise

B example:

enum Suit {
Clubs, Diamonds, Hearts, Spades

i
Suit suit = Clubs;

B example:

enum Suit {
Clubs = 1, Diamonds = 2, Hearts = 4, Spades = 8
i

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Scoped Enumerations

B scoped enumeration similar to unscoped enumeration, except:
o all enumerators are placed in scope of enumeration itself
o integral type used to hold enumerator values can be explicitly specified
o conversions involving scoped enumerations are stricter (i.e., more type

safe)
B class or struct added after enum keyword to make enumeration
scoped
B scope resolution operator (i.e., “: :”) used to access enumerators

B scoped enumerations should probably be preferred to unscoped ones

B example:

enum struct Season {
spring, summer, fall, winter

i

enum struct Suit : unsigned char
clubs, diamonds, hearts, spades

i

Season season = Season::summer;

Suit suit = Suit::spades;

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Type Aliases with typedef Keyword

B typedef keyword used to create alias for existing type
B example:

typedef long long BigInt;
BigInt i; // 1 has type long long

typedef char* CharPtr;
CharPtr p; // p has type charx

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Type Aliases with using Statement

B using statement can be used to create alias for existing type
B probably preferable to use using statement over typedef
B example:

using BigInt = long long;
BigInt i; // i has type long long

using CharPtr = char*;
CharPtr p; // p has type charx

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The extern Keyword

u : basic unit of compilation in C++ (i.e., single source code

file plus all of its directly and indirectly included header files)

B extern keyword used to declare object/function in separate translation
unit
B example:

extern int evil_global_variable;
// declaration only
// actual definition in another file

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The const Qualifier

B const qualifier specifies that object has value that is constant (i.e.,
cannot be changed)

B qualifier that applies to object itself said to be

B following defines x as int with value 42 that cannot be modified:
const int x = 42;

B example:
const int x = 42;
x = 13; // ERROR: x 1is const
const ints x1 = x; // OK
const int* pl = &x; // OK
int& x2 = x; // ERROR: x const, x2 not const
int* p2 = &x; // ERROR: x const, #p2 not const

B example:
int x = 0;
const ints y = x;
x = 42; // OK
// vy also changed to 42 since y refers to x
// y cannot be used to change x, however
// i.e., the following would cause compile error:
// y = 24; // ERROR: y is const

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The const Qualifier and Non-Pointer/Non-Reference Types

B with types that are not pointer or reference types, const can only be
applied to object itself (i.e., top level)

B that is, object itself may be const or non-const

B example:
int i = 0; // object i is modifiable
i =142; // OK: i can be modified
const int ci = 0; // object ci is not modifiable
ci = 42; // ERROR: ci cannot be modified

Copyright © 20152019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Example: const Qualifier and Non-Pointer/Non-Reference

SKIP SLIDE

lypes

// with types that are not pointer or reference types, const
// can only be applied to object itself (i.e., top level)
// object itself may be const or non-const

int i = 0; // non-const int object
const int ci = 0; // const int object

® N O RN =

i =42; // OK: can modify non—-const object
ci = 42; // ERROR: cannot modify const object

- o ©

i =ci; // OK: can modify non—-const object
ci = 1i; // ERROR: cannot modify const object

)

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The const Qualifier and Pointer Types

B every pointer is associated with two objects: pointer itself and pointee (i.e.,
object to which pointer points)

B const qualifier can be applied to each of pointer (i.e., top-level qualifier)

and pointee

Address

int i = 42; // pointee
ointer

// p is pointer to int i l(gogj 2000 (pointer)
// for example: p
// int+ p = &i;
// const intx p = &i;
// intx const p = &i; . 2000)
// const intx const p = &i; (81) 4 ~(pointee)

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Example: const Qualifier and Poin

SKIP SLIDE

N O s W N =

o ©

o=

o o b~ w

17

// with pointer types, const can be applied to each of:
// pointer and pointee

// pointer itself may be const or non-const (top-level)
// pointee may be const or non—-const

int 1 = 0;
int j = 0;

int* pi = &i; // non-const pointer to a non-const int
pi = &3; // OK: can modify non-const pointer
*pi = 42; // OK: can modify non-const pointee

const int* pci = &i; // non-const pointer to a const int
// equivalently: int const+ pci = &i;

pci = &3j; // OK: can modify non-const pointer

*pci = 42; // ERROR: cannot modify const pointee

int* const cpi = &i; // const pointer to a non-const int
cpl = &J; // ERROR: cannot modify const pointer
*cpi = 42; // OK: can modify non—-const pointee

const int* const cpci = &i; // const pointer to a const int
// equivalently: int const#* const cpci = &i;

cpci = &3; // ERROR: cannot modify const pointer

*cpci = 42; // ERROR: cannot modify const pointee

pci = pi; // OK: adds const to pointee
pi = pci; // ERROR: discards const from pointee

Copyright © 20152019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The const Qualifier and Reference Types

B reference is name that refers to object (i.e., referee)

B in principle, const qualifier can be applied to reference itself (i.e.,
top-level qualifier) or referee

B since reference cannot be rebound, reference itself is effectively always
constant

B for this reason, does not make sense to explicitly apply const as
top-level qualifier for reference type and language disallows this

B const qualifier can only be applied to referee

B example:
int § = 0;
int k = 42;
ints 1 = 3;

// 1 is reference; j 1is referee
// referee is modifiable
const ints ci = j;
// ci 1s reference; j 1s referee
// referee is not modifiable
const ints ci = k; // ERROR: cannot redefine/rebind
ints const r = j;
// ERROR: reference itself cannot be specified as const

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Example: const Qualifier and Reference Types

® N O bW N =

- o ©

12

// with reference types, const can only be applied to referee
// reference itself cannot be rebound (i.e., 1s constant)

// referee may be const or non-const

int i = 0; const int ci = 0;
int i1 = 0; const int cil = 0;

// reference to non—-const int

ints ri = 1i;

ri = ci; // OK: can modify non-const referee

int&¢ ri = i1; // ERROR: cannot redefine/rebind reference

// reference to const int
const int¢ rci = ci;
rci = 1; // ERROR: cannot modify const referee
const inté& rci = cil;
// ERROR: cannot redefine/rebind reference

// ERROR: reference itself cannot be const qualified
int¢ const cri = i; // ERROR: invalid const qualifier

// ERROR: reference itself cannot be const qualified
const ints const crci = ci; // ERROR: invalid const qualifier
// also: int const& const crci = ci; // ERROR

const ints rl = ci; // OK: adds const to referee
inté& r2 = ci; // ERROR: discards const from referee

NEXT SLIDE: constexpr for variables Cis Version: 2019-09-01-SENG475

The const Qualifier and Pointer-to-Pointer Types

B for given type T, cannot implicitly convert T** to const T**

B although such conversion looks okay at first glance, actually would create
backdoor for changing const objects

B can, however, implicitly convert T** to const T* const*

B for example, code like that shown below could be used to change const
objects if T** to const T** were valid conversion:

const int i = 42;
int* p;
const int** g = &p;
// Fortunately, this line is not valid code.
// ERROR: cannot convert Intx+ to const 1intxx*
*q = &1
// Change p (to which g points) to point to 1.
// OK: xq 1s not const (only #+*g 1s const)
p=0;
// Set 1 (to which p points) to 0.
// OK: #p 1s not const
// This line would change i, which is const.

*

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The volatile Qualifier

B volatile qualifier used to indicate that object can change due to agent
external to program (e.g., memory-mapped device, signal handler)

B compiler cannot optimize away read and write operations on volatile
objects (e.g., repeated reads without intervening writes cannot be
optimized away)

B volatile qualifier typically used when object:

o corresponds to register of memory-mapped device
o may be modified by signal handler (namely, object of type
volatile std::sig_atomic_t)

B example:

volatile int x;
volatile unsigned char* deviceStatus;

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The auto Keyword

B in various contexts, auto keyword can be used as place holder for type
B in such contexts, implication is that compiler must deduce type

B example:
auto i = 3; // i has type int
auto j = 1i; // j has type int

autos k = 1; // k has type inté
const autos n = i; // n has type const inté&
auto x = 3.14; // x has type double

B very useful in generic programming (covered later) when types not always
easy to determine

B can potentially save typing long type names
B can lead to more readable code (if well used)

B if overused, can lead to bugs (sometimes very subtle ones) and difficult to
read code

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Inline Variables

u : variable that may be defined in multiple translation units
as long as all definitions are identical

B potential for multiple definitions avoided by having linker simply choose
one of identical definitions and discard others (if more than one exists)

B can request that variable be made inline by including inline qualifier in
variable declaration

B inline variable must have static storage duration (e.g., static class member
or namespace-scope variable)

B inline variable typically used to allow definition of variable to be placed in
header file without danger of multiple definitions

B inline variable has same address in all translation units

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Inline Variable: Example

inline_variable_1_1.hpp

1 inline int magic = 42;

main.cpp

1 #include <iostream>

2 #include "inline_variable_1_1.hpp"
3 int main() {

4 std::cout << magic << "\n";

5}

other.cpp

1+ #include "inline_variable_1_1.hpp"
2 void func() {/* ... *x/}

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Section 2.3.3

Operators and Expressions

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Arithmetic Operators

Operator Name | Syntax

addition. atbh Bitwise Operators

z:ztrr;l:tlf: ia_ b O.pe.rator Name Syntax

unary minus s bitwise NOT ~a
M bitwise AND a&b

multiplication a*b -

division a /b bitwise OR a1

Modulo (e.remainden | @ % b blt.WISe).(OR . a’ b

pre-increment ia arithmetic left shift a<<b
. arithmetic right shift | a >> b

post-increment at++

pre-decrement --a

post-decrement | a--

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Operators (Continued 1)

Assignment and
Compound-Assignment Operators

Operator Name Syntax

assignment a=">o

addition assignment a+=b
subtraction assignment a-=>n
multiplication assignment a*=>b
division assignment a/=b
modulo assignment as%=b
bitwise AND assignment a &=>b
bitwise OR assignment al=bo
bitwise XOR assignment a”"=b
arithmetic left shift assignment a <<=b
arithmetic right shift assignment | a >>= b

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Operators (Continued 2)

Logical/Relational Operators

Operator Name Syntax Member and Pointer Operators
equal a==> Operator Name Syntax
not equal al!l=b array subscript alb]
greater than a>b indirection *a

less than a<hb address of &a
greaterthanorequal | a >= Db member selection | a.b

less than or equal a<=b member selection | a->b
logical negation la member selection | a.*b
logical AND a & b member selection | a->*b
logical OR allb

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Operators (Continued 3)

Other Operators

Operator Name Syntax
function call a(...)
comma a, b

ternary conditional a?b:c
scope resolution a::b

sizeof sizeof (a)
parameter-pack sizeof sizeof... (a)
alignof alignof (T)
allocate storage new T
allocate storage (array) new T[a]
deallocate storage delete a
deallocate storage (array) | delete[] a

Copyright © 2015-2019 Michael D. Adams

C++

Version: 2019-09-01-SENG475

Operators (Continued 4)

Other Operators (Continued)

Operator Name | Syntax

type ID typeid(a)

type cast (T) a

const cast const_cast<T>(a)

static cast static_cast<T> (a)
dynamic cast dynamic_cast<T>(a)
reinterpret cast | reinterpret_cast<T>(a)
throw throw a

noexcept noexcept (e)

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Operator Precedence

Precedence | Operator | Name | Associativity
1 HE scope resolution none
2 . member selection (object) | left to right
-> member selection (pointer)
[] subscripting
() function call
++ post-increment
-- post-decrement

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Operator Precedence (Continued 1)

| Precedence | Operator | Name | Associativity |
3 sizeof size of object/type right to left
++ pre-increment
-= pre-decrement
~ bitwise NOT
! logical NOT
- unary minus
+ unary plus
& address of
* indirection
new allocate storage
new/] allocate storage (array)
delete deallocate storage
delete]] | deallocate storage (array)

()

cast

Copyright © 2015-2019 Michael D. Adams

Version: 2019-09-01-SENG475

Operator Precedence (Continued 2)

| Precedence | Operator | Name | Associativity |

4 Lx member selection (objects) | left to right
—>* member selection (pointers)

5 * multiplication left to right
/ division
% modulus

6 + addition left to right
- subtraction

7 << left shift left to right
>> right shift

8 < less than left to right
<= less than or equal
> greater than
>= greater than or equal

9 == equality left to right
= inequality

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Operator Precedence (Continued 3)

Precedence \ Operator | Name Associativity
10 & bitwise AND left to right
11 A bitwise XOR left to right
12 \ bitwise OR left to right
13 && logical AND left to right
14 | logical OR left to right
15 ? ternary conditional | right to left

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Operator Precedence (Continued 4)

| Precedence | Operator | Name | Associativity |
16 = assignment right to left
*= multiplication assignment
/= division assignment
%= modulus assignment
+= addition assignment
-= subtraction assignment
<<= left shift assignment
>>= right shift assignment
&= bitwise AND assignment
|= bitwise OR assignment
N= bitwise XOR assignment
17 throw | throw exception right to left
18 ' comma left to right

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Alternative Tokens

Alternative | Primary
and &&
bitor \
or ||
Xor
compl ~
bitand &
and_eq &=
or_eq |=
xXor_eq A=
not !
not_eq =
B alternative tokens above probably best avoided as they lead to more
verbose code

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Expressions

® An is a sequence of operators and operands that specifies a
computation.

B An expression has a type and, if the type is not void, a value.

HA is an expression that can be evaluated at compile
time (e.g., 1 + 1).
B Example:
Expression Type Value
X int 0
; -0 y = X ints reference to y
int oo o X+ 1 int 1
int*p=£ix‘ X * x + 2 * x| int 0
double d = 0.0; y = x *x ints reference to y
// Evaluate some x == 42 bool false
// expressions here. | *P ints reference to x
p == &x bool true
X >2 *y bool false
std::sin(d) double | 0.0

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.fundamental#9

Operator Precedence/Associativity Example

Expression Fully-Parenthesized Expression
a+b+c ((a +b) +¢)

a=b=c (a = (b=2c))

c=a+b (c = (a + b))

d=as&& b || c (d= ((a && (!b)) |l ¢))
HH*ptt (++(* (pt+)))

al ~b&c”d (@l (((~b) & c) ~d))
al0]++ + a[l]++ (((a[0])++) + ((a[l])++))
atb*c/d%-g (@a+ (((b*c)/ d % (-9)))
++p[i] (++(p[i]))

——*++p (== (*(++p)))

a+t=b +=c¢c +=d (a += (b += (c +=d)))
z=a==Db? ++c : ——d | (z = ((a == b) ? (++c) (==d)))

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Division/Modulus Operator and Negative Numbers

B for integral operands, division operator yields algebraic quotient with any
fractional part discarded (i.e., round towards zero)

B if quotient a / Db is representable in type of result,
(a /b) *b+ a % bisequaltoa

B so, assuming b is not zero and no overflow, a $ b equals
a-(a/b) *b

B result of modulus operator not necessarily nonnegative

B example:
1 static_assert (5 % 3 == 2);
2 static_assert (5 % (-3) == 2);
3 static_assert((-5) % 3 == -2);
4 static_assert((-5) % (-3) == -2);

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Short-Circuit Evaluation

B |ogical-and operator (i.e., &&):
o groups left-to-right
o result true if both operands are true, and false otherwise
o second operand is not evaluated if first operand is false (in case of built-in
logical-and operator)
B |ogical-or operator (i.e., | |):
o groups left-to-right
o result is true if either operand is true, and false otherwise
o second operand is not evaluated if first operand is true (in case of built-in
logical-or operator)

B example:
int x = 0;
bool b = (x == 0 || ++x == 1);
// b equals true; x equals 0
b= (x!=0 && ++x == 1);

// b equals false; x equals 0

B above behavior referred to as short circuit evaluation

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.log.and
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.log.or

Short-Circuit Evaluation Example:a || b || ¢

B for three values a, b, c of type bool, consider evaluation of expression
allbllc

B code showing short-circuit evaluation and associated control-flow graph
given below

a
bool _result;
if (a) l

goto _true;
if (b) T b
goto _true;
if (c)
goto _true; T
_result = false;
goto done; c

_true: T F
_result = true;
done:

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

a && b && c

given below

bool _result;
if ('a)

goto _false;
if (!'b)

goto _false;
if (!c¢)

goto _false;
_result = true;
goto done;
_false:

done:

_result = false;

Copyright © 2015-2019 Michael D. Adams

C++

Short-Circuit Evaluation Example: a && b && c

B for three values a, b, c of type bool, consider evaluation of expression

B code showing short-circuit evaluation and associated control-flow graph

Version: 2019-09-01-SENG475

Short-Circuit Evaluation Example: (a || b) && c

B for three values a, b, c of type bool, consider evaluation of expression
(a || b) && c

B code showing short-circuit evaluation and associated control-flow graph
given below ()

a
bool _result;
if (a) J
goto _second;
if (!b)
goto _false; T b
_second:
if (!c) J
goto _false;
_result = true; c
goto done;
_false: F
_result = false; T

done:

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The static_ assert Statement

B static_assert allows testing of boolean condition at compile time
B used to test sanity of code or test validity of assumptions made by code

B static_assert has two arguments:

H boolean constant expression (condition to test)
string literal for error message to print if boolean expression not true

B second argument is optional
B failed static assertion results in compile error

B example:

static_assert (sizeof(int) >= 4, "int is too small");
static_assert(l + 1 == 2, "compiler is buggy");

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The sizeof Operator

B sizeof operator is used to query size of object or object type (i.e.,
amount of storage required)

B for object type T, sizeof (T) yields size of T in bytes (e.g.,
sizeof (int), sizeof (int[10]))

B for expression e, sizeof e yields size of object required to hold result of
e in bytes (e.g., sizeof (&x) where x is some object)

B sizeof (char), sizeof (signed char), and
sizeof (unsigned char) guaranteed to be 1

B byte is at least 8 bits (usually exactly 8 bits except on more exotic
platforms)

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The constexpr Qualifier for Variables

B constexpr qualifier indicates object has value that is constant
expression (i.e., can be evaluated at compile time)

B constexpr implies const (but converse not necessarily true)

B following defines x as constant expression with type const int and
value 42:

constexpr int x = 42;

B example:

constexpr int x 42;

int y = 1;

x = 0; // ERROR: x 1s const

const ints x1 = x; // OK

const int* pl = &x; // OK

ints& x2 = x; // ERROR: x const, x2 not const
int* p2 = &x; // ERROR: x const, #p2 not const
int al[x]; // OK: x 1s constexpr

int a2[y]; // ERROR: y is not constexpr

NEXT SLIDE: const and functions

C++ Version: 2019-09-01-SENG475

Section 2.3.4

Control-Flow Constructs: Selection and Looping

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The if Statement

B allows conditional execution of code
B syntax has form:

if (expression)
statement

else
statement;

B if expression expression is true, execute statement statement; ; otherwise,
execute statement statement,
B else clause can be omitted leading to simpler form:

if (expression)
statement

B conditional execution based on more than one condition can be achieved
using construct like:

if (expressiony)
statement;

else if (expressiony)
statementy

else
statement,

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The if Statement (Continued 1)

B to include multiple statements in branch of 1 £, must group statements
into single statement using brace brackets

if (expression) {
statement |
statement|
statement 3

} else {
statementy |

statement; >
statement; 3

}

B advisable to always include brace brackets even when not necessary, as
this avoids potential bugs caused by forgetting to include brackets later
when more statements added to branch of 1 £

Version: 2019-09-01-SENG475

Copyright © 20152019 Michael D. Adams Ci+

The if Statement (Continued 2)

B if statement may include initializer:

if (initializer; expression)
statement; ;

else
statementy ;

B above construct equivalent to:
{
initializer;
if (expression)
Statement ;

else
statementy;
}

B if condition in if statement is constant expression, constexpr keyword
can be added after i £ keyword to yield what is called constexpr-if
statement

B constexpr-if statement is evaluated at compile time and branch of if
statement that is not taken is discarded

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The if Statement: Example

B example with else clause:

int x = someValue;
if (x % 2 == 0) {

std::cout << "x 1is even\n";
} else {

std::cout << "x is odd\n";
}

B example without else clause:

int x = someValue;
if (x % 2 == 0) {
std::cout << "x is divisible by 2\n";

}

B example that tests for more than one condition:

int x = someValue;
if (x > 0) {

std::cout << "x is positive\n";
} else if (x < 0) {

std::cout << "x is negative\n";
} else {

std::cout << "x 1is zero\n";

}

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The if Statement: Example

B example with initializer:

int execute_command();

if (int ret = execute_command(); ret == 0) {
std::cout << "command successfull\n";
} else {

std::cout << "command failed with status " <<
ret << '\n’;

}

B example constexpr-if statement:

constexpr int x = 10;
if constexpr (x < 0) {
std::cout << "negative\n";
} else if constexpr(x > 0) {
std::cout << "positive\n";
} else {
std::cout << "zero\n";
}

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The switch Statement

B allows conditional execution of code based on integral/enumeration value

B syntax has form:

switch (expression) {

case const_expry:
statements|

case const_expry:
statements;

case const_expry:
statementsy,

default:
statements

}

B expression is expression of integral or enumeration type or implicitly
convertible to such type; const_expr; is constant expression of same type
as expression after conversions/promotions

B if expression expression equals const_expr;, jump to beginning of
statements statements;; if expression expr does not equal const_expr; for
any i, jump to beginning of statements statements

B then, continue executing statements until break statement is
encountered

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The switch Statement (Continued)

B switch statement can also include initializer:

switch (initializer; expression)
statement

B above construct equivalent to:
{
initializer;
switch (expression)
statement

}

B remember that, in absence of break statement, execution in switch
statement falls through from one case to next; if fall through not

considered, bugs will result, such as in following code:
unsigned int x = 0;

;
2 switch (x & 1) {

3 case (:

4 std::cout << "x is even\n";

5 // BUG: missing break statement
6 case 1:

7 std::cout << "x is odd\n";

8 break;

9

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The switch Statement: Example

B example without initializer:

int x = someValue;
switch (x) {
case 0:
// Note that there 1is no break here.
case 1:
std::cout << "x is 0 or 1\n";
break;
case 2:
std::cout << "x 1is 2\n";
break;
default:
std::cout << "x is not 0, 1, or 2\n";
break;

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The switch Statement: Example (Continued)

B example with initializer:

int get_value();
switch (int x
case (:
case 1:
std::cout << "x is 0 or 1\n";
break;
case 2:
std::cout << "x is 2\n";
break;
default:
std::cout << "x is not 0, 1, or 2\n";
break;

=

get_value(); x) {

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The while Statement

B |ooping construct
B syntax has form:

while (expression)
Statement

B if expression expression is true, statement statement is executed; this
process repeats until expression expression becomes false

B to allow multiple statements to be executed in loop body, must group
multiple statements into single statement with brace brackets

while (expression) {
statement
statementy
statements

}

B advisable to always use brace brackets, even when loop body consists of
only one statement

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The while Statement: Example

// print hello 10 times

int n = 10;

while (n > 0) {
std::cout << "hello\n";

--n;
}
// loop forever, printing hello

while (true) {
std::cout << "hello\n";

}

C++ Version: 2019-09-01-SENG475

Copyright © 2015-2019 Michael D. Adams

The for Statement

B |ooping construct
B has following syntax:

for (statement|; expression; statement;)
statements

B first, execute statement statement,; then, while expression expression is
true, execute statement statements followed by statement statement,

B statement| and statement, may be omitted; expression treated as true if
omitted

B to include multiple statements in loop body, must group multiple
statements into single statement using brace brackets; advisable to always
use brace brackets, even when loop body consists of only one statement:

for (statement|; expression; statementy) {
Statements |
statements >

}
B any objects declared in statement; go out of scope as soon as for loop
ends

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The for Statement (Continued)

B consider for loop:

for (statement|; expression; statementy)
statements

B above for loop can be equivalently expressed in terms of while loop

as follows (except for behavior of cont inue statement, yet to be
discussed):

{
statement ;
while (expression) {
statements
statementy;

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The for Statement: Example

B example with single statement in loop body:

// Print the integers from 0 to 9 inclusive.
for (int i = 0; 1 < 10; ++i)
std::cout << i << "\n’;

B example with multiple statements in loop body:
int values[10];

//
int sum = 0;
for (int i = 0; i < 10; ++i) {
// Stop if value 1is negative.
if (values[i] < 0) {
break;
}

sum += values[i];

}

B example with error in assumption about scoping rules:

for (int i = 0; 1 < 10; ++1i) {
std::cout << i << ’"\n’;

}
++i; // ERROR: 1 no longer exists

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Range-Based for Statement

B variant of for loop for iterating over elements in range
B example:

int array[4] = {1, 2, 3, 4};
// Triple the value of each element in the array.
for (auto&s x : array) {
x *= 3;
}

B range-based for loop nice in that it clearly expresses programmer intent
(i.e., iterate over each element of collection)

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The do Statement

B |ooping construct
B has following general syntax:

do
statement
while (expression);

B statement statement executed,;
then, expression expression evaluated;
if expression expression is true, entire process repeats from beginning
B to execute multiple statements in body of loop, must group multiple
statements into single statement using brace brackets

do {
statement|
statementy

} while (expression);

B advisable to always use brace brackets, even when loop body consists of
only one statement

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The do Statement: Example

B example with single statement in loop body:

// delay by looping 10000 times
int n = 0;
do

+4n;

while (n < 10000);

B example with multiple statements in loop body:

// print integers from 0 to 9 inclusive
int n = 0;
do {
std::cout << n << '\n’;
+4n;
} while (n < 10);

Version: 2019-09-01-SENG475

Copyright © 2015-2019 Michael D. Adams C++

The break Statement

B break statement causes enclosing loop or switch to be terminated
immediately
B example:

// Read integers from standard input until an
// error or end-of-file is encountered or a
// negative integer is read.

int x;
while (std::cin >> x) {
if (x < 0) {

break;

std::cout << x << '\n’;

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The continue Statement

B continue statement causes next iteration of enclosing loop to be
started immediately
B example:
int values[10];

// Print the nonzero elements of the array.
for (int 1 = 0; 1 < 10; ++1) {

if (values[i] == 0) {
// Skip over zero elements.

continue;

// Print the (nonzero) element.
std::cout << values[i] << '\n’;

Version: 2019-09-01-SENG475

Copyright © 2015-2019 Michael D. Adams C++

The goto Statement

B goto statement transfers control to another statement specified by label
B should generally try to avoid use of goto statement

B well written code rarely has legitimate use for goto statement

B example:

int 1 = 0;
loop: // label for goto statement
do {
if (1 == 3) {
++i;
goto loop;
}
std::cout << 1 << '\n’;
++1;
} while (i < 10);
B some restrictions on use of goto (e.g., cannot jump over initialization in
same block as goto)
goto skip; // ERROR
int i = 0;

skip:
++1;

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Section 2.3.5

Functions

2015-2019 Michael D. Adams i 019-09-01-SENG475

Function Parameters, Arguments, and Return Values

B argument (a.k.a. actual parameter): argument is value supplied to
function by caller; appears in parentheses of function-call operator

B parameter (a.k.a. formal parameter): parameter is object/reference
declared as part of function that acquires value on entry to function;
appears in function definition/declaration

B although abuse of terminology, parameter and argument often used
interchangeably

B return value: result passed from function back to caller
B example:

int square(int i) { // i is parameter
return 1 * i; // return value 1is 1 * 1
}

void compute() {
int 1 = 3;
int j = square(i); // 1 is argument

Copyright © 20152019 Michael D. Adams C++ Version: 2019-09-01-SENG475

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/defns.argument
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/defns.parameter

Function Declarations and Definitions

u introduces identifier that names function and
specifies following properties of function:

o number of parameters
o type of each parameter
o type of return value (if not automatically deduced)

B example:

bool is0dd(int); // declare 1isOdd
bool is0dd(int x); // declare isOdd (x ignored)

u provides all information included in function
declaration as well as code for body of function
B example:

bool is0dd(int x) { // declare and define 1isOdd
return x % 2;
}

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Basic Syntax (Leading Return Type)

B most basic syntax for function declarations and definitions places return
type at start (i.e., leading return-type syntax)

B basic syntax for function declaration:

return_type function_name (parameter_declarations) ;

B examples of function declarations:
int min(int, int);
double square(double);

B basic syntax for function definition:

return_type function_name (parameter_declarations)

statements
}
B examples of function definitions:

int min(int x, int y) {return x <y ? x : y;}
double square (double x) {return x * x;}

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Trailing Return-Type Syntax

B with trailing return-type syntax, return type comes after parameter
declarations and auto used as placeholder for where return type would
normally be placed

B trailing return-type syntax for function declaration:
auto function_name (parameter_declarations) -> return_type;

B examples of function declarations:
auto min(int, int) -> int;
auto square (double) -> double;
B trailing return-type syntax for function definition:
auto function_name (parameter_declarations) -> return_type

{
}

statements

B examples of function definitions:

auto nmin(int x, int y) -> int
{return x <y ? x : y;}
auto square (double x) -> double {return x * x;}

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The return Statement

B return statement used to exit function, passing specified return value (if
any) back to caller

B code in function executes until return statement is reached or execution
falls off end of function

B if function return type is not void, return statement takes single
parameter indicating value to be returned

B if function return type is void, function does not return any value and
return statement takes either no parameter or expression of type void

B falling off end of function equivalent to executing return statement with

no value
B example:
double unit_step(double x) {
if (x >= 0.0) {

return 1.0; // exit with return value 1.0

}

return 0.0; // exit with return value 0.0

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Automatic Return-Type Deduction

B with both leading and trailing return-type syntax, can specify return type
as auto

B in this case, return type of function will be automatically deduced

B if function definition has no return statement, return type deduced to be
void

B otherwise, return type deduced to match type in expression of return
statement or, if return statement has no expression, as void

B if multiple return statements, must use same type for all return
expressions

B when return-type deduction used, function definition must be visible in
order to call function (since return type cannot be determined otherwise)

B example:

auto square (double x) {
return x * x;
// x * x has type double
// deduced return type is double

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The main Function

B entry point to program is always function called main

B has return type of int

can be declared to take either no arguments or two arguments as follows
(although other possibilities may also be supported by implementation):

int main();
int main(int argc, char* argv[]);

two-argument variant allows arbitrary number of C-style strings to be
passed to program from environment in which program run

argc: number of C-style strings provided to program
argv: array of pointers to C-style strings

argv[0] is hame by which program invoked
argv[argc] is guaranteed to be 0 (i.e., null pointer)

argv[l],argv[2],...,argvargc - 1] typically correspond to
command line options

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.start.main#2

The main Function (Continued)

B suppose that following command line given to shell:

program one two three

B nain function would be invoked as follows:

int argc = 4;
char* argv[] = {
"program", "one", "two", "three", 0
7
main(argc, argv);

B return value of main typically passed back to operating system

B can also use function void exit (int) to terminate program, passing
integer return value back to operating system

B return statement in main is optional

B if control reaches end of main without encountering return statement,
effect is that of executing “return 0;”

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.start.main#5

u of object is period of time in which object exists (e.g., block,

function, global)

int x;

void wasteTime ()

{
int j = 10000;
while (7 > 0) {
——Ji
}
for (int 1 = 0; 1 < 10000; ++i) {

}
}

B in above example: x global scope and lifetime; j function scope and
lifetime; 1 block scope and lifetime

Copyright © 2015-2019 Michael D. Adams C++

Version: 2019-09-01-SENG475

Parameter Passing

function parameter can be passed by value or by reference
: function given copy of object from caller
: function given reference to object from caller

to pass parameter by reference, use reference type for parameter

example:

void increment (inté& x)
// x 1s passed by reference

{
}
double square (double x)
// x 1s passed by value
{

}

++x;

return x * x;

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Pass-By-Value Versus Pass-By-Reference

B f function needs to change value of object in caller, must pass by
reference
B for example:

void increment (inté& x)
// x refers to object in caller

{
}

+x;

B if object being passed to function is expensive to copy (e.g., a very large
data type), always faster to pass by reference

B for example:

double compute (const std::vector<double>& x)
// x refers to object in caller
// object is not copied
{
double result;
// ... (initialize result with value computed from x)
return result;

Copyright © 20152019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Increment Example: Incorrectly Using Pass By Value

B consider code:

void increment (int x) {
++x;
}

void func() {
int i = 0;
increment (i); // i is not modified
// 1 is still 0

© ® N O oA W N

}

B when func calls increment, parameter passing copies value of i in func
to local variable x in increment:

iin Co xin
func Py increment
Value

B when code in increment executes, local variable x is incremented (not i
in func):
iin xin
func increment

Lo 1 [z]

Copyright © 20152019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Increment Example: Correctly Using Pass By Reference

B consider code:

void increment (inté& x) {
++x;

}

void func() {
int i = 0;
increment (i); // 1 1s incremented
// 1 is now 1

© ® N O ;AW N

}

B when func calls increment, reference x in increment is bound to object
iin func (i.e., x becomes alias for 1i):

iin func
. and
x in increment

[0]

B when code in increment executes, x is incremented, which is alias for 1
in func:

x in increment

Copyright (© 2015-2019 Michael D. Adams Version: 2019-09-01-SENG475

The const Qualifier and Functions

B const qualifier can be used in function declaration to make promises
about what non-local objects will not be modified by function
B for function parameter of pointer type, const-ness of pointed-to object (i.e.,
pointee) extremely important
B if pointee is const, function promises not to change pointee; for example:
int strlen(const char*); // get string length
B for function parameter of reference type, const-ness of referred-to object
(i.e., referee) extremely important
B if referee is const, function promises not to change referee; for example:
std::complex<double>
square (const std::complex<double>¢);
// compute square of number
B not making appropriate choice of const-ness for pointed-to or referred-to
object will result in fundamentally incorrect code
B if function will never modify pointee/referee associated with function
parameter, parameter type should be made pointer/reference to const
object

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

String Length Example: Not Const Correct

// ERROR: parameter type should be const charx*

1
2 int string_length(char* s) {

3 int n = 0;

4 while (*s++ != "\0') {++n;}

5 return n;

6 }

7

8 int main() {

9 char buf[] = "Goodbye";

10 const char* const ml = "Hello";

char* const m2 = &buf[0];
int nl = string_length(ml);
// must copy argument ml to parameter s:
// char+x s = ml;
// convert from const char* const to charx*
// ERROR: must discard const from pointee
int n2 = string_length(m2);
// must copy argument m2 to parameter s:
// char* s = m2;
// convert from char* const to charx*
// OK: constness of pointee unchanged

NN = = o 4 o
N =4 0 ©oow~No O wwN =

Copyright © 20152019 Michael D. Adams C++ Version: 2019-09-01-SENG475

String Length Example: Const Correct

// OK: pointee is const

1
2 int string_length(const char* s) {
3 int n = 0;
4 while (*s++ != "\0') {++n;}
5 return n;
6 }
7
8 int main() {
9 char buf[] = "Goodbye";

10 const char* const ml = "Hello";

char* const m2 = &buf[0];

int nl = string_length(ml);
// must copy argument ml to parameter s:
// const char* s = ml;
// convert from const char* const to const charx*
// OK: constness of pointee unchanged

int n2 = string_length(m2);
// must copy argument m2 to parameter s:
// const charx s = m2;
// convert from char* const to const charx*
// OK: can add const to pointee

NN = = o4 4
N = 0 © o~ o b wN

Copyright © 20152019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Square Example: Not Const Correct

#include <complex>
using Complex = std::complex<long double>;

// ERROR: parameter type should be reference to const
Complex square (Complex& z) {

return z * z;
}

10 int main() {
11 const Complex cl(1.0, 2.0);

©O N O AW D=

12 Complex c2(1.0, 2.0);

13 Complex rl = square(cl);

14 // must bind parameter z to argument cl

15 // Complex& z = cl;

16 // convert from const Complex to Complex&
17 // ERROR: must discard const from referee
18 Complex r2 = square(c2);

19 // must bind parameter z to argument c2
20 // Complex& z = c2;

21 // convert from Complex to Complexé&

22 // OK: constness of referee unchanged

Copyright © 20152019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Square Example: Const Correct

#include <complex>
using Complex = std::complex<long double>;

// OK: parameter type is reference to const
Complex square(const Complex& z) {

return z * z;
}

10 int main() {
11 const Complex cl(1.0, 2.0);

©O N O AW D=

12 Complex c2(1.0, 2.0);

13 Complex rl = square(cl);

14 // must bind parameter z to argument cl

15 // const Complex& z = cl;

16 // convert from const Complex to const Complexé&
17 // OK: constness of referee not discarded
18 Complex r2 = square(c2);

19 // must bind parameter z to argument c2
20 // const Complex& z = c2;

21 // convert from Complex to const Complex&
22 // OK: can add const to referee

Copyright © 20152019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Function Types and the const Qualifier

[N I N

22

// top-level qualifiers of parameter types are
// not part of function type and should be omitted
// from function declaration

// BAD: const not part of function type
// (nothing here to which const can refer)
bool is_even(const unsigned int);

// OK

bool is_odd(unsigned int);

// OK: parameter with top-level const qualifier
// 1s ok in function definition
bool is_even(const unsigned int x) {

// cannot change x in function

return x % == 0;

}

// OK

bool is_odd(unsigned int x) {
// x can be changed if desired
return x % 2 != 0;

NEXT SLIDE: go to Q.1-Q.6

jael D. Adams C++ Version: 2019-09-01-SENG475

Inline Functions

B in general programming sense, is function for which
compiler copies code from function definition directly into code of calling
function rather than creating separate set of instructions in memory

B since code copied directly into calling function, no need to transfer control
to separate piece of code and back again to caller, eliminating
performance overhead of function call

B inline typically used for very short functions (where overhead of calling
function is large relative to cost of executing code within function itself)

B can request function be made inline by including inline qualifier along
with function return type (but compiler may ignore request)

B inline function must be defined in each translation unit in which function is
used and all definitions must be identical; this is exception to
one-definition rule

B example:
inline bool isEven(int x) {
return x 5 2 == 0;

}

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.inline#6

Inlining of a Function

B inlining of 1sEven function transforms code fragment 1 into code
fragment 2

B Code fragment 1:

inline bool isEven(int x) {

return x % 2 == 0;

}

void myFunction() {
int 1 = 3;
bool result = isEven(i);

}
B Code fragment 2:
void myFunction() {

int 1 = 3;
bool result = (1 % 2 == 0);

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The constexpr Qualifier for Functions

B constexpr qualifier indicates return value of function is constant
expression (i.e., can be evaluated at compile time) provided that all
arguments to function are constant expressions

B constexpr function required to be evaluated at compile time if all
arguments are constant expressions and return value used in constant
expression

B constexpr functions are implicitly inline

B constexpr function very restricted in what it can do (e.g., no external state,
can only call constexpr functions, variables must be initialized)

B example:

constexpr int factorial (int n)
{return n >= 2 ? (n * factorial(n - 1)) : 1;}

int u[factorial(5)];
// OK: factorial (5) is constant expression

int x = 5;

int v[factorial(x)];
// ERROR: factorial(x) 1s not constant
// expression

Copyright © 20152019 Michael D. Adams C++ Version: 2019-09-01-SENG475

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.constexpr#1

Constexpr Example

constexpr int square(int i) {
return i * i;

}

constexpr int func(int n) {
int sum = 0;
for (int i = 1; 1 <= n; ++1i) {
sum += square (1i);

® N RN =

©

}

return sum;

- o

}

12
13 int main() {

14 // at compile time, compute sum of the squares of
15 // 1, 2, 3 (i.e., 14)

16 constexpr int result = func(3);

17 static_assert (result == 14);

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Constexpr Function Example: square

#include <iostream>

1
2

3 constexpr double square (double x) ({

4 return x * x;

5)

6

7 int main() {

8 constexpr double a = square(2.0);

2 // must be computed at compile time

11 double b = square(0.5);

1% // might be computed at compile time
14 double t;

15 if (! (std::cin >> t)) {

16 return 1;

17 }

18 const double c = square(t);

10 // must be computed at run time

21 std::cout << a << ' f Kb <K< << ¢ << "\n';

2 |}

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Constexpr Function Example: power_int (Recursive)

SKIP SLIDE

® N OGO~ W =

©

—o

w N

S

o

®~

SN
= o ©

NN
w N

SN
[$ N

#include <iostream>

constexpr double power_int_helper (double x, int n)

return (n > 0) ? x * power_int_helper(x, n - 1)

}

constexpr double power_int (double x, int n) {
return (n < 0) ? power_int_helper (1.0 / x, -n)
power_int_helper (x, n);

}

int main() {
constexpr double a = power_int (0.5, 8);
// must be computed at compile time

double b = power_int (0.5, 8);
// might be computed at compile time

double x;
if (!(std::cin >> x)) {return 1;}
const double c = power_int (x, 2);

// must be computed at run time

std::cout << a << / 7 KK b <K< ' 7 <K< ¢ << '\n’;

Copyright © 20152019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Constexpr Function Example: power_int (lterative)

® N O~ W =

N = o ©

s w

o o

®~

©

NN
=o

NN
5w N

NN
oo

NN
® N

#include <iostream>

constexpr double power_int (double x, int n) {

}

double result = 1.0;

if (n < 0) {
x =1.0/ x;
n = -n;
}
while (--n >= 0) {

result *= x;

}

return result;

int main() {

constexpr double a = power_int (0.5, 8);
// must be computed at compile time

double b = power_int (0.5, 8);
// might be computed at compile time

double x;
if (!(std::cin >> x)) {return 1;}
const double c = power_int(x, 2);

// must be computed at run time

std::cout << a << ' f KK b <K< << ¢ << "\n';

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Compile-Time Versus Run-Time Computation

B constexpr variables and constexpr functions provide mechanism for
moving computation from run time to compile time
B benefits of compile-time computation include:
H no execution-time cost at run-time
can facilitate compiler optimization (e.g., eliminate conditional branch if
condition always true/false)
can reduce code size since code used only for compile-time computation
does not need to be included in executable
can find errors at compile-time and link-time instead of at run time
no concerns about order of initialization (which is not necessarily true for
const objects)
@ no synchronization concerns (e.g., multiple threads trying to initialize object)
B when floating point is involved, compile-time and run-time computations
can yield different results, due to differences in such things as

o rounding mode in effect
o processor architecture used for computation (when cross compiling)

NEXT SLIDE: constexpr member functions Cis Version: 2019-09-01-SENG475

Function Overloading

L] : multiple functions can have same name as long as
they differ in number/type of their arguments
B example:

void print (int x) {
std::cout << "int has value " << x << '\n’;
}

void print (double x) {
std::cout << "double has value " << x << '\n’;

}

void demo () {

int i = 5;

double d = 1.414;

print (i); // calls print (int)

print (d); // calls print (double)
print (42); // calls print (int)
print(3.14); // calls print (double)

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Default Arguments

B can specify default values for arguments to functions
B example:

// Compute log base b of x.

double logarithm(double x, double b) ({
return std::log(x) / std::log(b);

}

// Declaration of logarithm with a default argument.
double logarithm(double, double = 10.0);

void demo () {

double x =
logarithm(100.0); // calls logarithm(100.0, 10.0)

double y =
logarithm (4.0, 2.0); // calls logarithm (4.0, 2.0)

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Argument Matching

B call of given function name chooses function that best matches actual
arguments

B consider all functions in scope for which set of conversions exists so
function could possibly be called

B best match is intersection of sets of functions that best match on each
argument

B matches attempted in following order:
H exact match with zero or more trivial conversions (e.g., Tto T&, T& to T,
adding const and/or volatile); of these, those that do not add const
and/or volatile to pointer/reference better than those that do
match with promotions (e.g., int to long, £loat to double)
match with standard conversions (e.g., £loat to int, double to int)
match with user-defined conversions
match with ellipsis
B if set of best matches contains exactly one element, this element chosen
as function to call

B if set of best matches is either empty or contains more than one element,
function call is invalid (since either no matches found or multiple
equally-good matches found)

o]~ o [

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/over.best.ics

Argument Matching: Example

int max(int, int);

1
g double max (double, double);

4 int main() {

5 int i, 3, k;

6 double a, b, c;

7 //

8 k = max (i, 73);

9 // viable functions: max(int, 1int), max (double, double)
10 // best match on first argument: max(int, 1int)

11 // best match on second argument: max (int, 1int)

12 // best viable function: max (int, int)

13 // OK: calls max(int, 1int)

14 c = max(a, b);

15 // viable functions: max(int, int), max (double, double)
16 // best match on first argument: max (double, double)

17 // best match on second argument: max (double, double)

18 // best viable function: max (double, double)

19 // OK: calls max (double, double)

20 c = max (i, b);

21 // viable functions: max(int, 1int), max(double, double)
22 // best match on first argument: max(int, int)

23 // best match on second argument: max (double, double)
24 // no best viable function

25 // ERROR: ambiguous function call

n
o

Copyright © 20152019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The assert Macro

assert macro allows testing of boolean condition at run time
typically used to test sanity of code (e.g., test preconditions,
postconditions, or other invariants) or test validity of assumptions made by
code
defined in header file cassert
macro takes single argument: boolean expression
if assertion fails, program is terminated by calling std: :abort
if NDEBUG preprocessor symbol is defined at time cassert header file
included, all assertions are disabled (i.e., not checked)
assert (expr) is constant expression if expr is constant expression that
evaluates to true or NDEBUG is defined
example:

#include <cassert>

double sqgrt (double x) {

assert (x >= 0);

V2R

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/assertions.assert#1

Section 2.3.6

Input/Output (I/0)

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Basic I/O

B relevant declarations and such in header file 1ostream

B std::istream: stream from which characters/data can be read (i.e.,
input stream)

B std::ostream: stream to which characters/data can be written (i.e.,
output stream)

std::istream std::cin standard input stream
std::ostream std::cout standard output stream
std::ostream std::cerr standard error stream

in most environments, above three streams refer to user’s terminal by
default

B output operator (inserter) <<
B input operator (extractor) >>

B stream can be used as bool expression; converts to true if stream has
not encountered any errors and f£alse otherwise (e.g., if invalid data
read or 1/O error occurred)

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Basic I/O Example

#include <iostream>

1

2

3 int main() {

4 std::cout << "Enter an integer: ";

5 int x;

6 std::cin >> x;

7 if (std::cin) {

8 std::cout << "The integer entered was "
9 << x << " \n";

10 } else {

11 std::cerr <<

12 "End-of-file reached or I/0 error.\n";

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

I/0 Manipulators

B manipulators provide way to control formatting of data values written to
streams as well as parsing of data values read from streams

B declarations related information for manipulators can be found in header
files: ios, iomanip, istream, and ostream

B most manipulators used to control output formatting
B focus here on manipulators as they pertain to output

B manipulator may have immediate effect (e.g., endl), only affect next data
value output (e.g., setw), or affect all subsequent data values output (e.g.,
setprecision)

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

I/O Manipulators (Continued)

| Name | Description

setw set field width

setfill set fill character

endl insert newline and flush

flush flush stream

dec use decimal

hex use hexadecimal

oct use octal

showpos show positive sign

noshowpos do not show positive sign

left left align

right right align

fixed write floating-point values in fixed-point notation

scientific write floating-point values in scientific notation

setprecision | for default notation, specify maximum number of mean-
ingful digits to display before and after decimal point; for
fixed and scientific notations, specify exactly how many
digits to display after decimal point (padding with trail-
ing zeros if necessary)

Copyright © 2015-2019 Michael D. Adams

C++ Version: 2019-09-01-SENG475

Manipula Example

CO®NO U A WN =

WWNNNONNNOMNDNMN N = = = =
SO0 NOUERWN-0OO®NDOBWN =

32

#include <iostream>
#include <ios>
#include <iomanip>

int main() {
constexpr double pi = 3.1415926535;
constexpr double big = 123456789.0;
// default notation

std::cout << pi << ' 7 << big << '\n’;

// fixed-point notation

std::cout << std::fixed << pi << ' ' << big << '\n’;

// scientific notation

std::cout << std::scientific << pi << ' ’ << big << "\n’;

// fixed-point notation with 7 digits after decimal point
std::cout << std::fixed << std::setprecision(7) << pi <<’ '

<< big << "\n';
// fixed-point notation with precision and width specified
std::cout << std::setw(8) << std::fixed << std::setprecision(2

<< pi << 7 ' << std::setw(20) << big << ‘\n’;
// fixed-point notation with precision, width, and fill specified
std::cout << std::setw(8) << std::setfill(’x’) << std::fixed

<< std::setprecision(2) << pi << ' '/ << std::setw(20) << big << ’\n’;

}

/% This program produces the following output:
3.14159 1.23457e+08
3.141593 123456789.000000
3.141593e+00 1.234568e+08
3.1415927 123456789.0000000
3.14 123456789.00
xxxx3.14 xxxxxxxx123456789.00
*/

Use of std::istream: :eof

do not use std: :istream: :eof to determine if earlier input operation
has failed, as this will not always work

B eof simply returns end-of-file (EOF) flag for stream

B EOF flag for stream can be set during successful input operation (when

input operation takes places just before end of file)

when stream extractors (i.e., operator>>) used, fields normally
delimited by whitespace

to read all data in whitespace-delimited field, must read one character
beyond field in order to know that end of field has been reached

if field followed immediately by EOF without any intervening whitespace
characters, reading one character beyond field will cause EOF to be
encountered and EOF bit for stream to be set

in preceding case, however, EOF being set does not mean that input
operation failed, only that stream data ended immediately after field that
was read

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Example: Incorrect Use of eof

B example of incorrect use of eof:

#include <iostream>

int main() {
while (true) {
int x;
std::cin >> x;
// std::cin may not be in a failed state.
if (std::cin.eof()) {
// Above input operation may have succeeded.
10 std::cout << "EOF encountered\n";
11 break;
12 }
13 std::cout << x << '\n’;
14 }
15}

©® N oA W N

©

B code incorrectly assumes that eof will only return true if preceding input
operation has failed

B |ast field in stream will be incorrectly ignored if not followed by at least one
whitespace character; for example, if input stream consists of three
character sequence ’1’, space, '2’, program will output:

1
EOF encountered

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Example: Correct Use of eof

B to determine if input operation failed, simply check if stream in failed state

B if stream already known to be in failed state and need to determine

specifically if failure due to EOF being encountered, then use eof
B example of correct use of eof:
#include <iostream>
int main() {
int x;
// Loop while std::cin not in a failed state.

while (std::cin >> x) {
std::cout << x << '\n’;

® N O W D=

}

// Now std::cin must be in a failed state.
// Use eof to determine the specific reason
// for failure.

- o ©

12 if (std::cin.eof()) {
13 std::cout << "EOF encountered\n";
14 } else {

o

std::cout << "input error (excluding EOF)\n";

o

}

J
—

Copyright © 20152019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Use of std: :endl

B std::endl is not some kind of string constant

B std::endl is stream manipulator and declared as
std::ostream& std::endl (std::ostreamé&)

B inserting endl to stream always (regardless of operating system)
equivalent to outputting single newline character ' \n’ followed by flushing
stream

B flushing of stream can incur very substantial overhead; so only flush when
strictly necessary

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Use of std: :endl (Continued)

B some operating systems terminate lines with single linefeed character
(i.e., "\n’), while other operating systems use carriage-return and
linefeed pair (i.e., " \r’ plus "\n’)

B existence of endl has nothing to do with dealing with handling new lines
in operating-system independent manner

B when stream opened in text mode, translation between newline characters
and whatever character(s) operating system uses to terminate lines is
performed automatically (both for input and output)

B above translation done for all characters input and output and has nothing
to do with end1l

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Stream Extraction Failure

B for built-in types, if stream extraction fails, value of target for stream

extraction depends on reason for failure
B in following example, what is value of x if stream extraction fails:
int x;
std::cin >> x;
if (!std::cin) {
// what is value of x?
}

in above example, x may be uninitialized upon stream extraction failure
if failure due to 1/O error or EOF, target of extraction is not modified
if failure due to badly formatted data, target of extraction is zero

if failure due to overflow, target of extraction is closest

machine-representable value

B common error: incorrectly assume that target of extraction will always be
initialized if extraction fails

B for class types, also dangerous to assume target of extraction always

written upon failure

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/facet.num.get.virtuals#3

Stream Extraction Failure (Continued)

#include <iostream>

1
2 #include <sstream>

3 #include <limits>

g #include <cassert>

6 dint main() {

7 int x;

8

9 std::stringstream s0("");

10 X = -1;

11 s0 >> x;

12 // No data; x 1s not set by extraction.

13 assert (s0.fail() && == -1);

15 std::stringstream s1("A");

16 x = -1;

17 sl >> x;

18 // Badly formatted data; x 1is zeroed.

;g assert (sl.fail() && x == 0);

21 std::stringstream

22 $2("99") ;

23 x = -1;

24 s2 >> x;

25 // Overflow; x set to closest machine-representable value.
26 assert (s2.fail() && x == std::numeric_limits<int>::max());
27}

Copyright © 20152019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Testing Failure State of Streams

B consider istream or ostream object s

B !sisequivalentto s.fail()

B bool (s) is not equivalent to s.good ()

B s.good() is notthe same as !s.fail ()

B do not use good as opposite of fail since this is wrong

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/iostate.flags#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/iostate.flags#7

Section 2.3.7

Miscellany

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Namespaces

u is region that provides scope for identifiers declared inside
B namespace provides mechanism for reducing likelihood of naming
conflicts
B syntax for namespace has general form:
namespace name {
body
}
B name: identifier that names namespace
body: body of namespace (i.e., code)
B all identifiers (e.g., names of variables, functions, and types) declared in
body made to belong to scope associated with namespace name
B same identifier can be re-used in different namespaces, since each
namespace is separate scope
B scope-resolution operator (i.e., : :) can be used to explicitly specify
namespace to which particular identifier belongs
B using statement can be used to bring identifiers from other namespaces
into current scope

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Namespaces: Example

#include <iostream>

1
2

i using std::cout; // bring std::cout into current scope
5 namespace mike {

6 int someValue;

7 void initialize() {

8 cout << "mike::initialize called\n";

9 someValue = 0;

10 }

1}

13 namespace fred {

14 double someValue;

15 void initialize() {

16 cout << "fred::initialize called\n";
17 someValue = 1.0;

19 }

21 wvoid func() {

22 mike::initialize(); // call initialize in namespace mike
23 fred::initialize(); // call initialize in namespace fred
24 using mike::initialize;

25 // bring mike::initialize into current scope

26 initialize(); // call mike::initialize

27}

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Nested Namespace Definitions

B name given in namespace declaration can be qualified name in order to
succinctly specify nested namespace
B consider following namespace declaration:

namespace foo {
namespace bar {
namespace impl {

/S
}

}

B preceding declaration can be written more succinctly as:

namespace foo::bar::impl {

YV
}

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Namespace Aliases

B identifier can be introduced as alias for namespace
B syntax has following form:
namespace dalias_name = ns_name;

B identifier alias_name is alias for namespace ns_name

B namespace aliases particularly useful for creating short names for
deeply-nested namespaces or namespaces with long names

B example:

#include <iostream>

4
2
3 namespace foobar {

4 namespace miscellany {

5 namespace experimental {

6 int get_meaning_of_life() {return 42;}
7 void greet () {std::cout << "hello\n";};
8

}

9 }

10 }

11

12 int main() {

13 namespace n = foobar::miscellany::experimental;
14 n::greet();

15 std::cout << n::get_meaning of_ life() << '\n’;

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Inline Namespaces

B namespace can be made inline, in which case all identifiers in namespace
also visible in enclosing namespace

B inline namespaces useful, for example, for library versioning

B example:

#include <cassert>

// some awesome library
namespace awesome {
// version 1
namespace vl {
int meaning_of_life() {return 41;}

® N0 A W N

}

9 // new and improved version 2

10 // which should be default for library users
11 inline namespace v2 {

12 int meaning_of_life() {return 42;}

13 }

14}

16 int main() {

17 assert (awesome: :vl::meaning_of_life() == 41);
18 assert (awesome::v2::meaning_of_life() == 42);
19 assert (awesome: :meaning_of_life() == 42);

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Unnamed Namespaces

can create unnamed namespace (i.e., namespace without name)
unnamed namespace often referred to as anonymous namespace

each translation unit may contain its own unique unnamed namespace

entities defined in unnamed namespace only visible in its associated
translation unit (i.e., has internal linkage)

x = forty_two;
std::cout << x << '\n’;

B example:
; #include <iostream>
3 namespace {
4 const int forty_two = 42;
5 int x;
6 }
7
8 int main() {
9
0
1

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Memory Allocation: new and delete

B to allocate memory, use new statement

B to deallocate memory allocated with new statement, use delete
statement

B similartomalloc and freein C

B two forms of allocation: 1) single object (i.e., nonarray case) and 2) array
of objects

B array version of new/delete distinguished by []

B example:

char* buffer = new char[64]; // allocate

// array of 64 chars
delete [] buffer; // deallocate array
double* x = new double; // allocate single double
delete x; // deallocate single object

B important to match nonarray and array versions of new and delete:

char* buffer = new char(64]; // allocate
delete buffer; // ERROR: nonarray delete to
// delete array
// may compile fine, but crash

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

User-Defined Literals

B C++ has several categories of literals (e.g., character, integer,
floating-point, string, boolean, and pointer)

B can define additional literals based on these categories
B identifier used as suffix for user-defined literal must begin with underscore

B suffixes that do not begin with underscore are reserved for use by
standard library

B example:

#include <iostream>
#include <complex>

std::complex<long double> operator "" _i(long double d) {
return std::complex<long double> (0.0, d);
}

int main() {
auto z = 3.14_1i;
std::cout << z << '"\n’;

® N® O A W =

- o ©

}

// Program output:
// (0,3.14)

A WD

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Attributes

B attributes provide unified syntax for implementation-defined language
extensions

B attribute can be used almost anywhere in source code and can be applied
to almost anything (e.g., types, variables, functions, names, code blocks,
and translation units)

B specific types of entities to which attribute can be applied depends on
particular attribute in question

B attribute specifiers start with two consecutive left brackets and continue to
two consecutive right brackets

B example:

[[deprecated]]
void some_very_old_function() {/# ... */};

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Some Standard Attributes

Name Description
noreturn function does not return
deprecated use of entity is deprecated (i.e., allowed but

discouraged)

fallthrough | fall through in switch statement is deliberate
maybe_unused | entity (e.g., variable) may be unused
nodiscard used to indicate that return value of function
should not be ignored

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Some GCC and Clang Attributes

GCC C++ Compiler

Name Description

gnu::noinline do not inline function

gnu::no_sanitize_address do not instrument function for address
sanitizer

gnu::no_sanitize_undefined | do not instrument function for undefined-
behavior sanitizer

Clang C++ Compiler
Name Description

gnu::noinline do not inline function
clang::no_sanitize | do notinstrument function for sanitizer

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Section 2.3.8

References

2015-2019 Michael D. Adams

References |

D. Saks. Placing const in declarations.
Embedded Systems Programming, pages 19—20, June 1998.

D. Saks. What const really means.
Embedded Systems Programming, pages 11-14, Aug. 1998.

D. Saks. const T vs. T const.
Embedded Systems Programming, pages 13—16, Feb. 1999.

A D. Saks. Top-level cv-qualifiers in function parameters.
Embedded Systems Programming, pages 63—65, Feb. 2000.

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Section 2.4

Classes

Classes

since fundamental types provided by language are quite limiting, language
provides mechanism for defining new (i.e., user-defined) types

L is user-defined type

class specifies:

H how objects of class are represented
operations that can be performed on objects of class

not all parts of class are directly accessible to all code
is part of class that is directly accessible to its users

is part of class that its users access only indirectly
through interface

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Section 2.4.1

Members and Access Specifiers

Copyright (© 2015-2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Class Members

B class consists of zero or more members
B three basic kinds of members (excluding enumerators):

H data member
function member
type member

B data members define representation of class object

B function members (also called member functions) provide operations on
such objects

B type members specify any types associated with class

Copyright © 20152019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Access Specifiers

can control level of access that users of class have to its members
three levels of access:

H public

protected

private

: member can be accessed by any code

: member can only be accessed by other members of class and
f