
Lecture Slides for Programming in C++
[The C++ Language, Libraries, Tools, and Other Topics]

(Version: 2019-09-01-SENG475)

Current with the C++17 Standard

Michael D. Adams

Department of Electrical and Computer Engineering
University of Victoria

Victoria, British Columbia, Canada

To obtain the most recent version of these lecture slides or for additional information and resources
related to these slides (including errata and lecture videos), please visit:

http://www.ece.uvic.ca/~mdadams/cppbook

youtube.com/iamcanadian1867 github.com/mdadams @mdadams16

NEXT SLIDE: Algorithms

http://www.ece.uvic.ca/~mdadams/cppbook
http://youtube.com/iamcanadian1867
http://github.com/mdadams
http://twitter.com/mdadams16

The author has taken care in the preparation of this document, but makes no expressed or implied warranty of any kind and assumes no
responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use
of the information or programs contained herein.

Copyright c© 2015, 2016, 2017, 2018, 2019 Michael D. Adams

This document is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) License. A copy
of this license can be found on page iii of this document. For a simple explanation of the rights granted by this license, see:

http://creativecommons.org/licenses/by-nc-nd/3.0/

UNIX and X Window System are registered trademarks of The Open Group. Windows is a registered trademark of Microsoft Corporation.
Fedora is a registered trademark of Red Hat, Inc. Ubuntu is a registered trademark of Canonical Ltd. MATLAB is a registered trademark of The
MathWorks, Inc. OpenGL is a registered trademark of Hewlett Packard Enterprise. The YouTube logo is a registered trademark of Google, Inc.
The GitHub logo is a registered trademark of GitHub, Inc. The Twitter logo is a registered trademark of Twitter, Inc.

This document was typeset with LATEX.

http://creativecommons.org/licenses/by-nc-nd/3.0/

License I

Creative Commons Legal Code

Attribution-NonCommercial-NoDerivs 3.0 Unported

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR
DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY
COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS
AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE
TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY
BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS
CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND
CONDITIONS.

1. Definitions

a. "Adaptation" means a work based upon the Work, or upon the Work and
other pre-existing works, such as a translation, adaptation,
derivative work, arrangement of music or other alterations of a
literary or artistic work, or phonogram or performance and includes
cinematographic adaptations or any other form in which the Work may be
recast, transformed, or adapted including in any form recognizably
derived from the original, except that a work that constitutes a
Collection will not be considered an Adaptation for the purpose of
this License. For the avoidance of doubt, where the Work is a musical
work, performance or phonogram, the synchronization of the Work in
timed-relation with a moving image ("synching") will be considered an
Adaptation for the purpose of this License.

b. "Collection" means a collection of literary or artistic works, such as
encyclopedias and anthologies, or performances, phonograms or
broadcasts, or other works or subject matter other than works listed

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 iii

License II

in Section 1(f) below, which, by reason of the selection and
arrangement of their contents, constitute intellectual creations, in
which the Work is included in its entirety in unmodified form along
with one or more other contributions, each constituting separate and
independent works in themselves, which together are assembled into a
collective whole. A work that constitutes a Collection will not be
considered an Adaptation (as defined above) for the purposes of this
License.

c. "Distribute" means to make available to the public the original and
copies of the Work through sale or other transfer of ownership.

d. "Licensor" means the individual, individuals, entity or entities that
offer(s) the Work under the terms of this License.

e. "Original Author" means, in the case of a literary or artistic work,
the individual, individuals, entity or entities who created the Work
or if no individual or entity can be identified, the publisher; and in
addition (i) in the case of a performance the actors, singers,
musicians, dancers, and other persons who act, sing, deliver, declaim,
play in, interpret or otherwise perform literary or artistic works or
expressions of folklore; (ii) in the case of a phonogram the producer
being the person or legal entity who first fixes the sounds of a
performance or other sounds; and, (iii) in the case of broadcasts, the
organization that transmits the broadcast.

f. "Work" means the literary and/or artistic work offered under the terms
of this License including without limitation any production in the
literary, scientific and artistic domain, whatever may be the mode or
form of its expression including digital form, such as a book,
pamphlet and other writing; a lecture, address, sermon or other work
of the same nature; a dramatic or dramatico-musical work; a
choreographic work or entertainment in dumb show; a musical
composition with or without words; a cinematographic work to which are
assimilated works expressed by a process analogous to cinematography;
a work of drawing, painting, architecture, sculpture, engraving or
lithography; a photographic work to which are assimilated works
expressed by a process analogous to photography; a work of applied
art; an illustration, map, plan, sketch or three-dimensional work
relative to geography, topography, architecture or science; a
performance; a broadcast; a phonogram; a compilation of data to the
extent it is protected as a copyrightable work; or a work performed by
a variety or circus performer to the extent it is not otherwise
considered a literary or artistic work.

g. "You" means an individual or entity exercising rights under this

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 iv

License III

License who has not previously violated the terms of this License with
respect to the Work, or who has received express permission from the
Licensor to exercise rights under this License despite a previous
violation.

h. "Publicly Perform" means to perform public recitations of the Work and
to communicate to the public those public recitations, by any means or
process, including by wire or wireless means or public digital
performances; to make available to the public Works in such a way that
members of the public may access these Works from a place and at a
place individually chosen by them; to perform the Work to the public
by any means or process and the communication to the public of the
performances of the Work, including by public digital performance; to
broadcast and rebroadcast the Work by any means including signs,
sounds or images.

i. "Reproduce" means to make copies of the Work by any means including
without limitation by sound or visual recordings and the right of
fixation and reproducing fixations of the Work, including storage of a
protected performance or phonogram in digital form or other electronic
medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce,
limit, or restrict any uses free from copyright or rights arising from
limitations or exceptions that are provided for in connection with the
copyright protection under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License,
Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
perpetual (for the duration of the applicable copyright) license to
exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more
Collections, and to Reproduce the Work as incorporated in the
Collections; and,

b. to Distribute and Publicly Perform the Work including as incorporated
in Collections.

The above rights may be exercised in all media and formats whether now
known or hereafter devised. The above rights include the right to make
such modifications as are technically necessary to exercise the rights in
other media and formats, but otherwise you have no rights to make
Adaptations. Subject to 8(f), all rights not expressly granted by Licensor

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 v

License IV

are hereby reserved, including but not limited to the rights set forth in
Section 4(d).

4. Restrictions. The license granted in Section 3 above is expressly made
subject to and limited by the following restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms
of this License. You must include a copy of, or the Uniform Resource
Identifier (URI) for, this License with every copy of the Work You
Distribute or Publicly Perform. You may not offer or impose any terms
on the Work that restrict the terms of this License or the ability of
the recipient of the Work to exercise the rights granted to that
recipient under the terms of the License. You may not sublicense the
Work. You must keep intact all notices that refer to this License and
to the disclaimer of warranties with every copy of the Work You
Distribute or Publicly Perform. When You Distribute or Publicly
Perform the Work, You may not impose any effective technological
measures on the Work that restrict the ability of a recipient of the
Work from You to exercise the rights granted to that recipient under
the terms of the License. This Section 4(a) applies to the Work as
incorporated in a Collection, but this does not require the Collection
apart from the Work itself to be made subject to the terms of this
License. If You create a Collection, upon notice from any Licensor You
must, to the extent practicable, remove from the Collection any credit
as required by Section 4(c), as requested.

b. You may not exercise any of the rights granted to You in Section 3
above in any manner that is primarily intended for or directed toward
commercial advantage or private monetary compensation. The exchange of
the Work for other copyrighted works by means of digital file-sharing
or otherwise shall not be considered to be intended for or directed
toward commercial advantage or private monetary compensation, provided
there is no payment of any monetary compensation in connection with
the exchange of copyrighted works.

c. If You Distribute, or Publicly Perform the Work or Collections, You
must, unless a request has been made pursuant to Section 4(a), keep
intact all copyright notices for the Work and provide, reasonable to
the medium or means You are utilizing: (i) the name of the Original
Author (or pseudonym, if applicable) if supplied, and/or if the
Original Author and/or Licensor designate another party or parties
(e.g., a sponsor institute, publishing entity, journal) for
attribution ("Attribution Parties") in Licensor’s copyright notice,

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 vi

License V

terms of service or by other reasonable means, the name of such party
or parties; (ii) the title of the Work if supplied; (iii) to the
extent reasonably practicable, the URI, if any, that Licensor
specifies to be associated with the Work, unless such URI does not
refer to the copyright notice or licensing information for the Work.
The credit required by this Section 4(c) may be implemented in any
reasonable manner; provided, however, that in the case of a
Collection, at a minimum such credit will appear, if a credit for all
contributing authors of Collection appears, then as part of these
credits and in a manner at least as prominent as the credits for the
other contributing authors. For the avoidance of doubt, You may only
use the credit required by this Section for the purpose of attribution
in the manner set out above and, by exercising Your rights under this
License, You may not implicitly or explicitly assert or imply any
connection with, sponsorship or endorsement by the Original Author,
Licensor and/or Attribution Parties, as appropriate, of You or Your
use of the Work, without the separate, express prior written
permission of the Original Author, Licensor and/or Attribution
Parties.

d. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or
compulsory licensing scheme cannot be waived, the Licensor
reserves the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or
compulsory licensing scheme can be waived, the Licensor reserves
the exclusive right to collect such royalties for any exercise by
You of the rights granted under this License if Your exercise of
such rights is for a purpose or use which is otherwise than
noncommercial as permitted under Section 4(b) and otherwise waives
the right to collect royalties through any statutory or compulsory
licensing scheme; and,

iii. Voluntary License Schemes. The Licensor reserves the right to
collect royalties, whether individually or, in the event that the
Licensor is a member of a collecting society that administers
voluntary licensing schemes, via that society, from any exercise
by You of the rights granted under this License that is for a
purpose or use which is otherwise than noncommercial as permitted

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 vii

License VI

under Section 4(b).
e. Except as otherwise agreed in writing by the Licensor or as may be

otherwise permitted by applicable law, if You Reproduce, Distribute or
Publicly Perform the Work either by itself or as part of any
Collections, You must not distort, mutilate, modify or take other
derogatory action in relation to the Work which would be prejudicial
to the Original Author’s honor or reputation.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR
OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY
KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS,
WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION
OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE
LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR
ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate
automatically upon any breach by You of the terms of this License.
Individuals or entities who have received Collections from You under
this License, however, will not have their licenses terminated
provided such individuals or entities remain in full compliance with
those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
termination of this License.

b. Subject to the above terms and conditions, the license granted here is
perpetual (for the duration of the applicable copyright in the Work).
Notwithstanding the above, Licensor reserves the right to release the
Work under different license terms or to stop distributing the Work at
any time; provided, however that any such election will not serve to
withdraw this License (or any other license that has been, or is
required to be, granted under the terms of this License), and this

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 viii

License VII

License will continue in full force and effect unless terminated as
stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection,
the Licensor offers to the recipient a license to the Work on the same
terms and conditions as the license granted to You under this License.

b. If any provision of this License is invalid or unenforceable under
applicable law, it shall not affect the validity or enforceability of
the remainder of the terms of this License, and without further action
by the parties to this agreement, such provision shall be reformed to
the minimum extent necessary to make such provision valid and
enforceable.

c. No term or provision of this License shall be deemed waived and no
breach consented to unless such waiver or consent shall be in writing
and signed by the party to be charged with such waiver or consent.

d. This License constitutes the entire agreement between the parties with
respect to the Work licensed here. There are no understandings,
agreements or representations with respect to the Work not specified
here. Licensor shall not be bound by any additional provisions that
may appear in any communication from You. This License may not be
modified without the mutual written agreement of the Licensor and You.

e. The rights granted under, and the subject matter referenced, in this
License were drafted utilizing the terminology of the Berne Convention
for the Protection of Literary and Artistic Works (as amended on
September 28, 1979), the Rome Convention of 1961, the WIPO Copyright
Treaty of 1996, the WIPO Performances and Phonograms Treaty of 1996
and the Universal Copyright Convention (as revised on July 24, 1971).
These rights and subject matter take effect in the relevant
jurisdiction in which the License terms are sought to be enforced
according to the corresponding provisions of the implementation of
those treaty provisions in the applicable national law. If the
standard suite of rights granted under applicable copyright law
includes additional rights not granted under this License, such
additional rights are deemed to be included in the License; this
License is not intended to restrict the license of any rights under
applicable law.

Creative Commons Notice

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 ix

License VIII

Creative Commons is not a party to this License, and makes no warranty
whatsoever in connection with the Work. Creative Commons will not be
liable to You or any party on any legal theory for any damages
whatsoever, including without limitation any general, special,
incidental or consequential damages arising in connection to this
license. Notwithstanding the foregoing two (2) sentences, if Creative
Commons has expressly identified itself as the Licensor hereunder, it
shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the
Work is licensed under the CCPL, Creative Commons does not authorize
the use by either party of the trademark "Creative Commons" or any
related trademark or logo of Creative Commons without the prior
written consent of Creative Commons. Any permitted use will be in
compliance with Creative Commons’ then-current trademark usage
guidelines, as may be published on its website or otherwise made
available upon request from time to time. For the avoidance of doubt,
this trademark restriction does not form part of this License.

Creative Commons may be contacted at http://creativecommons.org/.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 x

Other Textbooks and Lecture Slides by the Author I

1 M. D. Adams, Multiresolution Signal and Geometry Processing: Filter
Banks, Wavelets, and Subdivision (Version 2013-09-26), University of
Victoria, Victoria, BC, Canada, Sept. 2013, xxxviii + 538 pages, ISBN
978-1-55058-507-0 (print), ISBN 978-1-55058-508-7 (PDF). Available
from Google Books, Google Play Books, University of Victoria Bookstore,
and author’s web site
http://www.ece.uvic.ca/~mdadams/waveletbook.

2 M. D. Adams, Lecture Slides for Multiresolution Signal and Geometry
Processing (Version 2015-02-03), University of Victoria, Victoria, BC,
Canada, Feb. 2015, xi + 587 slides, ISBN 978-1-55058-535-3 (print),
ISBN 978-1-55058-536-0 (PDF). Available from Google Books, Google
Play Books, University of Victoria Bookstore, and author’s web site
http://www.ece.uvic.ca/~mdadams/waveletbook.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 xi

http://www.ece.uvic.ca/~mdadams/waveletbook
http://www.ece.uvic.ca/~mdadams/waveletbook

Other Textbooks and Lecture Slides by the Author II

3 M. D. Adams, Continuous-Time Signals and Systems (Version
2013-09-11), University of Victoria, Victoria, BC, Canada, Sept. 2013, xxx
+ 308 pages, ISBN 978-1-55058-495-0 (print), ISBN 978-1-55058-506-3
(PDF). Available from Google Books, Google Play Books, University of
Victoria Bookstore, and author’s web site
http://www.ece.uvic.ca/~mdadams/sigsysbook.

4 M. D. Adams, Lecture Slides for Continuous-Time Signals and Systems
(Version 2013-09-11), University of Victoria, Victoria, BC, Canada, Dec.
2013, 286 slides, ISBN 978-1-55058-517-9 (print), ISBN
978-1-55058-518-6 (PDF). Available from Google Books, Google Play
Books, University of Victoria Bookstore, and author’s web site
http://www.ece.uvic.ca/~mdadams/sigsysbook.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 xii

http://www.ece.uvic.ca/~mdadams/sigsysbook
http://www.ece.uvic.ca/~mdadams/sigsysbook

Other Textbooks and Lecture Slides by the Author III

5 M. D. Adams, Lecture Slides for Signals and Systems (Version
2016-01-25), University of Victoria, Victoria, BC, Canada, Jan. 2016, xvi +
481 slides, ISBN 978-1-55058-584-1 (print), ISBN 978-1-55058-585-8
(PDF). Available from Google Books, Google Play Books, University of
Victoria Bookstore, and author’s web site
http://www.ece.uvic.ca/~mdadams/sigsysbook.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 xiii

http://www.ece.uvic.ca/~mdadams/sigsysbook

Part 0

Preface

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 xiv

About These Lecture Slides

� This document constitutes a detailed set of lecture slides on the C++
programming language and is current with the C++17 standard.

::::::
[C++17 (full)]

� Many aspects of the C++ language are covered from introductory to more
advanced.

� Some aspects of the C++ standard library are also introduced.

� In addition, various general programming-related topics are considered.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 xv

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/full

Acknowledgments

� The author would like to thank Robert Leahy for reviewing various drafts of
many of these slides and providing many useful comments that allowed
the quality of these materials to be improved significantly.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 xvi

Disclaimer

� Many code examples are included throughout these slides.

� Often, in order to make an example short enough to fit on a slide,
compromises had to be made in terms of good programming style.

� These deviations from good style include (but are not limited to) such
things as:

1 frequently formatting source code in unusual ways to conserve vertical
space in listings;

2 not fully documenting source code with comments;
3 using short meaningless identifier names;
4 omitting include guards from headers; and
5 engaging in various other evil behavior such as: using many global

variables and employing constructs like “using namespace std;”.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 xvii

Typesetting Conventions

� In a definition, the term being defined is often typeset like this.

� To emphasize particular text, the text is typeset like this.

� To show that particular text is associated with a hyperlink to an internal
target, the text is typesetlike this.

� To show that particular text is associated with a hyperlink to an external
document, the text is typeset

::::::
like this.

� URLs are typeset like http://www.ece.uvic.ca/~mdadams.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 xviii

http://www.ece.uvic.ca/~mdadams
http://www.ece.uvic.ca/~mdadams

Companion Web Site

� The author of the lecture slides maintains a companion web site for the
slides.

� The most recent version of the slides can be downloaded from this site.
� Additional information related to the slides is also available from this site,

including:
2 errata for the slides; and
2 information on the companion web site, companion Git repository, and

companion YouTube channel for the slides.
� The URL of this web site is:

2 http://www.ece.uvic.ca/~mdadams/cppbook

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 xix

http://www.ece.uvic.ca/~mdadams/cppbook

Companion Git Repository

� These lecture slides have a companion Git repository.

� Numerous code examples and exercises are available from this repository.

� This repository is hosted by GitHub.
� The URL of the main repository page on GitHub is:

2 https://github.com/mdadams/cppbook_companion

� The URL of the actual repository itself is:
2 https://github.com/mdadams/cppbook_companion.git

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 xx

https://github.com/mdadams/cppbook_companion
https://github.com/mdadams/cppbook_companion.git

Companion YouTube Channel

� Video lectures for some of the material covered by these lecture slides
can be found on the author’s YouTube channel.

� The URL of the author’s YouTube channel is:
2 https://www.youtube.com/user/iamcanadian1867

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 xxi

https://www.youtube.com/user/iamcanadian1867

Software Development Environment (SDE)

� The Software Development Environment (SDE) is a collection of tools that
can be used to provide a basic up-to-date environment for C++ code
development.

� The SDE should work with most Linux distributions, provided that the
necessary software dependencies are installed.

� Amongst other things, the SDE software provides a collection of scripts for
installing packages like:

2 Boost, Catch2, CGAL, Clang, CMake, GCC, Gcovr, GDB, GSL, Lcov,
Libcxx, TeX Live, Vim, Vim LSP, and YCM

� The SDE software has a Git repository hosted by GitHub.
� The URL of the main repository page on GitHub is:

2 https://github.com/mdadams/sde

� The URL of the actual repository itself is:
2 https://github.com/mdadams/sde.git

� For more information about the SDE, refer to the main repository page on
GitHub.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 xxii

https://github.com/mdadams/sde
https://github.com/mdadams/sde.git

Part 1

Software

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1

Why Is Software Important?

� almost all electronic devices run some software

� automobile engine control system, implantable medical devices, remote
controls, office machines (e.g., photocopiers), appliances (e.g.,
televisions, refrigerators, washers/dryers, dishwashers, air conditioner),
power tools, toys, mobile phones, media players, computers, printers,
photocopies, disk drives, scanners, webcams, MRI machines

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2

Why Software-Based Solutions?

� more cost effective to implement functionality in software than hardware

� software bugs easy to fix, give customer new software upgrade

� hardware bugs extremely costly to repair, customer sends in old device
and manufacturer sends replacement

� systems increasingly complex, bugs unavoidable

� allows new features to be added later

� implement only absolute minimal functionality in hardware, do the rest in
software

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 3

Software-Related Jobs

� many more software jobs than hardware jobs

� relatively small team of hardware designers produce platform like iPhone

� thousands of companies develop applications for platform

� only implement directly in hardware when absolutely necessary (e.g., for
performance reasons)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 4

C

� created by Dennis Ritchie, AT&T Bell Labs in 1970s

� international standard ISO/IEC 9899:2018 (informally known as “C18”)

� available on wide range of platforms, from microcontrollers to
supercomputers; very few platforms for which C compiler not available

� procedural, provides language constructs that map efficiently to machine
instructions

� does not directly support object-oriented or generic programming

� application domains: system software, device drivers, embedded
applications, application software

� greatly influenced development of C++

� when something lasts in computer industry for more than 40 years
(outliving its creator), must be good

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 5

C++

� created by Bjarne Stroustrup, Bell Labs

� originally C with Classes, renamed as C++ in 1983

� most recent specification of language in ISO/IEC 14882:2017 (informally
known as “C++17”)

� procedural

� loosely speaking is superset of C

� directly supports object-oriented and generic programming

� maintains efficiency of C

� application domains: systems software, application software, device
drivers, embedded software, high-performance server and client
applications, entertainment software such as video games, native code for
Android applications

� greatly influenced development of C# and Java

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 6

Java

� developed in 1990s by James Gosling at Sun Microsystems (later bought
by Oracle Corporation)

� de facto standard but not international standard

� usually less efficient than C and C++

� simplified memory management (with garbage collection)

� direct support for object-oriented programming

� application domains: web applications, Android applications

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 7

Fortran

� designed by John Backus, IBM, in 1950s

� international standard ISO/IEC 1539-1:2010 (informally known as "Fortran
2008")

� application domain: scientific and engineering applications, intensive
supercomputing tasks such as weather and climate modelling, finite
element analysis, computational fluid dynamics, computational physics,
computational chemistry

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 8

C#

� developed by Microsoft, team led by Anders Hejlsberg

� ECMA-334 and ISO/IEC 23270:2006

� most recent language specifications not standardized by ECMA or
ISO/IEC

� intellectual property concerns over Microsoft patents

� object oriented

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 9

Objective C

� developed by Tom Love and Brad Cox of Stepstone (later bought by NeXT
and subsequently Apple)

� used primarily on Apple Mac OS X and iOS

� strict superset of C

� no official standard that describes Objective C

� authoritative manual on Objective-C 2.0 available from Apple

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 10

MATLAB

� proprietary language, developed by The MathWorks

� not general-purpose programming language

� application domain: numerical computing

� used to design and simulate systems

� not used to implement real-world systems

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 11

Why Learn C++?

� vendor neutral

� international standard

� general purpose

� powerful yet efficient

� loosely speaking, includes C as subset; so can learn two languages (C++
and C) for price of one

� easy to move from C++ to other languages but often not in other direction

� many other popular languages inspired by C++

� popular language

� consistently ranks amongst top languages in TIOBE Software
Programming Community Index
(https://www.tiobe.com/tiobe-index/)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 12

https://www.tiobe.com/tiobe-index/

Part 2

C++

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 13

Section 2.1

History of C++

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 14

Motivation

� developed by Bjarne Stroustrup starting in 1979 at Computing Science
Research Center of Bell Laboratories, Murray Hill, NJ, USA

� doctoral work in Computing Laboratory of University of Cambridge,
Cambridge, UK

� study alternatives for organization of system software for distributed
systems

� required development of relatively large and detailed simulator
� dissertation:

B. Stroustrup. Communication and Control in Distributed Computer
Systems.
PhD thesis, University of Cambridge, Cambridge, UK, 1979.

� in 1979, joined Bell Laboratories after having finished doctorate
� work started with attempt to analyze UNIX kernel to determine to what

extent it could be distributed over network of computers connected by LAN
� needed way to model module structure of system and pattern of

communication between modules
� no suitable tools available

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 15

Objectives

� had bad experiences writing simulator during Ph.D. studies; originally
used Simula for simulator; later forced to rewrite in BCPL for speed; more
low level than C; BCPL was horrible to use

� notion of what properties good tool would have motivated by these
experiences

� suitable tool for projects like simulator, operating system, other systems
programming tasks should:

2 support for effective program organization (like in Simula) (i.e., classes,
some form of class hierarchies, some form of support for concurrency,
strong checking of type system based on classes)

2 produce programs that run fast (like with BCPL)
2 be able to easily combine separately compilable units into program (like

with BCPL)
2 have simple linkage convention, essential for combining units written in

languages such as C, Algol68, Fortran, BCPL, assembler into single
program

2 allow highly portable implementations (only very limited ties to operating
system)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 16

Timeline for C with Classes (1979–1983) I

May 1979 work on C with Classes starts

Oct 1979 initial version of Cpre, preprocessor that added Simula-like
classes to C; language accepted by preprocessor later started
being referred to as C with Classes

Mar 1980 Cpre supported one real project and several experiments (used
on about 16 systems)

Apr 1980 first internal Bell Labs paper on C with Classes published (later
to appear in ACM SIGPLAN Notices in Jan. 1982)

B. Stroustrup. Classes: An abstract data type facility for the
C language.
Bell Laboratories Computer Science Technical Report
CSTR-84, Apr. 1980.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 17

Timeline for C with Classes (1979–1983) II

1980 initial 1980 implementation had following features:
� classes
� derived classes
� public/private access control
� constructors and destructors
� call and return functions (call function implicitly called before

every call of every member function; return function implicitly
called after every return from every member function; can be
used for synchronization)

� friend classes
� type checking and conversion of function arguments

1981 in 1981, added:
� inline functions
� default arguments
� overloading of assignment operator

Jan 1982 first external paper on C with Classes published

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 18

Timeline for C with Classes (1979–1983) III

B. Stroustrup. Classes: An abstract data type facility for the
C language.
ACM SIGPLAN Notices, 17(1):42–51, Jan. 1982.

Feb 1983 more detailed paper on C with Classes published

B. Stroustrup. Adding classes to the C language: An
exercise in language evolution.
Software: Practice and Experience, 13(2):139–161, Feb.
1983.

� C with Classes proved very successful; generated considerable interest

� first real application of C with Classes was network simulators

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 19

Timeline for C84 to C++98 (1982–1998) I

� started to work on cleaned up and extended successor to C with Classes,
initially called C84 and later renamed C++

Spring 1982 started work on Cfront compiler front-end for C84;
initially written in C with Classes and then transcribed to C84;
traditional compiler front-end performing complete check of
syntax and semantics of language, building internal
representation of input, analyzing and rearranging
representation, and finally producing output for some code
generator;
generated C code as output;
difficult to bootstrap on machine without C84 compiler; Cfront
software included special “half-processed” version of C code
resulting from compiling Cfront, which could be compiled with
native C compiler and resulting executable then used to compile
Cfront

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 20

Timeline for C84 to C++98 (1982–1998) II

Dec 1983 C84 (C with Classes) renamed C++;
name used in following paper prepared in Dec. 1983

B. Stroustrup. Data abstraction in C.
Bell Labs Technical Journal, 63(8):1701–1732, Oct. 1984.

(name C++ suggested by Rick Mascitti)

1983 virtual functions added

Note: going from C with Classes to C84 added: virtual functions,
function name and operator overloading, references, constants
(const), user-controlled free-store memory control, improved
type checking

Jan 1984 first C++ manual

B. Stroustrup. The C++ reference manual.
AT&T Bell Labs Computer Science Technical Report No.
108, Jan. 1984.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 21

Timeline for C84 to C++98 (1982–1998) III

Sep 1984 paper describing operator overloading published

B. Stroustrup. Operator overloading in C++.
In Proc. IFIP WG2.4 Conference on System Implementation
Languages: Experience & Assessment, Sept. 1984.

1984 stream I/O library first implemented and later presented in

B. Stroustrup. An extensible I/O facility for C++.
In Proc. of Summer 1985 USENIX Conference, pages
57–70, June 1985.

Feb 1985 Cfront Release E (first external release); “E” for “Educational”;
available to universities

Oct 1985 Cfront Release 1.0 (first commercial release)

Oct 1985 first edition of C++PL written

B. Stroustrup. The C++ Programming Language.
Addison Wesley, 1986.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 22

Timeline for C84 to C++98 (1982–1998) IV

(Cfront Release 1.0 corresponded to language as defined in this
book)

Oct 1985 tutorial paper on C++

B. Stroustrup. A C++ tutorial.
In Proceedings of the ACM annual conference on the range
of computing: mid-80’s perspective, pages 56–64, Oct.
1985.

Jun 1986 Cfront Release 1.1; mainly bug fix release

Aug 1986 first exposition of set of techniques for which C++ was aiming to
provide support (rather than what features are already
implemented and in use)

B. Stroustrup. What is object-oriented programming?
In Proc. of 14th Association of Simula Users Conference,
Stockholm, Sweden, Aug. 1986.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 23

Timeline for C84 to C++98 (1982–1998) V

Sep 1986 first Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA) conference (start of OO hype centered
on Smalltalk)

Nov 1986 first commercial Cfront PC port (Cfront 1.1, Glockenspiel [in
Ireland])

Feb 1987 Cfront Release 1.2; primarily bug fixes but also added:
� pointers to members
� protected members

Nov 1987 first conference devoted to C++:
USENIX C++ conference (Santa Fe, NM, USA)

Dec 1987 first GNU C++ release (1.13)

Jan 1988 first Oregon Software (a.k.a. TauMetric) C++ release

Jun 1988 first Zortech C++ release

Oct 1988 first presented templates at USENIX C++ conference (Denver,
CO, USA) in paper:

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 24

Timeline for C84 to C++98 (1982–1998) VI

B. Stroustrup. Parameterized types for C++.
In Proc. of USENIX C++ Conference, pages 1–18, Denver,
CO, USA, Oct. 1988.

Oct 1988 first USENIX C++ implementers workshop (Estes Park, CO,
USA)

Jan 1989 first C++ journal “The C++ Report” (from SIGS publications)
started publishing

Jun 1989 Cfront Release 2.0 major cleanup; new features included:
� multiple inheritance
� type-safe linkage
� better resolution of overloaded functions
� recursive definition of assignment and initialization
� better facilities for user-defined memory management
� abstract classes
� static member functions
� const member functions

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 25

Timeline for C84 to C++98 (1982–1998) VII

� protected member functions (first provided in release 1.2)
� overloading of operator ->
� pointers to members (first provided in release 1.2)

1989 main features of Cfront 2.0 summarized in

B. Stroustrup. The evolution of C++: 1985–1989.
USENIX Computer Systems, 2(3), Summer 1989.

first presented in

B. Stroustrup. The evolution of C++: 1985–1987.
In Proc. of USENIX C++ Conference, pages 1–22, Santa
Fe, NM, USA, Nov. 1987.

Nov 1989 paper describing exceptions published

A. Koenig and B. Stroustrup. Exception handling for C++.
In Proc. of “C++ at Work” Conference, Nov. 1989.

followed up by

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 26

Timeline for C84 to C++98 (1982–1998) VIII

A. Koenig and B. Stroustrup. Exception handling for C++.
In Proc. of USENIX C++ Conference, Apr. 1990.

Dec 1989 ANSI X3J16 organizational meeting (Washington, DC, USA)

Mar 1990 first ANSI X3J16 technical meeting (Somerset, NJ, USA)

Apr 1990 Cfront Release 2.1; bug fix release to bring Cfront mostly into
line with ARM

May 1990 annotated reference manual (ARM) published

M. A. Ellis and B. Stroustrup. The Annotated C++
Reference Manual.
Addison Wesley, May 1990.

(formed basis for ANSI standardization)

May 1990 first Borland C++ release

Jul 1990 templates accepted (Seattle, WA, USA)

Nov 1990 exceptions accepted (Palo Alto, CA, USA)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 27

Timeline for C84 to C++98 (1982–1998) IX

Jun 1991 second edition of C++PL published

B. Stroustrup. The C++ Programming Language.
Addison Wesley, 2nd edition, June 1991.

Jun 1991 first ISO WG21 meeting (Lund, Sweden)

Sep 1991 Cfront Release 3.0; added templates (as specified in ARM)

Oct 1991 estimated number of C++ users 400,000

Feb 1992 first DEC C++ release (including templates and exceptions)

Mar 1992 run-time type identification (RTTI) described in

B. Stroustrup and D. Lenkov. Run-time type identification for
C++.
The C++ Report, Mar. 1992.

(RTTI in C++ based on this paper)

Mar 1992 first Microsoft C++ release (did not support templates or
exceptions)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 28

Timeline for C84 to C++98 (1982–1998) X

May 1992 first IBM C++ release (including templates and exceptions)

Mar 1993 RTTI accepted (Portland, OR, USA)

Jul 1993 namespaces accepted (Munich, Germany)

1993 further work on Cfront Release 4.0 abandoned after failed
attempt to add exception support

Aug 1994 ANSI/ISO Committee Draft registered

Aug 1994 Standard Template Library (STL) accepted (Waterloo, ON, CA);
described in

A. Stepanov and M. Lee. The standard template library.
Technical Report HPL-94-34 (R.1), HP Labs, Aug. 1994.

Aug 1996 export accepted (Stockholm, Sweden)

1997 third edition of C++PL published

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 29

Timeline for C84 to C++98 (1982–1998) XI

B. Stroustrup. The C++ Programming Language.
Addison Wesley Longman, Reading, MA, USA, 3rd edition,
1997.

Nov 1997 final committee vote on complete standard (Morristown, NJ,
USA)

Jul 1998 Microsoft releases VC++ 6.0, first Microsoft compiler to provide
close-to-complete set of ISO C++

Sep 1998 ISO/IEC 14882:1998 (informally known as C++98) published
ISO/IEC 14882:1998 — programming languages — C++,
Sept. 1998.

1998 Beman Dawes starts Boost (provides peer-reviewed portable
C++ source libraries)

Feb 2000 special edition of C++PL published

B. Stroustrup. The C++ Programming Language.
Addison Wesley, Reading, MA, USA, special edition, Feb.
2000.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 30

Timeline After C++98 (1998–Present) I

Apr 2001 motion passed to request new work item: technical report on
libraries (Copenhagen, Denmark); later to become ISO/IEC TR
19768:2007

Oct 2003 ISO/IEC 14882:2003 (informally known as C++03) published;
essentially bug fix release; no changes to language from
programmer’s point of view

ISO/IEC 14882:2003 — programming languages — C++,
Oct. 2003.

2003 work on C++0x (now known as C++11) starts

Oct 2004 estimated number of C++ users 3,270,000

Apr 2005 first votes on features for C++0x (Lillehammer, Norway)

2005 auto, static_assert, and rvalue references accepted in
principle

Apr 2006 first full committee (official) votes on features for C++0x (Berlin,
Germany)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 31

Timeline After C++98 (1998–Present) II

Sep 2006 performance technical report (TR 18015) published:

ISO/IEC TR 18015:2006 — information technology —
programming languages, their environments and system
software interfaces — technical report on C++ performance,
Sept. 2006.

work spurred by earlier proposal to standardize subset of C++
for embedded systems called Embedded C++ (or just EC++);
EC++ motivated by performance concerns

Apr 2006 decision to move special mathematical functions to separate ISO
standard (Berlin, Germany); deemed too specialized for most
programmers

Nov 2007 ISO/IEC TR 19768:2007 (informally known as C++TR1)
published;

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 32

Timeline After C++98 (1998–Present) III

ISO/IEC TR 19768:2007 — information technology —
programming languages — technical report on C++ library
extensions, Nov. 2007.

specifies series of library extensions to be considered for
adoption later in C++

2009 another particularly notable book on C++ published

B. Stroustrup. Programming: Principles and Practice Using
C++.
Addison Wesley, Upper Saddle River, NJ, USA, 2009.

Aug 2011 ISO/IEC 14882:2011 (informally known as C++11) ratified

ISO/IEC 14882:2011 — information technology —
programming languages — C++, Sept. 2011.

2013 fourth edition of C++PL published

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 33

Timeline After C++98 (1998–Present) IV

B. Stroustrup. The C++ Programming Language.
Addison Wesley, 4th edition, 2013.

2014 ISO/IEC 14882:2014 (informally known as C++14) ratified

ISO/IEC 14882:2014 — information technology —
programming languages — C++, Dec. 2014.

2017 ISO/IEC 14882:2017 (informally known as C++17) ratified

ISO/IEC 14882:2017 — information technology —
programming languages — C++, Dec. 2017.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 34

Additional Comments

� reasons for using C as starting point:
2 flexibility (can be used for most application areas)
2 efficiency
2 availability (C compilers available for most platforms)
2 portability (source code relatively portable from one platform to another)

� main sources for ideas for C++ (aside from C) were Simula, Algol68,
BCPL, Ada, Clu, ML; in particular:

2 Simula gave classes
2 Algol68 gave operator overloading, references, ability to declare variables

anywhere in block
2 BCPL gave // comments
2 exceptions influenced by ML
2 templates influenced by generics in Ada and parameterized modules in Clu

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 35

C++ User Population
Time Estimated Number of Users
Oct 1979 1
Oct 1980 16
Oct 1981 38
Oct 1982 85
Oct 1983 ??+2 (no Cpre count)
Oct 1984 ??+50 (no Cpre count)
Oct 1985 500
Oct 1986 2,000
Oct 1987 4,000
Oct 1988 15,000
Oct 1989 50,000
Oct 1990 150,000
Oct 1991 400,000
Oct 2004 over 3,270,000

� above numbers are conservative
� 1979 to 1991: C++ user population doubled approximately every 7.5

months
� stable growth thereafter

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 36

Success of C++

� C++ very successful programming language
� not luck or solely because based on C
� efficient, provides low-level access to hardware, but also supports

abstraction
� non-proprietary: in 1989, all rights to language transferred to standards

bodies (first ANSI and later ISO) from AT&T
� multi-paradigm language, supporting procedural, object-oriented, generic,

and functional (e.g., lambda functions) programming
� does not force particular programming style
� reasonably portable
� has continued to evolve, incorporating new ideas (e.g., templates,

exceptions, STL)
� stable: high degree of compatibility with earlier versions of language
� very strong bias towards providing general-purpose facilities rather than

more application-specific ones

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 37

Application Areas

� banking and financial (funds transfer, financial modelling, teller machines)
� classical systems programming (compilers, operating systems, device

drivers, network layers, editors, database systems)
� small business applications (inventory systems)
� desktop publishing (document viewers/editors, image editing)
� embedded systems (cameras, cell phones, airplanes, medical systems,

appliances, space technologies)
� entertainment (games)
� graphics programming
� hardware design and verification
� scientific and numeric computation (physics, engineering, simulations,

data analysis, geometry processing)
� servers (web servers, billing systems)
� telecommunication systems (phones, networking, monitoring, billing,

operations systems)
� middleware

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 38

Section 2.1.1

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 39

Evolution of C++

� B. Stroustrup. A history of C++: 1979–1991.
In Proc. of ACM History of Programming Languages Conference, pages
271–298, Mar. 1993

� B. Stroustrup. The Design and Evolution of C++.
Addison Wesley, Mar. 1994.

� B. Stroustrup. Evolving a language in and for the real world: C++
1991–2006.
In Proc. of the ACM SIGPLAN Conference on History of Programming
Languages, pages 4–1–4–59, 2007.

� Cfront software available from Computer History Museum’s Software
Preservation Group http://www.softwarepreservation.org.
(See http://www.softwarepreservation.org/projects/c_plus_
plus/cfront).

� ISO JTC1/SC22/WG21 web site.

http://www.open-std.org/jtc1/sc22/wg21/.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 40

http://www.softwarepreservation.org
http://www.softwarepreservation.org/projects/c_plus_plus/cfront
http://www.softwarepreservation.org/projects/c_plus_plus/cfront
http://www.open-std.org/jtc1/sc22/wg21/

Standards Documents I

� ISO/IEC 14882:1998 — programming languages — C++, Sept. 1998.

� ISO/IEC 14882:2003 — programming languages — C++, Oct. 2003.

� ISO/IEC TR 18015:2006 — information technology — programming
languages, their environments and system software interfaces —
technical report on C++ performance, Sept. 2006.

� ISO/IEC TR 19768:2007 — information technology — programming
languages — technical report on C++ library extensions, Nov. 2007.

� ISO/IEC 29124:2010 — information technology — programming
languages, their environments and system software interfaces —
extensions to the C++ library to support mathematical special functions,
Sept. 2010.

� ISO/IEC TR 24733:2011 — information technology — programming
languages, their environments and system software interfaces —
extensions for the programming language C++ to support decimal
floating-point arithmetic, Nov. 2011.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 41

Standards Documents II

� ISO/IEC 14882:2011 — information technology — programming
languages — C++, Sept. 2011.

� ISO/IEC 14882:2014 — information technology — programming
languages — C++, Dec. 2014.

� ISO/IEC TS 18822:2015 — programming languages — C++ — file system
technical specification, July 2015.

� ISO/IEC TS 19570:2015 — programming languages — technical
specification for C++ extensions for parallelism, July 2015.

� ISO/IEC TS 19841:2015 — technical specification for C++ extensions for
transactional memory, Oct. 2015.

� ISO/IEC TS 19568:2015 — programming languages — C++ extensions
for library fundamentals, Oct. 2015.

� ISO/IEC TS 19217:2015 — programming languages — C++ extensions
for concepts, Nov. 2015.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 42

Standards Documents III

� ISO/IEC TS 19571:2016 — programming languages — technical
specification for C++ extensions for concurrency, Feb. 2016.

� ISO/IEC TS 19568:2017 — programming languages — C++ extensions
for library fundamentals, Mar. 2017.

� ISO/IEC TS 21425:2017 — programming languages — C++ extensions
for ranges, Nov. 2017.

� ISO/IEC TS 22277:2017 — technical specification — C++ extensions for
coroutines, Nov. 2017.

� ISO/IEC 14882:2017 — information technology — programming
languages — C++, Dec. 2017.

� ISO/IEC TS 19216:2018 — programming languages — C++ extensions
for networking, Apr. 2018.

� ISO/IEC TS 21544:2018 — programming languages — extensions to C++
for modules, May 2018.

� ISO JTC1/SC22/WG21 web site.

http://www.open-std.org/jtc1/sc22/wg21/.
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 43

http://www.open-std.org/jtc1/sc22/wg21/

Section 2.2

Getting Started

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 44

hello Program: hello.cpp

1 #include <iostream>
2

3 int main()
4 {
5 std::cout << "Hello, world!\n";
6 }

� program prints message “Hello, world!” and then exits

� starting point for execution of C++ program is function called main; every
C++ program must define function called main

� #include preprocessor directive to include complete contents of file

� iostream standard header file that defines various types and variables
related to I/O

� std::cout is standard output stream (defaults to user’s terminal)

� operator << is used for output

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 45

Software Build Process
Source Code

File
Compile Link

(.o)
Object File

Compile

Compile

...
...

Object File
(.o)

Object File
(.o)

Executable
Program

...
...

(.cpp, .hpp)

(.cpp, .hpp)

Source Code
File

Source Code
File

(.cpp, .hpp)

� start with C++ source code files (.cpp, .hpp)
� compile: convert source code to object code
� object code stored in object file (.o)
� link: combine contents of one or more object files (and possibly some

libraries) to produce executable program
� executable program can then be run directly

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 46

GNU Compiler Collection (GCC) C++ Compiler

� g++ command provides both compiling and linking functionality
� command-line usage:

g++ [options] input_file . . .

� many command-line options are supported

� some particularly useful command-line options listed on next slide
� compile C++ source file file.cpp to produce object code file file.o:

g++ -c file.cpp
� link object files file_1.o, file_2.o, . . . to produce executable file executable:

g++ -o executable file_1.o file_2.o . . .

� web site:
http://www.gnu.org/software/gcc

� C++ standards support in GCC:
https://gcc.gnu.org/projects/cxx-status.html

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 47

http://www.gnu.org/software/gcc
https://gcc.gnu.org/projects/cxx-status.html

Common g++ Command-Line Options

� -c
2 compile only (i.e., do not link)

� -o file
2 use file file for output

� -g
2 include debugging information

� -On
2 set optimization level to n (0 almost none; 3 full)

� -std=c++17
2 conform to C++17 standard

� -Idir
2 specify additional directory dir to search for include files

� -Ldir
2 specify additional directory dir to search for libraries

� -llib
2 link with library lib

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 48

Common g++ Command-Line Options (Continued 1)

� -pthread
2 enable concurrency support (via pthreads library)

� -pedantic-errors
2 strictly enforce compliance with standard

� -Wall
2 enable most warning messages

� -Wextra
2 enable some extra warning messages not enabled by -Wall

� -Wpedantic
2 warn about deviations from strict standard compliance

� -Werror
2 treat all warnings as errors

� -fno-elide-constructors
2 in contexts where standard allows (but does not require) optimization that

omits creation of temporary, do not attempt to perform this optimization

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 49

Common g++ Command-Line Options (Continued 2)

� -fconstexpr-loop-limit=n
2 set maximum number of iterations for loop in constexpr functions to n

� -fconstexpr-depth=n
2 set maximum nested evaluation depth for constexpr functions to n

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 50

Clang C++ Compiler

� clang++ command provides both compiling and linking functionality
� command-line usage:

clang++ [options] input_file . . .

� many command-line options are supported

� command-line interface is largely compatible with that of GCC g++
command

� web site:
http://clang.llvm.org

� C++ standards support in Clang:
http://clang.llvm.org/cxx_status.html

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 51

http://clang.llvm.org
http://clang.llvm.org/cxx_status.html

Common clang++ Command-Line Options

� many of more frequently used command-line options for clang++
identical to those for g++

� consequently, only small number of clang++ options given below
� -fconstexpr-steps=n

2 sets maximum number of computation steps in constexpr functions to n
� -fconstexpr-depth=n

2 sets maximum nested evaluation depth for constexpr functions to n

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 52

Manually Building hello Program

� numerous ways in which hello program could be built

� often advantageous to compile each source file separately
� can compile and link as follows:

1 compile source code file hello.cpp to produce object file hello.o:
g++ -c hello.cpp

2 link object file hello.o to produce executable program hello:
g++ -o hello hello.o

� generally, manual building of program is quite tedious, especially when
program consists of multiple source files and additional compiler options
need to be specified

� in practice, we use tools to automate build process (e.g., CMake and
Make)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 53

Section 2.3

C++ Basics

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 54

The C++ Programming Language

� created by Bjarne Stroustrup of Bell Labs
� originally known as C with Classes; renamed as C++ in 1983
� most recent specification of language in ISO/IEC 14882:2017 (informally

known as “C++17”)
� next version of standard expected in approximately 2020 (informally

known as “C++20”)
� procedural
� loosely speaking is superset of C
� directly supports object-oriented and generic programming
� maintains efficiency of C
� application domains: systems software, application software, device

drivers, embedded software, high-performance server and client
applications, entertainment software such as video games, native code for
Android applications

� greatly influenced development of C# and Java

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 55

Comments

� two styles of comments provided

� comment starts with // and proceeds to end of line

� comment starts with /* and proceeds to first */

// This is an example of a comment.
/* This is another example of a comment. */
/* This is an example of a comment that

spans
multiple lines. */

� comments of /* · · · */ style do not nest
/*
/* This sentence is part of a comment. */
This sentence is not part of any comment and
will probably cause a compile error.
*/

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 56

Identifiers

� identifiers used to name entities such as: types, objects (i.e., variables),
and functions

� valid identifier is sequence of one or more letters, digits, and underscore
characters that does not begin with a digit

:::::::
[C++17 5.10/1]

� identifiers that begin with underscore (in many cases) or contain double
underscores are reserved for use by C++ implementation and should be
avoided

::::::::
[C++17 5.10/3]

� examples of valid identifiers:
2 event_counter
2 eventCounter
2 sqrt_2
2 f_o_o_b_a_r_4_2

� identifiers are case sensitive (e.g., counter and cOuNtEr are distinct
identifiers)

� identifiers cannot be any of reserved keywords (see next slide)
� scope of identifier is context in which identifier is valid (e.g., block,

function, global)
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 57

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/lex.name#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/lex.name#3

Reserved Keywords
alignas
alignof
and
and_eq
asm
auto
bitand
bitor
bool
break
case
catch
char
char16_t
char32_t
class
compl
const
constexpr
const_cast
continue
decltype

default
delete
do
double
dynamic_cast
else
enum
explicit
export
extern
false
float
for
friend
goto
if
inline
int
long
mutable
namespace
new

noexcept
not
not_eq
nullptr
operator
or
or_eq
private
protected
public
register
reinterpret_cast
return
short
signed
sizeof
static
static_assert
static_cast
struct
switch
template

this
thread_local
throw
true
try
typedef
typeid
typename
union
unsigned
using
virtual
void
volatile
wchar_t
while
xor
xor_eq
override∗

final∗

∗Note: context sensitive

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 58

Section 2.3.1

Preprocessor

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 59

The Preprocessor

� prior to compilation, source code transformed by preprocessor

� preprocessor output then passed to compiler for compilation

� preprocessor behavior can be controlled by preprocessor directives
� preprocessor directive occupies single line and consists of:

1 hash character (i.e., “#”)
2 preprocessor instruction (i.e., define, undef, include, if, ifdef,
ifndef, else, elif, endif, line, error, and pragma)

3 arguments (depending on instruction)
4 line break

� preprocessor can be used to:
2 conditionally compile parts of source file
2 define macros and perform macro expansion
2 include other files
2 force error to be generated

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 60

Source-File Inclusion

� can include contents of another file in source using preprocessor
#include directive

� syntax:
#include <path_specifier>
or
#include "path_specifier"

� path_specifier is pathname (which may include directory) identifying file
whose content is to be substituted in place of include directive

� typically, angle brackets used for system header files and double quotes
used otherwise

� example:

#include <iostream>
#include <boost/tokenizer.hpp>
#include "my_header_file.hpp"
#include "some_directory/my_header_file.hpp"

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 61

Defining Macros

� can define macros using #define directive
� syntax:

#define name value

� name is name of macro and value is value of macro

� example:

#define DEBUG_LEVEL 10

� macros can also take arguments

� generally, macros should be avoided when possible (i.e., when other
better mechanisms are available to achieve desired effect)

� for example, although macros can be used as way to accomplish inlining
of functions, such usage should be avoided since language mechanism
exists for specifying inline functions

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 62

Conditional Compilation

� can conditionally include code through use of if-elif-else construct
� conditional preprocessing block consists of following (in order)

1 #if, #ifdef, or #ifndef directive
2 optionally any number of #elif directives
3 at most one #else directive
4 #endif directive

� code in taken branch of if-elif-else construct passed to compiler, while
code in other branches discarded

� example:

#if DEBUG_LEVEL == 1
// ...
#elif DEBUG_LEVEL == 2
// ...
#else
// ...
#endif

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 63

Preprocessor Predicate __has_include

� preprocessor predicate __has_include can be used in expressions for
preprocessor to test for existence of header files

� example:

#ifdef __has_include
if __has_include(<optional>)
include <optional>
define have_optional 1
elif __has_include(<experimental/optional>)
include <experimental/optional>
define have_optional 1
define experimental_optional
else
define have_optional 0
endif
#endif

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 64

Section 2.3.2

Objects, Types, and Values

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 65

Fundamental Types

� boolean type: bool
� character types:

2 char (may be signed or unsigned)
2 signed char
2 unsigned char
2 char16_t
2 char32_t
2 wchar_t

� char is distinct type from signed char and unsigned char
� standard signed integer types:

::::::::
[C++17 6.9.1/2]

2 signed char
2 signed short int
2 signed int
2 signed long int
2 signed long long int

� standard unsigned integer types:
2 unsigned char
2 unsigned short int
2 unsigned int
2 unsigned long int
2 unsigned long long int

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 66

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.fundamental#2

Fundamental Types (Continued)

� “int” may be omitted from names of (non-character) integer types (e.g.,
“unsigned” equivalent to “unsigned int” and “signed” equivalent
to “signed int”)

� “signed” may be omitted from names of signed integer types, excluding
signed char (e.g., “int” equivalent to “signed int”)

� boolean, character, and (signed and unsigned) integer types collectively
called integral types

� integral types must use binary positional representation; two’s
complement, one’s complement, and sign magnitude representations
permitted

:::::::
[C++17 6.9.1/7]

� floating-point types:
2 float
2 double
2 long double

� void (i.e., incomplete/valueless) type: void

� null pointer type: std::nullptr_t (defined in header file cstddef)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 67

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.fundamental#7

Literals

� literal (a.k.a. literal constant) is value written exactly as it is meant to be
interpreted

� examples of literals:
"Hello, world"
"Bjarne"
’a’
’A’
123
123U
1’000’000’000
3.1415
1.0L
1.23456789e-10

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 68

Character Literals
� character literal consists of optional prefix followed by one or more

characters enclosed in single quotes
� type of character literal determined by prefix (or lack thereof) as follows:

Prefix Literal Type
None ordinary normally char (in special cases int)
u8 UTF-8 char
u UCS-2 char16_t
U UCS-4 char32_t
L wide wchar_t

� special characters can be represented by escape sequence:
Escape

Character Sequence
newline (LF) \n
horizontal tab (HT) \t
vertical tab (VT) \v
backspace (BS) \b
carriage return (CR) \r
form feed (FF) \f
alert (BEL) \a
backslash (\) \\

Escape
Character Sequence
question mark (?) \?
single quote (’) \’
double quote (") \"
octal number ooo \ooo
hex number hhh \xhhh
code point nnnn \unnnn
code point nnnnnnnn \Unnnnnnnn

� examples of character literals:
’a’ ’1’ ’!’ ’\n’ u’a’ U’a’ L’a’ u8’a’

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 69

Character Literals (Continued)

� decimal digit characters guaranteed to be consecutive in value (e.g., ’1’
must equal ’0’ + 1)

::::::
[C++17 5.3/3]

� in case of ordinary character literals, alphabetic characters are not
guaranteed to be consecutive in value (e.g., ’b’ is not necessarily
’a’ + 1)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 70

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/lex.charset#3

String Literals

� (non-raw) string literal consists of optional prefix followed by zero or more
characters enclosed in double quotes

� string literal has character array type

� type of string literal determined by prefix (or lack thereof) as follows:
Prefix Literal Type
None narrow const char[]
u8 UTF-8 const char[]
u UTF-16 const char16_t[]
U UTF-32 const char32_t[]
L wide const wchar_t[]

� examples of string literals:
"Hello, World!\n"
"123"
"ABCDEFG"

� adjacent string literals are concatenated (e.g., "Hel" "lo" equivalent to
"Hello")

� string literals implicitly terminated by null character (i.e., ’\0’)

� so, for example, "Hi" means ’H’ followed by ’i’ followed by ’\0’

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 71

Raw String Literals

� interpretation of escape sequences (e.g., “\n”) inside string literal can be
avoided by using raw literal

� raw literal has form:
2 prefix R"delimiter(raw_characters)delimiter"

� optional prefix is string-literal prefix (e.g., u8)

� optional delimiter is sequence of characters used to assist in delimiting
string

� raw_characters is sequence of characters comprising string

� escape sequences not processed inside raw literal

� raw literal can also contain newline characters
� examples of raw string literals:

R"(He said, "No.")"
u8R"(He said, "No.")"
R"foo(The answer is 42.)foo"
R"((+|-)?[[:digit:]]+)"

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 72

Integer Literals
� can be specified in decimal, binary, hexadecimal, and octal
� number base indicated by prefix (or lack thereof) as follows:

Prefix Number Base
None decimal
Leading 0 octal
0b or 0B binary
0x or 0X hexadecimal

� various suffixes can be specified to control type of literal:
2 u or U
2 l or L
2 both u or U and l or L
2 ll or LL
2 both u or U and ll or LL

� can use single quote as digit separator (e.g., 1’000’000)
� examples of integer literals:

42
1’000’000’000’000ULL
0xdeadU

� integer literal always nonnegative; so, for example, -1 is integer literal 1
with negation operation applied

:::::::
[C++17 5.13.2]

:::::::
[C++17 5.13.4]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 73

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/lex.icon
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/lex.fcon

Integer Literals (Continued)

Suffix Decimal Literal Non-Decimal Literal
None int int

long int unsigned int
long long int long int

unsigned long int
long long int
unsigned long long int

u or U unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int unsigned long long int

l or L long int long int
long long int unsigned long int

long long int
unsigned long long int

Both u or U unsigned long int unsigned long int
and l or L unsigned long long int unsigned long long int
ll or LL long long int long long int

unsigned long long int
Both u or U unsigned long long int unsigned long long int
and ll or LL

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 74

Floating-Point Literals

� type of literal indicated by suffix (or lack thereof) as follows:
Suffix Type
None double
f or F float
l or L long double

� examples of double literals:
1.414
1.25e-8

� examples of float literals:
1.414f
1.25e-8f

� examples of long double literals:
1.5L
1.25e-20L

� floating-point literals always nonnegative; so, for example, -1.0 is literal
1.0 with negation operator applied

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 75

Hexadecimal Floating-Point Literals

� hexadecimal floating-point literal has general form:
1 prefix 0x or 0X
2 hexadecimal digits for integer part of number (optional if at least one digit

after radix point)
3 period character (i.e., radix point)
4 hexadecimal digits for fractional part of number (optional if at least one digit

before radix point)
5 p character (which designates exponent to follow)
6 one or more decimal digits for base-16 exponent
7 optional floating-point literal suffix (e.g., f or l)

� examples of hexadecimal floating-point literals:
Literal Type Value (Decimal)

0x.8p0 double 0.5
0x10.cp0 double 16.75
0x.8p0f float 0.5
0xf.fp0f float 15.9375
0x1p10L long double 1024

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 76

Boolean and Pointer Literals

� boolean literals:
true
false

� pointer literal:
nullptr

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 77

Declarations and Definitions

� declaration introduces identifier for type, object (i.e., variable), or function
(without necessarily providing full information about identifier)

2 in case of object, specifies type (of object)
2 in case of function, specifies number of parameters, type of each

parameter, and type of return value (if not automatically deduced)

� each identifier must be declared before it can be used (i.e., referenced)
� definition provides full information about identifier and causes entity

associated with identifier (if any) to be created
2 in case of type, provides full details about type
2 in case of object, causes storage to be allocated for object and object to be

created
2 in case of function, provides code for function body

� in case of objects, in most (but not all) contexts, declaring object also
defines it

� can declare identifier multiple times but can define only once
� above terminology often abused, with “declaration” and “definition” being

used interchangeably
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 78

Examples of Declarations and Definitions

int count; // declare and define count
extern double alpha; // (only) declare alpha

void func() { // declare and define func
int n; // declare and define n
double x = 1.0; // declare and define x
// ...

}

bool isOdd(int); // declare isOdd
bool isOdd(int x); // declare isOdd (x ignored)

bool isOdd(int x) { // declare and define isOdd
return x % 2;

}

struct Thing; // declare Thing

struct Vector2 { // declare and define Vector2
double x;
double y;

};

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 79

Variable Declarations and Definitions

� variable declaration (a.k.a. object declaration) introduces identifier that
names object and specifies type of object

� variable definition (a.k.a. object definition) provides all information
included in variable declaration and also causes object to be created (e.g.,
storage allocated for object)

� example:

int count;
// declare and define count

double alpha;
// declare and define alpha

extern double gamma;
// declare (but do not define) gamma

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 80

Arrays

� array is collection of one or more objects of same type that are stored
contiguously in memory

� each element in array identified by (unique) integer index, with indices
starting from zero

� array denoted by []

� example:
double x[10]; // array of 10 doubles
int data[512][512]; // 512 by 512 array of ints

� elements of array accessed using subscripting operator []
� example:

int x[10];
// elements of arrays are x[0], x[1], ..., x[9]

� often preferable to use user-defined type for representing array instead of
array type

� for example, std::array and std::vector types (to be discussed later)
have numerous practical advantages over array types

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 81

Array Example

� code:

int a[4] = {1, 2, 3, 4};

� assumptions (for some completely fictitious C++ language
implementation):

2 sizeof(int) is 4
2 array a starts at address 1000

� memory layout:

1

2

3

4

a[0]

a[1]

a[2]

a[3]

NameAddress

1000

1008

1012

1004

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 82

Pointers

� pointer is object whose value is address in memory where another object
is stored

� pointer to object of type T denoted by T*

� null pointer is special pointer value that does not refer to any valid
memory location

� null pointer value provided by nullptr keyword

� accessing object to which pointer refers called dereferencing
� dereferencing pointer performed by indirection operator (i.e., “*”)

� if p is pointer, *p is object to which pointer refers

� if x is object of type T, &x is (normally) address of object, which has type
T*

� example:

char c;
char* cp = nullptr; // cp is pointer to char
char* cp2 = &c; // cp2 is pointer to char

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 83

Pointer Example

� code:

int i = 42;
int* p = &i;
assert(*p == 42);

� assumptions (for some completely fictitious C++ language
implementation):

2 sizeof(int) is 4
2 sizeof(int*) is 4
2 &i is ((int*)1000)
2 &p is ((int*)1004)

� memory layout:

42

1000

i

p

NameAddress

1000

1004

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 84

References

� reference is alias (i.e., nickname) for already existing object
� two kinds of references:

1 lvalue reference
2 rvalue reference

� lvalue reference to object of type T denoted by T&

� rvalue reference to object of type T denoted by T&&

� initializing reference called reference binding
� lvalue and rvalue references differ in their binding properties (i.e., to what

kinds of objects reference can be bound)
� in most contexts, lvalue references usually needed
� rvalue references used in context of move constructors and move

assignment operators (to be discussed later)
� example:

int x;
int& y = x; // y is lvalue reference to int
int&& tmp = 3; // tmp is rvalue reference to int

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 85

References Example

� code:

int i = 42;
int& j = i;
assert(j == 42);

� assumptions (for some completely fictitious C++ language
implementation):

2 sizeof(int) is 4
2 &i is ((int*)1000)

� memory layout:

42 i, j

NameAddress

1000

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 86

References Versus Pointers
� references and pointers similar in that both can be used to refer to some

other entity (e.g., object or function)
� two key differences between references and pointers:

1 reference must refer to something, while pointer can have null value
(nullptr)

2 references cannot be rebound, while pointers can be changed to point to
different entity

� references have cleaner syntax than pointers, since pointers must be
dereferenced upon each use (and dereference operations tend to clutter
code)

� use of pointers often implies need for memory management (i.e., memory
allocation, deallocation, etc.), and memory management can introduce
numerous kinds of bugs when done incorrectly

� often faced with decision of using pointer or reference in code
� generally advisable to prefer use of references over use of pointers unless

compelling reason to do otherwise, such as:
2 must be able to handle case of referring to nothing
2 must be able to change entity being referenced

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 87NEXT SLIDE: const qualifier

Unscoped Enumerations

� enumerated type provides way to describe range of values that are
represented by named constants called enumerators

� object of enumerated type can take any one of enumerators as value
� enumerator values represented by some integral type
� enumerator can be assigned specific value (which may be negative)
� if enumerator not assigned specific value, value defaults to zero if first

enumerator in enumeration and one greater than value for previous
enumerator otherwise

� example:
enum Suit {

Clubs, Diamonds, Hearts, Spades
};

Suit suit = Clubs;

� example:
enum Suit {

Clubs = 1, Diamonds = 2, Hearts = 4, Spades = 8
};

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 88

Scoped Enumerations

� scoped enumeration similar to unscoped enumeration, except:
2 all enumerators are placed in scope of enumeration itself
2 integral type used to hold enumerator values can be explicitly specified
2 conversions involving scoped enumerations are stricter (i.e., more type

safe)

� class or struct added after enum keyword to make enumeration
scoped

� scope resolution operator (i.e., “::”) used to access enumerators
� scoped enumerations should probably be preferred to unscoped ones
� example:

enum struct Season {
spring, summer, fall, winter

};

enum struct Suit : unsigned char {
clubs, diamonds, hearts, spades

};

Season season = Season::summer;
Suit suit = Suit::spades;

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 89

Type Aliases with typedef Keyword

� typedef keyword used to create alias for existing type

� example:

typedef long long BigInt;
BigInt i; // i has type long long

typedef char* CharPtr;
CharPtr p; // p has type char*

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 90

Type Aliases with using Statement

� using statement can be used to create alias for existing type

� probably preferable to use using statement over typedef

� example:

using BigInt = long long;
BigInt i; // i has type long long

using CharPtr = char*;
CharPtr p; // p has type char*

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 91

The extern Keyword

� translation unit: basic unit of compilation in C++ (i.e., single source code
file plus all of its directly and indirectly included header files)

� extern keyword used to declare object/function in separate translation
unit

� example:

extern int evil_global_variable;
// declaration only
// actual definition in another file

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 92

The const Qualifier
� const qualifier specifies that object has value that is constant (i.e.,

cannot be changed)

� qualifier that applies to object itself said to be top level
� following defines x as int with value 42 that cannot be modified:

const int x = 42;
� example:

const int x = 42;
x = 13; // ERROR: x is const
const int& x1 = x; // OK
const int* p1 = &x; // OK
int& x2 = x; // ERROR: x const, x2 not const
int* p2 = &x; // ERROR: x const, *p2 not const

� example:
int x = 0;
const int& y = x;
x = 42; // OK
// y also changed to 42 since y refers to x
// y cannot be used to change x, however
// i.e., the following would cause compile error:
// y = 24; // ERROR: y is const

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 93

SKIP SLIDE

The const Qualifier and Non-Pointer/Non-Reference Types

� with types that are not pointer or reference types, const can only be
applied to object itself (i.e., top level)

� that is, object itself may be const or non-const

� example:
int i = 0; // object i is modifiable
i = 42; // OK: i can be modified
const int ci = 0; // object ci is not modifiable
ci = 42; // ERROR: ci cannot be modified

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 94

Example: const Qualifier and Non-Pointer/Non-Reference
Types

1 // with types that are not pointer or reference types, const
2 // can only be applied to object itself (i.e., top level)
3 // object itself may be const or non-const
4

5 int i = 0; // non-const int object
6 const int ci = 0; // const int object
7

8 i = 42; // OK: can modify non-const object
9 ci = 42; // ERROR: cannot modify const object

10

11 i = ci; // OK: can modify non-const object
12 ci = i; // ERROR: cannot modify const object

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 95

SKIP SLIDE

The const Qualifier and Pointer Types

� every pointer is associated with two objects: pointer itself and pointee (i.e.,
object to which pointer points)

� const qualifier can be applied to each of pointer (i.e., top-level qualifier)
and pointee

int i = 42; // pointee

// p is pointer to int i
// for example:
// int* p = &i;
// const int* p = &i;
// int* const p = &i;
// const int* const p = &i;

2000

42

1000
(&p)

2000
(&i)

...

...

...

Address

(pointee)

(pointer)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 96

Example: const Qualifier and Pointer Types

1 // with pointer types, const can be applied to each of:
2 // pointer and pointee
3 // pointer itself may be const or non-const (top-level)
4 // pointee may be const or non-const
5

6 int i = 0;
7 int j = 0;
8

9 int* pi = &i; // non-const pointer to a non-const int
10 pi = &j; // OK: can modify non-const pointer
11 *pi = 42; // OK: can modify non-const pointee
12

13 const int* pci = &i; // non-const pointer to a const int
14 // equivalently: int const* pci = &i;
15 pci = &j; // OK: can modify non-const pointer
16 *pci = 42; // ERROR: cannot modify const pointee
17

18 int* const cpi = &i; // const pointer to a non-const int
19 cpi = &j; // ERROR: cannot modify const pointer
20 *cpi = 42; // OK: can modify non-const pointee
21

22 const int* const cpci = &i; // const pointer to a const int
23 // equivalently: int const* const cpci = &i;
24 cpci = &j; // ERROR: cannot modify const pointer
25 *cpci = 42; // ERROR: cannot modify const pointee
26

27 pci = pi; // OK: adds const to pointee
28 pi = pci; // ERROR: discards const from pointee

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 97

SKIP SLIDE

The const Qualifier and Reference Types
� reference is name that refers to object (i.e., referee)

� in principle, const qualifier can be applied to reference itself (i.e.,
top-level qualifier) or referee

� since reference cannot be rebound, reference itself is effectively always
constant

� for this reason, does not make sense to explicitly apply const as
top-level qualifier for reference type and language disallows this

� const qualifier can only be applied to referee

� example:
int j = 0;
int k = 42;
int& i = j;
// i is reference; j is referee
// referee is modifiable

const int& ci = j;
// ci is reference; j is referee
// referee is not modifiable

const int& ci = k; // ERROR: cannot redefine/rebind
int& const r = j;
// ERROR: reference itself cannot be specified as const

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 98

Example: const Qualifier and Reference Types

1 // with reference types, const can only be applied to referee
2 // reference itself cannot be rebound (i.e., is constant)
3 // referee may be const or non-const
4

5 int i = 0; const int ci = 0;
6 int i1 = 0; const int ci1 = 0;
7

8 // reference to non-const int
9 int& ri = i;

10 ri = ci; // OK: can modify non-const referee
11 int& ri = i1; // ERROR: cannot redefine/rebind reference
12

13 // reference to const int
14 const int& rci = ci;
15 rci = i; // ERROR: cannot modify const referee
16 const int& rci = ci1;
17 // ERROR: cannot redefine/rebind reference
18

19 // ERROR: reference itself cannot be const qualified
20 int& const cri = i; // ERROR: invalid const qualifier
21

22 // ERROR: reference itself cannot be const qualified
23 const int& const crci = ci; // ERROR: invalid const qualifier
24 // also: int const& const crci = ci; // ERROR
25

26 const int& r1 = ci; // OK: adds const to referee
27 int& r2 = ci; // ERROR: discards const from referee

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 99

SKIP SLIDE

NEXT SLIDE: constexpr for variables

The const Qualifier and Pointer-to-Pointer Types

� for given type T, cannot implicitly convert T** to const T**

� although such conversion looks okay at first glance, actually would create
backdoor for changing const objects

� can, however, implicitly convert T** to const T* const*

� for example, code like that shown below could be used to change const
objects if T** to const T** were valid conversion:

const int i = 42;
int* p;
const int** q = &p;
// Fortunately, this line is not valid code.
// ERROR: cannot convert int** to const int**

*q = &i;
// Change p (to which q points) to point to i.
// OK: *q is not const (only **q is const)

*p = 0;
// Set i (to which p points) to 0.
// OK: *p is not const
// This line would change i, which is const.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 100

The volatile Qualifier

� volatile qualifier used to indicate that object can change due to agent
external to program (e.g., memory-mapped device, signal handler)

� compiler cannot optimize away read and write operations on volatile
objects (e.g., repeated reads without intervening writes cannot be
optimized away)

� volatile qualifier typically used when object:
2 corresponds to register of memory-mapped device
2 may be modified by signal handler (namely, object of type
volatile std::sig_atomic_t)

� example:

volatile int x;
volatile unsigned char* deviceStatus;

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 101

The auto Keyword

� in various contexts, auto keyword can be used as place holder for type

� in such contexts, implication is that compiler must deduce type

� example:

auto i = 3; // i has type int
auto j = i; // j has type int
auto& k = i; // k has type int&
const auto& n = i; // n has type const int&
auto x = 3.14; // x has type double

� very useful in generic programming (covered later) when types not always
easy to determine

� can potentially save typing long type names

� can lead to more readable code (if well used)

� if overused, can lead to bugs (sometimes very subtle ones) and difficult to
read code

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 102

Inline Variables

� inline variable: variable that may be defined in multiple translation units
as long as all definitions are identical

� potential for multiple definitions avoided by having linker simply choose
one of identical definitions and discard others (if more than one exists)

� can request that variable be made inline by including inline qualifier in
variable declaration

� inline variable must have static storage duration (e.g., static class member
or namespace-scope variable)

� inline variable typically used to allow definition of variable to be placed in
header file without danger of multiple definitions

� inline variable has same address in all translation units

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 103

Inline Variable: Example

inline_variable_1_1.hpp

1 inline int magic = 42;

main.cpp

1 #include <iostream>
2 #include "inline_variable_1_1.hpp"
3 int main() {
4 std::cout << magic << "\n";
5 }

other.cpp

1 #include "inline_variable_1_1.hpp"
2 void func() {/* ... */}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 104

Section 2.3.3

Operators and Expressions

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 105

Operators

Arithmetic Operators

Operator Name Syntax
addition a + b
subtraction a - b
unary plus +a
unary minus -a
multiplication a * b
division a / b
modulo (i.e., remainder) a % b
pre-increment ++a
post-increment a++
pre-decrement --a
post-decrement a--

Bitwise Operators

Operator Name Syntax
bitwise NOT ~a
bitwise AND a & b
bitwise OR a | b
bitwise XOR a ^ b
arithmetic left shift a << b
arithmetic right shift a >> b

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 106

Operators (Continued 1)

Assignment and
Compound-Assignment Operators

Operator Name Syntax
assignment a = b
addition assignment a += b
subtraction assignment a -= b
multiplication assignment a *= b
division assignment a /= b
modulo assignment a %= b
bitwise AND assignment a &= b
bitwise OR assignment a |= b
bitwise XOR assignment a ^= b
arithmetic left shift assignment a <<= b
arithmetic right shift assignment a >>= b

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 107

Operators (Continued 2)

Logical/Relational Operators

Operator Name Syntax
equal a == b
not equal a != b
greater than a > b
less than a < b
greater than or equal a >= b
less than or equal a <= b
logical negation !a
logical AND a && b
logical OR a || b

Member and Pointer Operators

Operator Name Syntax
array subscript a[b]
indirection *a
address of &a
member selection a.b
member selection a->b
member selection a.*b
member selection a->*b

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 108

Operators (Continued 3)

Other Operators

Operator Name Syntax
function call a(...)
comma a, b
ternary conditional a ? b : c
scope resolution a::b
sizeof sizeof(a)
parameter-pack sizeof sizeof...(a)
alignof alignof(T)
allocate storage new T
allocate storage (array) new T[a]
deallocate storage delete a
deallocate storage (array) delete[] a

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 109

Operators (Continued 4)

Other Operators (Continued)

Operator Name Syntax
type ID typeid(a)
type cast (T) a
const cast const_cast<T>(a)
static cast static_cast<T>(a)
dynamic cast dynamic_cast<T>(a)
reinterpret cast reinterpret_cast<T>(a)
throw throw a
noexcept noexcept(e)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 110

Operator Precedence

Precedence Operator Name Associativity

1 :: scope resolution none
2 . member selection (object) left to right

-> member selection (pointer)
[] subscripting
() function call
++ post-increment
-- post-decrement

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 111

Operator Precedence (Continued 1)

Precedence Operator Name Associativity

3 sizeof size of object/type right to left
++ pre-increment
-- pre-decrement
~ bitwise NOT
! logical NOT
- unary minus
+ unary plus
& address of
* indirection
new allocate storage
new[] allocate storage (array)
delete deallocate storage
delete[] deallocate storage (array)
() cast

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 112

Operator Precedence (Continued 2)

Precedence Operator Name Associativity

4 .* member selection (objects) left to right
->* member selection (pointers)

5 * multiplication left to right
/ division
% modulus

6 + addition left to right
- subtraction

7 << left shift left to right
>> right shift

8 < less than left to right
<= less than or equal
> greater than
>= greater than or equal

9 == equality left to right
!= inequality

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 113

Operator Precedence (Continued 3)

Precedence Operator Name Associativity

10 & bitwise AND left to right
11 ^ bitwise XOR left to right
12 | bitwise OR left to right
13 && logical AND left to right
14 || logical OR left to right
15 ? : ternary conditional right to left

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 114

Operator Precedence (Continued 4)

Precedence Operator Name Associativity

16 = assignment right to left
*= multiplication assignment
/= division assignment
%= modulus assignment
+= addition assignment
-= subtraction assignment
<<= left shift assignment
>>= right shift assignment
&= bitwise AND assignment
|= bitwise OR assignment
^= bitwise XOR assignment

17 throw throw exception right to left
18 , comma left to right

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 115

Alternative Tokens

Alternative Primary
and &&
bitor |
or ||
xor ^
compl ~
bitand &
and_eq &=
or_eq |=
xor_eq ^=
not !
not_eq !=

� alternative tokens above probably best avoided as they lead to more
verbose code

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 116

Expressions

� An expression is a sequence of operators and operands that specifies a
computation.

::::::
[C++17 8/1]

� An expression has a type and, if the type is not void, a value.
::::::::
[C++17 6.9.1/9]

� A constant expression is an expression that can be evaluated at compile
time (e.g., 1 + 1).

� Example:

int x = 0;
int y = 0;
int* p = &x;
double d = 0.0;
// Evaluate some
// expressions here.

Expression Type Value
x int 0
y = x int& reference to y
x + 1 int 1
x * x + 2 * x int 0
y = x * x int& reference to y
x == 42 bool false
*p int& reference to x
p == &x bool true
x > 2 * y bool false
std::sin(d) double 0.0

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 117

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.fundamental#9

Operator Precedence/Associativity Example

Expression Fully-Parenthesized Expression
a + b + c ((a + b) + c)
a = b = c (a = (b = c))
c = a + b (c = (a + b))
d = a && !b || c (d = ((a && (!b)) || c))
++*p++ (++(*(p++)))
a | ~b & c ^ d (a | (((~b) & c) ^ d))
a[0]++ + a[1]++ (((a[0])++) + ((a[1])++))
a + b * c / d % - g (a + (((b * c) / d) % (-g)))
++p[i] (++(p[i]))
--*++p (--(*(++p)))
a += b += c += d (a += (b += (c += d)))
z = a == b ? ++c : --d (z = ((a == b) ? (++c) : (--d)))

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 118

Division/Modulus Operator and Negative Numbers

� for integral operands, division operator yields algebraic quotient with any
fractional part discarded (i.e., round towards zero)

� if quotient a / b is representable in type of result,
(a / b) * b + a % b is equal to a

� so, assuming b is not zero and no overflow, a % b equals
a - (a / b) * b

� result of modulus operator not necessarily nonnegative

� example:
1 static_assert(5 % 3 == 2);
2 static_assert(5 % (-3) == 2);
3 static_assert((-5) % 3 == -2);
4 static_assert((-5) % (-3) == -2);

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 119

Short-Circuit Evaluation

� logical-and operator (i.e., &&):
:::::::
[C++17 8.14]

2 groups left-to-right
2 result true if both operands are true, and false otherwise
2 second operand is not evaluated if first operand is false (in case of built-in

logical-and operator)
� logical-or operator (i.e., ||):

::::::
[C++17 8.15]

2 groups left-to-right
2 result is true if either operand is true, and false otherwise
2 second operand is not evaluated if first operand is true (in case of built-in

logical-or operator)

� example:
int x = 0;
bool b = (x == 0 || ++x == 1);
// b equals true; x equals 0
b = (x != 0 && ++x == 1);
// b equals false; x equals 0

� above behavior referred to as short circuit evaluation

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 120

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.log.and
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.log.or

Short-Circuit Evaluation Example: a || b || c

� for three values a, b, c of type bool, consider evaluation of expression
a || b || c

� code showing short-circuit evaluation and associated control-flow graph
given below

bool _result;
if (a)

goto _true;
if (b)

goto _true;
if (c)

goto _true;
_result = false;
goto done;
_true:
_result = true;
done:

a

b

c

True False

F

T

FT

TT F

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 121

Short-Circuit Evaluation Example: a && b && c

� for three values a, b, c of type bool, consider evaluation of expression
a && b && c

� code showing short-circuit evaluation and associated control-flow graph
given below

bool _result;
if (!a)

goto _false;
if (!b)

goto _false;
if (!c)

goto _false;
_result = true;
goto done;
_false:
_result = false;
done:

a

b

c

True False

F

T

FT

TT
F

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 122

Short-Circuit Evaluation Example: (a || b) && c

� for three values a, b, c of type bool, consider evaluation of expression
(a || b) && c

� code showing short-circuit evaluation and associated control-flow graph
given below (. .example of compiler-generated assembly code)

bool _result;
if (a)

goto _second;
if (!b)

goto _false;
_second:
if (!c)

goto _false;
_result = true;
goto done;
_false:
_result = false;
done:

a

b

c

True False

F

T

T F

TT
F

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 123

The static_assert Statement

� static_assert allows testing of boolean condition at compile time

� used to test sanity of code or test validity of assumptions made by code
� static_assert has two arguments:

1 boolean constant expression (condition to test)
2 string literal for error message to print if boolean expression not true

� second argument is optional

� failed static assertion results in compile error

� example:

static_assert(sizeof(int) >= 4, "int is too small");
static_assert(1 + 1 == 2, "compiler is buggy");

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 124

The sizeof Operator

� sizeof operator is used to query size of object or object type (i.e.,
amount of storage required)

� for object type T, sizeof(T) yields size of T in bytes (e.g.,
sizeof(int), sizeof(int[10]))

� for expression e, sizeof e yields size of object required to hold result of
e in bytes (e.g., sizeof(&x) where x is some object)

� sizeof(char), sizeof(signed char), and
sizeof(unsigned char) guaranteed to be 1

� byte is at least 8 bits (usually exactly 8 bits except on more exotic
platforms)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 125

The constexpr Qualifier for Variables

� constexpr qualifier indicates object has value that is constant
expression (i.e., can be evaluated at compile time)

� constexpr implies const (but converse not necessarily true)

� following defines x as constant expression with type const int and
value 42:

constexpr int x = 42;

� example:

constexpr int x = 42;
int y = 1;
x = 0; // ERROR: x is const
const int& x1 = x; // OK
const int* p1 = &x; // OK
int& x2 = x; // ERROR: x const, x2 not const
int* p2 = &x; // ERROR: x const, *p2 not const
int a1[x]; // OK: x is constexpr
int a2[y]; // ERROR: y is not constexpr

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 126NEXT SLIDE: const and functions

Section 2.3.4

Control-Flow Constructs: Selection and Looping

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 127

The if Statement

� allows conditional execution of code
� syntax has form:

if (expression)
statement1

else
statement2

� if expression expression is true, execute statement statement1; otherwise,
execute statement statement2

� else clause can be omitted leading to simpler form:
if (expression)

statement1
� conditional execution based on more than one condition can be achieved

using construct like:
if (expression1)

statement1
else if (expression2)

statement2
. . .
else

statementn

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 128

The if Statement (Continued 1)

� to include multiple statements in branch of if, must group statements
into single statement using brace brackets

if (expression) {
statement1,1
statement1,2
statement1,3
. . .

} else {
statement2,1
statement2,2
statement2,3
. . .

}

� advisable to always include brace brackets even when not necessary, as
this avoids potential bugs caused by forgetting to include brackets later
when more statements added to branch of if

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 129

The if Statement (Continued 2)

� if statement may include initializer:
if (initializer; expression)

statement1;
else

statement2;

� above construct equivalent to:
{

initializer;
if (expression)

statement1;
else

statement2;
}

� if condition in if statement is constant expression, constexpr keyword
can be added after if keyword to yield what is called constexpr-if
statement

� constexpr-if statement is evaluated at compile time and branch of if
statement that is not taken is discarded

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 130

The if Statement: Example
� example with else clause:

int x = someValue;
if (x % 2 == 0) {

std::cout << "x is even\n";
} else {

std::cout << "x is odd\n";
}

� example without else clause:
int x = someValue;
if (x % 2 == 0) {

std::cout << "x is divisible by 2\n";
}

� example that tests for more than one condition:
int x = someValue;
if (x > 0) {

std::cout << "x is positive\n";
} else if (x < 0) {

std::cout << "x is negative\n";
} else {

std::cout << "x is zero\n";
}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 131

The if Statement: Example

� example with initializer:

int execute_command();
if (int ret = execute_command(); ret == 0) {

std::cout << "command successful\n";
} else {

std::cout << "command failed with status " <<
ret << ’\n’;

}

� example constexpr-if statement:

constexpr int x = 10;
if constexpr (x < 0) {

std::cout << "negative\n";
} else if constexpr(x > 0) {

std::cout << "positive\n";
} else {

std::cout << "zero\n";
}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 132

The switch Statement
� allows conditional execution of code based on integral/enumeration value
� syntax has form:

switch (expression) {
case const_expr1:

statements1
case const_expr2:

statements2. . .
case const_exprn:

statementsn
default:

statements
}

� expression is expression of integral or enumeration type or implicitly
convertible to such type; const_expri is constant expression of same type
as expression after conversions/promotions

� if expression expression equals const_expri, jump to beginning of
statements statementsi; if expression expr does not equal const_expri for
any i, jump to beginning of statements statements

� then, continue executing statements until break statement is
encountered

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 133

The switch Statement (Continued)

� switch statement can also include initializer:
switch (initializer; expression)

statement

� above construct equivalent to:
{

initializer;
switch (expression)

statement
}

� remember that, in absence of break statement, execution in switch
statement falls through from one case to next; if fall through not
considered, bugs will result, such as in following code:
1 unsigned int x = 0;
2 switch (x & 1) {
3 case 0:
4 std::cout << "x is even\n";
5 // BUG: missing break statement
6 case 1:
7 std::cout << "x is odd\n";
8 break;
9 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 134

The switch Statement: Example

� example without initializer:

int x = someValue;
switch (x) {
case 0:

// Note that there is no break here.
case 1:

std::cout << "x is 0 or 1\n";
break;

case 2:
std::cout << "x is 2\n";
break;

default:
std::cout << "x is not 0, 1, or 2\n";
break;

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 135

The switch Statement: Example (Continued)

� example with initializer:

int get_value();
switch (int x = get_value(); x) {
case 0:
case 1:

std::cout << "x is 0 or 1\n";
break;

case 2:
std::cout << "x is 2\n";
break;

default:
std::cout << "x is not 0, 1, or 2\n";
break;

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 136

The while Statement

� looping construct

� syntax has form:

while (expression)
statement

� if expression expression is true, statement statement is executed; this
process repeats until expression expression becomes false

� to allow multiple statements to be executed in loop body, must group
multiple statements into single statement with brace brackets

while (expression) {
statement1
statement2
statement3
. . .

}

� advisable to always use brace brackets, even when loop body consists of
only one statement

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 137

The while Statement: Example

// print hello 10 times
int n = 10;
while (n > 0) {

std::cout << "hello\n";
--n;

}

// loop forever, printing hello
while (true) {

std::cout << "hello\n";
}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 138

The for Statement
� looping construct
� has following syntax:

for (statement1; expression; statement2)
statement3

� first, execute statement statement1; then, while expression expression is
true, execute statement statement3 followed by statement statement2

� statement1 and statement2 may be omitted; expression treated as true if
omitted

� to include multiple statements in loop body, must group multiple
statements into single statement using brace brackets; advisable to always
use brace brackets, even when loop body consists of only one statement:

for (statement1; expression; statement2) {
statement3,1
statement3,2
. . .

}

� any objects declared in statement1 go out of scope as soon as for loop
ends

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 139

The for Statement (Continued)

� consider for loop:

for (statement1; expression; statement2)
statement3

� above for loop can be equivalently expressed in terms of while loop
as follows (except for behavior of continue statement, yet to be
discussed):

{
statement1;
while (expression) {

statement3
statement2;

}
}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 140

The for Statement: Example

� example with single statement in loop body:
// Print the integers from 0 to 9 inclusive.
for (int i = 0; i < 10; ++i)

std::cout << i << ’\n’;

� example with multiple statements in loop body:
int values[10];
// ...
int sum = 0;
for (int i = 0; i < 10; ++i) {

// Stop if value is negative.
if (values[i] < 0) {

break;
}
sum += values[i];

}

� example with error in assumption about scoping rules:
for (int i = 0; i < 10; ++i) {

std::cout << i << ’\n’;
}
++i; // ERROR: i no longer exists

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 141

Range-Based for Statement

� variant of for loop for iterating over elements in range

� example:

int array[4] = {1, 2, 3, 4};
// Triple the value of each element in the array.
for (auto&& x : array) {

x *= 3;
}

� range-based for loop nice in that it clearly expresses programmer intent
(i.e., iterate over each element of collection)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 142

The do Statement

� looping construct
� has following general syntax:

do
statement

while (expression);

� statement statement executed;
then, expression expression evaluated;
if expression expression is true, entire process repeats from beginning

� to execute multiple statements in body of loop, must group multiple
statements into single statement using brace brackets

do {
statement1
statement2
. . .

} while (expression);

� advisable to always use brace brackets, even when loop body consists of
only one statement

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 143

The do Statement: Example

� example with single statement in loop body:

// delay by looping 10000 times
int n = 0;
do

++n;
while (n < 10000);

� example with multiple statements in loop body:

// print integers from 0 to 9 inclusive
int n = 0;
do {

std::cout << n << ’\n’;
++n;

} while (n < 10);

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 144

The break Statement

� break statement causes enclosing loop or switch to be terminated
immediately

� example:

// Read integers from standard input until an
// error or end-of-file is encountered or a
// negative integer is read.
int x;
while (std::cin >> x) {

if (x < 0) {
break;

}
std::cout << x << ’\n’;

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 145

The continue Statement

� continue statement causes next iteration of enclosing loop to be
started immediately

� example:

int values[10];
...
// Print the nonzero elements of the array.
for (int i = 0; i < 10; ++i) {

if (values[i] == 0) {
// Skip over zero elements.
continue;

}
// Print the (nonzero) element.
std::cout << values[i] << ’\n’;

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 146

The goto Statement

� goto statement transfers control to another statement specified by label
� should generally try to avoid use of goto statement
� well written code rarely has legitimate use for goto statement
� example:

int i = 0;
loop: // label for goto statement
do {

if (i == 3) {
++i;
goto loop;

}
std::cout << i << ’\n’;
++i;

} while (i < 10);

� some restrictions on use of goto (e.g., cannot jump over initialization in
same block as goto)

goto skip; // ERROR
int i = 0;
skip:
++i;

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 147

Section 2.3.5

Functions

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 148

Function Parameters, Arguments, and Return Values

� argument (a.k.a. actual parameter): argument is value supplied to
function by caller; appears in parentheses of function-call operator

::::::
[C++17 3.2]

� parameter (a.k.a. formal parameter): parameter is object/reference
declared as part of function that acquires value on entry to function;
appears in function definition/declaration

::::::
[C++17 3.16]

� although abuse of terminology, parameter and argument often used
interchangeably

� return value: result passed from function back to caller

� example:

int square(int i) { // i is parameter
return i * i; // return value is i * i

}

void compute() {
int i = 3;
int j = square(i); // i is argument

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 149

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/defns.argument
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/defns.parameter

Function Declarations and Definitions

� function declaration introduces identifier that names function and
specifies following properties of function:

2 number of parameters
2 type of each parameter
2 type of return value (if not automatically deduced)

� example:

bool isOdd(int); // declare isOdd
bool isOdd(int x); // declare isOdd (x ignored)

� function definition provides all information included in function
declaration as well as code for body of function

� example:

bool isOdd(int x) { // declare and define isOdd
return x % 2;

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 150

Basic Syntax (Leading Return Type)

� most basic syntax for function declarations and definitions places return
type at start (i.e., leading return-type syntax)

� basic syntax for function declaration:

return_type function_name(parameter_declarations);

� examples of function declarations:

int min(int, int);
double square(double);

� basic syntax for function definition:

return_type function_name(parameter_declarations)
{

statements
}

� examples of function definitions:

int min(int x, int y) {return x < y ? x : y;}
double square(double x) {return x * x;}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 151

Trailing Return-Type Syntax

� with trailing return-type syntax, return type comes after parameter
declarations and auto used as placeholder for where return type would
normally be placed

� trailing return-type syntax for function declaration:
auto function_name(parameter_declarations) -> return_type;

� examples of function declarations:
auto min(int, int) -> int;
auto square(double) -> double;

� trailing return-type syntax for function definition:
auto function_name(parameter_declarations) -> return_type
{

statements
}

� examples of function definitions:
auto min(int x, int y) -> int
{return x < y ? x : y;}

auto square(double x) -> double {return x * x;}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 152

The return Statement

� return statement used to exit function, passing specified return value (if
any) back to caller

� code in function executes until return statement is reached or execution
falls off end of function

� if function return type is not void, return statement takes single
parameter indicating value to be returned

� if function return type is void, function does not return any value and
return statement takes either no parameter or expression of type void

� falling off end of function equivalent to executing return statement with
no value

� example:
double unit_step(double x) {

if (x >= 0.0) {
return 1.0; // exit with return value 1.0

}
return 0.0; // exit with return value 0.0

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 153

Automatic Return-Type Deduction

� with both leading and trailing return-type syntax, can specify return type
as auto

� in this case, return type of function will be automatically deduced
� if function definition has no return statement, return type deduced to be
void

� otherwise, return type deduced to match type in expression of return
statement or, if return statement has no expression, as void

� if multiple return statements, must use same type for all return
expressions

� when return-type deduction used, function definition must be visible in
order to call function (since return type cannot be determined otherwise)

� example:
auto square(double x) {

return x * x;
// x * x has type double
// deduced return type is double

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 154

The main Function

� entry point to program is always function called main

� has return type of int
� can be declared to take either no arguments or two arguments as follows

(although other possibilities may also be supported by implementation):

:::::::
[C++17 6.6.1/2]

int main();
int main(int argc, char* argv[]);

� two-argument variant allows arbitrary number of C-style strings to be
passed to program from environment in which program run

� argc: number of C-style strings provided to program

� argv: array of pointers to C-style strings

� argv[0] is name by which program invoked

� argv[argc] is guaranteed to be 0 (i.e., null pointer)

� argv[1], argv[2], . . ., argv[argc - 1] typically correspond to
command line options

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 155

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.start.main#2

The main Function (Continued)

� suppose that following command line given to shell:

program one two three

� main function would be invoked as follows:

int argc = 4;
char* argv[] = {

"program", "one", "two", "three", 0
};
main(argc, argv);

� return value of main typically passed back to operating system

� can also use function void exit(int) to terminate program, passing
integer return value back to operating system

� return statement in main is optional
::::::::
[C++17 6.6.1/5]

� if control reaches end of main without encountering return statement,
effect is that of executing “return 0;”

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 156

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.start.main#5

Lifetime

� lifetime of object is period of time in which object exists (e.g., block,
function, global)

int x;

void wasteTime()
{

int j = 10000;
while (j > 0) {

--j;
}
for (int i = 0; i < 10000; ++i) {
}

}

� in above example: x global scope and lifetime; j function scope and
lifetime; i block scope and lifetime

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 157

Parameter Passing

� function parameter can be passed by value or by reference

� pass by value: function given copy of object from caller

� pass by reference: function given reference to object from caller

� to pass parameter by reference, use reference type for parameter

� example:

void increment(int& x)
// x is passed by reference

{
++x;

}

double square(double x)
// x is passed by value

{
return x * x;

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 158

Pass-By-Value Versus Pass-By-Reference

� if function needs to change value of object in caller, must pass by
reference

� for example:
void increment(int& x)
// x refers to object in caller

{
++x;

}

� if object being passed to function is expensive to copy (e.g., a very large
data type), always faster to pass by reference

� for example:
double compute(const std::vector<double>& x)
// x refers to object in caller
// object is not copied

{
double result;
// ... (initialize result with value computed from x)
return result;

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 159

Increment Example: Incorrectly Using Pass By Value

� consider code:
1 void increment(int x) {
2 ++x;
3 }
4

5 void func() {
6 int i = 0;
7 increment(i); // i is not modified
8 // i is still 0
9 }

� when func calls increment, parameter passing copies value of i in func
to local variable x in increment:

Value
Copy

func

0 0

i in
increment

x in

� when code in increment executes, local variable x is incremented (not i
in func):

func

0 1

i in
increment

x in

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 160

Increment Example: Correctly Using Pass By Reference
� consider code:

1 void increment(int& x) {
2 ++x;
3 }
4

5 void func() {
6 int i = 0;
7 increment(i); // i is incremented
8 // i is now 1
9 }

� when func calls increment, reference x in increment is bound to object
i in func (i.e., x becomes alias for i):

0

x in increment
and

i in func

� when code in increment executes, x is incremented, which is alias for i
in func:

1

x in increment
and

i in func

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 161

The const Qualifier and Functions

� const qualifier can be used in function declaration to make promises
about what non-local objects will not be modified by function

� for function parameter of pointer type, const-ness of pointed-to object (i.e.,
pointee) extremely important

� if pointee is const, function promises not to change pointee; for example:
int strlen(const char*); // get string length

� for function parameter of reference type, const-ness of referred-to object
(i.e., referee) extremely important

� if referee is const, function promises not to change referee; for example:
std::complex<double>
square(const std::complex<double>&);
// compute square of number

� not making appropriate choice of const-ness for pointed-to or referred-to
object will result in fundamentally incorrect code

� if function will never modify pointee/referee associated with function
parameter, parameter type should be made pointer/reference to const
object

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 162

String Length Example: Not Const Correct

1 // ERROR: parameter type should be const char*
2 int string_length(char* s) {
3 int n = 0;
4 while (*s++ != ’\0’) {++n;}
5 return n;
6 }
7

8 int main() {
9 char buf[] = "Goodbye";

10 const char* const m1 = "Hello";
11 char* const m2 = &buf[0];
12 int n1 = string_length(m1);
13 // must copy argument m1 to parameter s:
14 // char* s = m1;
15 // convert from const char* const to char*
16 // ERROR: must discard const from pointee
17 int n2 = string_length(m2);
18 // must copy argument m2 to parameter s:
19 // char* s = m2;
20 // convert from char* const to char*
21 // OK: constness of pointee unchanged
22 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 163

String Length Example: Const Correct

1 // OK: pointee is const
2 int string_length(const char* s) {
3 int n = 0;
4 while (*s++ != ’\0’) {++n;}
5 return n;
6 }
7

8 int main() {
9 char buf[] = "Goodbye";

10 const char* const m1 = "Hello";
11 char* const m2 = &buf[0];
12 int n1 = string_length(m1);
13 // must copy argument m1 to parameter s:
14 // const char* s = m1;
15 // convert from const char* const to const char*
16 // OK: constness of pointee unchanged
17 int n2 = string_length(m2);
18 // must copy argument m2 to parameter s:
19 // const char* s = m2;
20 // convert from char* const to const char*
21 // OK: can add const to pointee
22 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 164

Square Example: Not Const Correct

1 #include <complex>
2

3 using Complex = std::complex<long double>;
4

5 // ERROR: parameter type should be reference to const
6 Complex square(Complex& z) {
7 return z * z;
8 }
9

10 int main() {
11 const Complex c1(1.0, 2.0);
12 Complex c2(1.0, 2.0);
13 Complex r1 = square(c1);
14 // must bind parameter z to argument c1
15 // Complex& z = c1;
16 // convert from const Complex to Complex&
17 // ERROR: must discard const from referee
18 Complex r2 = square(c2);
19 // must bind parameter z to argument c2
20 // Complex& z = c2;
21 // convert from Complex to Complex&
22 // OK: constness of referee unchanged
23 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 165

Square Example: Const Correct

1 #include <complex>
2

3 using Complex = std::complex<long double>;
4

5 // OK: parameter type is reference to const
6 Complex square(const Complex& z) {
7 return z * z;
8 }
9

10 int main() {
11 const Complex c1(1.0, 2.0);
12 Complex c2(1.0, 2.0);
13 Complex r1 = square(c1);
14 // must bind parameter z to argument c1
15 // const Complex& z = c1;
16 // convert from const Complex to const Complex&
17 // OK: constness of referee not discarded
18 Complex r2 = square(c2);
19 // must bind parameter z to argument c2
20 // const Complex& z = c2;
21 // convert from Complex to const Complex&
22 // OK: can add const to referee
23 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 166

Function Types and the const Qualifier

1 // top-level qualifiers of parameter types are
2 // not part of function type and should be omitted
3 // from function declaration
4

5 // BAD: const not part of function type
6 // (nothing here to which const can refer)
7 bool is_even(const unsigned int);
8

9 // OK
10 bool is_odd(unsigned int);
11

12 // OK: parameter with top-level const qualifier
13 // is ok in function definition
14 bool is_even(const unsigned int x) {
15 // cannot change x in function
16 return x % 2 == 0;
17 }
18

19 // OK
20 bool is_odd(unsigned int x) {
21 // x can be changed if desired
22 return x % 2 != 0;
23 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 167NEXT SLIDE: go to Q.1–Q.6

Inline Functions

� in general programming sense, inline function is function for which
compiler copies code from function definition directly into code of calling
function rather than creating separate set of instructions in memory

� since code copied directly into calling function, no need to transfer control
to separate piece of code and back again to caller, eliminating
performance overhead of function call

� inline typically used for very short functions (where overhead of calling
function is large relative to cost of executing code within function itself)

� can request function be made inline by including inline qualifier along
with function return type (but compiler may ignore request)

� inline function must be defined in each translation unit in which function is
used and all definitions must be identical; this is exception to
one-definition rule

::::::::
[C++17 10.1.6/6]

� example:
inline bool isEven(int x) {

return x % 2 == 0;
}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 168

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.inline#6

Inlining of a Function

� inlining of isEven function transforms code fragment 1 into code
fragment 2

� Code fragment 1:

inline bool isEven(int x) {
return x % 2 == 0;

}

void myFunction() {
int i = 3;
bool result = isEven(i);

}

� Code fragment 2:

void myFunction() {
int i = 3;
bool result = (i % 2 == 0);

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 169

The constexpr Qualifier for Functions
� constexpr qualifier indicates return value of function is constant

expression (i.e., can be evaluated at compile time) provided that all
arguments to function are constant expressions

� constexpr function required to be evaluated at compile time if all
arguments are constant expressions and return value used in constant
expression

� constexpr functions are implicitly inline
::::::::
[C++17 10.1.5/1]

� constexpr function very restricted in what it can do (e.g., no external state,
can only call constexpr functions, variables must be initialized)

� example:
constexpr int factorial(int n)
{return n >= 2 ? (n * factorial(n - 1)) : 1;}

int u[factorial(5)];
// OK: factorial(5) is constant expression

int x = 5;
int v[factorial(x)];
// ERROR: factorial(x) is not constant
// expression

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 170

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.constexpr#1

Constexpr Example

1 constexpr int square(int i) {
2 return i * i;
3 }
4

5 constexpr int func(int n) {
6 int sum = 0;
7 for (int i = 1; i <= n; ++i) {
8 sum += square(i);
9 }

10 return sum;
11 }
12

13 int main() {
14 // at compile time, compute sum of the squares of
15 // 1, 2, 3 (i.e., 14)
16 constexpr int result = func(3);
17 static_assert(result == 14);
18 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Constexpr Function Example: square

1 #include <iostream>
2

3 constexpr double square(double x) {
4 return x * x;
5 }
6

7 int main() {
8 constexpr double a = square(2.0);
9 // must be computed at compile time

10

11 double b = square(0.5);
12 // might be computed at compile time
13

14 double t;
15 if (!(std::cin >> t)) {
16 return 1;
17 }
18 const double c = square(t);
19 // must be computed at run time
20

21 std::cout << a << ’ ’ << b << ’ ’ << c << ’\n’;
22 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 171

SKIP SLIDE

Constexpr Function Example: power_int (Recursive)

1 #include <iostream>
2

3 constexpr double power_int_helper(double x, int n) {
4 return (n > 0) ? x * power_int_helper(x, n - 1) : 1;
5 }
6

7 constexpr double power_int(double x, int n) {
8 return (n < 0) ? power_int_helper(1.0 / x, -n) :
9 power_int_helper(x, n);

10 }
11

12 int main() {
13 constexpr double a = power_int(0.5, 8);
14 // must be computed at compile time
15

16 double b = power_int(0.5, 8);
17 // might be computed at compile time
18

19 double x;
20 if (!(std::cin >> x)) {return 1;}
21 const double c = power_int(x, 2);
22 // must be computed at run time
23

24 std::cout << a << ’ ’ << b << ’ ’ << c << ’\n’;
25 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 172

SKIP SLIDE

Constexpr Function Example: power_int (Iterative)

1 #include <iostream>
2

3 constexpr double power_int(double x, int n) {
4 double result = 1.0;
5 if (n < 0) {
6 x = 1.0 / x;
7 n = -n;
8 }
9 while (--n >= 0) {

10 result *= x;
11 }
12 return result;
13 }
14

15 int main() {
16 constexpr double a = power_int(0.5, 8);
17 // must be computed at compile time
18

19 double b = power_int(0.5, 8);
20 // might be computed at compile time
21

22 double x;
23 if (!(std::cin >> x)) {return 1;}
24 const double c = power_int(x, 2);
25 // must be computed at run time
26

27 std::cout << a << ’ ’ << b << ’ ’ << c << ’\n’;
28 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 173

Compile-Time Versus Run-Time Computation

� constexpr variables and constexpr functions provide mechanism for
moving computation from run time to compile time

� benefits of compile-time computation include:
1 no execution-time cost at run-time
2 can facilitate compiler optimization (e.g., eliminate conditional branch if

condition always true/false)
3 can reduce code size since code used only for compile-time computation

does not need to be included in executable
4 can find errors at compile-time and link-time instead of at run time
5 no concerns about order of initialization (which is not necessarily true for

const objects)
6 no synchronization concerns (e.g., multiple threads trying to initialize object)

� when floating point is involved, compile-time and run-time computations
can yield different results, due to differences in such things as

2 rounding mode in effect
2 processor architecture used for computation (when cross compiling)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 174NEXT SLIDE: constexpr member functions

Function Overloading

� function overloading: multiple functions can have same name as long as
they differ in number/type of their arguments

� example:

void print(int x) {
std::cout << "int has value " << x << ’\n’;

}

void print(double x) {
std::cout << "double has value " << x << ’\n’;

}

void demo() {
int i = 5;
double d = 1.414;
print(i); // calls print(int)
print(d); // calls print(double)
print(42); // calls print(int)
print(3.14); // calls print(double)

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 175

Default Arguments

� can specify default values for arguments to functions

� example:

// Compute log base b of x.
double logarithm(double x, double b) {

return std::log(x) / std::log(b);
}

// Declaration of logarithm with a default argument.
double logarithm(double, double = 10.0);

void demo() {
double x =
logarithm(100.0); // calls logarithm(100.0, 10.0)

double y =
logarithm(4.0, 2.0); // calls logarithm(4.0, 2.0)

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 176

Argument Matching
� call of given function name chooses function that best matches actual

arguments
� consider all functions in scope for which set of conversions exists so

function could possibly be called
� best match is intersection of sets of functions that best match on each

argument
� matches attempted in following order:

::::::::
[C++17 16.3.3.1]

1 exact match with zero or more trivial conversions (e.g., T to T&, T& to T,
adding const and/or volatile); of these, those that do not add const
and/or volatile to pointer/reference better than those that do

2 match with promotions (e.g., int to long, float to double)
3 match with standard conversions (e.g., float to int, double to int)
4 match with user-defined conversions
5 match with ellipsis

� if set of best matches contains exactly one element, this element chosen
as function to call

� if set of best matches is either empty or contains more than one element,
function call is invalid (since either no matches found or multiple
equally-good matches found)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 177

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/over.best.ics

Argument Matching: Example

1 int max(int, int);
2 double max(double, double);
3

4 int main() {
5 int i, j, k;
6 double a, b, c;
7 // ...
8 k = max(i, j);
9 // viable functions: max(int, int), max(double, double)

10 // best match on first argument: max(int, int)
11 // best match on second argument: max(int, int)
12 // best viable function: max(int, int)
13 // OK: calls max(int, int)
14 c = max(a, b);
15 // viable functions: max(int, int), max(double, double)
16 // best match on first argument: max(double, double)
17 // best match on second argument: max(double, double)
18 // best viable function: max(double, double)
19 // OK: calls max(double, double)
20 c = max(i, b);
21 // viable functions: max(int, int), max(double, double)
22 // best match on first argument: max(int, int)
23 // best match on second argument: max(double, double)
24 // no best viable function
25 // ERROR: ambiguous function call
26 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 178

The assert Macro

� assert macro allows testing of boolean condition at run time
� typically used to test sanity of code (e.g., test preconditions,

postconditions, or other invariants) or test validity of assumptions made by
code

� defined in header file cassert
� macro takes single argument: boolean expression
� if assertion fails, program is terminated by calling std::abort
� if NDEBUG preprocessor symbol is defined at time cassert header file

included, all assertions are disabled (i.e., not checked)
� assert(expr) is constant expression if expr is constant expression that

evaluates to true or NDEBUG is defined
::::::::
[C++17 22.3.2/1]

� example:
#include <cassert>

double sqrt(double x) {
assert(x >= 0);
// ...

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 179

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/assertions.assert#1

Section 2.3.6

Input/Output (I/O)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 180

Basic I/O

� relevant declarations and such in header file iostream

� std::istream: stream from which characters/data can be read (i.e.,
input stream)

� std::ostream: stream to which characters/data can be written (i.e.,
output stream)

� std::istream std::cin standard input stream
� std::ostream std::cout standard output stream
� std::ostream std::cerr standard error stream
� in most environments, above three streams refer to user’s terminal by

default
� output operator (inserter) <<
� input operator (extractor) >>
� stream can be used as bool expression; converts to true if stream has

not encountered any errors and false otherwise (e.g., if invalid data
read or I/O error occurred)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 181

Basic I/O Example

1 #include <iostream>
2

3 int main() {
4 std::cout << "Enter an integer: ";
5 int x;
6 std::cin >> x;
7 if (std::cin) {
8 std::cout << "The integer entered was "
9 << x << ".\n";

10 } else {
11 std::cerr <<
12 "End-of-file reached or I/O error.\n";
13 }
14 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 182

I/O Manipulators

� manipulators provide way to control formatting of data values written to
streams as well as parsing of data values read from streams

� declarations related information for manipulators can be found in header
files: ios, iomanip, istream, and ostream

� most manipulators used to control output formatting

� focus here on manipulators as they pertain to output

� manipulator may have immediate effect (e.g., endl), only affect next data
value output (e.g., setw), or affect all subsequent data values output (e.g.,
setprecision)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 183

I/O Manipulators (Continued)

Name Description

setw set field width
setfill set fill character
endl insert newline and flush
flush flush stream
dec use decimal
hex use hexadecimal
oct use octal
showpos show positive sign
noshowpos do not show positive sign
left left align
right right align
fixed write floating-point values in fixed-point notation
scientific write floating-point values in scientific notation
setprecision for default notation, specify maximum number of mean-

ingful digits to display before and after decimal point; for
fixed and scientific notations, specify exactly how many
digits to display after decimal point (padding with trail-
ing zeros if necessary)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 184

I/O Manipulators Example

1 #include <iostream>
2 #include <ios>
3 #include <iomanip>
4
5 int main() {
6 constexpr double pi = 3.1415926535;
7 constexpr double big = 123456789.0;
8 // default notation
9 std::cout << pi << ’ ’ << big << ’\n’;

10 // fixed-point notation
11 std::cout << std::fixed << pi << ’ ’ << big << ’\n’;
12 // scientific notation
13 std::cout << std::scientific << pi << ’ ’ << big << ’\n’;
14 // fixed-point notation with 7 digits after decimal point
15 std::cout << std::fixed << std::setprecision(7) << pi << ’ ’
16 << big << ’\n’;
17 // fixed-point notation with precision and width specified
18 std::cout << std::setw(8) << std::fixed << std::setprecision(2)
19 << pi << ’ ’ << std::setw(20) << big << ’\n’;
20 // fixed-point notation with precision, width, and fill specified
21 std::cout << std::setw(8) << std::setfill(’x’) << std::fixed
22 << std::setprecision(2) << pi << ’ ’ << std::setw(20) << big << ’\n’;
23 }
24
25 /* This program produces the following output:
26 3.14159 1.23457e+08
27 3.141593 123456789.000000
28 3.141593e+00 1.234568e+08
29 3.1415927 123456789.0000000
30 3.14 123456789.00
31 xxxx3.14 xxxxxxxx123456789.00
32 */

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 185

Use of std::istream::eof

� do not use std::istream::eof to determine if earlier input operation
has failed, as this will not always work

� eof simply returns end-of-file (EOF) flag for stream

� EOF flag for stream can be set during successful input operation (when
input operation takes places just before end of file)

� when stream extractors (i.e., operator>>) used, fields normally
delimited by whitespace

� to read all data in whitespace-delimited field, must read one character
beyond field in order to know that end of field has been reached

� if field followed immediately by EOF without any intervening whitespace
characters, reading one character beyond field will cause EOF to be
encountered and EOF bit for stream to be set

� in preceding case, however, EOF being set does not mean that input
operation failed, only that stream data ended immediately after field that
was read

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 186

Example: Incorrect Use of eof
� example of incorrect use of eof:

1 #include <iostream>
2

3 int main() {
4 while (true) {
5 int x;
6 std::cin >> x;
7 // std::cin may not be in a failed state.
8 if (std::cin.eof()) {
9 // Above input operation may have succeeded.

10 std::cout << "EOF encountered\n";
11 break;
12 }
13 std::cout << x << ’\n’;
14 }
15 }

� code incorrectly assumes that eof will only return true if preceding input
operation has failed

� last field in stream will be incorrectly ignored if not followed by at least one
whitespace character; for example, if input stream consists of three
character sequence ’1’, space, ’2’, program will output:

1
EOF encountered

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 187

Example: Correct Use of eof

� to determine if input operation failed, simply check if stream in failed state

� if stream already known to be in failed state and need to determine
specifically if failure due to EOF being encountered, then use eof

� example of correct use of eof:
1 #include <iostream>
2

3 int main() {
4 int x;
5 // Loop while std::cin not in a failed state.
6 while (std::cin >> x) {
7 std::cout << x << ’\n’;
8 }
9 // Now std::cin must be in a failed state.

10 // Use eof to determine the specific reason
11 // for failure.
12 if (std::cin.eof()) {
13 std::cout << "EOF encountered\n";
14 } else {
15 std::cout << "input error (excluding EOF)\n";
16 }
17 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 188

Use of std::endl

� std::endl is not some kind of string constant

� std::endl is stream manipulator and declared as
std::ostream& std::endl(std::ostream&)

� inserting endl to stream always (regardless of operating system)
equivalent to outputting single newline character ’\n’ followed by flushing
stream

� flushing of stream can incur very substantial overhead; so only flush when
strictly necessary

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 189

Use of std::endl (Continued)

� some operating systems terminate lines with single linefeed character
(i.e., ’\n’), while other operating systems use carriage-return and
linefeed pair (i.e., ’\r’ plus ’\n’)

� existence of endl has nothing to do with dealing with handling new lines
in operating-system independent manner

� when stream opened in text mode, translation between newline characters
and whatever character(s) operating system uses to terminate lines is
performed automatically (both for input and output)

� above translation done for all characters input and output and has nothing
to do with endl

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 190

Stream Extraction Failure

� for built-in types, if stream extraction fails, value of target for stream
extraction depends on reason for failure

:::::::::::::::
[C++17 25.4.2.1.2/3 (Stage 3)]

� in following example, what is value of x if stream extraction fails:
int x;
std::cin >> x;
if (!std::cin) {

// what is value of x?
}

� in above example, x may be uninitialized upon stream extraction failure
� if failure due to I/O error or EOF, target of extraction is not modified
� if failure due to badly formatted data, target of extraction is zero
� if failure due to overflow, target of extraction is closest

machine-representable value
� common error: incorrectly assume that target of extraction will always be

initialized if extraction fails
� for class types, also dangerous to assume target of extraction always

written upon failure
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 191

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/facet.num.get.virtuals#3

Stream Extraction Failure (Continued)

1 #include <iostream>
2 #include <sstream>
3 #include <limits>
4 #include <cassert>
5

6 int main() {
7 int x;
8

9 std::stringstream s0("");
10 x = -1;
11 s0 >> x;
12 // No data; x is not set by extraction.
13 assert(s0.fail() && x == -1);
14

15 std::stringstream s1("A");
16 x = -1;
17 s1 >> x;
18 // Badly formatted data; x is zeroed.
19 assert(s1.fail() && x == 0);
20

21 std::stringstream
22 s2("99");
23 x = -1;
24 s2 >> x;
25 // Overflow; x set to closest machine-representable value.
26 assert(s2.fail() && x == std::numeric_limits<int>::max());
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 192

Testing Failure State of Streams

� consider istream or ostream object s

� !s is equivalent to s.fail()

� bool(s) is not equivalent to s.good()
:::::::::

[C++17 30.5.5.4/1]
:::::::::
[C++17 30.5.5.4/7]

� s.good() is not the same as !s.fail()

� do not use good as opposite of fail since this is wrong

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 193

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/iostate.flags#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/iostate.flags#7

Section 2.3.7

Miscellany

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 194

Namespaces
� namespace is region that provides scope for identifiers declared inside
� namespace provides mechanism for reducing likelihood of naming

conflicts
� syntax for namespace has general form:

namespace name {
body

}
� name: identifier that names namespace
� body: body of namespace (i.e., code)
� all identifiers (e.g., names of variables, functions, and types) declared in

body made to belong to scope associated with namespace name
� same identifier can be re-used in different namespaces, since each

namespace is separate scope
� scope-resolution operator (i.e., ::) can be used to explicitly specify

namespace to which particular identifier belongs
� using statement can be used to bring identifiers from other namespaces

into current scope
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 195

Namespaces: Example

1 #include <iostream>
2

3 using std::cout; // bring std::cout into current scope
4

5 namespace mike {
6 int someValue;
7 void initialize() {
8 cout << "mike::initialize called\n";
9 someValue = 0;

10 }
11 }
12

13 namespace fred {
14 double someValue;
15 void initialize() {
16 cout << "fred::initialize called\n";
17 someValue = 1.0;
18 }
19 }
20

21 void func() {
22 mike::initialize(); // call initialize in namespace mike
23 fred::initialize(); // call initialize in namespace fred
24 using mike::initialize;
25 // bring mike::initialize into current scope
26 initialize(); // call mike::initialize
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 196

Nested Namespace Definitions

� name given in namespace declaration can be qualified name in order to
succinctly specify nested namespace

� consider following namespace declaration:

namespace foo {
namespace bar {

namespace impl {
// ...

}
}

}

� preceding declaration can be written more succinctly as:

namespace foo::bar::impl {
// ...

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 197

Namespace Aliases

� identifier can be introduced as alias for namespace
� syntax has following form:

namespace alias_name = ns_name;

� identifier alias_name is alias for namespace ns_name
� namespace aliases particularly useful for creating short names for

deeply-nested namespaces or namespaces with long names
� example:

1 #include <iostream>
2
3 namespace foobar {
4 namespace miscellany {
5 namespace experimental {
6 int get_meaning_of_life() {return 42;}
7 void greet() {std::cout << "hello\n";};
8 }
9 }

10 }
11

12 int main() {
13 namespace n = foobar::miscellany::experimental;
14 n::greet();
15 std::cout << n::get_meaning_of_life() << ’\n’;
16 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 198

Inline Namespaces

� namespace can be made inline, in which case all identifiers in namespace
also visible in enclosing namespace

� inline namespaces useful, for example, for library versioning
� example:

1 #include <cassert>
2

3 // some awesome library
4 namespace awesome {
5 // version 1
6 namespace v1 {
7 int meaning_of_life() {return 41;}
8 }
9 // new and improved version 2

10 // which should be default for library users
11 inline namespace v2 {
12 int meaning_of_life() {return 42;}
13 }
14 }
15

16 int main() {
17 assert(awesome::v1::meaning_of_life() == 41);
18 assert(awesome::v2::meaning_of_life() == 42);
19 assert(awesome::meaning_of_life() == 42);
20 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 199

Unnamed Namespaces

� can create unnamed namespace (i.e., namespace without name)

� unnamed namespace often referred to as anonymous namespace

� each translation unit may contain its own unique unnamed namespace

� entities defined in unnamed namespace only visible in its associated
translation unit (i.e., has internal linkage)

� example:
1 #include <iostream>
2

3 namespace {
4 const int forty_two = 42;
5 int x;
6 }
7

8 int main() {
9 x = forty_two;

10 std::cout << x << ’\n’;
11 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 200

Memory Allocation: new and delete

� to allocate memory, use new statement
� to deallocate memory allocated with new statement, use delete

statement
� similar to malloc and free in C
� two forms of allocation: 1) single object (i.e., nonarray case) and 2) array

of objects
� array version of new/delete distinguished by []
� example:

char* buffer = new char[64]; // allocate
// array of 64 chars

delete [] buffer; // deallocate array
double* x = new double; // allocate single double
delete x; // deallocate single object

� important to match nonarray and array versions of new and delete:
char* buffer = new char[64]; // allocate
delete buffer; // ERROR: nonarray delete to

// delete array
// may compile fine, but crash

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 201

User-Defined Literals

� C++ has several categories of literals (e.g., character, integer,
floating-point, string, boolean, and pointer)

� can define additional literals based on these categories

� identifier used as suffix for user-defined literal must begin with underscore

� suffixes that do not begin with underscore are reserved for use by
standard library

� example:
1 #include <iostream>
2 #include <complex>
3

4 std::complex<long double> operator "" _i(long double d) {
5 return std::complex<long double>(0.0, d);
6 }
7

8 int main() {
9 auto z = 3.14_i;

10 std::cout << z << ’\n’;
11 }
12

13 // Program output:
14 // (0,3.14)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 202

Attributes

� attributes provide unified syntax for implementation-defined language
extensions

� attribute can be used almost anywhere in source code and can be applied
to almost anything (e.g., types, variables, functions, names, code blocks,
and translation units)

� specific types of entities to which attribute can be applied depends on
particular attribute in question

� attribute specifiers start with two consecutive left brackets and continue to
two consecutive right brackets

� example:

[[deprecated]]
void some_very_old_function() {/* ... */};

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 203

Some Standard Attributes

Name Description

noreturn function does not return
deprecated use of entity is deprecated (i.e., allowed but

discouraged)
fallthrough fall through in switch statement is deliberate
maybe_unused entity (e.g., variable) may be unused
nodiscard used to indicate that return value of function

should not be ignored

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 204

Some GCC and Clang Attributes

GCC C++ Compiler
Name Description

gnu::noinline do not inline function
gnu::no_sanitize_address do not instrument function for address

sanitizer
gnu::no_sanitize_undefined do not instrument function for undefined-

behavior sanitizer

Clang C++ Compiler
Name Description

gnu::noinline do not inline function
clang::no_sanitize do not instrument function for sanitizer

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 205

Section 2.3.8

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 206

References I

1 D. Saks. Placing const in declarations.
Embedded Systems Programming, pages 19–20, June 1998.

2 D. Saks. What const really means.
Embedded Systems Programming, pages 11–14, Aug. 1998.

3 D. Saks. const T vs. T const.
Embedded Systems Programming, pages 13–16, Feb. 1999.

4 D. Saks. Top-level cv-qualifiers in function parameters.
Embedded Systems Programming, pages 63–65, Feb. 2000.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 207

Section 2.4

Classes

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 208

Classes

� since fundamental types provided by language are quite limiting, language
provides mechanism for defining new (i.e., user-defined) types

� class is user-defined type
� class specifies:

1 how objects of class are represented
2 operations that can be performed on objects of class

� not all parts of class are directly accessible to all code

� interface is part of class that is directly accessible to its users

� implementation is part of class that its users access only indirectly
through interface

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 209

Section 2.4.1

Members and Access Specifiers

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 210

Class Members

� class consists of zero or more members
� three basic kinds of members (excluding enumerators):

1 data member
2 function member
3 type member

� data members define representation of class object

� function members (also called member functions) provide operations on
such objects

� type members specify any types associated with class

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 211

Access Specifiers

� can control level of access that users of class have to its members
� three levels of access:

1 public
2 protected
3 private

� public: member can be accessed by any code

� private: member can only be accessed by other members of class and
friends of class (to be discussed shortly)

� protected: relates to inheritance (discussion deferred until later)

� public members constitute class interface

� private members constitute class implementation

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 212

Class Example

� class typically has form:

class Widget // The class is named Widget.
{
public:

// public members
// (i.e., the interface to users)
// usually functions and types (but not data)

private:
// private members
// (i.e., the implementation details only
// accessible by members of class)
// usually functions, types, and data

};

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 213

Default Member Access

� class members are private by default

� two code examples below are exactly equivalent:

class Widget {
// ...

};

class Widget {
private:

// ...
};

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 214

The struct Keyword

� struct is class where members public by default

� two code examples below are exactly equivalent:

struct Widget {
// ...

};

class Widget {
public:

// ...
};

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 215

Data Members

� class example:

class Vector_2 { // Two-dimensional vector class.
public:

double x; // The x component of the vector.
double y; // The y component of the vector.

};

void func() {
Vector_2 v;
v.x = 1.0; // Set data member x to 1.0
v.y = 2.0; // Set data member y to 2.0

}

� above class has data members x and y

� members accessed by member-selection operator (i.e., “.”)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 216

Function Members
� class example:

class Vector_2 { // Two-dimensional vector class.
public:

void initialize(double newX, double newY);
double x; // The x component of the vector.
double y; // The y component of the vector.

};

void Vector_2::initialize(double newX, double newY) {
x = newX; // "x" means "this->x"
y = newY; // "y" means "this->y"

}

void func() {
Vector_2 v; // Create Vector_2 called v.
v.initialize(1.0, 2.0); // Initialize v to (1.0, 2.0).

}

� above class has member function initialize
� to refer to member of class outside of class body must use

scope-resolution operator (i.e., ::)
� for example, in case of initialize function, we use

Vector_2::initialize
� member function always has implicit parameter referring to class object

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 217

The this Keyword
� member function always has implicit parameter referring to class object
� implicit parameter accessible inside member function via this keyword
� this is pointer to object for which member function is being invoked
� data members can be accessed through this pointer
� since data members can also be referred to directly by their names,

explicit use of this often not needed and normally avoided
� example:
class Widget {
public:

int updateValue(int newValue) {
int oldValue = value; // "value" means "this->value"
value = newValue; // "value" means "this->value"
return oldValue;

}
private:

int value;
};

void func() {
Widget x;
x.updateValue(5);
// in Widget::updateValue, variable this equals &x

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 218

const Member Functions

� member function has reference to object of class as implicit parameter
(i.e., object pointed to by this)

� need way to indicate if member function can change value of object
� const member function cannot change value of object

1 class Counter {
2 public:
3 int getCount() const
4 {return count;} // count means this->count
5 void setCount(int newCount)
6 {count = newCount;} // count means this->count
7 void incrementCount()
8 {++count;} // count means this->count
9 private:

10 int count; // counter value
11 };
12

13 void func() {
14 Counter ctr;
15 ctr.setCount(0);
16 int count = ctr.getCount();
17 const Counter& ctr2 = ctr;
18 count = ctr2.getCount(); // getCount better be const!
19 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 219

Definition of Function Members in Class Body

� member function whose definition is provided in body of class is
automatically inline

� two code examples below are exactly equivalent:
class MyInteger {
public:

// Set the value of the integer and return the old value.
int setValue(int newValue) {

int oldValue = value;
value = newValue;
return oldValue;

}
private:

int value;
};

class MyInteger {
public:

// Set the value of the integer and return the old value.
int setValue(int newValue);

private:
int value;

};

inline int MyInteger::setValue(int newValue) {
int oldValue = value;
value = newValue;
return oldValue;

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 220

Type Members

� example:

class Point_2 { // Two-dimensional point class.
public:

using Coordinate = double; // Coordinate type.
Coordinate x; // The x coordinate of the point.
Coordinate y; // The y coordinate of the point.

};

void func() {
Point_2 p;
// ...
Point_2::Coordinate x = p.x;
// Point_2::Coordinate same as double

}

� above class has type member Coordinate

� to refer to type member outside of class body, we must use
scope-resolution operator (i.e., ::)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 221

Friends

� normally, only class has access to its private members
� sometimes, necessary to allow another class or function to have access to

private members of class
� friend of class is function/class that is allowed to access private members

of class
� to make function or class friend of another class, use friend statement
� example:
class Gadget; // forward declaration of Gadget

class Widget {
// ...
friend void myFunc();
// function myFunc is friend of Widget

friend class Gadget;
// class Gadget is friend of Widget

// ...
};

� generally, use of friends should be avoided except when absolutely
necessary

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 222

Class Example

1 class Widget {
2 public:
3 int setValue(int newValue) { // member function
4 int oldValue = value; // save old value
5 value = newValue; // change value to new value
6 return oldValue; // return old value
7 }
8 private:
9 friend void wasteTime();

10 void doNothing() {}
11 int value; // data member
12 };
13

14 void wasteTime() {
15 Widget x;
16 x.doNothing(); // OK: friend
17 x.value = 5; // OK: friend
18 }
19

20 void func() {
21 Widget x; // x is object of type Widget
22 x.setValue(5); // call Widget’s setValue member
23 // sets x.value to 5
24 x.value = 5; // ERROR: value is private
25 x.doNothing(); // ERROR: doNothing is private
26 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 223

Section 2.4.2

Constructors and Destructors

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 224

Propagating Values: Copying and Moving

� Suppose that we have two objects of the same type and we want to
propagate the value of one object (i.e., the source) to the other object (i.e.,
the destination).

� This can be accomplished in one of two ways: 1) copying or 2) moving.

� Copying propagates the value of the source object to the destination
object without modifying the source object.

� Moving propagates the value of the source object to the destination
object and is permitted to modify the source object.

� Moving is always at least as efficient as copying, and for many types,
moving is more efficient than copying.

� For some types, copying does not make sense, while moving does (e.g.,
std::ostream, std::istream).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 225

Copying and Moving
� Copy operation. Propagating the value of the source object source to the

destination object destination by copying.

source

a b

destination

Before Copy

source

a a

destination

After Copy

� A copy operation does not modify the value of the source object.

� Move operation. Propagating the value of the source object source to
the destination object destination by moving.

source

a b

destination

Before Move

source

? a

destination

After Move

� A move operation is not guaranteed to preserve the value of the source
object. After the move operation, the source object has a value that is
valid but typically unspecified.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 226NEXT SLIDE: buffer: moving/copying

Constructors

� when new object created usually desirable to immediately initialize it to
some known state

� prevents object from accidentally being used before it is initialized
� constructor is member function that is called automatically when object

created in order to initialize its value
� constructor has same name as class (i.e., constructor for class T is

function T::T)
� constructor has no return type (not even void)
� constructor cannot be called directly (although placement new provides

mechanism for achieving similar effect, in rare cases when needed)
� constructor can be overloaded
� before constructor body is entered, all data members of class type are first

constructed in order of declaration in class definition
� in certain circumstances, constructors may be automatically provided
� sometimes, automatically provided constructors will not have correct

behavior
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 227

Default Constructor

� constructor that can be called with no arguments known as default
constructor

::::::::
[C++17 15.1/4]

� example:
class Vector { // Two-dimensional vector class.
public:

Vector() // Default constructor.
{x_ = 0.0; y_ = 0.0;}

// ...
private:

double x_; // The x component of the vector.
double y_; // The y component of the vector.

};

Vector v; // calls Vector::Vector(); v set to (0,0)
Vector x(); // declares function x that returns Vector

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 228

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.ctor#4

Defaulted Default Constructor

� defaulted default constructor for class T performs similar initialization as
constructor defined as

:::::::
[C++17 15.1/7]

T::T() {}

� if class has no default member initializers, this corresponds to default
constructing each data member of class type and leaving data members
of built-in type uninitialized

� defaulted default constructor automatically provided (i.e., implicitly
declared) as public member if no user-declared constructors

:::::::
[C++17 15.1/4]

� example:
#include <string>

// class has implicitly-defined defaulted
// default constructor
struct Widget {

void foo() {}
std::string s;

};

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 229

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.ctor#7
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.ctor#4

Copy Constructor

� for class T, constructor taking lvalue reference to T as first parameter that
can be called with one argument known as copy constructor

::::::::
[C++17 15.8.1/1]

� used to create object by copying from already-existing object

� copy constructor for class T typically is of form T(const T&)

� example:
class Vector { // Two-dimensional vector class.
public:

Vector() {x_ = 0.0; y_ = 0.0;} // Default constructor
Vector(const Vector& v) // Copy constructor.
{x_ = v.x_; y_ = v.y_;}

// ...
private:

double x_; // The x component of the vector.
double y_; // The y component of the vector.

};

Vector v;
Vector w(v); // calls Vector::Vector(const Vector&)
Vector u = v; // calls Vector::Vector(const Vector&)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 230

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.ctor#1

Defaulted Copy Constructor

� defaulted copy constructor performs memberwise copy of its data
members (and bases), where copy performed using:

:::::::::
[C++17 15.8.1/14]

2 copy constructor for class types
2 bitwise copy for built-in types

� defaulted copy constructor automatically provided (i.e., implicitly defined)
as public member if none of following user declared:

::::::::
[C++17 15.8.1/6]

2 move constructor
2 move assignment operator
2 copy assignment operator (if not relying on deprecated behavior)
2 destructor (if not relying on deprecated behavior)

� example:
// class has defaulted copy constructor
class Widget {
public:

Widget(int i) {i_ = i;}
int get() const {return i_;}

private:
int i_;

};

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 231

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.ctor#14
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.ctor#6

Move Constructor

� for class T, constructor taking rvalue reference to T as first parameter that
can be called with one argument known as move constructor

::::::::
[C++17 15.8.1/2]

� used to create object by moving from already-existing object

� move constructor for class T typically is of form T(T&&)

� example:
class Vector { // Two-dimensional vector class.
public:

Vector() {x_ = 0.0; y_ = 0.0;} // Default constructor
Vector(Vector&& v) {x_ = v.x_; y_ = v.y_;} // Move constructor.
// ...

private:
double x_; // The x component of the vector.
double y_; // The y component of the vector.

};

#include <utility>
Vector v;
Vector w(std::move(v)); // calls Vector::Vector(Vector&&)
Vector x = std::move(w); // calls Vector::Vector(Vector&&)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 232

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.ctor#2

Defaulted Move Constructor

� defaulted move constructor performs memberwise move of its data
members (and bases) using:

::::::::
[C++17 15.8.1/14]

2 move constructor if available and copy constructor otherwise in case of
class type

2 bitwise copy in case of built-in type
� defaulted move constructor automatically provided (i.e., implicitly defined)

as public member if none of following user declared:
::::::::
[C++17 15.8.1/8]

2 copy constructor
2 copy assignment operator
2 move assignment operator
2 destructor

� example:
// class has defaulted move constructor
struct Widget {

Widget();
void foo();

};

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 233

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.ctor#14
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.ctor#8

Constructor Example

1 class Vector { // Two-dimensional vector class.
2 public:
3 // Default constructor.
4 Vector() {x_ = 0.0; y_ = 0.0;}
5 // Copy constructor.
6 Vector(const Vector& v) {x_ = v.x_; y_ = v.y_;}
7 // Move constructor.
8 Vector(Vector&& v) {x_ = v.x_; y_ = v.y_;}
9 // Another constructor.

10 Vector(double x, double y) {x_ = x; y_ = y;}
11 // ...
12 private:
13 double x_; // The x component of the vector.
14 double y_; // The y component of the vector.
15 };

� four constructors provided

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 234

Constructor Example (Continued 1)

1 // include definition of Vector class here
2

3 int main() {
4 Vector u;
5 // calls default constructor
6 Vector v(1.0, 2.0);
7 // calls Vector::Vector(double, double)
8 Vector w(v);
9 // calls copy constructor

10 Vector x = u;
11 // calls copy constructor
12 Vector y = Vector(1.0, 0.0);
13 // guaranteed copy/move elision
14 // calls Vector::Vector(double, double), directly
15 // constructing new object in y
16 // does not call move constructor
17 Vector z{Vector()};
18 // guaranteed copy/move elision
19 // calls default constructor, directly constructing
20 // new object in z
21 // does not call move constructor
22 Vector f();
23 // declares function f that returns Vector
24 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 235

Constructor Example (Continued 2)

1 #include <utility>
2 #include <cstdlib>
3 // include definition of Vector class here
4
5 // named RVO not possible
6 Vector func1() {
7 Vector a(1.0, 0.0);
8 Vector b(0.0, 1.0);
9 if (std::rand() % 2) {return a;}

10 else {return b;}
11 }
12
13 // RVO required
14 Vector func2() {return Vector(1.0, 1.0);}
15

16 int main() {
17 Vector u(1.0, 1.0);
18 Vector v(std::move(u));
19 // move constructor invoked to propagate value from u
20 // to v
21 Vector w = func1();
22 // move constructor invoked to propagate value of object
23 // in return statement of func1 to object w in main
24 // (named RVO not possible)
25 Vector x = func2();
26 // move constructor not invoked, due to guaranteed
27 // copy/move elision (return value of func2 directly
28 // constructed in object x in main)
29 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 236

Constructor Initializer Lists

� in constructor of class, often we want to control which constructor is used
to initialize each data member

� since all data members are constructed before body of constructor is
entered, this cannot be controlled inside body of constructor

� to allow control over which constructors are used to initialize individual
data members, mechanism called initializer lists provided

� initializer list forces specific constructors to be used to initialize individual
data members before body of constructor is entered

� data members always initialized in order of declaration, regardless of
order in initializer list

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 237

Constructor Initializer List Example

1 class ArrayDouble { // array of doubles class
2 public:
3 ArrayDouble(); // create empty array
4 ArrayDouble(int size); // create array of specified size
5 // ...
6 private:
7 // ...
8 };
9

10 class Vector { // n-dimensional real vector class
11 public:
12 Vector(int size) : data_(size) {}
13 // force data_ to be constructed with
14 // ArrayDouble::ArrayDouble(int)
15 // ...
16 private:
17 ArrayDouble data_; // elements of vector
18 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 238

Default Member Initializers

� can provide default values with which to initialize data members

� if initializer for data member not given in constructor initalizer list, default
member initializer used if specified

� example:
1 #include <string>
2

3 struct Widget {
4 Widget() {}
5 // constructor behaves as if it had initializer
6 // list:
7 // answer(42), message("hello")
8 int answer = 42;
9 std::string message = "hello";

10 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 239

Member Initialization Order
� recall that data members initialized in order of declaration in class

definition
� failing to consider this fact can easily leads to bugs in code
� for example, consider following code:

1 #include <cassert>
2

3 class Widget {
4 public:
5 Widget() : y_(42), x_(y_ + 1) {assert(x_ == 43);}
6 int x_;
7 int y_;
8 };
9

10 int main() {
11 Widget w;
12 }

� in Widget’s default constructor, x_ initialized before y_, which results in
use of y_ before its initialization

� therefore, above code has undefined behavior
� in practice, likely x_ will simply have garbage value when body of

constructor executes and assertion will fail
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 240

Destructors

� when object reaches end of lifetime, typically some cleanup required
before object passes out of existence

� destructor is member function that is automatically called when object
reaches end of lifetime in order to perform any necessary cleanup

� often object may have allocated resources associated with it (e.g.,
memory, files, devices, network connections, processes/threads)

� when object destroyed, must ensure that any resources associated with
object are released

� destructors often serve to release resources associated with object

� destructor for class T always has name T::~T
� destructor has no return type (not even void)

� destructor cannot be overloaded
� destructor always takes no parameters

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 241

Defaulted Destructor

� defaulted destructor performs no clean-up action, except to destroy
each of its data members (and bases)

� defaulted destructor automatically provided (i.e., implicitly defined) if no
user-declared destructor

:::::::
[C++17 15.4/4]

� for classes that require additional clean-up, defaulted destructor will not
yield correct behavior

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 242

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.dtor#4

Destructor Example

� example:

class Widget {
public:

Widget(int bufferSize) { // Constructor.
// allocate some memory for buffer
bufferPtr_ = new char[bufferSize];

}
~Widget() { // Destructor.

// free memory previously allocated
delete [] bufferPtr_;

}
// copy constructor, assignment operator, ...

private:
char* bufferPtr_; // pointer to start of buffer

};

� if defaulted destructor were used, memory associated with bufferPtr_
would not be freed

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 243

Section 2.4.3

Operator Overloading

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 244

Operator Overloading

� can specify meaning of operator whose operands are one or more
user-defined types through process known as operator overloading

� operators that can be overloaded:

arithmetic + - * / %
bitwise ^ & | ~ << >>
logical ! && ||
relational < > <= >= == !=
assignment =
compound assignment += -= *= /= %= ^= &= |= <<= >>=
increment/decrement ++ --
subscript []
function call ()
address, indirection & *
others ->* , -> new delete

� not possible to change precedence/associativity or syntax of operators

� meaning of operator specified by specially named function

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 245

Operator Overloading (Continued 1)

� operator @ overloaded via special function named operator@
� with some exceptions, operator can be overloaded as member function or

nonmember function
� if operator overloaded as member function, first operand provided as

*this and remaining operands, if any, provided as function parameters
� if operator overloaded as nonmember function, all operands provided as

function parameters
� postfix unary (increment/decrement) operators take additional dummy

parameter of type int in order to distinguish from prefix case
� expressions involving overloaded operators interpreted as follows:

Interpretation As
Type Expression Member Function Nonmember Function
Binary a@b a.operator@(b) operator@(a, b)
Prefix unary @a a.operator@() operator@(a)
Postfix unary a@ a.operator@(i) operator@(a, i)

i is dummy parameter of type int

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 246

Operator Overloading (Continued 2)

� assignment, function-call, subscript, and member-selection operators
must be overloaded as member functions

::::::::
[C++17 16.5.3/1]

::::::::
[C++17 16.5.4/1]

::::::::
[C++17 16.5.5/1]

::::::::
[C++17 16.5.6/1]

� if member and nonmember functions both defined, argument matching
rules determine which is called

� if first operand of overloaded operator not object of class type, must use
nonmember function

� for most part, operators can be defined quite arbitrarily for user-defined
types

� for example, no requirement that “++x”, “x += 1”, and “x = x + 1” be
equivalent

� of course, probably not advisable to define operators in very
counterintuitive ways, as will inevitably lead to bugs in code

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 247

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/over.ass#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/over.call#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/over.sub#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/over.ref#1

Operator Overloading (Continued 3)

� some examples showing how expressions translated into function calls
are as follows:

Expression Member Function Nonmember Function
y = x y.operator=(x) —
y += x y.operator+=(x) operator+=(y, x)
x + y x.operator+(y) operator+(x, y)
++x x.operator++() operator++(x)
x++ x.operator++(int) operator++(x, int)

x == y x.operator==(y) operator==(x, y)
x < y x.operator<(y) operator<(x, y)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 248

Operator Overloading Example: Vector
1 class Vector { // Two-dimensional vector class
2 public:
3 Vector() : x_(0.0), y_(0.0) {}
4 Vector(double x, double y) : x_(x), y_(y) {}
5 double x() const { return x_; }
6 double y() const { return y_; }
7 private:
8 double x_; // The x component
9 double y_; // The y component

10 };
11

12 // Vector addition
13 Vector operator+(const Vector& u, const Vector& v)
14 {return Vector(u.x() + v.x(), u.y() + v.y());}
15

16 // Dot product
17 double operator*(const Vector& u, const Vector& v)
18 {return u.x() * v.x() + u.y() * v.y();}
19

20 void func() {
21 Vector u(1.0, 2.0);
22 Vector v(u);
23 Vector w;
24 w = u + v; // w.operator=(operator+(u, v))
25 double c = u * v; // calls operator*(u, v)
26 // since c is built-in type, assignment operator
27 // does not require function call
28 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 249

Operator Overloading Example: Array10

1 class Array10 { // Ten-element real array class
2 public:
3 Array10() {
4 for (int i = 0; i < 10; ++i) { // Zero array
5 data_[i] = 0;
6 }
7 }
8 const double& operator[](int index) const {
9 return data_[index];

10 }
11 double& operator[](int index) {
12 return data_[index];
13 }
14 private:
15 double data_[10]; // array data
16 };
17

18 void func() {
19 Array10 v;
20 v[1] = 3.5; // calls Array10::operator[](int)
21 double c = v[1]; // calls Array10::operator[](int)
22 const Array10 u;
23 u[1] = 2.5; // ERROR: u[1] is const
24 double d = u[1]; // calls Array10::operator[](int) const
25 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 250

Operator Overloading: Member vs. Nonmember Functions

� in most cases, operator can be overloaded as either member or
nonmember function

� some considerations that factor into decision of whether to use member or
nonmember function given below

� if access to private members is required, using member function may be
preferable to having nonmember friend function

� if first operand of operator is of non-class type, must use nonmember
function; otherwise, either member or nonmember could be used

� if conversions for first argument to operator are desired, must use
nonmember function; if such conversions not desired, must use member
function

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 251

Overloading as Member vs. Nonmember: Example
1 class Complex { // Complex number type.
2 public:
3 Complex(double x, double y) : x_(x), y_(y) {}
4 double real() const {return x_;}
5 double imag() const {return y_;}
6 // Alternatively, overload operator+ as a member function.
7 // Complex operator+(double b) const
8 // {return Complex(real() + b, imag());}
9 private:

10 double x_; // The real part.
11 double y_; // The imaginary part.
12 };
13
14 // Overload as a nonmember function.
15 // (A member function could instead be used. See above.)
16 Complex operator+(const Complex& a, double b)
17 {return Complex(a.real() + b, a.imag());}
18
19 // This can only be accomplished with a nonmember function.
20 Complex operator+(double b, const Complex& a)
21 {return Complex(b + a.real(), a.imag());}
22
23 void myFunc() {
24 Complex a(1.0, 2.0);
25 Complex b(1.0, -2.0);
26 double r = 2.0;
27 Complex c = a + r; /* could use nonmember or member function
28 operator+(a, r) or a.operator+(r) */
29 Complex d = r + a; /* must use nonmember function
30 operator+(r, a), since r.operator+(a) will not work */
31 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 252

Overloading as Member vs. Nonmember: Example

1 #include <string_view>
2
3 class Widget {
4 public:
5 Widget();
6 Widget(std::string_view); // converting constructor
7 operator std::string_view() const; // conversion operator
8 // ...
9 };

10
11 // overload as nonmember function
12 Widget operator+(Widget, std::string_view);
13
14 int main() {
15 Widget w;
16 std::string_view sv("hello");
17 Widget a = w + sv;
18 /* OK: operator+(Widget, std::string_view) called
19 with no conversions necessary */
20 Widget b = sv + w;
21 /* OK: operator+(Widget, std::string_view) called, where
22 first argument implicitly converted to Widget by
23 Widget’s converting constructor and second argument
24 implicitly converted to std::string_view by
25 Widget’s conversion operator; if operator+ were
26 overloaded as member of Widget class, compiler error
27 would result as overload resolution would fail to
28 yield any viable function to call */
29 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 253

Copy Assignment Operator

� for class T, T::operator= having exactly one parameter that is lvalue
reference to T known as copy assignment operator

::::::::
[C++17 15.8.2/1]

� used to assign, to already-existing object, value of another object by
copying

� copy assignment operator for class T typically is of form
T& operator=(const T&) (returning reference to *this)

� copy assignment operator returns (nonconstant) reference in order to
allow for statements like following to be valid (where x, y, and z are of
type T and T::modify is a non-const member function):

x = y = z; // x.operator=(y.operator=(z))
(x = y) = z; // (x.operator=(y)).operator=(z)
(x = y).modify(); // (x.operator=(y)).modify()

� must be careful to correctly consider case of self-assignment

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 254

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.assign#1

Defaulted Copy Assignment Operator

� defaulted copy assignment operator performs memberwise copy of its
data members (and bases), where copy performed using:

::::::::
[C++17 15.8.2/12]

2 copy assignment operator for class types
2 bitwise copy for built-in types

� defaulted copy assignment operator automatically provided (i.e., implicitly
defined) as public member if none of following user declared:

::::::::
[C++17 15.8.2/2]

2 move constructor
2 move assignment operator
2 copy constructor (if not relying on deprecated behavior)
2 destructor (if not relying on deprecated behavior)

� example:
// class has implicitly-defined defaulted
// copy-assignment operator
class Widget {
public:

Widget(int i) {i_ = i;}
int get() const {return i_;}

private:
int i_;

};

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 255

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.assign#12
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.assign#2

Self-Assignment Example

� in practice, self assignment typically occurs when references (or pointers)
are involved

� example:

void doSomething(SomeType& x, SomeType& y) {
x = y; // self assignment if &x == &y
// ...

}

void myFunc() {
SomeType z;
// ...
doSomething(z, z); // results in self assignment
// ...

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 256

Move Assignment Operator

� for class T, T::operator= having exactly one parameter that is rvalue
reference to T known as move assignment operator

::::::::
[C++17 15.8.2/3]

� used to assign, to already-existing object, value of another object by
moving

� move assignment operator for class T typically is of form
T& operator=(T&&) (returning reference to *this)

� move assignment operator returns (nonconstant) reference for same
reason as in case of copy assignment operator

� in case of move, self-assignment should probably not occur, but might be
prudent to test for this with assertion in order to protect against “insane”
code

� standard library effectively forbids self-assignment for move
:::::::::::
[C++17 20.5.4.9/(1.3)]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 257

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.assign#3
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/res.on.arguments#1.3

Defaulted Move Assignment Operator

� defaulted move assignment operator performs memberwise move of its
data members (and bases) where move performed using:

::::::::
[C++17 15.8.2/12]

2 if class type: move assignment operator if available and copy assignment
operator otherwise

2 if built-in type: bitwise copy
� defaulted move assignment operator automatically provided (i.e., implicitly

defined) as public member if none of following user declared:
::::::::

[C++17 15.8.2/4]

2 copy constructor
2 move constructor
2 copy assignment operator
2 destructor

� example:
#include <vector>

// class has implicitly-defined defaulted
// move-assignment operator
struct Widget {

Widget();
std::vector<int> v;

};

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 258

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.assign#12
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.assign#4

Copy/Move Assignment Operator Example: Complex
1 class Complex {
2 public:
3 Complex(double x = 0.0, double y = 0.0) :
4 x_(x), y_(y) {}
5 Complex(const Complex& a) : x_(a.x_), y_(a.y_) {}
6 Complex(Complex&& a) : x_(a.x_), y_(a.y_) {}
7 Complex& operator=(const Complex& a) { // Copy assign
8 if (this != &a) {
9 x_ = a.x_; y_ = a.y_;

10 }
11 return *this;
12 }
13 Complex& operator=(Complex&& a) { // Move assign
14 x_ = a.x_; y_ = a.y_;
15 return *this;
16 }
17 private:
18 double x_; // The real part.
19 double y_; // The imaginary part.
20 };
21

22 int main() {
23 Complex z(1.0, 2.0);
24 Complex v(1.5, 2.5);
25 v = z; // v.operator=(z)
26 v = Complex(0.0, 1.0); // v.operator=(Complex(0.0, 1.0))
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 259

Assignment Operator Example: Buffer
1 class Buffer { // Character buffer class.
2 public:
3 Buffer(int bufferSize) { // Constructor.
4 bufSize_ = bufferSize;
5 bufPtr_ = new char[bufferSize];
6 }
7 Buffer(const Buffer& buffer) { // Copy constructor.
8 bufSize_ = buffer.bufSize_;
9 bufPtr_ = new char[bufSize_];

10 for (int i = 0; i < bufSize_; ++i)
11 bufPtr_[i] = buffer.bufPtr_[i];
12 }
13 ~Buffer() { // Destructor.
14 delete [] bufPtr_;
15 }
16 Buffer& operator=(const Buffer& buffer) { // Copy assignment operator.
17 if (this != &buffer) {
18 delete [] bufPtr_;
19 bufSize_ = buffer.bufSize_;
20 bufPtr_ = new char[bufSize_];
21 for (int i = 0; i < bufSize_; ++i)
22 bufPtr_[i] = buffer.bufPtr_[i];
23 }
24 return *this;
25 }
26 // ...
27 private:
28 int bufSize_; // buffer size
29 char* bufPtr_; // pointer to start of buffer
30 };

� without explicitly-provided assignment operator (i.e., with defaulted
assignment operator), memory leaks and memory corruption would result

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 260

Section 2.4.4

Miscellany

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 261

std::initializer_list Class Template

� class template std::initializer_list provides lightweight list type

� in order to use initializer_list, need to include header file
initializer_list

� declaration:
template <class T> initializer_list;

� T is type of elements in list

� initializer_list is very lightweight

� can query number of elements in list and obtain iterators to access these
elements

� initializer_list often useful as parameter type for constructor

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 262

std::initializer_list Example

1 #include <iostream>
2 #include <vector>
3

4 class Sequence {
5 public:
6 Sequence(std::initializer_list<int> list) {
7 for (std::initializer_list<int>::const_iterator i =
8 list.begin(); i != list.end(); ++i)
9 elements_.push_back(*i);

10 }
11 void print() const {
12 for (std::vector<int>::const_iterator i =
13 elements_.begin(); i != elements_.end(); ++i)
14 std::cout << *i << ’\n’;
15 }
16 private:
17 std::vector<int> elements_;
18 };
19

20 int main() {
21 Sequence seq = {1, 2, 3, 4, 5, 6};
22 seq.print();
23 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 263

Converting Constructors

� constructor that is not declared with explicit specifier is called
converting constructor

� converting constructor can be used for implicit conversions

� example:
1 #include <string>
2 using namespace std::literals;
3
4 class Widget {
5 public:
6 Widget(const std::string&); // converting constructor
7 Widget(const char*, int); // converting constructor
8 // ...
9 };

10
11 int main() {
12 Widget v = "hello"s;
13 // invokes Widget::Widget(const std::string&)
14 Widget w = {"goodbye", 4};
15 // invokes Widget::Widget(const char*, int)
16 v = "bonjour"s; // invokes Widget::Widget(const std::string&)
17 w = {"au revoir", 2};
18 // invokes Widget::Widget(const char*, int)
19 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 264

Explicit Constructors

� converting constructor can be used in implicit conversions (e.g., when
attempting to obtain matching type for function parameter in function call)

� often, desirable to prevent constructor from being used for implicit
conversions

� to accommodate this, constructor can be marked as explicit

� explicit constructor is constructor that cannot be used for performing
implicit conversions orcopy initialization

� prefixing constructor declaration with explicit keyword makes
constructor explicit

� example:

class Widget {
public:

explicit Widget(int); // explicit constructor
// ...

};

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 265

Example Without Explicit Constructor

1 #include <cstdlib>
2

3 // one-dimensional integer array class
4 class IntArray {
5 public:
6 // create array of int with size elements
7 IntArray(std::size_t size) { /* ... */ };
8 // ...
9 };

10

11 void processArray(const IntArray& x) {
12 // ...
13 }
14

15 int main() {
16 // following lines of code almost certain to be
17 // incorrect, but valid due to implicit type
18 // conversion provided by
19 // IntArray::IntArray(std::size_t)
20 IntArray a = 42;
21 // probably incorrect
22 // implicit conversion effectively yields code:
23 // IntArray a = IntArray(42);
24 processArray(42);
25 // probably incorrect
26 // implicit conversion effectively yields code:
27 // processArray(IntArray(42));
28 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 266

Example With Explicit Constructor

1 #include <cstdlib>
2

3 // one-dimensional integer array class
4 class IntArray {
5 public:
6 // create array of int with size elements
7 explicit IntArray(std::size_t size) { /* ... */ };
8 // ...
9 };

10

11 void processArray(const IntArray& x) {
12 // ...
13 }
14

15 int main() {
16 IntArray a = 42; // ERROR: cannot convert
17 processArray(42); // ERROR: cannot convert
18 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 267

Conversion Operators

� conversion operator enables implicit or explicit conversion from class type
to another type

� conversion operator can be either explicit or non-explicit

� if conversion operator is explicit, can only be used for explicit conversions;
otherwise, can be used for both implicit and explicit conversions

� conversion operator to convert from class T to another type must be
provided as (nonstatic) member function of T

� member function takes no parameters (except implicit this parameter)
and has no explicit return type

� explicit keyword can be placed before name in declaration to make
conversion operator explicit

� requiring conversion operator to be member function likely motivated by
desire to allow code for performing conversions to be more easily
identified (i.e., only need to examine conversion operators and converting
constructors for at most two classes)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 268

Conversion Operator Example

1 #include <iostream>
2 #include <string>
3 #include <cassert>
4 using namespace std::literals;
5
6 class Widget {
7 public:
8 explicit operator int() const {return 42;}
9 operator std::string() const {return "Widget"s;}

10 // ...
11 };
12
13 int main() {
14 Widget w;
15 int i(w);
16 // direct initialization can use explicit conversion operator;
17 // uses conversion operator to convert Widget to int
18 assert(i == 42);
19 // int j = w;
20 // ERROR: copy initialization requires implicit conversion and
21 // conversion operator that converts Widget to int is explicit
22 int j = static_cast<int>(w);
23 // uses (explicit) conversion operator to convert Widget to int
24 std::string s(w);
25 // uses conversion operator to convert Widget to std::string
26 assert(s == "Widget"s);
27 std::string t = w;
28 // uses conversion operator to convert Widget to std::string
29 assert(t == "Widget"s);
30 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 269

Explicitly Deleted/Defaulted Special Member Functions

� can explicitly default or delete special member functions (i.e., default
constructor, copy constructor, move constructor, destructor, copy
assignment operator, and move assignment operator)

� can also delete non-special member functions

� example:

class Thing {
public:

Thing() = default;

// Prevent copying.
Thing(const Thing&) = delete;
Thing& operator=(const Thing&) = delete;

Thing(Thing&&) = default;
Thing& operator=(Thing&&) = default;
~Thing() = default;
// ...

};
// Thing is movable but not copyable.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 270

Delegating Constructors
� sometimes, one constructor of class needs to performs all work of another

constructor followed by some additional work
� rather than duplicate common code in both constructors, one constructor

can use its initializer list to invoke other constructor (which must be only
one in initializer list)

� constructor that invokes another constructor via initializer list called
delegating constructor

� example:
1 class Widget {
2 public:
3 Widget(char c, int i) : c_(c), i_(i) {}
4 Widget(int i) : Widget(’a’, i) {}
5 // delegating constructor
6 // ...
7 private:
8 char c_;
9 int i_;

10 };
11

12 int main() {
13 Widget w(’A’, 42);
14 Widget v(42);
15 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 271

Static Data Members

� sometimes want to have object that is shared by all objects of class

� data member that is shared by all objects of class is called static data
member

� to make data member static, declare using static qualifier

� static data member must (in most cases) be defined outside body of class

� example:
1 class Widget {
2 public:
3 Widget() {++count_;}
4 Widget(const Widget&) {++count_;}
5 Widget(Widget&&) {++count_;}
6 ~Widget() {--count_;}
7 // ...
8 private:
9 static int count_;

10 // total number of Widget objects in existence
11 };
12

13 // Define (and initialize) count member.
14 int Widget::count_ = 0;

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 272

Static Member Functions

� sometimes want to have member function that does not operate on
objects of class

� member function of class that does not operate on object of class (i.e.,
has no this variable) called static member function

� to make member function static, declare using static qualifier

� example:
1 class Widget {
2 public:
3 // ...
4 // convert degrees to radians
5 static double degToRad(double deg)
6 {return (M_PI / 180.0) * deg;}
7 private:
8 // ...
9 };

10

11 void func() {
12 Widget x; double rad;
13 rad = Widget::degToRad(45.0);
14 rad = x.degToRad(45.0); // x is ignored
15 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 273

constexpr Member Functions

� like non-member functions, member functions can also be qualified as
constexpr to indicate function can be computed at compile time
provided that all arguments to function are constant expressions

� some additional restrictions on constexpr member functions relative to
nonmember case (e.g., cannot be virtual)

� constexpr member function implicitly inline
� constexpr member function not implicitly const (as of C++14)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 274

constexpr Constructors

� constructors can also be qualified as constexpr to indicate object
construction can be performed at compile time provided that all
arguments to constructor are constant expressions

� many restrictions on what types can have constexpr constructors and
what such constructors can do (e.g., no virtual base classes)

� constexpr constructor implicitly inline

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 275

Example: Constexpr Constructors and Member Functions

1 #include <iostream>
2

3 // Two-dimensional vector class.
4 class Vector {
5 public:
6 constexpr Vector() : x_(0), y_(0) {}
7 constexpr Vector(double x, double y) : x_(x), y_(y) {}
8 constexpr Vector(const Vector& v) : x_(v.x_), y_(v.y_) {}
9 constexpr Vector& operator=(const Vector& v)

10 {x_ = v.x_; y_ = v.y_; return *this;}
11 constexpr double x() const {return x_;}
12 constexpr double y() const {return y_;}
13 constexpr double squared_norm() const
14 {return x_ * x_ + y_ * y_;}
15 // ...
16 private:
17 double x_; // The x component of the vector.
18 double y_; // The y component of the vector.
19 };
20

21 int main() {
22 constexpr Vector v(3.0, 4.0);
23 static_assert(v.x() == 3.0 && v.y() == 4.0);
24 constexpr double d = v.squared_norm();
25 std::cout << d << ’\n’;
26 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 276

Why Constexpr Member Functions Are Not Implicitly Const
1 class Widget {
2 public:
3 constexpr Widget() : i_(42) {}
4 constexpr const int& get() const {return i_;}
5 constexpr int& get() /* what if implicitly const? */
6 {return i_;}
7 // ...
8 private:
9 int i_;

10 };
11
12 constexpr Widget w;
13 static_assert(w.get() == 42);
14 // invokes const member function
15 constexpr int i = ++Widget().get();
16 // invokes non-const member function
17 static_assert(i == 43);

� in above code example, we want to have const and non-const overloads of get
member function that can each be used in constant expressions

� so both overloads of get need to be constexpr

� if constexpr member functions were implicitly const, it would be impossible to
overload on const in manner we wish to do here, since second overload of get
would automatically become const member function (resulting in multiple
conflicting definitions of const member function get)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 277NEXT SLIDE: literal types

The mutable Qualifier

� type for nonstatic data member can be qualified as mutable meaning
that member does not affect externally visible state of class object

� mutable data member can be modified in const member function

� mutable qualifier often used for mutexes, condition variables, cached
values, statistical information for performance analysis or debugging

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 278

SKIP SLIDE

Example: Mutable Qualifier for Statistical Information
1 #include <iostream>
2 #include <string>
3

4 class Employee {
5 public:
6 Employee(int id, std::string& name, double salary) :
7 id_(id), name_(name), salary_(salary), accessCount_(0) {}
8 int getId() const {
9 ++accessCount_; return id_;

10 }
11 std::string getName() const {
12 ++accessCount_; return name_;
13 }
14 double getSalary() const {
15 ++accessCount_; return salary_;
16 }
17 // ...
18 // for debugging
19 void outputDebugInfo(std::ostream& out) const {
20 out << accessCount_ << ’\n’;
21 }
22 private:
23 int id_; // employee ID
24 std::string name_; // employee name
25 double salary_; // employee salary
26 mutable unsigned long accessCount_; // for debugging
27 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 279

SKIP SLIDE

Pointers to Members
� pointer to member provides means to reference particular nonstatic

member of class, independent of any class object instance
� pointer to member can only be formed for nonstatic (data or function)

member of class
� can obtain pointer to member that references nonstatic member m in class

T by applying address-of operator to T::m (i.e., using expression &T::m)
� special value nullptr can be given to pointer to member to indicate

that pointer to member does not refer to any member
� pointer to member of class T written as T::*
� type of pointer to member embodies type of class and type of member

within class
� example:

2 int Widget::* is pointer to member of Widget class having type int
2 const int Widget::* is pointer to member of Widget class having

type const int
2 float (Gadget::*)(int) const is pointer to const member function

of Gadget class that takes single int parameter and has return type of
float

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 280

Pointers to Members (Continued)

� since pointer to member is not associated with any class object instance,
dereferencing pointer to member requires object (or pointer to object) to
be specified

� given object x of type T, can access member through pointer to member
ptm by applying member-selection operator .* to x using expression
x.*ptm

� given pointer p to object of type T, can access member through pointer to
member ptm by applying member-selection operator ->* to p using
expression p->*ptm

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 281

Pointers to Members for Data Members
� conceptually, pointer to member for (nonstatic) data member can be

thought of as offset (in memory) from start of class object to start of data
member (i.e., location of data member relative to start of class object)

� since pointer to member does not identify particular object instance (i.e.,
value for this), pointer to member alone not sufficient to specify
particular instance of member in object

� consequently, when dereferencing pointer to member, must always
specify object (or pointer to object)

� example:
1 struct Widget {
2 int i;
3 inline static int j;
4 };
5
6 int main(){
7 Widget w, v;
8 int Widget::* ptm = &Widget::i; // pointer to member
9 int* jp = &Widget::j;

10 // address of static member is ordinary pointer
11 w.*ptm = 42; // w.*ptm references w.i
12 v.*ptm = 42; // v.*ptm references v.i
13 *jp = 42; // references Widget::j
14 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 282::::
diagram

Pointers to Members and Const Example

1 #include <type_traits>
2
3 template <class T1, class T2, class T3>
4 struct triplet {
5 triplet(T1 first_, T2 second_, T3 third_) :
6 first(first_), second(second_), third(third_) {}
7 T1 first;
8 T2 second;
9 T3 third;

10 };
11

12 int main() {
13 using widget = triplet<const int, int, double>;
14 widget w(1, 1, 1.0);
15 static_assert(std::is_same_v<decltype(&widget::first),
16 const int widget::*>);
17 static_assert(std::is_same_v<decltype(&widget::second),
18 int widget::*>);
19 static_assert(std::is_same_v<decltype(&widget::third),
20 double widget::*>);
21 const int widget::* cp = nullptr;
22 int widget::* p = nullptr;
23 cp = &widget::first; // OK: constness of pointee same
24 cp = &widget::second; // OK: adds const to pointee
25 // p = &widget::first; // ERROR: discards const from pointee
26 p = &widget::second; // OK: constness of pointee same
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 283

SKIP SLIDE

Pointers to Members for Function Members
� pointer to member for (nonstatic) member function simply identifies

particular member function of class (independent of any object instance)

� since pointer to member does not identify particular object instance (i.e.,
value for this), pointer to member alone not sufficient to invoke member
function

� consequently, when dereferencing pointer to member, must always
specify object (or pointer to object) so that this parameter can be set
appropriately

� example:
1 struct Widget {
2 void func() {/* ... */}
3 static void set_verbosity(int level) {/* ... */}
4 };
5
6 int main() {
7 Widget w, v;
8 void (Widget::* ptm)() = &Widget::func; // pointer to member
9 void (*pf)(int) = &Widget::set_verbosity;

10 // address of static member is ordinary pointer
11 (w.*ptm)(); // calls w.func()
12 (v.*ptm)(); // calls v.func()
13 (*pf)(42); // calls Widget::set_verbosity()
14 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 284

SKIP SLIDE

Pointers to Members: Example
1 #include <string>
2 #include <cassert>
3
4 struct Widget {
5 std::string s;
6 int i = 0;
7 void clear() {i = 0; s = "";}
8 };
9

10 int main() {
11 Widget w;
12 Widget* wp = &w;
13
14 // pointer to member of Widget of type int
15 int Widget::* iptm = nullptr;
16 // w.*iptm = 42; // ERROR: null pointer to member
17 iptm = &Widget::i; // iptm references i member of Widget
18 w.*iptm = 42; // w.*iptm references w.i
19 assert(w.i == 42);
20
21 // pointer to member of Widget of type std::string
22 std::string Widget::* sptm = &Widget::s;
23 wp->*sptm = "hello"; // wp->*sptm references w.s
24 assert(w.s == "hello");
25
26 // pointer to member of Widget that is function that takes
27 // no parameters and returns void
28 void (Widget::* fptm)() = &Widget::clear;
29 (w.*fptm)(); // w.*fptm references w.clear
30 assert(w.i == 0 && w.s == "");
31 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 285

SKIP SLIDE

Pointers to Members: Example
1 #include <iostream>
2

3 class Widget {
4 public:
5 Widget(bool flag) {
6 op_ = flag ? &Widget::op_2 : &Widget::op_1;
7 }
8 void modify() {
9 // ...

10 (this->*op_)(); // invoke member function
11 // ...
12 }
13 // ...
14 private:
15 void op_1() {std::cout << "op_1 called\n";}
16 void op_2() {std::cout << "op_2 called\n";}
17 void (Widget::*op_)();
18 // pointer to member function of Widget class that
19 // takes no parameters and returns no value
20 // ...
21 };
22

23 int main() {
24 Widget u(false);
25 Widget v(true);
26 u.modify(); // modify invokes op_1
27 v.modify(); // modify invokes op_2
28 }
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 286

SKIP SLIDE

Pointers to Members Example: Accumulate

1 #include <iostream>
2 #include <iterator>
3

4 struct Point {double x; double y;};
5 struct Thing {int i; float f;};
6

7 template <auto P, class Iter, class T>
8 T accumulate(Iter first, Iter last, T init_sum) {
9 for (auto i = first; i != last; ++i)

10 {init_sum += i->*P;}
11 return init_sum;
12 }
13

14 int main() {
15 constexpr Point p[]{{1.0, 21.0}, {0.5, 21.0}, {0.5, 0.0}};
16 constexpr Thing t[]{{1, 0.1f}, {2, 0.1f}, {3, 0.1f}};
17 std::cout
18 << accumulate<&Point::x>(std::begin(p), std::end(p), 0.0) << ’ ’
19 << accumulate<&Point::y>(std::begin(p), std::end(p), 0.0) << ’\n’;
20 std::cout
21 << accumulate<&Thing::i>(std::begin(t), std::end(t), 0) << ’ ’
22 << accumulate<&Thing::f>(std::begin(t), std::end(t), 0.0f) << ’\n’;
23 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475NEXT SLIDE: go to intrusive doubly-linked list

Pointers to Members Example: Statistics Calculation

1 #include <iostream>
2
3 template <auto Count, auto Sum, class T, class Value>
4 void update_statistics(T& stats, Value value) {
5 ++(stats.*Count); // adjust count of values
6 stats.*Sum += value; // adjust sum of values
7 }
8
9 struct Widget {

10 int count = 0; // count
11 double sum = 0; // sum
12 short int si;
13 };
14
15 struct Gadget {
16 int n = 0; // count
17 double d;
18 double sigma = 0; // sum
19 };
20
21 int main() {
22 Widget w;
23 Gadget g;
24 for (auto&& x : {0.5, 1.5, 2.5}) {
25 update_statistics<&Widget::count, &Widget::sum>(w, x);
26 update_statistics<&Gadget::n, &Gadget::sigma>(g, x);
27 }
28 std::cout << w.sum / static_cast<double>(w.count) << ’\n’;
29 std::cout << g.sigma / static_cast<double>(g.n) << ’\n’;
30 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 287

Stream Inserters

� stream inserters write data to output stream

� overload operator<<

� have general form
std::ostream& operator<<(std::ostream&, T) where type T is
typically const lvalue reference type

� example:

std::ostream& operator<<(std::ostream& outStream,
const Complex& a)

{
outStream << a.real() << ’ ’ << a.imag();
return outStream;

}

� inserter and extractor should use compatible formats (i.e., what is written
by inserter should be readable by extractor)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 288

Stream Extractors

� stream extractors read data from input stream

� overload operator>>

� have general form
std::istream& operator>>(std::istream&, T) where type T is
typically non-const lvalue reference type

� example:

std::istream& operator>>(std::istream& inStream,
Complex& a)

{
double real = 0.0;
double imag = 0.0;
inStream >> real >> imag;
a = Complex(real, imag);
return inStream;

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 289

Structured Bindings

� structured bindings allow, with single statement, multiple variables to be
declared and initialized with values from pair, tuple, array, or struct

� declaration uses auto keyword

� variables enclosed in brackets

� multiple variables separated by commas

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 290

Structured Bindings Example

1 #include <tuple>
2 #include <array>
3 #include <cassert>
4

5 int main() {
6 int a[3] = {1, 2, 3};
7 auto [a0, a1, a2] = a;
8 assert(a0 == a[0] && a1 == a[1] && a2 == a[2]);
9

10 int b[3] = {0, 2, 3};
11 auto& [b0, b1, b2] = b;
12 ++b0;
13 assert(b[0] == 1);
14

15 std::array<int, 3> c = {1, 2, 3};
16 auto [c0, c1, c2] = c;
17 assert(c0 == c[0] && c1 == c[1] && c2 == c[2]);
18

19 auto t = std::tuple(true, 42, ’A’);
20 auto [tb, ti, tc] = t;
21 assert(tb == true && ti == 42 && tc == ’A’);
22 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 291

Structured Bindings Example

1 #include <map>
2 #include <string>
3 #include <iostream>
4

5 int main() {
6 std::map<std::string, int> m = {
7 {"apple", 1},
8 {"banana", 2},
9 {"orange", 3},

10 };
11 for (auto&& [key, value] : m) {
12 std::cout << key << ’ ’ << value << ’\n’;
13 }
14 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 292

Literal Types

� each of following types said to be literal type:
:::::::
[C++17 6.9/10]

2 void
2 scalar type (e.g., integral, floating point, pointer, enumeration, pointer to

member)
2 reference type
2 class type that has all of following properties:

2 has trivial destructor
2 is either: aggregate type; or type with at least one constexpr constructor that

is not copy or move constructor; or closure type
2 all nonstatic data members and base classes are of nonvolatile literal types

2 array of literal type
� examples of literal types:

2 int, double[16], and std::complex<double>
� examples of types that are not literal types:

2 std::vector<int> and std::string

� literal types important in context of constexpr variables, functions, and
constructors

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 293

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.types#10

Example: Literal Types

1 // literal type
2 class Widget {
3 public:
4 constexpr Widget(int i = 0) : i_(i) {}
5 ~Widget() = default; // trivial destructor
6 private:
7 int i_;
8 };
9

10 // not literal type
11 class Gadget {
12 public:
13 constexpr Gadget() {}
14 ~Gadget() {} // non-trivial destructor
15 };
16

17 // not literal type
18 // no constexpr constructor, excluding copy/move constructor
19 class Foo {
20 public:
21 Foo() {};
22 ~Foo() = default; // trivial destructor
23 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 294

Constexpr Variable Requirements

� constexpr variable must satisfy following requirements:
::::::::
[C++17 10.1.5/9]

2 its type must be literal type
2 it must be immediately initialized
2 full expression of its initialization must be constant expression (including all

implicit conversions and constructor calls)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 295

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.constexpr#9

Example: Constexpr Variable Requirement Violations

1 #include <string>
2

3 constexpr std::string s("hello");
4 // ERROR: not literal type
5

6 constexpr int i;
7 // ERROR: not initialized
8

9 float func();
10 constexpr float f = 2.0 * func();
11 // ERROR: initializer expression not constant expression

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 296

Constexpr Function Requirements

� constexpr function must satisfy following requirements:
::::::::
[C++17 10.1.5/3]

::::::::
[C++17 10.1.5/5]

2 must not be virtual
2 its return type must be literal type
2 each of its parameters must be of literal type
2 there exists at least one set of argument values such that invocation of

function could be evaluated expression of core constant expression
2 function body must be either deleted or defaulted or contain any statements

except:
2 asm declaration
2 goto statement
2 statement with label other than case and default
2 try block
2 definition of variable of non-literal type
2 definition of variable of static or thread storage duration
2 definition of variable for which no initialization is performed

2 if function is defaulted copy/move assignment, class of which it is member
must not have mutable member

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 297

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.constexpr#3
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.constexpr#5

Example: Constexpr Function Requirement Violations

1 #include <vector>
2 #include <string>
3 #include <iostream>
4

5 // ERROR: return type not literal type
6 constexpr std::vector<int> get_value()
7 {return std::vector<int>{1, 2, 3};}
8

9 // ERROR: parameter type not literal type
10 constexpr void foo(std::string s) { /* ... */ }
11

12 // ERROR: no argument exists such that function can be used
13 // in constant expression
14 constexpr void output(int i) {std::cout << i << ’\n’;}
15

16 constexpr void func() {
17 int i; // ERROR: variable not initialized
18 std::vector<int> v{1, 2, 3};
19 // ERROR: definition of variable of non-literal type
20 // ...
21 }
22

23 constexpr int count() {
24 static unsigned int i = 0;
25 // ERROR: definition of variable with static storage
26 // duration
27 return i++;
28 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 298

Constexpr Constructor Requirements

� constexpr constructor must satisfy following requirements:
::::::::
[C++17 10.1.5/4]

::::::::
[C++17 10.1.5/5]

2 each of its parameters must be of literal type
2 class must not have any virtual base classes
2 constructor must not have function try block
2 constructor body must be either deleted or defaulted or satisfy following

constraints:
2 compound statement of constructor body must satisfy constraints for body of

constexpr function
2 every base class sub-object and every non-static data member must be

initialized
2 every constructor selected to initialize non-static members and base class

must be constexpr constructor
2 if constructor is defaulted copy/move constructor, class of which it is

member must not have mutable member

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 299

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.constexpr#4
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.constexpr#5

Example: Constexpr Constructor Requirement Violations

1 #include <string>
2
3 class Widget {
4 public:
5 constexpr Widget() {}
6 // ERROR: i_ not initialized
7 constexpr Widget(std::string s);
8 // ERROR: parameter type not literal type
9 // ...

10 private:
11 int i_;
12 };
13
14 // OK
15 class Base {
16 public:
17 Base(int i) : i_(i) {}
18 private:
19 int i_;
20 };
21

22 class Derived : public Base {
23 public:
24 constexpr Derived() : Base(42) {}
25 // ERROR: Base constructor not constexpr
26 // ...
27 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 300

Example: Addresses and Constexpr

1 #include <cassert>
2

3 constexpr void func_1() {
4 char c = ’A’;
5 // c has automatic storage (i.e., on stack)
6 const char* p = &c;
7 // OK: address of c is well defined
8 assert(*p == ’A’); // OK
9 // constexpr const char* q = &c;

10 /* ERROR: &c not constant expression;
11 address of automatic object can be different
12 for each invocation of func_1 */
13 // above results also same if c is const or constexpr
14 }
15

16 static char sc = ’A’;
17 // sc has static storage (i.e., in program image)
18 constexpr void func_2() {
19 const char* p = ≻
20 // OK: address of sc is fixed and known at compile time
21 constexpr const char* q = ≻
22 /* OK: address of static object sc is fixed and known
23 at compile time */
24 // above results also same if sc is const or constexpr
25 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Example: Pointers/References to Constexpr Objects
1 class Buffer {
2 public:
3 constexpr Buffer() : data_() {}
4 constexpr const char& operator[](unsigned int i) const
5 {return data_[i];}
6 constexpr char& operator[](unsigned int i)
7 {return data_[i];}
8 constexpr const char* data() const {return data_;}
9 // ...

10 private:
11 char data_[256];
12 };
13

14 int main() {
15 constexpr Buffer b; // OK
16 constexpr Buffer a = b; // OK
17 constexpr char c = b[0]; // OK
18 // constexpr const Buffer& br = b;
19 // ERROR: reference to b is not a constant expression
20 // constexpr const char& cr = b[0];
21 // ERROR: reference to subobject of b is not constant
22 // expression
23 // constexpr const char* cp = b.data();
24 // ERROR: pointer to subobject of b is not constant
25 // expression
26 // constexpr const Buffer* bp = &b;
27 // ERROR: pointer to b is not constant expression
28 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 301

Example: Constexpr and Accessing External State

1 // ERROR: static object not allowed in constexpr function
2 // (since function would have state the persists across
3 // invocations)
4 constexpr unsigned int get_count() {
5 static int count = 0;
6 return count++;
7 }
8

9 int global_count = 0;
10 // ERROR: constexpr function cannot modify state outside
11 // that function that might be used at run time
12 constexpr int get_global_count() {return global_count++;}
13

14 double alpha = 2.0;
15 // ERROR: constexpr function cannot access state outside
16 // that function that can be modified at run time.
17 constexpr double foo(double x) {return alpha * x + 3.0;}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 302

Example: Constexpr and Immediate Initialization

1 #include <iostream>
2 #include <cstddef>
3

4 template <class T, std::size_t Size>
5 class Buffer {
6 public:
7 // ERROR: data_ data member is constructed without
8 // being (immediately) initialized
9 // constexpr Buffer() {

10 // for (std::size_t i = 0; i < size(); ++i)
11 // {data_[i] = 0;}
12 // }
13 // OK: all data members are initialized when constructed
14 // (array data_ is initialized to all zero)
15 constexpr Buffer() : data_{} {}
16 static constexpr std::size_t size() {return Size;}
17 const T& operator[](std::size_t i) const {return data_[i];}
18 // ...
19 private:
20 T data_[size()];
21 };
22

23 int main() {
24 constexpr Buffer<char, 16> b;
25 for (int i = 0; i < 16; ++i)
26 {std::cout << static_cast<int>(b[i]) << ’\n’;}
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 303

Debugging Constexpr Functions

� debugging constexpr code can often be somewhat tricky

� cannot generate output to assist in debugging (e.g., by writing to standard
output/error stream) since cannot perform I/O at compile time

� use of source-level debugger not practical, since compiler would need to
be run in debugger

� could first debug code without constexpr qualifier and then add constexpr
qualifier after code is working, but this may not be practical if code must
fundamentally execute at compile time (e.g., due to return value of
function being assigned to constexpr variable)

� can use assert to test for conditions indicative of bugs (since
assert(expr) is constant expression if expr is true)

� can throw exception if condition indicative of bug is detected (since still
constant expression as long as throw statement not executed)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 304

Example: Debugging Strategies for Constexpr Functions

1 #include <stdexcept>
2 #include <cassert>
3

4 constexpr double sqrt(double x) {
5 // if assertion fails, sqrt function will not yield
6 // constant expression
7 assert(x >= 0.0);
8 double result = 0.0;
9 // ... (correctly initialize result)

10 return result;
11 }
12

13 constexpr int foo(unsigned x) {
14 unsigned i = 0;
15 // ... (code that changes i)
16 // assume odd i indicative of bug
17 // if i is odd (which would result in exception
18 // being thrown), foo function will not yield
19 // constant expression
20 if (i & 1) {throw std::logic_error("i is odd");}
21 return 0;
22 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 305NEXT SLIDE: go to Q.7–Q.10

Proxy Classes

� proxy class provides modified interface to another class

� classic example of proxy class is type returned by nonconst overload of
subscript operator in std::vector<bool> class

� in this case, proxy type serves as stand-in for single bool element in
vector

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 306

Proxy Class Example: BoolVector

� in this example, we consider simple container class called BoolVector
that provides dynamically-sized array of boolean values, where booleans
are packed into bytes

� want to provide only very basic functionality for class:
2 member function for querying size of container
2 subscript operator for accessing elements in container

� return type of nonconst overload of subscript operator is proxy type (called
Proxy) in order to handle fact that bits are packed into bytes

� BoolVector is essentially greatly simplified version of
std::vector<bool>

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 307

Proxy Class Example: BoolVector.hpp
1 #include <cstddef>
2 #include <utility>
3
4 class BoolVector;
5
6 class Proxy {
7 public:
8 ~Proxy() = default;
9 Proxy& operator=(const Proxy&);

10 Proxy& operator=(bool b);
11 operator bool() const;
12 private:
13 friend class BoolVector;
14 Proxy(const Proxy&) = default;
15 Proxy(BoolVector* v, std::size_t i) : v_(v), i_(i) {}
16 BoolVector* v_;
17 std::size_t i_;
18 };
19
20 class BoolVector {
21 public:
22 BoolVector(std::size_t n) : n_(n), d_(new unsigned char[(n + 7) / 8]) {std::fill_n(d_, (n + 7) / 8, 0);}
23 ~BoolVector() {delete [] d_;}
24 std::size_t size() const {return n_;}
25 bool operator[](std::size_t i) const {return getElem(i);}
26 Proxy operator[](std::size_t i) {return Proxy(this, i);}
27 private:
28 friend class Proxy;
29 bool getElem(std::size_t i) const {return (d_[i / 8] >> (i % 8)) & 1;}
30 void setElem(std::size_t i, bool b) {(d_[i / 8] &= ~(1 << (i % 8))) |= (b << (i % 8));}
31 std::size_t n_;
32 unsigned char* d_;
33 };
34
35 inline Proxy& Proxy::operator=(const Proxy& other) {v_->setElem(i_, other); return *this;}
36 inline Proxy& Proxy::operator=(bool b) {v_->setElem(i_, b); return *this;}
37 inline Proxy::operator bool() const {return v_->getElem(i_);}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 308

Proxy Class Example: BoolVector.cpp

1 #include <cassert>
2 #include <iostream>
3 #include "BoolVector.hpp"
4
5 int main() {
6 constexpr int bits[] = {0, 0, 1, 1, 0, 1, 0, 1};
7 constexpr int n = sizeof(bits) / sizeof(int);
8 BoolVector v(n);
9 BoolVector w(n);

10 assert(v.size() == n && w.size() == n);
11 for (int i = 0; i < n; ++i) {
12 w[i] = v[i] = bits[i];
13 }
14 const BoolVector& cv = v;
15 for (int i = 0; i < n; ++i) {
16 assert(v[i] == bits[i]);
17 assert(w[i] == bits[i]);
18 assert(cv[i] == bits[i]);
19 std::cout << (v[i] ? ’1’ : ’0’);
20 }
21 std::cout << ’\n’;
22 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 309

Implementing Postfix Increment/Decrement Operator

� often, good idea to implement postfix increment/decrement operator in
terms of prefix increment/decrement operator

� ensures that prefix and postfix versions of operator always consistent

� example:
1 class Counter {
2 public:
3 Counter(int count = 0) : count_(count) {}
4 Counter& operator++() {
5 ++count_;
6 return *this;
7 }
8 Counter operator++(int) {
9 Counter old(*this);

10 ++(*this);
11 return old;
12 }
13 // similarly for prefix/postfix decrement
14 private:
15 int count_;
16 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 310

Pointer-to-Implementation (Pimpl) Idiom

� pointer to implementation (pimpl) idiom splits interface and
implementation across two classes, namely, handle class and
implementation class

� all implementation details placed in implementation class

� handle class provides only interface functions which simply forward calls
through to implementation class

� handle object has pointer that owns implementation object

� only handle class is exposed to client

� consequently, changes to implementation class do not require client code
to be recompiled (since interface has not changed)

� thus, pimpl idiom useful for reducing compile-time dependencies (which
can facilitate faster compiles) and maintaining stable class ABIs

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 311

Pimpl and std::experimental::propagate_const

1 #include <experimental/propagate_const>
2 #include <memory>
3 #include <iostream>
4
5 class WidgetImpl {
6 public:
7 void foo() {std::cout << "WidgetImpl::foo()\n";}
8 void foo() const {std::cout << "WidgetImpl::foo() const\n";}
9 };

10
11 class Widget {
12 public:
13 void foo() {p_->foo();}
14 void foo() const {p_->foo();}
15 private:
16 std::experimental::propagate_const<std::unique_ptr<WidgetImpl>> p_;
17 /* const or non-const member functions of WidgetImpl invoked
18 as appropriate based on constness of *this; using
19 std::unique_ptr<const WidgetImpl> would cause only const member
20 functions of WidgetImpl to be invoked; using
21 std::unique_ptr<WidgetImpl> would cause only non-const member
22 functions of WidgetImpl to be invoked */
23 };
24
25 int main() {
26 Widget w;
27 const Widget cw;
28 w.foo(); // calls WidgetImpl:foo()
29 cw.foo(); // calls WidgetImpl:foo() const
30 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 312

Section 2.4.5

Functors

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 313

Functors

� function object (also known as functor) is object that can be invoked or
called as if it were ordinary function

� class that provides member function that overloads operator() is
called functor class and object of that class is functor

� functors more flexible than functions as functors are objects and can
therefore carry arbitrary state information

� when ordinary function used, function often invoked through pointer
whose value cannot be determined at compile time, which makes inlining
impossible

� when functor used, function to be called is fixed and always known at
compile time (namely, function-call operator for functor class)

� moreover, definition of function-call operator very likely to be visible at
point of use, especially if functor created from lambda expression

� consequently, functors often more amenable to inlining
� functors are extremely useful, especially in generic programming
� as we will see later, standard library makes heavy use of functors

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 314

Functor Example: Less Than

1 struct LessThan { // Functor class
2 bool operator()(double x, double y) const {
3 return x < y;
4 }
5 };
6

7 void myFunc() {
8 double a = 1.0;
9 double b = 2.0;

10 LessThan lessThan; // Functor
11 bool result = lessThan(a, b);
12 // calls LessThan::operator()(double, double)
13 // lessThan is functor, not function
14 // result == true
15 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 315

Functor Example With State

1 class IsGreater { // Functor class
2 public:
3 IsGreater(int threshold) : threshold_(threshold) {}
4 bool operator()(int x) const {
5 return x > threshold_;
6 }
7 private:
8 // state information for functor
9 int threshold_; // threshold for comparison

10 };
11

12 void myFunc() {
13 IsGreater isGreater(5); // functor
14 int x = 3;
15 bool result = isGreater(x);
16 // calls IsGreater::operator()(int)
17 // result == false
18 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 316

Ordering Relations

� often, need arises to impose some ordering on data

� for example, ordering relation needed for any sorting algorithm or ordered
container (such as ordered set, multiset, map, or multimap)

� to define ordering relation, sufficient to specify either less-than (i.e.,
“precedes”) relation or greater-than (i.e., “follows”) relation

� typically, in C++ (such as in standard library) less-than relation is used to
define all other relational operators

� less(x,y) is true if x precedes y in sorted order and false otherwise
� can synthesize all other relational operators from less as follows:

2 greater(x,y) = less(y,x)
2 equal(x,y) = ¬less(x,y)∧¬less(y,x)
2 notEqual(x,y) = less(x,y)∨ less(y,x)
2 lessEqual(x,y) = ¬less(y,x)
2 greaterEqual(x,y) = ¬less(x,y)

� note: “¬” denotes logical NOT, “∧” denotes logical AND, and “∨” denotes
logical OR

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 317START SLIDE: tutorial

Selection Sort Example
1 #include <algorithm>
2 #include <cassert>
3 #include <forward_list>
4 #include <functional>
5
6 // reverse digits in decimal representation of integer
7 constexpr unsigned int reverse(unsigned int x) {
8 unsigned int y = 0;
9 for (; x; x /= 10)

10 {auto d = x % 10; x -= d; y = 10 * y + d;}
11 return y;
12 }
13
14 constexpr bool rev_less(unsigned int x, unsigned int y)
15 {return reverse(x) < reverse(y);}
16
17 template <class ForwardIterator, class Compare>
18 void selection_sort(ForwardIterator first, ForwardIterator last, Compare less) {
19 for (auto i = first; i != last; ++i)
20 {std::iter_swap(i, std::min_element(i, last, less));}
21 }
22
23 int main() {
24 std::forward_list<unsigned int> values{12, 21, 123, 321, 1234, 4321};
25 selection_sort(values.begin(), values.end(), std::greater<unsigned int>());
26 assert((values == std::forward_list<unsigned int>{
27 4321, 1234, 321, 123, 21, 12}));
28 selection_sort(values.begin(), values.end(), rev_less);
29 assert((values == std::forward_list<unsigned int>{
30 21, 12, 321, 123, 4321, 1234}));
31 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 318NEXT SLIDE: comparison propgation

Bubble Sort Example

1 #include <algorithm>
2 #include <cassert>
3 #include <forward_list>
4 #include <functional>
5
6 template <class ForwardIterator, class Compare>
7 void bubble_sort(ForwardIterator first, ForwardIterator last, Compare less) {
8 for (auto sorted = first; first != last; last = sorted) {
9 sorted = first;

10 for (auto cur = first, prev = first; ++cur != last; ++prev) {
11 if (less(*cur, *prev)) {
12 std::iter_swap(cur, prev);
13 sorted = cur;
14 }
15 }
16 }
17 }
18
19 int main() {
20 std::forward_list<int> values{7, 0, 6, 1, 5, 2, 4, 3};
21 bubble_sort(values.begin(), values.end(), std::less<int>());
22 assert((values == std::forward_list<int>{0, 1, 2, 3, 4, 5, 6, 7}));
23 bubble_sort(values.begin(), values.end(), std::greater<int>());
24 assert((values == std::forward_list<int>{7, 6, 5, 4, 3, 2, 1, 0}));
25 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 319

Comparison Object Example
1 #include <cassert>
2 #include <algorithm>
3 #include <set>
4
5 template <class T> class compare {
6 public:
7 constexpr compare(bool less = true) : less_(less) {}
8 constexpr bool operator()(const T& x, const T& y) const
9 {return less_ ? (x < y) : (x > y);}

10 private:
11 bool less_;
12 };
13
14 constexpr bool even_then_odd(int x, int y)
15 {if ((x % 2) != (y % 2)) {return !(x % 2);} else {return x < y;}}
16
17 int main() {
18 constexpr int values[] = {0, 7, 6, 1, 2, 5, 3, 4};
19 std::set<int, compare<int>> s1(std::begin(values), std::end(values));
20 constexpr int d1[] = {0, 1, 2, 3, 4, 5, 6, 7};
21 assert(std::equal(s1.begin(), s1.end(), std::begin(d1)));
22 std::set<int, compare<int>> s2(std::begin(values), std::end(values),
23 compare<int>(false));
24 constexpr int d2[] = {7, 6, 5, 4, 3, 2, 1, 0};
25 assert(std::equal(s2.begin(), s2.end(), std::begin(d2)));
26 std::set<int, bool (*)(int, int)> s3(std::begin(values), std::end(values),
27 even_then_odd);
28 constexpr int d3[] = {0, 2, 4, 6, 1, 3, 5, 7};
29 assert(std::equal(s3.begin(), s3.end(), std::begin(d3)));
30 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 320

Comparison Object Propagation
� invariant of ordered container: elements of container always sorted with

respect to ordering relation defined by comparison object
� thus, state for ordered container (ignoring possible allocator) consists of:

1 elements in container; and
2 comparison object that determines order of those elements

� consider propagating value of one container to another (via copy or move)
� when propagating value of container, two choices possible:

1 propagate comparison object
2 do not propagate comparison object

� if comparison object not propagated and source and destination
comparison objects differ, must re-sort elements (to be consistent with
destination comparison object) to avoid violating container invariant

� if no equality/inequality operator provided by comparison-object type,
must assume worst (i.e., not equal) and always re-sort

� if comparison object propagated, never any need to re-sort elements

� for efficiency, prefer solution of always propagating comparison object

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 321NEXT SLIDE: Boost iterators

Comparison Object Propagation Example
1 #include <algorithm>
2 #include <cassert>
3 #include <set>
4 #include <utility>
5
6 template <class T> class compare {
7 public:
8 compare(bool less = true) : less_(less) {}
9 bool operator()(const T& x, const T& y) const

10 {return less_ ? (x < y) : (x > y);}
11 bool less() const {return less_;}
12 private:
13 bool less_;
14 };
15
16 int main() {
17 constexpr int values[] = {0, 7, 6, 1, 2, 5, 3, 4};
18 std::set<int, compare<int>> s3(values, std::end(values));
19 std::set<int, compare<int>> s1(std::move(s3)); // move construct
20 assert(s1.key_comp().less()); // comparison object was moved
21 std::set<int, compare<int>> s2(s1); // copy construct
22 assert(s2.key_comp().less()); // comparison object was copied
23 s3 = std::set<int, compare<int>>(values, std::end(values),
24 compare<int>(false));
25 assert(s1.key_comp().less() && !s3.key_comp().less());
26 s1 = std::move(s3); // move assign
27 assert(!s1.key_comp().less()); // comparison object was moved
28 assert(s2.key_comp().less() && !s1.key_comp().less());
29 s2 = s1; // copy assign
30 assert(!s2.key_comp().less()); // comparison object was copied
31 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 322

Section 2.4.6

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 323

Talks I

1 Arthur O’Dwyer. Return Value Optimization: Harder Than It Looks.
CppCon, Bellevue, WA, USA, Sept. 25, 2018. Available online at
https://youtu.be/hA1WNtNyNbo.

2 Jon Kalb. Copy Elision. C++Now, Aspen, CO, USA, May 9, 2018.
Available online at https://youtu.be/fSB57PiXpRw.

3 Jon Kalb. Copy Elision. CppCon, Bellevue, WA, USA, Sept. 23–28, 2018.
Available online at https://youtu.be/IZbL-RGr_mk.

4 Roger Orr. Nothing Is Better Than Copy Or Move. ACCU Conference,
Bristol, UK, Apr. 11, 2018. Available online at
https://youtu.be/-dc5vqt2tgA.

5 Scott Schurr. constexpr: Introduction. CppCon, Bellevue, WA, USA, Sept
19–25, 2015. Available online at https://youtu.be/fZjYCQ8dzTc.

6 Scott Schurr. constexpr: Applications. CppCon, Bellevue, WA, USA, Sept
19–25, 2015. Available online at https://youtu.be/qO-9yiAOQqc.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 324

https://youtu.be/hA1WNtNyNbo
https://youtu.be/fSB57PiXpRw
https://youtu.be/IZbL-RGr_mk
https://youtu.be/-dc5vqt2tgA
https://youtu.be/fZjYCQ8dzTc
https://youtu.be/qO-9yiAOQqc

Section 2.5

Templates

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 325

Templates

� generic programming: algorithms written in terms of types to be
specified later (i.e., algorithms are generic in sense of being applicable to
any type that meets only some very basic constraints)

� templates facilitate generic programming

� extremely important language feature

� avoids code duplication

� leads to highly efficient and customizable code

� promotes code reuse

� C++ standard library makes very heavy use of templates (actually, most of
standard library consists of templates)

� many other libraries make heavy use of templates (e.g., CGAL, Boost)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 326

Section 2.5.1

Function Templates

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 327

Motivation for Function Templates

� consider following functions:

int max(int x, int y)
{return x > y ? x : y;}

double max(double x, double y)
{return x > y ? x : y;}

// more similar-looking max functions...

� each of above functions has same general form; that is, for some type T,
we have:

T max(T x, T y)
{return x > y ? x : y;}

� would be nice if we did not have to repeatedly type, debug, test, and
maintain nearly identical code

� in effect, would like code to be parameterized on type T

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 328

Function Templates
� function template is family of functions parameterized by one or more

parameters
� each template parameter can be: non-type (e.g., integral constant), type,

template, or parameter pack (in case of variadic template)
� syntax for template function has general form:

template <parameter_list> function_declaration
� parameter_list: parameters on which template function depends
� function_declaration: function declaration or definition
� type parameter designated by class or typename keyword
� template parameter designated by template keyword
� non-type parameter designed by its type (e.g., bool, int)
� example:

// declaration of function template
template <class T> T max(T x, T y);

// definition of function template
template <class T> T max(T x, T y)
{return x > y ? x : y;}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 329

Function Templates (Continued)

� to explicitly identify particular instance of template, use syntax:

function<parameters>

� example: for function template declaration:

template <class T> T max(T x, T y);

max<int> refers to int max(int, int)
max<double> refers to double max(double, double)

� compiler only creates code for function template when it is instantiated
(i.e., used)

� therefore, definition of function template must be visible in place where it
is instantiated

� consequently, function template definitions usually appear in header file

� template code only needs to pass basic syntax checks, unless actually
instantiated

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 330

Function Template Examples

1 // compute minimum of two values
2 template <class T>
3 T min(T x, T y) {
4 return x < y ? x : y;
5 }
6

7 // compute square of value
8 template <typename T>
9 T sqr(T x) {

10 return x * x;
11 }
12

13 // swap two values
14 template <class T>
15 void swap(T& x, T& y) {
16 T tmp = x;
17 x = y;
18 y = tmp;
19 }
20

21 // invoke function/functor multiple times
22 template <int N = 1, typename F, typename T>
23 void invoke(F func, const T& value) {
24 for (int i = 0; i < N; ++i) {
25 func(value);
26 }
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 331

Template Function Overload Resolution

� overload resolution proceeds (in order) as follows:
1 look for an exact match with zero or more trivial conversions on

(nontemplate) functions; if found call it
2 look for function template from which function that can be called with exact

match with zero or more trivial conversions can be generated; if found, call it
3 try ordinary overload resolution for functions; if function found, call it;

otherwise, call is error

� in each step, if more than one match found, call is ambiguous and is error

� template function only used in case of exact match, unless explicitly forced

� example:
template <class T>
T max(T x, T y) {return x > y ? x : y;}

void func(int i, int j, double x, double y) {
double z = max(x, y); // calls max<double>
int k = max(i, j); // calls max<int>
z = max(i, x); // ERROR: no match
z = max<double>(i, x); // calls max<double>

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 332

Qualified Names

� qualified name is name that specifies scope

� example:

#include <iostream>

int main(int argc, char** argv) {
for (int i = 0; i < 10; ++i) {

std::cout << "Hello, world!" << std::endl;
}

}

� in above example, names std::cout and std::endl are qualified, while
names main, argc, argv, and i, are not qualified

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 333

Dependent Names

� dependent name is name that depends on template parameter
:::::::::

[C++17 17.6.2.1/9]

� example:

template <class T>
void func(const T& x) {

int i = T::magicValue;
// ...

}

� name T::magicValue is dependent

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 334

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/temp.dep.type#9

Qualified Dependent Names

� to avoid any potential ambiguities, compiler will automatically assume
qualified dependent name does not name type unless typename
keyword is used

� must precede qualified dependent name that names type by typename

� in following example, note use of typename keyword:
1 #include <vector>
2

3 template <class T>
4 void func(const T& x) {
5 std::vector<T> v(42, x);
6 // std::vector<T>::const_iterator is
7 // qualified dependent name
8 for (typename std::vector<T>::const_iterator i =
9 v.begin(); i != v.end(); ++i) {

10 // std::vector<T>::value_type is
11 // qualified dependent name
12 typename std::vector<T>::value_type x = *i;
13 // ...
14 }
15 // ...
16 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 335

Why typename is Needed

1 int x = 42;
2

3 template <class T> void func() {
4 /* The compiler must be able to check the syntactic
5 correctness of this template code without knowing the
6 type T. Without knowing the type T, however, the meaning
7 of the following line of code is ambiguous, unless the
8 compiler follows some fixed rule for resolving this
9 ambiguity. In particular, is this line of code a

10 declaration of a variable x or an expression consisting
11 of a binary operator* with operands T::foo and x? */
12 T::foo* x; // Does T::foo name a type or an object?
13 }
14

15 struct ContainsType {
16 using foo = int; // foo is type
17 };
18

19 struct ContainsValue {
20 static int foo; // foo is value
21 };
22

23 int main() {
24 // Only one of the following two lines should be valid.
25 func<ContainsValue>();
26 func<ContainsType>();
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 336

Section 2.5.2

Class Templates

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 337

Motivation for Class Templates
� consider almost identical complex number classes:

1 class ComplexDouble {
2 public:
3 ComplexDouble(double x = 0.0, double y = 0.0) : x_(x), y_(y) {}
4 double real() const { return x_; }
5 double imag() const { return y_; }
6 // ...
7 private:
8 double x_, y_; // real and imaginary parts
9 };

10
11 class ComplexFloat {
12 public:
13 ComplexFloat(float x = 0.0f, float y = 0.0f) : x_(x), y_(y) {}
14 float real() const { return x_; }
15 float imag() const { return y_; }
16 // ...
17 private:
18 float x_, y_; // real and imaginary parts
19 };

� both of above classes are special cases of following class parameterized
on type T:

1 class Complex {
2 public:
3 Complex(T x = T(0), T y = T(0)) : x_(x), y_(y) {}
4 T real() const { return x_; }
5 T imag() const { return y_; }
6 // ...
7 private:
8 T x_, y_; // real and imaginary parts
9 };

� again, would be nice if we did not have to repeatedly type, debug, test,
and maintain nearly identical code

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 338

Class Templates

� class template is family of classes parameterized on one or more
parameters

� each template parameter can be: non-type (e.g., integral constant), type,
template, or parameter pack (in case of variadic template)

� syntax has general form:
template <parameter_list> class_declaration

� parameter_list: parameter list for class
� class_declaration: class/struct declaration or definition
� example:

// declaration of class template
template <class T, unsigned int size>
class MyArray;

// definition of class template
template <class T, unsigned int size>
class MyArray {

// ...
T array_[size];

};

MyArray<double, 100> x;

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 339

Class Templates (Continued)

� compiler only generates code for class template when it is instantiated
(i.e., used)

� since compiler only generates code for class template when it is
instantiated, definition of template must be visible at point where
instantiated

� consequently, class template code usually placed in header file

� template code only needs to pass basic syntax checks, unless actually
instantiated

� compile errors related to class templates can often be very long and
difficult to parse (especially, when template class has parameters that are
template classes which, in turn, have parameters that are template
classes, and so on)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 340

Class Template Example

1 // complex number class template
2 template <class T>
3 class Complex {
4 public:
5 Complex(T x = T(0), T y = T(0)) :
6 x_(x), y_(y) {}
7 T real() const {
8 return x_;
9 }

10 T imag() const {
11 return y_;
12 }
13 // ...
14 private:
15 T x_; // real part
16 T y_; // imaginary part
17 };
18

19 Complex<int> zi;
20 Complex<double> zd;

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 341

Class-Template Default Parameters

� class template parameters can have default values
� example:

template <class T = int, unsigned int size = 2>
struct MyArray {

T data[size];
};

MyArray<> a; // MyArray<int, 2>
MyArray<double> b; // MyArray<double, 2>
MyArray<double, 10> b; // MyArray<double, 10>

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 342

Qualified Dependent Names Revisited
� recall, qualified dependent name assumed not to name type, unless

preceded by typename keyword
� in following example, note use of typename keyword:

1 #include <vector>
2

3 template <class T> class Vector {
4 public:
5 using Coordinate = typename T::Coordinate;
6 using Distance = typename T::Distance;
7 Vector(const std::vector<Coordinate>& coords) :
8 coords_(coords) {}
9 Distance squaredLength() const {

10 Distance d = Distance(0);
11 for (typename
12 std::vector<Coordinate>::const_iterator i =
13 coords_.begin(); i != coords_.end(); ++i) {
14 typename std::vector<Coordinate>::value_type
15 x = *i;
16 d += x * x;
17 }
18 return d;
19 }
20 // ...
21 private:
22 std::vector<Coordinate> coords_;
23 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 343

Why template is Needed
1 template<bool> struct Widget;
2

3 template<bool B> struct Gadget {
4 static int g() {
5 /* The compiler must be able to check the syntactic
6 correctness of this template code without knowing the
7 value of B. Without knowing the value of B, however,
8 the meaning of the following line of code is ambiguous,
9 unless the compiler follows some fixed rule for

10 resolving this ambiguity. In particular, is this line
11 of code using a data member called f and evaluating
12 (f < 0 > 42) or is it calling a template member
13 function called f with the argument 42? */
14 return Widget::f<0>(42);
15 }
16 };
17

18 template<bool B> struct Widget {
19 template<int I> static int f(int i) {return i + I;}
20 };
21

22 template<> struct Widget<false> {inline static int f = 42;};
23

24 int main() {
25 // Only one of the following two lines should be valid.
26 Gadget<true>::g();
27 Gadget<false>::g();
28 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 344

Template Template Parameter Example

1 #include <vector>
2 #include <list>
3 #include <deque>
4 #include <memory>
5

6 template <template <class, class> class Container, class Value>
7 class Stack {
8 public:
9 // ...

10 private:
11 Container<Value, std::allocator<Value>> data_;
12 };
13

14 int main() {
15 Stack<std::vector, int> s1;
16 Stack<std::list, int> s2;
17 Stack<std::deque, int> s3;
18 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 345

Class Template Parameter Deduction

� template parameters for class template can be deduced based on
arguments passed to constructor

� example:
std::tuple t(42, ’A’);
// OK: deduced as tuple<int, char>

� deduction only performed if no template arguments provided

� example:
std::tuple<int> t(1, 2);

// ERROR: missing template parameter, as
// no template parameter deduction takes place

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 346

Class Template Parameter Deduction Example

1 #include <vector>
2 #include <tuple>
3 #include <set>
4 #include <string>
5

6 using namespace std::string_literals;
7

8 auto get_tuple() {
9 return std::tuple("Zaphod"s, 42);

10 // deduces tuple<std::string, int>
11 }
12

13 int main() {
14 std::vector v{1, 2, 3};
15 // deduces vector<int>
16 std::tuple t(true, ’A’, 42);
17 // deduces tuple<bool, char, int>
18 std::pair p(42, "Hello"s);
19 // deduces pair<int, std::string>
20 std::set s{0.5, 0.25};
21 // deduces set<double>
22 //auto ptr = new std::tuple(true, 42);
23 // should deduce tuple<bool, int>?
24 // fails to compile with GCC 7.1.0
25 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 347

Template Deduction Guides

� can provide additional rules to be used to determine how class template
parameters should be deduced when not provided

� such rules called deduction guides

� deduction guide itself can be either template or non-template

� deduction guides must be introduced in same scope as class template

� example:
// class definition
template <class T> smart_ptr {/* ... */};
// deduction guide
template <class T>
smart_ptr(T*) -> smart_ptr<T>;

� example:
/// class definition
template <class T> name {/* ... */};
// deduction guide
name(const char*) -> name<std::string>;

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 348

Template Deduction Guide Example

1 #include <string>
2 #include <type_traits>
3

4 using namespace std::string_literals;
5

6 template <class T>
7 class Name {
8 public:
9 Name(T first, T last) : first_(first), last_(last) {}

10 // ...
11 private:
12 T first_;
13 T last_;
14 };
15

16 // deduction guide
17 Name(const char*, const char*) -> Name<std::string>;
18

19 int main() {
20 Name n("Zaphod", "Beeblebrox");
21 // deduces Name<std::string> via deduction guide
22 static_assert(std::is_same_v<decltype(n), Name<std::string>>);
23 Name n2("Jane"s, "Doe"s);
24 // deduces Name<std::string> (without deduction guide)
25 static_assert(std::is_same_v<decltype(n2), Name<std::string>>);
26 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 349

Auto Non-Type Template Parameters

� can use auto keyword for non-type template parameter

� in such case, type of non-type template parameter will be deduced

� example:
template <auto v>
struct constant {

static constexpr decltype(v) value = v;
};
using forty_two_type = constant<42>;
// template parameter v deduced to have type int

� non-type template parameter type deduction probably most useful for
template metaprogramming

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 350

Example Without Auto Non-Type Template Parameter

1 #include <cstdlib>
2 #include <iostream>
3

4 template<class T, T v>
5 struct integral_constant {
6 using value_type = T;
7 static constexpr value_type value = v;
8 using type = integral_constant;
9 constexpr operator value_type() const noexcept

10 {return value;}
11 constexpr value_type operator()() const noexcept
12 {return value;}
13 };
14

15 using forty_two_type = integral_constant<int, 42>;
16

17 int main() {
18 constexpr forty_two_type x;
19 constexpr auto v = x.value;
20 std::cout << v << ’\n’;
21 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 351

Example With Auto Non-Type Template Parameter

1 #include <cstdlib>
2 #include <iostream>
3

4 template<auto v>
5 struct integral_constant {
6 using value_type = decltype(v);
7 static constexpr value_type value = v;
8 using type = integral_constant;
9 constexpr operator value_type() const noexcept

10 {return value;}
11 constexpr value_type operator()() const noexcept
12 {return value;}
13 };
14

15 using forty_two_type = integral_constant<42>;
16

17 int main() {
18 constexpr forty_two_type x;
19 constexpr auto v = x.value;
20 std::cout << v << ’\n’;
21 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 352

Section 2.5.3

Variable Templates

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 353

Variable Templates

� variable template is family of variables parameterized on one or more
parameters

� each template parameter can be: non-type (e.g., integral constant), type,
template, or parameter pack (in case of variadic templates)

� although less frequently used than function and class templates, variable
templates quite useful in some situations

� syntax has general form:

template <parameter_list> variable_declaration

� parameter_list: parameter list for variable template

� variable_declaration: variable declaration or definition

� example:

template <class T>
T meaning_of_life = T(42);

int x = meaning_of_life<int>;

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 354

Variable Template Example: pi

1 #include <limits>
2 #include <complex>
3 #include <iostream>
4

5 template <typename T>
6 constexpr T pi =
7 T(3.14159265358979323846264338327950288419716939937510L);
8

9 int main() {
10 std::cout.precision(
11 std::numeric_limits<long double>::max_digits10);
12 std::cout
13 << pi<int> << ’\n’
14 << pi<float> << ’\n’
15 << pi<double> << ’\n’
16 << pi<long double> << ’\n’
17 << pi<std::complex<float>> << ’\n’
18 << pi<std::complex<double>> << ’\n’
19 << pi<std::complex<long double>> << ’\n’;
20 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 355

Section 2.5.4

Alias Templates

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 356

Alias Templates

� alias template is family of types parameterized on one or more
parameters

� each template parameter can be: non-type (e.g., integral constant), type,
template, or parameter pack (in case of variadic templates)

� syntax has general form:

template <parameter_list> alias_declaration

� parameter_list: parameter list for class

� alias_declaration: alias declaration (i.e., with using)

� example:

template <class Value,
class Alloc = std::allocator<Value>>

using GreaterMultiSet =
std::multiset<Value, std::greater<Value>, Alloc>;

GreaterMultiSet<int> x{4, 1, 3, 2};

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 357

Alias Template Example

1 #include <iostream>
2 #include <set>
3

4 // alias template for set that employs std::greater for
5 // comparison
6 template <typename Value,
7 typename Alloc = std::allocator<Value>>
8 using GreaterSet = std::set<Value,
9 std::greater<Value>, Alloc>;

10

11 int main() {
12 std::set x{1, 4, 3, 2};
13 GreaterSet<int> y{1, 4, 3, 2};
14 for (auto i : x) {
15 std::cout << i << ’\n’;
16 }
17 std::cout << ’\n’;
18 for (auto i : y) {
19 std::cout << i << ’\n’;
20 }
21 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 358

Section 2.5.5

Variadic Templates

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 359

Variadic Templates
� language provides ability to specify template that can take variable

number of arguments
� template that can take variable number of arguments called variadic

template
� alias templates, class templates, function templates, and variable

templates may be variadic
� variable number of arguments specified by using what is called parameter

pack
� parameter pack is parameter that accepts (i.e., is placeholder for) zero or

more arguments (of same kind)
� parameter pack used in parameter list of template to allow to variable

number of template parameters
� ellipsis (i.e., “...”) is used in various contexts relating to parameter packs
� ellipsis after designator for kind of template argument in template

parameter list designates argument is parameter pack
� ellipsis after parameter pack parameter expands parameter pack in

context-sensitive manner
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 360

Parameter Packs

� syntax for non-type template parameter pack named Args and containing
elements of type type (e.g., bool, int, unsigned int):

type... Args
� example:

template <int... Is> /* ... */

Is is (non-type) template parameter pack that corresponds to zero or
more (compile-time constant) values of type int

� syntax for type template parameter pack named Args:
typename... Args
or equivalently
class... Args

� examples:

template <typename... Ts> /* ... */
template <class... Ts> /* ... */

Ts is (type) template parameter pack that corresponds to zero or more
types

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 361

Parameter Packs (Continued 1)
� syntax for template template parameter pack named Args:

template <parameter_list> typename... Args
or equivalently
template <parameter_list> class... Args

� example:
template <template <class T> class... Ts>
/* ... */

Ts is (template) template parameter pack that corresponds to zero or
more templates

� syntax for function parameter pack named args whose elements have
types corresponding to elements of type template parameter pack Args:

Args... args
� example:

template <class... Ts> void func(Ts... args);
args is (function) parameter pack that corresponds to zero or more
function parameters whose types correspond to elements of type
parameter pack Ts

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 362

Parameter Packs (Continued 2)

� in context where template arguments cannot be deduced (e.g., primary
class templates), only last template parameter can be parameter pack

� in context where template arguments can be deduced (e.g., function
templates and class template partial specializations), template parameter
pack need not be last template parameter

� example:
1 template <class U, class... Ts> class C1 { /* ... */ };
2 // OK: Ts is last template parameter
3

4 template <class... Ts, class U> class C2 { /* ... */ };
5 // ERROR: Ts not last and U not deduced
6

7 template <class... Ts, class U> void f1(Ts... ts)
8 { /* ... */ } // NOT OK: Ts not last and U not deduced
9

10 template <class... Ts, class U> void f2(Ts... ts, U u)
11 { /* ... */ } // OK: Ts not last but U is deduced
12

13 int main() {
14 f1<int, int, bool>(1, 2, true);
15 // ERROR: no matching function call
16 f2<int, int>(1, 2, true); // OK
17 f2(1, 2, true); // ERROR: one argument expected
18 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 363

Parameter Pack Expansion

� parameter pack expansion: expands pack into its constituent elements

� syntax for parameter pack expansion of expression pattern, which must
contain parameter pack:

pattern...
� example:

1 template <class... Ts> void f(Ts... t) { /* ... */ }
2

3 template <class... Us> void g(Us... u) {
4 f(u...);
5 // u... is pack expansion
6 // when g is called by main,
7 // u... expands to 1, 2.0, 3.0f
8 }
9

10 int main() {
11 g(1, 2.0, 3.0f);
12 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 364

Variadic Template Examples

1 #include <tuple>
2

3 // variadic alias template
4 template <class... T>
5 using My_tuple = std::tuple<bool, T...>;
6

7 // variadic class template
8 template <int... Values>
9 class Integer_sequence {

10 // ...
11 };
12

13 // variadic function template
14 template <class... Ts>
15 void print(const Ts&... values) {
16 // ...
17 }
18

19 // variadic variable template
20 template <typename T, T... Values>
21 constexpr T array[] = {Values...};
22

23 int main() {
24 Integer_sequence<1, 3, 4, 2> x;
25 auto a = array<int, 1, 2, 4, 8>;
26 My_tuple<int, double> t(true, 42, 42.0);
27 print(1’000’000, 1, 43.2, "Hello");
28 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 365

Parameter Pack Expansion

� parameter pack expansion allowed in following contexts:
::::::::

[C++17 17.5.3/4]

2 inside parentheses of function call operator
2 in template argument list
2 in function parameter list
2 in template parameter list
2 base class specifiers in class declaration
2 member initializer lists
2 braced initializer lists
2 lambda captures
2 fold expressions
2 in using declarations

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 366

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/temp.variadic#4

The sizeof... Operator

� sizeof... operator yields number of elements in parameter pack

� example:

template <int... Values>
constexpr int num_parms = sizeof...(Values);

static_assert(num_parms<1, 2, 3> == 3);
static_assert(num_parms<> == 0);

� example:

#include <cassert>

template <typename... Ts>
int number_of_arguments(const Ts&... args) {

return sizeof...(args);
}

int main() {
assert(number_of_arguments(1, 2, 3) == 3);
assert(number_of_arguments() == 0);

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 367

Variadic Function Template: sum

1 #include <iostream>
2 #include <string>
3

4 using namespace std::string_literals;
5

6 template <class T>
7 auto sum(T x) {
8 return x;
9 }

10

11 template <class T, class... Args>
12 auto sum(T x, Args... args) {
13 return x + sum(args...);
14 }
15

16 int main() {
17 auto x = sum(42.5, -1.0, 0.5f);
18 auto y = sum("The "s, "answer "s, "is "s);
19 std::cout << y << x << ".\n";
20 // sum(); // ERROR: no matching function call
21 }
22

23 /* Output:
24 The answer is 42.
25 */

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 368

Variadic Function Template: maximum

1 #include <type_traits>
2 #include <string>
3 #include <cassert>
4

5 using namespace std::string_literals;
6

7 template <typename T>
8 T maximum(const T& a) {return a;}
9

10 template <typename T1, typename T2>
11 typename std::common_type_t<const T1&, const T2&>
12 maximum(const T1 &a, const T2 &b) {
13 return a > b ? a : b;
14 }
15

16 template <typename T1, typename T2, typename... Args>
17 typename std::common_type_t<const T1&, const T2&,
18 const Args&...>
19 maximum(const T1& a, const T2& b, const Args&... args) {
20 return maximum(maximum(a, b), args...);
21 }
22

23 int main() {
24 assert(maximum(1) == 1);
25 assert(maximum(1, 2, 3, 4, -1.4) == 4);
26 assert(maximum(-1’000’000L, -42L, 10, 42.42) == 42.42);
27 assert(maximum("apple"s, "zebra"s, "c++"s) == "zebra"s);
28 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 369

Variadic Function Template With Template Template
Parameter: print_container
1 #include <iostream>
2 #include <vector>
3 #include <string>
4 #include <set>
5

6 template <template <class, class...>
7 class ContainerType, class ValueType, class... Args>
8 bool print_container(const ContainerType<ValueType, Args...>&
9 c) {

10 for (auto i = c.begin(); i != c.end();) {
11 std::cout << *i;
12 if (++i != c.end()) {std::cout << ’ ’;}
13 }
14 std::cout << ’\n’;
15 return bool(std::cout);
16 }
17

18 int main() {
19 using namespace std::string_literals;
20 std::vector vi{1, 2, 3, 4, 5};
21 std::set si{5, 4, 3, 2, 1};
22 std::set ss{"world"s, "hello"s};
23 print_container(vi);
24 print_container(si);
25 print_container(ss);
26 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 370

Variadic Class Template: Integer_sequence
1 #include <iostream>
2 #include <cstdlib>
3

4 template <class T, T... Values>
5 class Integer_sequence {
6 public:
7 using value_type = T;
8 using const_iterator = const T*;
9 constexpr std::size_t size() const

10 {return sizeof...(Values);}
11 constexpr T operator[](int i) const {return values_[i];}
12 constexpr const_iterator begin() const
13 {return &values_[0];}
14 constexpr const_iterator end() const
15 {return &values_[size()];}
16 private:
17 static constexpr T values_[sizeof...(Values)] =
18 {Values...};
19 };
20

21 template <class T, T... Values>
22 constexpr T
23 Integer_sequence<T, Values...>::values_[sizeof...(Values)];
24

25 int main() {
26 Integer_sequence<std::size_t, 1, 2, 4, 8> seq;
27 std::cout << seq.size() << ’\n’ << seq[0] << ’\n’;
28 for (auto i : seq) {std::cout << i << ’\n’;}
29 }
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 371

Variadic Variable Template: int_array

1 #include <iostream>
2

3 template <int... Args>
4 constexpr int int_array[] = {Args...};
5

6 int main() {
7 for (auto i : int_array<1,2,4,8>) {
8 std::cout << i << ’\n’;
9 }

10 }
11

12 /* Output:
13 1
14 2
15 4
16 8
17 */

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 372

Variadic Alias Template: My_tuple

1 #include <iostream>
2 #include <string>
3 #include <tuple>
4

5 template <class... Ts>
6 using My_tuple = std::tuple<bool, Ts...>;
7

8 int main() {
9 My_tuple<int, std::string> t(true, 42,

10 "meaning of life");
11 std::cout << std::get<0>(t) << ’ ’
12 << std::get<1>(t) << ’ ’
13 << std::get<2>(t) << ’\n’;
14 }
15

16 /* Output:
17 1 42 meaning of life
18 */

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 373

Fold Expressions
� may want to apply binary operator (such as +) across all elements in

parameter pack
� fold expression reduces (i.e., folds) parameter pack over binary operator
� op: binary operator
� E: expression that contains unexpanded parameter pack
� I: expression that does not contain unexpanded parameter pack

Fold Syntax Expansion
unary left (... op E) ((E1 op E2) op ...) op EN

unary right (E op . . .) E1 op (... op (EN−1 op EN))
binary left (I op ... op E) (((I op E1) op E2) op ...) op EN

binary right (E op ... op I) E1 op (... op (EN−1 op (EN op I)))
::::::::
[C++17 17.5.3/9]

� unary fold of empty parameter pack:
::::::::
[C++17 17.5.3/9]

Operator Value for Empty Parameter Pack
&& true
|| false
, void()

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 374

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/temp.variadic#9
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/temp.variadic#9

Sum Example Without Fold Expression

1 #include <iostream>
2 #include <string>
3

4 using namespace std::string_literals;
5

6 template <class T>
7 auto sum(T x) {
8 return x;
9 }

10

11 template <class T, class... Args>
12 auto sum(T x, Args... args) {
13 return x + sum(args...);
14 }
15

16 int main() {
17 auto x = sum(42.5, -1.0, 0.5f);
18 auto y = sum("The "s, "answer "s, "is "s);
19 std::cout << y << x << ".\n";
20 // sum(); // ERROR: no matching function call
21 }
22

23 /* Output:
24 The answer is 42.
25 */

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 375

Sum Example With Fold Expression

1 #include <iostream>
2 #include <string>
3

4 using namespace std::string_literals;
5

6 template <class T, class... Args>
7 auto sum(T x, Args... args) {
8 return x + (... + args);
9 }

10

11 int main() {
12 auto x = sum(42.5, -1.0, 0.5f);
13 auto y = sum("The "s, "answer "s, "is "s);
14 std::cout << y << x << ".\n";
15 // sum(); // ERROR: no matching function call
16 }
17

18 /* Output:
19 The answer is 42.
20 */

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 376

Print Example Without Fold Expression

1 #include <iostream>
2 #include <string>
3

4 using namespace std::string_literals;
5

6 std::ostream& print() {return std::cout;}
7

8 template <class T>
9 std::ostream& print(const T& value) {

10 return std::cout << value;
11 }
12

13 template <class T, class... Args>
14 std::ostream& print(const T& value, const Args&... args) {
15 if (!(std::cout << value)) {
16 return std::cout;
17 }
18 return print(args...);
19 }
20

21 int main() {
22 print("The "s, "answer "s, "is "s, 42, ".\n"s);
23 print(); // OK: no-op
24 }
25

26 /* Output:
27 The answer is 42.
28 */

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 377

Print Example With Fold Expression

1 #include <iostream>
2 #include <string>
3

4 using namespace std::string_literals;
5

6 template <class... Args>
7 std::ostream& print(const Args&... args) {
8 return (std::cout << ... << args);
9 }

10

11 int main() {
12 print("The "s, "answer "s, "is "s, 42, ".\n"s);
13 print(); // OK: no-op
14 }
15

16 /* Output:
17 The answer is 42.
18 */

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 378

Fold Expression Example: All/Any/One/Even

1 #include <cassert>
2

3 template <class... Args>
4 bool all(Args... args)
5 {return (... && args);}
6

7 template <class... Args>
8 bool any(Args... args)
9 {return (... || args);}

10

11 template <class... Args>
12 bool one(Args... args)
13 {return (0 + ... + args) == 1;}
14

15 template <class... Args>
16 bool even(Args... args)
17 {return (1 + ... + args) % 2;}
18

19 int main() {
20 assert(all(false, true, true) == false);
21 assert(all(true, true, true) == true);
22 assert(any(false, false, true) == true);
23 assert(any(false, false, false) == false);
24 assert(one(true, false, false) == true);
25 assert(one(true, true, false) == false);
26 assert(even(true, true, false) == true);
27 assert(even(true, false, false) == false);
28 assert(even() == true && one() == false);
29 }
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 379

Constexpr-Friendly Heterogeneous List Example

1 #include <iostream>
2 #include <tuple>
3

4 // heterogeneous list of constant values
5 template <auto... vs> class value_list {
6 public:
7 constexpr value_list() : v_(vs...) {}
8 template <int n> constexpr auto get() const
9 {return std::get<n>(v_);}

10 constexpr int size() const {return sizeof...(vs);}
11 private:
12 std::tuple<decltype(vs)...> v_;
13 };
14

15 int main() {
16 constexpr value_list<42, true, ’A’> v;
17 constexpr auto n = v.size();
18 constexpr auto a = v.get<0>();
19 constexpr auto b = v.get<1>();
20 constexpr auto c = v.get<2>();
21 std::cout << n << ’ ’ << a << ’ ’ << b << ’ ’ << c << ’\n’;
22 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 380

Constexpr-Friendly Homogeneous List Example

1 #include <iostream>
2 #include <tuple>
3

4 // homogeneous list of constant values
5 template <auto v1, decltype(v1)... vs> class value_list {
6 public:
7 constexpr value_list() : v_(v1, vs...) {}
8 template <int n> constexpr auto get() const
9 {return std::get<n>(v_);}

10 constexpr int size() const {return 1 + sizeof...(vs);}
11 private:
12 std::tuple<decltype(v1), decltype(vs)...> v_;
13 };
14

15 int main() {
16 constexpr value_list<1, 2, 3> v;
17 constexpr auto n = v.size();
18 constexpr auto a = v.get<0>();
19 constexpr auto b = v.get<1>();
20 constexpr auto c = v.get<2>();
21 std::cout << n << ’ ’ << a << ’ ’ << b << ’ ’ << c << ’\n’;
22 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 381

Section 2.5.6

Template Specialization

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 382

Template Specialization

� sometimes can be desirable to provide customized version of template for
certain choices of template parameters

� customized version of templates can be specified through language
feature known as template specialization

� two kinds of specialization: explicit and partial

� explicit specialization (less formally known as full specialization):
customized version of template where all template parameters are fixed

� partial specialization: customized version of template where only some
of template parameters are fixed

� class templates, function templates, and variable templates can all be
specialized

� alias templates cannot be specialized

� class templates and variable templates can be partially or explicitly
specialized

� function templates can only be explicitly specialized (not partially)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 383

Explicit Specialization

� syntax for explicit specialization:

template <> declaration

� declaration: declaration of templated entity (e.g., function, class, variable)

� example:
// unspecialized template
template <class T, class U>
void func(T x, U y) { /* ... */ }

// explicit specialization of template
// (for when template parameters are bool, bool)
template <>
void func<bool, bool>(bool x, bool y) { /* ... */ }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 384

Partial Specialization
� syntax for partial specialization of class template:

template <parameter_list> class_key
class_name <argument_list> declaration

� syntax for partial specialization of variable template:

template <parameter_list> type_name
variable_name <argument_list> declaration

� class_key: class or struct keyword (for class template)
� class_name: class being specialized (for class template)
� type_name: type of variable (for variable template)
� variable_name: variable being specialized (for variable template)
� argument_list: template argument list
� declaration: declaration of templated entity (e.g., class, variable)
� example:

// unspecialized template
template <class T, int N> class Widget { /* ... */ };

// partial specialization of template
// (for when first template parameter is bool)
template <int N> class Widget<bool, N> { /* ... */ };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 385

Explicitly-Specialized Function Template: printPointee

1 #include <iostream>
2

3 // unspecialized version
4 template <class T>
5 typename std::ostream& printPointee(
6 typename std::ostream& out, const T* p)
7 {return out << *p << ’\n’;}
8

9 // specialization
10 template <>
11 typename std::ostream& printPointee<void>(
12 typename std::ostream& out, const void* p)
13 {return out << *static_cast<const char*>(p) << ’\n’;}
14

15 int main() {
16 int i = 42;
17 const int* ip = &i;
18 char c = ’A’;
19 const void* vp = &c;
20 printPointee(std::cout, ip);
21 printPointee(std::cout, vp);
22 }
23

24 /* Output:
25 42
26 A
27 */

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 386

Explicitly-Specialized Class Template: is_void

1 template <class T>
2 struct is_void
3 {static constexpr bool value = false;};
4

5 template <>
6 struct is_void<void>
7 {static constexpr bool value = true;};
8

9 template <>
10 struct is_void<const void>
11 {static constexpr bool value = true;};
12

13 template <>
14 struct is_void<volatile void>
15 {static constexpr bool value = true;};
16

17 template <>
18 struct is_void<const volatile void>
19 {static constexpr bool value = true;};
20

21 static_assert(is_void<int>::value == false);
22 static_assert(is_void<double*>::value == false);
23 static_assert(is_void<void>::value == true);
24 static_assert(is_void<const void>::value == true);
25 static_assert(is_void<volatile void>::value == true);
26 static_assert(is_void<const volatile void>::value == true);
27

28 int main() {}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 387

Partially-Specialized Class Template

1 #include <iostream>
2

3 // unspecialized version
4 template <typename T, typename V>
5 struct Widget {
6 Widget() {std::cout << "unspecialized\n";}
7 };
8

9 // partial specialization
10 template <typename T>
11 struct Widget<int, T> {
12 Widget() {std::cout << "partial\n";}
13 };
14

15 // explicit specialization
16 template <>
17 struct Widget<int, int> {
18 Widget() {std::cout << "explicit\n";}
19 };
20

21 int main() {
22 Widget<double, int> w1; // unspecialized version
23 Widget<int, double> w2; // partial specialization
24 Widget<int, int> w3; // explicit specialization
25 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 388

Partially-Specialized Class Template: std::vector

� std::vector class employs specialization

� consider vector of elements of type T

� most natural way to store elements is as array of T

� if T is bool, such an approach makes very inefficient use of memory,
since each bool object requires one byte of storage

� if T is bool, would be much more memory-efficient to use array of, say,
unsigned char and pack multiple bool objects in each byte

� std::vector accomplishes this by providing (partial) specialization for
case that T is bool

� declaration of base template for std::vector and its partial
specialization for case when T is bool are as follows:

template <class T, class Alloc = allocator<T>>
class vector; // unspecialized version

template <class Alloc>
class vector<bool, Alloc>; // partial specialization

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 389

Explicitly-Specialized Variable Template: is_void_v

1 template <class T>
2 constexpr bool is_void_v = false;
3

4 template <>
5 constexpr bool is_void_v<void> = true;
6

7 template <>
8 constexpr bool is_void_v<const void> = true;
9

10 template <>
11 constexpr bool is_void_v<volatile void> = true;
12

13 template <>
14 constexpr bool is_void_v<const volatile void> = true;
15

16 static_assert(is_void_v<int> == false);
17 static_assert(is_void_v<double*> == false);
18 static_assert(is_void_v<void> == true);
19 static_assert(is_void_v<const void> == true);
20 static_assert(is_void_v<volatile void> == true);
21 static_assert(is_void_v<const volatile void> == true);
22

23 int main() {}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 390

Explicitly-Specialized Variable Template: factorial

1 template <unsigned long long N>
2 constexpr unsigned long long
3 factorial = N * factorial<N - 1>;
4

5 template <>
6 constexpr unsigned long long
7 factorial<0> = 1;
8

9 int main() {
10 static_assert(factorial<5> == 120,
11 "factorial<5> failed");
12 static_assert(factorial<12> == 479’001’600,
13 "factorial<12> failed");
14 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 391

Partially-Specialized Variable Template: quotient

1 #include <limits>
2

3 // unspecialized version
4 template <int X, int Y>
5 constexpr int quotient = X / Y;
6

7 // partial specialization (which prevents division by zero)
8 template <int X>
9 constexpr int quotient<X, 0> = (X < 0) ?

10 std::numeric_limits<int>::min() : std::numeric_limits<int>::max();
11

12 static_assert(quotient<4, 2> == 2);
13 static_assert(quotient<5, 3> == 1);
14 static_assert(quotient<4, 0> == std::numeric_limits<int>::max());
15 static_assert(quotient<-4, 0> == std::numeric_limits<int>::min());
16

17 int main() {}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 392

Section 2.5.7

Miscellany

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 393

Overload Resolution and Substitution Failure
� when creating candidate set (of functions) for overload resolution, some or

all candidates of that set may be result of instantiated templates with
template arguments substituted for corresponding template parameters

� process of substituting template arguments for corresponding template
parameters can lead to invalid code

� if certain types of invalid code result from substitution in any of following,
substitution failure said to occur:

2 all types used in function type (i.e., return type and types of all parameters)
2 all types used in template parameter declarations
2 all expressions used in function type
2 all expressions used in template parameter declaration

� substitution failure not treated as error
� instead, substitution failure simply causes overload to be removed from

candidate set
� this behavior often referred to by term “substitution failure is not an error

(SFINAE)”
� SFINAE behavior often exploited in template metaprogramming

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 394

Some Kinds of Substitution Failures

� attempting to instantiate pack expansion containing multiple parameter
packs of differing lengths

� attempting to create array with element type that is void, function type,
reference type, or abstract class type

� attempting to create array with size that is zero or negative

� attempting to use type that is not class or enumeration type in qualified
name

� attempting to use type in nested name specifier of qualified ID, when type
does not contain specified member, or

2 specified member is not type where type is required
2 specified member is not template where template is required
2 specified member is not non-type where non-type is required

� attempting to create pointer to reference type

� attempting to create reference to void

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 395

Some Kinds of Substitution Failures (Continued)

� attempting to create pointer to member of T when T is not class type

� attempting to give invalid type to non-type template parameter

� attempting to perform invalid conversion in either template argument
expression, or expression used in function declaration

� attempting to create function type in which parameter has type of void,
or in which return type is function type or array type

� attempting to create function type in which parameter type or return type
is abstract class

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 396

SFINAE Example: Truncate
1 class Real {
2 public:
3 using rounded_type = long long;
4 rounded_type truncate() const {
5 rounded_type result;
6 // ...
7 return result;
8 }
9 // ...

10 };
11
12 // function 1
13 template <class T>
14 typename T::rounded_type truncate(const T& x) {return x.truncate();}
15 // NOTE: example would not compile if return type specified as auto
16
17 // function 2
18 int truncate(double x) {return x;}
19
20 int main() {
21 Real r;
22 float f = 3.14f;
23 auto rounded_r = truncate(r);
24 // calls function 1 (only trivial conversions)
25 auto rounded_f = truncate(f);
26 // function 2 requires nontrivial conversions
27 // function 1 would only require trivial conversions but
28 // substitution failure occurs
29 // calls function 2 (with conversions)
30 }

[see .overload resolution]
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 397

SFINAE Example: Truncate Revisited

1 class Real {
2 public:
3 using rounded_type = long long;
4 rounded_type truncate() const {
5 rounded_type result;
6 // ...
7 return result;
8 }
9 // ...

10 };
11
12 // function 1
13 template <class T, class = typename T::rounded_type>
14 auto truncate(const T& x) {return x.truncate();}
15
16 // function 2
17 int truncate(double x) {return x;}
18
19 int main() {
20 Real r;
21 float f = 3.14f;
22 auto rounded_r = truncate(r);
23 // calls function 1 (only trivial conversions)
24 auto rounded_f = truncate(f);
25 // function 2 requires nontrivial conversions
26 // function 1 would only require trivial conversions but
27 // substitution failure occurs
28 // calls function 2 (with conversions)
29 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 398

std::enable_if and std::enable_if_t
� to make SFINAE more convenient to exploit, class template

std::enable_if and alias template std::enable_if_t are provided
� declaration of class template enable_if:

template <bool B, class T = void>
struct enable_if;

� if B is true, class has member type type defined as T; otherwise, class
has no type member

� possible implementation of enable_if:
1 template <bool B, class T = void>
2 struct enable_if {};
3

4 template <class T>
5 struct enable_if<true, T> {
6 using type = T;
7 };

� declaration of alias template enable_if_t:
template <bool B, class T = void>
using enable_if_t = typename enable_if<B, T>::type;

� if enable_if_t is used with its first parameter as false, substitution
failure will result

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 399

SFINAE Example: Modulo

1 #include <type_traits>
2 #include <cassert>
3 #include <iostream>
4

5 // ISO-Pascal modulo operator for signed integral types
6 template <class T> inline
7 std::enable_if_t<std::is_integral_v<T> && std::is_signed_v<T>, T>
8 mod(T x, T y) {
9 assert(y > 0);

10 if (x < 0) {x += (((-x) / y) + 1) * y;}
11 return x % y;
12 }
13

14 // ISO-Pascal modulo operator for unsigned integral types
15 template <class T> inline
16 std::enable_if_t<std::is_integral_v<T> && std::is_unsigned_v<T>, T>
17 mod(T x, T y)
18 {return x % y;}
19

20 int main() {
21 auto si = mod(-4, 3); // uses signed version
22 auto ui = mod(5u, 3u); // uses unsigned version
23 auto slli = mod(-5ll, 3ll); // uses signed version
24 auto ulli = mod(4ull, 3ull); // uses unsigned version
25 // auto f = mod(3.0, 4.0);
26 // ERROR: no matching function call
27 std::cout << si << ’ ’ << ui << ’ ’ << slli << ’ ’ << ulli << ’\n’;
28 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 400

Detection Idiom Example

1 #include <iostream>
2 #include <experimental/type_traits>
3
4 class Widget {
5 public:
6 void foo() const {}
7 // ...
8 };
9

10 class Gadget {
11 public:
12 void foo() {}
13 // ...
14 };
15
16 // helper template for testing if class has member function called
17 // foo that can be invoked on const object with no arguments.
18 template <class T>
19 using has_usable_foo_t = decltype(std::declval<const T&>().foo());
20

21 int main() {
22 std::cout
23 << "Widget "
24 << std::experimental::is_detected_v<has_usable_foo_t, Widget>
25 << ’\n’
26 << "Gadget "
27 << std::experimental::is_detected_v<has_usable_foo_t, Gadget>
28 << ’\n’;
29 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 401

Section 2.5.8

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 402

References I

1 D. Vandevoorde and N. M. Josuttis. C++ Templates: The Complete Guide.
Addison Wesley, 2002.

2 P. Sommerlad. Variadic and variable templates.
Overload, 126:14–17, Apr. 2015.
Available online at http://accu.org/index.php/journals/2087.

3 A. Sutton. Introducing concepts.
Overload, 129:4–8, Oct. 2015.
Available online at http://accu.org/index.php/journals/2157.

4 A. Sutton. Defining concepts.
Overload, 131:4–8, Feb. 2016.
Available online at http://accu.org/index.php/journals/2198.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 403

http://accu.org/index.php/journals/2087
http://accu.org/index.php/journals/2157
http://accu.org/index.php/journals/2198

Talks I

1 Peter Sommerlad. Variadic Templates in C++11/C++14: An Introduction.
CppCon, Bellevue, WA, USA, Sept. 21, 2015. Available online at
https://youtu.be/R1G3P5SRXCw.

2 Arthur O’Dwyer. Template Normal Programming. CppCon, Bellevue, WA,
USA, Sept. 19, 2016. Available online at
https://youtu.be/vwrXHznaYLA and
https://youtu.be/VIz6xBvwYd8. (This talk is split into two parts.)

3 Arthur O’Dwyer. A Soupcon of SFINAE. CppCon, Bellevue, WA, USA,
Sept. 27, 2017. Available online at https://youtu.be/ybaE9qlhHvw.

4 Marshall Clow. The Detection Idiom: A Better Way to SFINAE. C++Now,
Aspen, CO, USA, May 19, 2017. Available online at
https://youtu.be/U3jGdnRL3KI.
Notwithstanding the talk’s title, this talk is actually about the functionality in the
Library Fundamentals TS related to is_detected, detected_or,
is_detected_exact, and is_detected_convertible.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 404

https://youtu.be/R1G3P5SRXCw
https://youtu.be/vwrXHznaYLA
https://youtu.be/VIz6xBvwYd8
https://youtu.be/ybaE9qlhHvw
https://youtu.be/U3jGdnRL3KI

Talks II

5 Walter E. Brown. Modern Template Metaprogramming: A Compendium,
Part I. CppCon, Bellevue, WA, USA, Sept. 9, 2014. Available online at
https://youtu.be/Am2is2QCvxY.

6 Walter E. Brown. Modern Template Metaprogramming: A Compendium,
Part II. CppCon, Bellevue, WA, USA, Sept. 9, 2014. Available online at
https://youtu.be/a0FliKwcwXE.

7 Stephan T. Lavavej. Class Template Argument Deduction for Everyone.
CppCon, Bellevue, WA, USA, Sept. 27, 2018. Available online at
https://youtu.be/-H-ut6j1BYU.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 405

https://youtu.be/Am2is2QCvxY
https://youtu.be/a0FliKwcwXE
https://youtu.be/-H-ut6j1BYU

Section 2.6

Lambda Expressions

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 406

Motivation for Lambda Expressions

�functor classes extremely useful, especially for generic programming

� writing definitions of functor classes somewhat tedious, especially if many
such classes

� functor classes all have same general structure (i.e., constructor,
function-call operator, zero or more data members)

� would be nice if functor could be created without need to explicitly write
functor-class definition

� lambda expressions provide compact notation for creating functors

� convenience feature (not fundamentally anything new that can be done
with lambda expressions that could not already have been done without
them)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 407

Lambda Expressions

� lambda expression consists of:
1 introducer: capture list in square brackets
2 declarator: parameter list in parentheses followed by return type using

trailing return-type syntax
3 compound statement in brace brackets

� capture list specifies objects to be captured as data members
� declarator specifies parameter list and return type of function-call operator
� compound statement specifies body of function-call operator
� if no declarator specified, defaults to ()
� if no return type specified, defaults to type of expression in return

statement, or void if no return statement
� when evaluated, lambda expression yields object called closure (which is

essentially a functor)
� examples:

[](double x)->int{return floor(x);}
[](int x, int y){return x < y;}
[]{std::cout << "Hello, World!\n";}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 408

Lambda Expressions (Continued)

� closure object is unnamed (temporary object)

� closure type is unnamed

� operator() is always inline
::::::::
[C++17 8.1.5.1/3]

� operator() is const member function unless mutable keyword used

::::::::
[C++17 8.1.5.1/4]

� if closure type is literal type, all members of closure type automatically
constexpr

� if no capture, closure type provides conversion function to pointer to
function having same parameter and return types as closure type’s
function call operator; value returned is address of function that, when
invoked, has same effect as invoking closure type’s function call operator
(function pointer not tied to lifetime of closure object)

:::::::::
[C++17 8.1.5.1/6]

� although operator() in closure very similar to case of normal functor,
not everything same (e.g., operator() member in closure type cannot
access this pointer for closure type)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 409

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.prim.lambda.closure#3
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.prim.lambda.closure#4
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.prim.lambda.closure#6

Hello World Program Revisited

1 #include <iostream>
2

3 int main() {
4 []{std::cout << "Hello, World!\n";}();
5 }

1 #include <iostream>
2

3 struct Hello {
4 void operator()() const {
5 std::cout << "Hello, World!\n";
6 }
7 };
8

9 int main() {
10 Hello hello;
11 hello();
12 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 410

Linear-Function Functor Example

1 #include <iostream>
2
3 auto make_linear_func(float a, float b)
4 {return [a, b](float x){return a * x + b;};}
5

6 int main() {
7 float a = 0.5f; float b = 1.0f;
8 auto f = make_linear_func(a, b);
9 std::cout << f(1.0f) << ’\n’;

10 }

1 #include <iostream>
2
3 class linear_func {
4 public:
5 linear_func(float a, float b) : a_(a), b_(b) {}
6 float operator()(float x) const {return a_ * x + b_;}
7 private:
8 float a_; float b_;
9 };

10
11 linear_func make_linear_func(float a, float b)
12 {return linear_func(a, b);}
13

14 int main() {
15 float a = 0.5f; float b = 1.0f;
16 linear_func f = make_linear_func(a, b);
17 std::cout << f(1.0f) << ’\n’;
18 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Comparison Functor Example

1 #include <iostream>
2 #include <algorithm>
3 #include <cstdlib>
4 #include <vector>
5

6 int main() {
7 std::vector<int> v{-3, 3, 4, 0, -2, -1, 2, 1, -4};
8 std::sort(v.begin(), v.end(),
9 [](int x, int y) {return std::abs(x) < std::abs(y);});

10 for (auto x : v) std::cout << x << ’\n’;
11 }

1 #include <iostream>
2 #include <algorithm>
3 #include <cstdlib>
4 #include <vector>
5

6 struct abs_less {
7 bool operator()(int x, int y) const
8 {return std::abs(x) < std::abs(y);}
9 };

10

11 int main() {
12 std::vector<int> v{-3, 3, 4, 0, -2, -1, 2, 1, -4};
13 std::sort(v.begin(), v.end(), abs_less());
14 for (auto x : v) std::cout << x << ’\n’;
15 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 411

Capturing Objects

� locals only available if captured; non-locals always available

� can capture by value or by reference

� different locals can be captured differently

� can specify default capture mode

� can explicitly list objects to be captured or not

� might be wise to explicitly list all objects to be captured (when practical) to
avoid capturing objects accidentally (e.g., due to typos)

� in member function, to capture class object by value, capture *this

� in member function, can also capture this

� this must be captured by value

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 412

std::transform

� (unary version of) std::transform applies given (unary) operator to
each element in range specified by pair of iterators and writes result to
location specified by another iterator

� definition of std::transform would typically resemble:
template <class InputIterator, class OutputIterator,
class UnaryOperator>
OutputIterator transform(InputIterator first,
InputIterator last, OutputIterator result,
UnaryOperator op) {
while (first != last) {

*result = op(*first);
++result;
++first;

}
return result;

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 413

Modulus Example
1 #include <iostream>
2 #include <vector>
3 #include <algorithm>
4
5 int main() {
6 int m = 2;
7 std::vector<int> v{0, 1, 2, 3};
8 std::transform(v.begin(), v.end(), v.begin(),
9 [m](int x){return x % m;});

10 for (auto x : v) std::cout << x << ’\n’;
11 }

1 #include <iostream>
2 #include <vector>
3 #include <algorithm>
4
5 class mod {
6 public:
7 mod(int m_) : m(m_) {}
8 int operator()(int x) const {return x % m;}
9 private:

10 int m;
11 };
12
13 int main() {
14 int m = 2;
15 std::vector<int> v{0, 1, 2, 3};
16 std::transform(v.begin(), v.end(), v.begin(), mod(m));
17 for (auto x : v) std::cout << x << ’\n’;
18 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 414

Modulus Example: Without Lambda Expression

1 #include <iostream>
2 #include <vector>
3 #include <algorithm>
4

5 class mod {
6 public:
7 mod(int m_) : m(m_) {}
8 int operator()(int x) const {return x % m;}
9 private:

10 int m;
11 };
12

13 int main() {
14 int m = 2;
15 std::vector<int> v{0, 1, 2, 3};
16 std::transform(v.begin(), v.end(), v.begin(), mod(m));
17 for (auto x : v) std::cout << x << ’\n’;
18 }

� approximately 8.5 lines of code to generate functor

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 415

Modulus Example: With Lambda Expression

1 #include <iostream>
2 #include <vector>
3 #include <algorithm>
4

5 int main() {
6 int m = 2;
7 std::vector<int> v{0, 1, 2, 3};
8 std::transform(v.begin(), v.end(), v.begin(),
9 [m](int x){return x % m;});

10 for (auto x : v) std::cout << x << ’\n’;
11 }

� m captured by value

� approximately 0.5 lines of code to generate functor

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 416

std::for_each

� std::for_each applies given function/functor to each element in range
specified by pair of iterators

� definition of std::for_each would typically resemble:

template<class InputIterator, class Function>
Function for_each(InputIterator first,
InputIterator last, Function func) {
while (first != last) {

func(*first);
++first;

}
return move(func);

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 417

Product Example
1 #include <iostream>
2 #include <vector>
3 #include <algorithm>
4
5 int main() {
6 std::vector<int> v{2, 3, 4};
7 int prod = 1;
8 std::for_each(v.begin(), v.end(),
9 [&prod](int x)->void{prod *= x;});

10 std::cout << prod << ’\n’;
11 }

1 #include <iostream>
2 #include <vector>
3 #include <algorithm>
4
5 class cum_prod {
6 public:
7 cum_prod(int& prod_) : prod(prod_) {}
8 void operator()(int x) const {prod *= x;}
9 private:

10 int& prod;
11 };
12
13 int main() {
14 std::vector<int> v{2, 3, 4};
15 int prod = 1;
16 std::for_each(v.begin(), v.end(), cum_prod(prod));
17 std::cout << prod << ’\n’;
18 }
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 418

Product Example: Without Lambda Expression

1 #include <iostream>
2 #include <vector>
3 #include <algorithm>
4

5 class cum_prod {
6 public:
7 cum_prod(int& prod_) : prod(prod_) {}
8 void operator()(int x) const {prod *= x;}
9 private:

10 int& prod;
11 };
12

13 int main() {
14 std::vector<int> v{2, 3, 4};
15 int prod = 1;
16 std::for_each(v.begin(), v.end(), cum_prod(prod));
17 std::cout << prod << ’\n’;
18 }

� approximately 8.5 lines of code to generate functor

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 419

Product Example: With Lambda Expression

1 #include <iostream>
2 #include <vector>
3 #include <algorithm>
4

5 int main() {
6 std::vector<int> v{2, 3, 4};
7 int prod = 1;
8 std::for_each(v.begin(), v.end(),
9 [&prod](int x)->void{prod *= x;});

10 std::cout << prod << ’\n’;
11 }

� prod captured by reference

� approximately 1 line of code to generate functor

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 420

More Variations on Capture

double a = 2.14;
double b = 3.14;
double c = 42.0;

// capture all objects by reference (i.e., a, b, and c)
[&](double x, double y){return a * x + b * y + c;}

// capture all objects by value (i.e., a, b, and c)
[=](double x, double y){return a * x + b * y + c;}

// capture all objects by value, except a
// which is captured by reference
[=,&a](double x, double y){return a * x + b * y + c;}

// capture all objects by reference, except a
// which is captured by value
[&,a](double x, double y){return a * x + b * y + c;}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 421

Generalized Lambda Capture

� can specify name for captured object in closure type

int a = 1;
auto f = [x = a]() {return x;};

� can capture result of expression (e.g., to perform move instead of copy or
to add arbitrary new state to closure type)

std::vector<int> v(1000, 1);
auto f = [v = std::move(v)]() ->
const std::vector<int>& {return v;};

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 422

Generalized Lambda Capture Example

1 #include <iostream>
2

3 int main() {
4 int x = 0;
5 int y = 1;
6 auto f = [&count = x, inc = y + 1](){
7 return count += inc;
8 };
9 std::cout << f() << ’ ’;

10 std::cout << f() << ’\n’;
11 }
12

13 // output: 2 4

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 423

Generic Lambda Expressions

� can allow compiler to deduce type of lambda function parameters

� generates closure type with templated function-call operator

� one template type parameter for each occurrence of auto in lambda
expression’s parameter declaration clause

:::::::::
[C++17 8.1.5.1/3]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 424

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.prim.lambda.closure#3

Generic Lambda Expression Example [Generic]

1 #include <iostream>
2 #include <complex>
3 #include <string>
4

5 int main() {
6 using namespace std::literals;
7 auto add = [](auto x, auto y) {return x + y;};
8 std::cout << add(1, 2) << ’ ’ << add(1.0, 2.0) << ’ ’
9 << add(1.0, 2.0i) << ’ ’ << add("Jell"s, "o"s) << ’\n’;

10 }

1 #include <iostream>
2 #include <complex>
3 #include <string>
4

5 struct Add {
6 template <class T, class U>
7 auto operator()(T x, U y) {return x + y;};
8 };
9

10 int main() {
11 using namespace std::literals;
12 Add add;
13 std::cout << add(1, 2) << ’ ’ << add(1.0, 2.0) << ’ ’
14 << add(1.0, 2.0i) << ’ ’ << add("Jell"s, "o"s) << ’\n’;
15 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 425

Generic Lambda Expression Example [Convenience]

1 #include <iostream>
2 #include <vector>
3 #include <algorithm>
4

5 int main() {
6 std::vector<int> v{0, 1, 2, 3, 4, 5, 6, 7};
7 // sort elements of vector in descending order
8 std::sort(v.begin(), v.end(),
9 [](auto i, auto j) {return i > j;});

10 std::for_each(v.begin(), v.end(),
11 [](auto i) {std::cout << i << ’\n’;});
12 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 426

Dealing With Unnamed Types

� fact that closure types unnamed causes complications when need arises
to refer to closure type

� helpful language features: auto, decltype

� helpful library features: std::function

� closures can be stored using auto or std::function

� closures that do not capture can be “stored” by assigning to function
pointer

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 427

Using auto, decltype, and std::function

1 #include <iostream>
2 #include <functional>
3

4 std::function<double(double)> linear(double a, double b) {
5 return [=](double x){return a * x + b;};
6 }
7

8 int main() {
9 // type of f is std::function<double(double)>

10 auto f = linear(2.0, -1.0);
11 // g has closure type
12 auto g = [](double x){return 2.0 * x - 1.0;};
13 double (*u)(double) = [](double x){return 2.0 * x - 1.0;};
14 // h has same type as g
15 decltype(g) h = g;
16 for (double x = 0.0; x < 10.0; x += 1.0) {
17 std::cout << x << ’ ’ << f(x) << ’ ’ << g(x) <<
18 ’ ’ << h(x) << (*u)(x) << ’\n’;
19 }
20 }

� applying function-call operator to f much slower than in case of g and h
� when std::function used, inlining of called function probably not

possible
� when functor used directly (via function-call operator) inlining is very likely
� prefer auto over std::function for storing closures

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 428

operator() as Non-const Member

1 #include <iostream>
2

3 int main()
4 {
5 int count = 5;
6 // Must use mutable in order to be able to
7 // modify count member.
8 auto get_count = [count]() mutable -> int {
9 return count++;

10 };
11

12 int c;
13 while ((c = get_count()) < 10) {
14 std::cout << c << ’\n’;
15 }
16 }

� operator() is declared as const member function unless mutable
keyword used

� const member function cannot change (non-static) data members

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 429

Constexpr Lambdas

1 #include <iostream>
2 #include <array>
3

4 template <typename T>
5 constexpr auto multiply_by(T i) {
6 return [i](auto j) {return i * j;};
7 // OK: lambda is literal type so members
8 // are automatically constexpr
9 }

10

11 int main() {
12 constexpr auto mult_by_2 = multiply_by(2);
13 std::array<int, mult_by_2(8)> a;
14 std::cout << a.size() << ’\n’;
15 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 430

Comparison Functors for Containers

1 #include <iostream>
2 #include <vector>
3 #include <set>
4

5 int main() {
6 // The following two lines are the only important ones:
7 auto cmp = [](int* x, int* y){return *x < *y;};
8 std::set<int*, decltype(cmp)> s(cmp);
9

10 // Just for something to do:
11 // Print the elements of v in sorted order with
12 // duplicates removed.
13 std::vector<int> v = {4, 1, 3, 2, 1, 1, 1, 1};
14 for (auto& x : v) {
15 s.insert(&x);
16 }
17 for (auto x : s) {
18 std::cout << *x << ’\n’;
19 }
20 }

� note that s is not default constructed

� since closure types not default constructible, following would fail:
std::set<int*, decltype(cmp)> s;

� note use of decltype in order to specify type of functor

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 431

What Could Possibly Go Wrong?

1 #include <iostream>
2 #include <vector>
3 #include <functional>
4

5 std::vector<int> vec{2000, 4000, 6000, 8000, 10000};
6 std::function<int(int)> func;
7

8 void do_stuff()
9 {

10 int modulus = 10000;
11 func = [&](int x){return x % modulus;};
12 for (auto x : vec) {
13 std::cout << func(x) << ’\n’;
14 }
15 }
16

17 int main()
18 {
19 do_stuff();
20 for (auto x : vec) {
21 std::cout << func(x) << ’\n’;
22 }
23 }

� above code has very serious bug; what is it?

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 432

Dangling References

� if some objects captured by reference, closure can hold dangling
references

� responsibility of programmer to avoid such problems

� if will not cause performance issues, may be advisable to capture by value
(to avoid problem of dangling references)

� dangling-reference example:
1 #include <iostream>
2 #include <functional>
3

4 std::function<double(double)> linear(double a, double b) {
5 return [&](double x){return a * x + b;};
6 }
7

8 int main() {
9 auto f = linear(2.0, -1.0);

10 // bad things will happen here
11 std::cout << f(1.0) << ’\n’;
12 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 433

Section 2.6.1

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 434

Talks I

1 Herb Sutter. Lambdas, Lambdas Everywhere. Professional Developers
Conference (PDC), Redmond, WA, USA, Oct. 27–29, 2010. Available
online at https://youtu.be/rcgRY7sOA58.

2 Herb Sutter. C++0x Lambda Functions. Northwest C++ Users’ Group
(NWCPP), Redmond, WA, USA, May 18, 2011. Available online at
https://vimeo.com/23975522.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 435

https://youtu.be/rcgRY7sOA58
https://vimeo.com/23975522

Section 2.7

Classes and Inheritance

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 436

Section 2.7.1

Derived Classes and Class Hierarchies

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 437

Derived Classes

� sometimes, want to express commonality between classes
� want to create new class from existing class by adding new members or

replacing (i.e., hiding/overriding) existing members
� can be achieved through language feature known as inheritance
� generate new class with all members of already existing class, excluding

special member functions (i.e., constructors, assignment operators, and
destructor)

� new class called derived class and original class called base class
� derived class said to inherit from base class
� can add new members (not in base class) to derived class
� can hide or override member functions from base class with new version
� syntax for specifying derived class:

class derived_class : base_class_specifiers

� derived_class is name of derived class; base_class_specifiers provide
base-class information

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 438

Derived Classes (Continued)

� can more clearly express intent by explicitly identifying relationship
between classes

� can facilitate code reuse by leverage existing code

� interface inheritance: allow different derived classes to be used
interchangeably through interface provided by common base class

� implementation inheritance: save implementation effort by sharing
capabilities provided by base class

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 439

Person Class

1 #include <string>
2

3 class Person {
4 public:
5 Person(const std::string& family_name,
6 const std::string& given_name) :
7 family_name_(family_name), given_name_(given_name) {}
8 std::string family_name() const {return family_name_;}
9 std::string given_name() const {return given_name_;}

10 std::string full_name() const
11 {return family_name_ + ", " + given_name_;}
12 // ...
13 private:
14 std::string family_name_;
15 std::string given_name_;
16 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 440

Student Class Without Inheritance

1 #include <string>
2

3 class Student {
4 public:
5 Student(const std::string& family_name,
6 const std::string& given_name) :
7 family_name_(family_name), given_name_(given_name) {}
8 // NEW
9 std::string family_name() const {return family_name_;}

10 std::string given_name() const {return given_name_;}
11 std::string full_name() const
12 {return family_name_ + ", " + given_name_;}
13 std::string student_id() {return student_id_;} // NEW
14 private:
15 std::string family_name_;
16 std::string given_name_;
17 std::string student_id_; // NEW
18 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 441

Student Class With Inheritance

1 // include definition of Person class here
2

3 class Student : public Person {
4 public:
5 Student(const std::string& family_name,
6 const std::string& given_name,
7 const std::string& student_id) :
8 Person(family_name, given_name),
9 student_id_(student_id) {}

10 std::string student_id() {return student_id_;}
11 private:
12 std::string student_id_;
13 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 442

Complete Inheritance Example
1 #include <string>
2

3 class Person {
4 public:
5 Person(const std::string& family_name,
6 const std::string& given_name) :
7 family_name_(family_name), given_name_(given_name) {}
8 std::string family_name() const {return family_name_;}
9 std::string given_name() const {return given_name_;}

10 std::string full_name() const
11 {return family_name_ + ", " + given_name_;}
12 // ... (including virtual destructor)
13 private:
14 std::string family_name_;
15 std::string given_name_;
16 };
17

18 class Student : public Person {
19 public:
20 Student(const std::string& family_name,
21 const std::string& given_name,
22 const std::string& student_id) :
23 Person(family_name, given_name),
24 student_id_(student_id) {}
25 std::string student_id() {return student_id_;}
26 private:
27 std::string student_id_;
28 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 443

Class Hierarchies

� inheritance relationships between classes form what is called class
hierarchy

� often class hierarchy represented by directed (acyclic) graph, where nodes
correspond to classes and edges correspond to inheritance relationships

� class definitions:
class A { /* ... */ };
class B : public A { /* ... */ };
class C : public A { /* ... */ };
class D : public B { /* ... */ };
class E : public B { /* ... */ };

� inheritance diagram:

B

ED

C

A

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 444

Class Hierarchy Example

� class definitions:
class Person { /* ... */ };
class Employee : public Person { /* ... */ };
class Student : public Person { /* ... */ };
class Alumnus : public Person { /* ... */ };
class Faculty : public Employee { /* ... */ };
class Staff : public Employee { /* ... */ };
class Grad : public Student { /* ... */ };
class Undergrad : public Student { /* ... */ };

� inheritance diagram:

Student

Person

Employee Alumnus

Faculty Undergrad GradStaff

� each of Employee, Student, and Alumnus is a Person; each of Faculty
and Staff is an Employee; each of Undergrad and Grad is a Student

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 445

Member Access Specifiers: protected

� earlier, introduced public and private access specifiers for class
members

� in context of inheritance, another access specifier becomes relevant,
namely, protected

� member declared in protected section of class can only be accessed by
2 member functions and friends of that class; and
2 by member functions and friends of derived classes

� protected members used to provide developers of derived classes access
to some inner workings of base class without exposing such inner
workings to everyone

� usually, bad idea to use protected access for data members (for similar
reasons that using public access for data members is usually bad)

� protected access usually employed for function members

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 446

Types of Inheritance

� three types of inheritance with respect to access protection: public,
protected, and private

� these three types of inheritance differ in terms of accessibility, in derived
class, of members inherited from base class

� private parts of base class are always inaccessible in derived class,
regardless of whether public, protected, or private inheritance used

� if this were not case, all access protection could simply be bypassed by
using inheritance

� access specifiers for members accessible in derived class chosen as
follows:

Access Specifier in Derived Class
Access Specifier in Public Protected Private
Base Class Inheritance Inheritance Inheritance

public public protected private
protected protected protected private

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 447

Types of Inheritance (Continued)

� for struct, defaults to public inheritance

� for class, defaults to private inheritance

� public and protected/private inheritance have different use cases, as we
will see later

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 448

Inheritance and Member Access Example

1 class Base {
2 public:
3 void f();
4 protected:
5 void g();
6 private:
7 int x;
8 };
9

10 class Derived_1 : public Base {
11 // f is public
12 // g is protected
13 // x is not accessible from Derived_1
14 };
15

16 class Derived_2 : protected Base {
17 // f is protected
18 // g is protected
19 // x is not accessible from Derived_2
20 };
21

22 class Derived_3 : private Base {
23 // f is private
24 // g is private
25 // x is not accessible from Derived_3
26 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 449

Public Inheritance Example
1 class Base {
2 public:
3 void func_1();
4 protected:
5 void func_2();
6 private:
7 int x_;
8 };
9

10 class Derived : public Base {
11 public:
12 void func_3() {
13 func_1(); // OK
14 func_2(); // OK
15 x_ = 0; // ERROR: inaccessible
16 }
17 };
18

19 struct Widget : public Derived {
20 void func_4() { func_2(); } // OK
21 };
22

23 int main() {
24 Derived d;
25 d.func_1(); // OK
26 d.func_2(); // ERROR: inaccessible
27 d.x_ = 0; // ERROR: inaccessible
28 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 450

Protected Inheritance Example
1 class Base {
2 public:
3 void func_1();
4 protected:
5 void func_2();
6 private:
7 int x_;
8 };
9

10 class Derived : protected Base {
11 public:
12 void func_3() {
13 func_1(); // OK
14 func_2(); // OK
15 x_ = 0; // ERROR: inaccessible
16 }
17 };
18

19 struct Widget : public Derived {
20 void func_4() { func_2(); } // OK
21 };
22

23 int main() {
24 Derived d; // OK: defaulted constructor is public
25 d.func_1(); // ERROR: inaccessible
26 d.func_2(); // ERROR: inaccessible
27 d.x_ = 0; // ERROR: inaccessible
28 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 451

Private Inheritance Example
1 class Base {
2 public:
3 void func_1();
4 protected:
5 void func_2();
6 private:
7 int x_;
8 };
9

10 class Derived : private Base {
11 public:
12 void func_3() {
13 func_1(); // OK
14 func_2(); // OK
15 x_ = 0; // ERROR: inaccessible
16 }
17 };
18

19 struct Widget : public Derived {
20 void func_4() { func_2(); } // ERROR: inaccessible
21 };
22

23 int main() {
24 Derived d; // OK: defaulted constructor is public
25 d.func_1(); // ERROR: inaccessible
26 d.func_2(); // ERROR: inaccessible
27 d.x_ = 0; // ERROR: inaccessible
28 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 452

Public Inheritance

� public inheritance is inheritance in traditional object-oriented programming
sense

� public inheritance models an is-a relationship (i.e., derived class object is
a base class object)

� most common form of inheritance

� inheritance relationship visible to all code

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 453

Public Inheritance Example

1 #include <string>
2

3 class Person {
4 public:
5 Person(const std::string& family_name, const std::string&
6 given_name) : family_name_(family_name),
7 given_name_(given_name) {}
8 std::string family_name() const
9 {return family_name_;}

10 std::string given_name() const
11 {return given_name_;}
12 std::string full_name() const
13 {return family_name_ + ", " + given_name_;}
14 private:
15 std::string family_name_;
16 std::string given_name_;
17 };
18

19 class Student : public Person {
20 public:
21 Student(const std::string& family_name, const std::string&
22 given_name, const std::string& student_id) :
23 Person(family_name, given_name), student_id_(student_id) {}
24 std::string student_id()
25 {return student_id_;}
26 private:
27 std::string student_id_;
28 };
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 454

Protected and Private Inheritance

� protected and private inheritance not inheritance in traditional
object-oriented programming sense (i.e., no is-a relationship)

� form of implementation inheritance

� implemented-in-terms-of relationship (i.e., derived class object
implemented in terms of a base class object)

� in case of protected inheritance, inheritance relationship only seen by
derived classes and their friends and class itself and its friends

� in case of private inheritance, inheritance relationship only seen by class
itself and its friends (not derived classes and their friends)

� except in special circumstances, normally bad idea to use inheritance for
composition

� one good use case for private/protected inheritance is in policy-based
design, which exploits empty base optimization (EBO)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 455

Policy-Based Design Example: Inefficient Memory Usage

1 #include <mutex>
2

3 class ThreadSafePolicy {
4 public:
5 void lock() {mutex_.lock();}
6 void unlock() {mutex_.unlock();}
7 private:
8 std::mutex mutex_;
9 };

10

11 class ThreadUnsafePolicy {
12 public:
13 void lock() {} // no-op
14 void unlock() {} // no-op
15 };
16

17 template<class ThreadSafetyPolicy>
18 class Widget {
19 ThreadSafetyPolicy policy_;
20 // ...
21 };
22

23 int main() {
24 Widget<ThreadUnsafePolicy> w;
25 // w.policy_ has no data members, but
26 // sizeof(w.policy_) >= 1
27 // inefficient use of memory
28 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 456

Policy-Based Design Example: Private Inheritance and EBO

1 #include <mutex>
2

3 class ThreadSafePolicy {
4 public:
5 void lock() {mutex_.lock();}
6 void unlock() {mutex_.unlock();}
7 private:
8 std::mutex mutex_;
9 };

10

11 class ThreadUnsafePolicy {
12 public:
13 void lock() {} // no-op
14 void unlock() {} // no-op
15 };
16

17 template<class ThreadSafetyPolicy>
18 class Widget : ThreadSafetyPolicy {
19 // ...
20 };
21

22 int main() {
23 Widget<ThreadUnsafePolicy> w;
24 // empty-base optimization (EBO) can be applied
25 // no memory overhead for no-op thread-safety policy
26 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 457

Inheritance and Constructors

� by default, constructors not inherited

� often, derived class introduces new data members not in base class

� since base-class constructors cannot initialize derived-class data
members, inheriting constructors from base class by default would be bad
idea (e.g., could lead to uninitialized data members)

� in some cases, however, base-class constructors may be sufficient to
initialize derived-class objects

� in such cases, can inherit all non-special base-class constructors with
using statement

� special constructors (i.e., default, copy, and move constructors) cannot be
inherited

:::::::
[C++14 12.9/3]

:::::::
[C++14 12.9/6]

� constructors to be inherited with using statement may still be hidden by
constructors in derived class

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 458

http://www.ece.uvic.ca/~mdadams/cppdraft/n4140/html/class.inhctor#3
http://www.ece.uvic.ca/~mdadams/cppdraft/n4140/html/class.inhctor#6

Inheriting Constructors Example

1 class Base {
2 public:
3 Base() : i_(0.0), j_(0) {}
4 Base(int i) : i_(i), j_(0) {}
5 Base(int i, int j) : i_(i), j_(j) {}
6 // ... (other non-constructor members)
7 private:
8 int i_, j_;
9 };

10

11 class Derived : public Base {
12 public:
13 // inherit non-special constructors from Base
14 // (default constructor not inherited)
15 using Base::Base;
16 // default constructor is implicitly declared and
17 // not inherited
18 };
19

20 int main() {
21 Derived a;
22 // invokes non-inherited Derived::Derived()
23 Derived b(42, 42);
24 // invokes inherited Base::Base(int, int)
25 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 459

Inheriting Constructors Example
1 class Base {
2 public:
3 Base() : i_(0), j_(0), k_(0) {}
4 Base(int i, int j) : i_(i), j_(j), k_(0) {}
5 Base(int i, int j, int k) : i_(i), j_(j), k_(k) {}
6 // ... (other non-constructor members)
7 private:
8 int i_, j_, k_;
9 };

10

11 class Derived : public Base {
12 public:
13 // inherit non-special constructors from Base
14 // (default constructor not inherited)
15 using Base::Base;
16 // following constructor hides inherited constructor
17 Derived(int i, int j, int k) : Base(-i, -j, -k) {}
18 // no implicitly-generated default constructor
19 };
20

21 int main() {
22 Derived b(1, 2);
23 // invokes inherited Base::Base(int, int)
24 Derived c(1, 2, 3);
25 // invokes Derived::Derived(int, int, int)
26 // following would produce compile-time error:
27 // Derived a; // ERROR: no default constructor
28 }
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 460

Inheritance, Assignment Operators, and Destructors

� by default, assignment operators not inherited (for similar reasons as in
case of constructors)

� can inherit all non-special base-class assignment operators with using
statement

� copy and move assignment operators cannot be inherited
:::::::

[C++14 12.8/24]

� assignment operators to be inherited with using statement may still be
hidden by assignment operators in derived class

� cannot inherit destructor

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 461

http://www.ece.uvic.ca/~mdadams/cppdraft/n4140/html/class.copy#24

Inheriting Assignment Operators Example

1 class Base {
2 public:
3 explicit Base(int i) : i_(i) {}
4 Base& operator=(int i) {
5 i_ = i;
6 return *this;
7 }
8 // ...
9 private:

10 int i_;
11 };
12

13 class Derived : public Base {
14 public:
15 // inherit non-special constructors
16 using Base::Base;
17 // inherit non-special assignment operators
18 using Base::operator=;
19 // ...
20 };
21

22 int main() {
23 Derived d(0);
24 // invokes inherited Base::Base(int)
25 d = 42;
26 // invokes inherited Base::operator=(int)
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 462

Construction and Destruction Order

� order of construction:
1 if most-derived class in hierarchy, initialize all virtual base class objects in

hierarchy in order of depth-first left-to-right traversal of graph of base class
declarations, where left to right refers to order of appearance of base class
names in class definition (virtual base classes to be discussed later)

2 initialize non-virtual (direct) base class objects in order listed in class
definition

3 initialize non-static data members in order of declaration in class definition
4 execute constructor body

� order of destruction is exact reverse of order of construction, namely:
1 execute destructor body
2 destroy non-static data members in reverse of construction order
3 destroy non-virtual (direct) base class objects in reverse of construction

order
4 if most-derived class in hierarchy, destroy all virtual base class objects in

hierarchy in reverse of construction order

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 463

Order of Construction

1 #include <vector>
2 #include <string>
3

4 class Base {
5 public:
6 Base(int n) : v_(n, 0) {}
7 // ...
8 private:
9 std::vector<char> v_;

10 };
11

12 class Derived : public Base {
13 public:
14 Derived(const std::string& s) : Base(1024), s_(s)
15 { i_ = 0; }
16 // ...
17 private:
18 std::string s_;
19 int i_;
20 };
21

22 int main() {
23 Derived d("hello");
24 }

� construction order for Derived constructor: 1) Base class object, 2) data
member s_, 3) Derived constructor body (initializes data member i_)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 464

Hiding Base-Class Member Functions in Derived Class
� can provide new versions of member functions in derived class to hide

original functions in base class
1 #include <iostream>
2

3 class Fruit {
4 public:
5 void print() const {std::cout << "fruit\n";}
6 };
7

8 class Apple : public Fruit {
9 public:

10 void print() const {std::cout << "apple\n";}
11 };
12

13 class Banana : public Fruit {
14 public:
15 void print() const {std::cout << "banana\n";}
16 };
17

18 int main() {
19 Fruit f;
20 Apple a;
21 Banana b;
22 f.print(); // calls Fruit::print
23 a.print(); // calls Apple::print
24 b.print(); // calls Banana::print
25 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 465

Upcasting

� derived-class object always has base-class subobject
� given reference or pointer to derived-class object, may want to find

reference or pointer to corresponding base-class object
� upcasting: converting derived-class pointer or reference to base-class

pointer or reference
� upcasting allows us to treat derived-class object as base-class object
� upcasting always safe in sense that cannot result in incorrect type (since

every derived-class object is also a base-class object)
� can upcast without explicit type-cast operator as long as casted-to type is

accessible; C-style cast can used to bypass access protection (although
not recommended)

� example:
class Base { /* ... */ };
class Derived : public Base { /* ... */ };
void func() {

Derived d;
Base* bp = &d;

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 466

Downcasting
� downcasting: converting base-class pointer or reference to derived-class

pointer or reference
� downcasting allows us to force base-class object to be treated as

derived-class object
� downcasting is not always safe (since not every base-class object is

necessarily also derived-class object)
� must only downcast when known that object actually has derived type

(except in case of dynamic_cast)
� downcasting always requires explicit cast (e.g., static_cast,
dynamic_cast for dynamically-checked cast in polymorphic case, or
C-style cast)

� example:
class Base { /* ... (nonpolymorphic) */ };
class Derived : public Base { /* ... */ };
void func() {

Derived d;
Base* bp = &d;
Derived* dp = static_cast<Derived*>(bp);

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 467

Upcasting/Downcasting Example

1 class Base { /* ... (nonpolymorphic) */ };
2

3 class Derived : public Base { /* ... */ };
4

5 int main() {
6 Base b;
7 Derived d;
8 Base* bp = nullptr;
9 Derived* dp = nullptr;

10 bp = &d;
11 // OK: upcast does not require explicit cast
12 dp = bp;
13 // ERROR: downcast requires explicit cast
14 dp = static_cast<Derived*>(bp);
15 // OK: downcast with explicit cast and
16 // pointer (bp) refers to Derived object
17 Base& br = d;
18 // OK: upcast does not require explicit cast
19 Derived& dr1 = *bp;
20 // ERROR: downcast requires explicit cast
21 Derived& dr2 = *static_cast<Derived*>(bp);
22 // OK: downcast with explicit cast and
23 // object (*bp) is of Derived type
24 dp = static_cast<Derived*>(&b);
25 // BUG: pointer (&b) does not refer to Derived object
26 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 468

Upcasting Example

1 class Base { /* ... */ };
2

3 class Derived : public Base { /* ... */ };
4

5 void func_1(Base& b) { /* ... */ }
6

7 void func_2(Base* b) { /* ... */ }
8

9 int main() {
10 Base b;
11 Derived d;
12 func_1(b);
13 func_1(d); // OK: Derived& upcast to Base&
14 func_2(&b);
15 func_2(&d); // OK: Derived* upcast to Base*
16 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 469

Nonpolymorphic Behavior

1 #include <iostream>
2 #include <string>
3
4 class Person {
5 public:
6 Person(const std::string& family, const std::string& given) :
7 family_(family), given_(given) {}
8 void print() const {std::cout << "person: " << family_ << ’,’ << given_ << ’\n’;}
9 protected:

10 std::string family_; // family name
11 std::string given_; // given name
12 };
13
14 class Student : public Person {
15 public:
16 Student(const std::string& family, const std::string& given,
17 const std::string& id) : Person(family, given), id_(id) {}
18 void print() const {
19 std::cout << "student: " << family_ << ’,’ << given_ << ’,’ << id_ << ’\n’;
20 }
21 private:
22 std::string id_; // student ID
23 };
24
25 void processPerson(const Person& p) {
26 p.print(); // always calls Person::print
27 // ...
28 }
29
30 int main() {
31 Person p("Ritchie", "Dennis");
32 Student s("Doe", "John", "12345678");
33 processPerson(p); // invokes Person::print
34 processPerson(s); // invokes Person::print
35 }

� would be nice if processPerson called version of print that corresponds
to actual type of object referenced by function parameter p

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 470

Slicing
� slicing: copying or moving object of derived class to object of base class

(e.g., during construction or assignment), losing part of information in so
doing

� example:
1 class Base {
2 // ...
3 int x_;
4 };
5

6 class Derived : public Base {
7 // ...
8 int y_;
9 };

10

11 int main() {
12 Derived d1, d2;
13 Base b = d1;
14 // slicing occurs
15 Base& r = d1;
16 r = d2;
17 // more treacherous case of slicing
18 // slicing occurs
19 // d1 now contains mixture of d1 and d2
20 // (i.e., base part of d2 and derived part of d1)
21 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 471

Inheritance and Overloading

� functions do not overload across scopes

� can employ using statement to bring base members into scope for
overloading

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 472

Inheritance and Overloading Example

1 #include <iostream>
2

3 class Base {
4 public:
5 double f(double d) const {return d;}
6 // ...
7 };
8

9 class Derived : public Base {
10 public:
11 int f(int i) const {return i;}
12 // ...
13 };
14

15 int main()
16 {
17 Derived d;
18 std::cout << d.f(0) << ’\n’;
19 // calls Derived::f(int) const
20 std::cout << d.f(0.5) << ’\n’;
21 // calls Derived::f(int) const; probably not intended
22 Derived* dp = &d;
23 std::cout << dp->f(0) << ’\n’;
24 // calls Derived::f(int) const
25 std::cout << dp->f(0.5) << ’\n’;
26 // calls Derived::f(int) const; probably not intended
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 473

Using Base Members Example

1 #include <iostream>
2

3 class Base {
4 public:
5 double f(double d) const {return d;}
6 // ...
7 };
8

9 class Derived : public Base {
10 public:
11 using Base::f; // bring Base::f into scope
12 int f(int i) const {return i;}
13 // ...
14 };
15

16 int main()
17 {
18 Derived d;
19 std::cout << d.f(0) << ’\n’;
20 // calls Derived::f(int) const
21 std::cout << d.f(0.5) << ’\n’;
22 // calls Base::f(double) const
23 Derived* dp = &d;
24 std::cout << dp->f(0) << ’\n’;
25 // calls Derived::f(int) const
26 std::cout << dp->f(0.5) << ’\n’;
27 // calls Base::f(double) const
28 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 474

Inheritance, Templates, and Name Lookup

� name lookup in templates takes place in two phases:
1 at template definition time
2 at template instantiation time

� at template definition time, compiler parses template and looks up any
nondependent names

� result of nondependent name lookup must be identical in all instantiations
of template (since, by definition, nondependent name does not depend on
template parameter)

� at template instantiation time, compiler looks up any dependent names
� results of dependent name lookup can differ from one template

instantiation to another (since, by definition, dependent name depends on
template parameters)

� two-phase name lookup can interact with inheritance in ways that can
sometimes lead to unexpected problems in code

� may need to add “this->” or employ using statement to make name
dependent (when it would otherwise be nondependent)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 475

Name Lookup Example (Incorrect Code)
1 #include <iostream>
2

3 template <class T>
4 struct Base {
5 using Real = T;
6 Base(Real x_ = Real()) : x(x_) {}
7 void f() {std::cout << x << "\n";};
8 Real x;
9 };

10

11 template <class T>
12 struct Derived : Base<T> {
13 Derived(Real y_ = Real()) : y(y_) {}
14 // ERROR: Real (which is nondependent and looked up at
15 // template definition time) is assumed to be defined
16 // outside class
17 void g() {
18 x = y;
19 // ERROR: x assumed to be object outside class
20 f();
21 // ERROR: f assumed to be function outside class
22 }
23 Real y;
24 };
25

26 int main() {
27 Derived<double> w(0.0);
28 w.g();
29 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 476

Name Lookup Example (Correct Code)

1 #include <iostream>
2

3 template <class T>
4 struct Base {
5 using Real = T;
6 Base(Real x_ = Real()) : x(x_) {}
7 void f() {std::cout << x << "\n";};
8 Real x;
9 };

10

11 template <class T>
12 struct Derived : Base<T> {
13 using Real = typename Base<T>::Real;
14 // OK: Base<T>::Real dependent
15 Derived(Real y_ = Real()) : y(y_) {}
16 void g() {
17 this->x = y; // OK: this->x dependent
18 this->f(); // OK: this->f dependent
19 }
20 Real y;
21 };
22

23 int main() {
24 Derived<double> w(0.0);
25 w.g();
26 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 477

Section 2.7.2

Virtual Functions and Run-Time Polymorphism

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 478

Run-Time Polymorphism

� polymorphism is characteristic of being able to assign different meaning
to something in different contexts

� polymorphism that occurs at run time called run-time polymorphism
(also known as dynamic polymorphism)

� in context of inheritance, key type of run-time polymorphism is
polymorphic function call (also known as dynamic dispatch)

� when inheritance relationship exists between two classes, type of
reference or pointer to object may not correspond to actual dynamic (i.e.,
run-time) type of object referenced by reference or pointer

� that is, reference or pointer to type T may, in fact, refer to object of type D,
where D is either directly or indirectly derived from T

� when calling member function through pointer or reference, may want
actual function invoked to be determined by dynamic type of object
referenced by pointer or reference

� function call with this property said to be polymorphic

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 479

Virtual Functions

� in context of class hierarchies, polymorphic function calls achieved
through use of virtual functions

� virtual function is member function with polymorphic behavior

� when call made to virtual function through reference or pointer, actual
function invoked will be determined by dynamic type of referenced object

� to make member function virtual, add keyword virtual to function
declaration

� example:

class Base {
public:

virtual void func(); // virtual function
// ...

};

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 480

Virtual Functions (Continued)

� once function made virtual, it will automatically be virtual in all derived
classes, regardless of whether virtual keyword is used in derived
classes

� therefore, not necessary to repeat virtual qualifier in derived classes
(and perhaps preferable not to do so)

� virtual function must be defined in class where first declared unless pure
virtual function (to be discussed shortly)

� derived class inherits definition of each virtual function from its base class,
but may override each virtual function with new definition

� function in derived class with same name and same set of argument types
as virtual function in base class overrides base class version of virtual
function

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 481

Virtual Function Example
1 #include <iostream>
2 #include <string>
3
4 class Person {
5 public:
6 Person(const std::string& family, const std::string& given) :
7 family_(family), given_(given) {}
8 virtual void print() const
9 {std::cout << "person: " << family_ << ’,’ << given_ << ’\n’;}

10 protected:
11 std::string family_; // family name
12 std::string given_; // given name
13 };
14
15 class Student : public Person {
16 public:
17 Student(const std::string& family, const std::string& given,
18 const std::string& id) : Person(family, given), id_(id) {}
19 void print() const {
20 std::cout << "student: " << family_ << ’,’ << given_ << ’,’ << id_ << ’\n’;
21 }
22 private:
23 std::string id_; // student ID
24 };
25
26 void processPerson(const Person& p) {
27 p.print(); // polymorphic function call
28 // ...
29 }
30
31 int main() {
32 Person p("Ritchie", "Dennis");
33 Student s("Doe", "John", "12345678");
34 processPerson(p); // invokes Person::print
35 processPerson(s); // invokes Student::print
36 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 482

Override Control: The override Qualifier

� when looking at code for derived class, often not possible to determine if
member function intended to override virtual function in base class (or one
of its base classes)

� can sometimes lead to bugs where programmer expects member function
to override virtual function when function not virtual

� override qualifier used to indicate that member function is expected to
override virtual function in parent class; must come at end of function
declaration

� example:
class Person {
public:

virtual void print() const;
// ...

};

class Employee : public Person {
public:

void print() const override; // must be virtual
// ...

};

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 483

Override Control: The final Qualifier
� sometimes, may want to prevent any further overriding of virtual function

in any subsequent derived classes
� adding final qualifier to declaration of virtual function prevents function

from being overridden in any subsequent derived classes
� preventing further overriding can sometimes allow for better optimization

by compiler (e.g., via devirtualization)
� example:

class A {
public:

virtual void doStuff();
// ...

};

class B : public A {
public:

void doStuff() final; // prevent further overriding
// ...

};

class C : public B {
public:

void doStuff(); // ERROR: cannot override
// ...

};

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 484

final Qualifier Example

1 class Worker {
2 public:
3 virtual void prepareEnvelope();
4 // ...
5 };
6

7 class SpecialWorker : public Worker {
8 public:
9 // prevent overriding function responsible for

10 // overall envelope preparation process
11 // but allow functions for individual steps in
12 // process to be overridden
13 void prepareEnvelope() final {
14 stuffEnvelope(); // step 1
15 lickEnvelope(); // step 2
16 sealEnvelope(); // step 3
17 }
18 virtual void stuffEnvelope();
19 virtual void lickEnvelope();
20 virtual void sealEnvelope();
21 // ...
22 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 485

Constructors, Destructors, and Virtual Functions

� except in very rare cases, destructors in class hierarchy need to be virtual

� otherwise, invoking destructor through base-class pointer/reference would
only destroy base-class part of object, leaving remainder of derived-class
object untouched

� normally, bad idea to call virtual function inside constructor or destructor

� dynamic type of object changes during construction and changes again
during destruction

� final overrider of virtual function will change depending where in hierarchy
virtual function call is made

� when constructor/destructor being executed, object is of exactly that type,
never type derived from it

� although semantics of virtual function calls during construction and
destruction well defined, easy to write code where actual overrider not
what expected (and might even be pure virtual)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 486

Problematic Code with Non-Virtual Destructor

1 class Base {
2 public:
3 Base() {}
4 ~Base() {} // non-virtual destructor
5 // ...
6 };
7

8 class Derived : public Base {
9 public:

10 Derived() : buffer_(new char[10’000]) {}
11 ~Derived() {delete[] buffer_;}
12 // ...
13 private:
14 char* buffer_;
15 };
16

17 void process(Base* bp) {
18 // ...
19 delete bp; // always invokes only Base::~Base
20 }
21

22 int main() {
23 process(new Base);
24 process(new Derived); // leaks memory
25 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 487

Corrected Code with Virtual Destructor

1 class Base {
2 public:
3 Base() {}
4 virtual ~Base() {} // virtual destructor
5 // ...
6 };
7

8 class Derived : public Base {
9 public:

10 Derived() : buffer_(new char[10’000]) {}
11 ~Derived() {delete[] buffer_;}
12 // ...
13 private:
14 char* buffer_;
15 };
16

17 void process(Base* bp) {
18 // ...
19 delete bp; // invokes destructor polymorphically
20 }
21

22 int main() {
23 process(new Base);
24 process(new Derived);
25 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 488

Preventing Creation of Derived Classes

� in some situations, may want to prevent deriving from class

� language provides means for accomplishing this

� in class/struct declaration, after name of class can add keyword final to
prevent deriving from class

� example:

class Widget final { /* ... */ };
class Gadget : public Widget { /* ... */ };
// ERROR: cannot derive from Widget

� might want to prevent deriving from class with destructor that is not virtual

� preventing derivation can sometimes also facilitate better compiler
optimization (e.g., via devirtualization)

� might want to prevent derivation so that objects can be copied safely
without fear of slicing

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 489

Covariant Return Type

� in some special cases, language allows relaxation of rule that type of
overriding function f must be same as type of virtual function f overrides

� in particular, requirement that return type be same is relaxed

� return type of derived-class function is permitted to be type derived
(directly or indirectly) from return type of base-class function

� this relaxation of return type more formally known as covariant return
type

� case of pointer return type: if original return type B*, return type of
overriding function may be D*, provided B is public base of D (i.e., may
return pointer to more derived type)

� case of reference return type: if original return type B& (or B&&), return
type of overriding function may be D& (or D&&), provided B is public base of
D (i.e., may return reference to more derived type)

� covariant return type can sometimes be exploited in order to avoid need
for type casts

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 490

Covariant Return Type Example: Cloning

1 class Base {
2 public:
3 virtual Base* clone() const {
4 return new Base(*this);
5 }
6 // ...
7 };
8

9 class Derived : public Base {
10 public:
11 // use covariant return type
12 Derived* clone() const override {
13 return new Derived(*this);
14 }
15 // ...
16 };
17

18 int main() {
19 Derived* d = new Derived;
20 Derived* d2 = d->clone();
21 // OK: return type is Derived*
22 // without covariant return type, would need cast:
23 // Derived* d2 = static_cast<Derived*>(d->clone());
24 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 491

Pure Virtual Functions

� sometimes desirable to require derived class to override virtual function

� pure virtual function: virtual function that must be overridden in every
derived class

� to declare virtual function as pure, add “= 0” at end of declaration

� example:

class Widget {
public:

virtual void doStuff() = 0; // pure virtual
// ...

};

� pure virtual function can still be defined, although likely only useful in case
of virtual destructor

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 492

Abstract Classes

� class with one or more pure virtual functions called abstract class
� cannot directly instantiate objects of abstract class (can only use them as

base class objects)

� class that derives from abstract class need not override all of its pure
virtual methods

� class that does not override all pure virtual methods of abstract base class
will also be abstract

� most commonly, abstract classes have no state (i.e., data members) and
used to provide interfaces, which can be inherited by other classes

� if class has no pure virtual functions and abstract class is desired, can
make destructor pure virtual (but must provide definition of destructor
since invoked by derived classes)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 493

Abstract Class Example

1 #include <cmath>
2

3 class Shape {
4 public:
5 virtual bool isPolygon() const = 0;
6 virtual float area() const = 0;
7 virtual ~Shape() {};
8 };
9

10 class Rectangle : public Shape {
11 public:
12 Rectangle(float w, float h) : w_(w), h_(h) {}
13 bool isPolygon() const override {return true;}
14 float area() const override {return w_ * h_;}
15 private:
16 float w_; // width of rectangle
17 float h_; // height of rectangle
18 };
19

20 class Circle : public Shape {
21 public:
22 Circle(float r) : r_(r) {}
23 float area() const override {return M_PI * r_ * r_;}
24 bool isPolygon() const override {return false;}
25 private:
26 float r_; // radius of circle
27 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 494

Pure Virtual Destructor Example

1 class Abstract {
2 public:
3 virtual ~Abstract() = 0; // pure virtual destructor
4 // ... (no other virtual functions)
5 };
6

7 inline Abstract::~Abstract()
8 { /* possibly empty */ }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 495

The dynamic_cast Operator

� often need to upcast and downcast (as well as cast sideways) in
inheritance hierarchy

� dynamic_cast can be used to safely perform type conversions on
pointers and references to classes

� syntax: dynamic_cast<T>(expr)
� types involved must be polymorphic (i.e., have at least one virtual

function)

� inspects run-time information about types to determine whether cast can
be safely performed

� if conversion is valid (i.e., expr can validly be cast to T), casts expr to type
T and returns result

� if conversion is not valid, cast fails

� if expr is of pointer type, nullptr is returned upon failure

� if expr is of reference type, std::bad_cast exception is thrown upon
failure (where exceptions are discussed later)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 496

dynamic_cast Example

1 #include <cassert>
2

3 class Base {
4 public:
5 virtual void doStuff() { /* ... */ };
6 // ...
7 };
8

9 class Derived1 : public Base { /* ... */ };
10 class Derived2 : public Base { /* ... */ };
11

12 bool isDerived1(Base& b) {
13 return dynamic_cast<Derived1*>(&b) != nullptr;
14 }
15

16 int main() {
17 Base b;
18 Derived1 d1;
19 Derived2 d2;
20 assert(isDerived1(b) == false);
21 assert(isDerived1(d1) == true);
22 assert(isDerived1(d2) == false);
23 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 497

Cost of Run-Time Polymorphism

� typically, run-time polymorphism does not come without run-time cost in
terms of both time and memory

� in some contexts, cost can be significant

� typically, virtual functions implemented using virtual function table

� each polymorphic class has virtual function table containing pointers to all
virtual functions for class

� each polymorphic class object has pointer to virtual function table

� memory cost to store virtual function table and pointer to table in each
polymorphic object

� in most cases, impossible for compiler to inline virtual function calls since
function to be called cannot be known until run time

� each virtual function call is made through pointer, which adds overhead

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 498

Curiously-Recurring Template Pattern (CRTP)

� when derived type known at compile time, may want behavior similar to
virtual functions but without run-time cost (by performing binding at
compile time instead of run time)

� can be achieved with technique known as curiously-recurring template
pattern (CRTP)

� class Derived derives from class template instantiation using Derived
itself as template argument

� example:

template <class Derived>
class Base {

// ...
};

class Derived : public Base<Derived> {
// ...

};

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 499

CRTP Example: Static Polymorphism

1 #include <iostream>
2

3 template <class Derived>
4 class Base {
5 public:
6 void interface() {
7 std::cout << "Base::interface called\n";
8 static_cast<Derived*>(this)->implementation();
9 }

10 // ...
11 };
12

13 class Derived : public Base<Derived> {
14 public:
15 void implementation() {
16 std::cout << "Derived::implementation called\n";
17 }
18 // ...
19 };
20

21 int main() {
22 Derived d;
23 d.interface();
24 // calls Base::interface which, in turn, calls
25 // Derived::implementation
26 // no virtual function call, however
27

28 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 500

CRTP Example: Static Polymorphism

1 class TreeNode {
2 public:
3 enum Kind {RED, BLACK}; // kinds of nodes
4 TreeNode *left(); // get left child node
5 TreeNode *right(); // get right child node
6 Kind kind(); // get kind of node
7 // ...
8 };
9

10 template <class Derived>
11 class GenericVisitor {
12 public:
13 void visit_preorder(TreeNode* node) {
14 if (node) {
15 process_node(node);
16 visit_preorder(node->left());
17 visit_preorder(node->right());
18 }
19 }
20 void visit_inorder(TreeNode* node) { /* ... */ }
21 void visit_postorder(TreeNode* node) { /* ... */ }
22 void process_red_node(TreeNode* node) { /* ... */ };
23 void process_black_node(TreeNode* node) { /* ... */ };
24 private:
25 Derived& derived() {return *static_cast<Derived*>(this);}
26 void process_node(TreeNode* node) {
27 if (node->kind() == TreeNode::RED) {
28 derived().process_red_node(node);
29 } else {
30 derived().process_black_node(node);
31 }
32 }
33 };
34
35 class SpecialVisitor : public GenericVisitor<SpecialVisitor> {
36 public:
37 void process_red_node(TreeNode* node) { /* ... */ }
38 };
39
40 int main() {SpecialVisitor v;}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 501

CRTP Example: Comparisons

1 #include <cassert>
2

3 template<class Derived>
4 struct Comparisons {
5 friend bool operator==(const Comparisons<Derived>& x,
6 const Comparisons<Derived>& y) {
7 const Derived& xr = static_cast<const Derived&>(x);
8 const Derived& yr = static_cast<const Derived&>(y);
9 return !(xr < yr) && !(yr < xr);

10 }
11 // operator!= and others
12 };
13

14 class Widget : public Comparisons<Widget> {
15 public:
16 Widget(bool b, int i) : b_(b), i_(i) {}
17 friend bool operator<(const Widget& x, const Widget& y)
18 {return x.i_ < y.i_;}
19 private:
20 bool b_;
21 int i_;
22 };
23

24 int main() {
25 Widget w1(true, 1);
26 Widget w2(false, 1);
27 assert(w1 == w2);
28 }
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 502

CRTP Example: Object Counting
1 #include <iostream>
2 #include <cstdlib>
3

4 template <class T>
5 class Counter {
6 public:
7 Counter() {++count_;}
8 Counter(const Counter&) {++count_;}
9 ~Counter() {--count_;}

10 static std::size_t howMany() {return count_;}
11 private:
12 static std::size_t count_;
13 };
14

15 template <class T>
16 std::size_t Counter<T>::count_ = 0;
17

18 // inherit from Counter to count objects
19 class Widget: private Counter<Widget> {
20 public:
21 using Counter<Widget>::howMany;
22 // ...
23 };
24

25 int main() {
26 Widget w1; int c1 = Widget::howMany();
27 Widget w2, w3; int c2 = Widget::howMany();
28 std::cout << c1 << ’ ’ << c2 << ’\n’;
29 }
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 503

Section 2.7.3

Multiple Inheritance and Virtual Inheritance

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 504

Multiple Inheritance

� language allows derived class to inherit from more than one base class

� multiple inheritance (MI): deriving from more than one base class

� although multiple inheritance not best solution for most problems, does
have some compelling use cases

� one compelling use case is for inheriting interfaces by deriving from
abstract base classes with no data members

� when misused, multiple inheritance can lead to very convoluted code

� in multiple inheritance contexts, ambiguities in naming can arise

� for example, if class Derived inherits from classes Base1 and Base2,
each of which have member called x, name x can be ambiguous in some
contexts

� scope resolution operator can be used to resolve ambiguous names

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 505

Ambiguity Resolution Example

1 class Base1 {
2 public:
3 void func();
4 // ...
5 };
6

7 class Base2 {
8 void func();
9 // ...

10 };
11

12 class Derived : public Base1, public Base2 {
13 public:
14 // ...
15 };
16

17 int main() {
18 Derived d;
19 d.func(); // ERROR: ambiguous function call
20 d.Base1::func(); // OK: invokes Base1::func
21 d.Base2::func(); // OK: invokes Base2::func
22 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 506

Multiple Inheritance Example

1 class Input_stream {
2 public:
3 virtual ~Input_stream() {}
4 virtual int read_char() = 0;
5 virtual int read(char* buffer, int size) = 0;
6 virtual bool is_input_ready() const = 0;
7 // ...(all pure virtual, no data)
8 };
9

10 class Output_stream {
11 public:
12 virtual ~Output_stream() {}
13 virtual int write_char(char c) = 0;
14 virtual int write(char* buffer, int size) = 0;
15 virtual int flush_output() = 0;
16 // ... (all pure virtual, no data)
17 };
18

19 class Input_output_stream : public Input_stream,
20 public Output_stream {
21 // ...
22 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 507

Dreaded Diamond Inheritance Pattern

� use of multiple inheritance can lead to so called dreaded diamond
scenario

� dreaded diamond inheritance pattern has following form:

A

D

CB

� class D will have two subobjects of class A, since class D (indirectly)
inherits twice from class A

� situation like one above probably undesirable and often sign of poor
design

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 508

Dreaded Diamond Example

1 class Base {
2 public:
3 // ...
4 protected:
5 int data_;
6 };
7

8 class D1 : public Base { /* ... */ };
9

10 class D2 : public Base { /* ... */ };
11

12 class Join : public D1, public D2 {
13 public:
14 void method() {
15 data_ = 1; // ERROR: ambiguous
16 D1::data_ = 1; // OK: unambiguous
17 }
18 };
19

20 int main() {
21 Join* j = new Join();
22 Base* b;
23 b = j; // ERROR: ambiguous
24 b = static_cast<D1*>(j); // OK: unambiguous
25 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 509

Virtual Inheritance

� when using multiple inheritance, may want to ensure that only one
instance of base-class object can appear in derived-class object

� virtual base class: base class that is only ever included once in derived
class, even if derived from multiple times

� virtual inheritance: when derived class inherits from base class that is
virtual

� virtual inheritance can be used to avoid situations like dreaded diamond
pattern

� order of construction: virtual base classes constructed first in depth-first
left-to-right traversal of graph of base classes, where left-to-right refers to
order of appearance of base class names in class definition

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 510

Avoiding Dreaded Diamond With Virtual Inheritance

1 class Base {
2 public:
3 // ...
4 protected:
5 int data_;
6 };
7

8 class D1 : public virtual Base { /* ... */ };
9

10 class D2 : public virtual Base { /* ... */ };
11

12 class Join : public D1, public D2 {
13 public:
14 void method() {
15 data_ = 1; // OK: unambiguous
16 }
17 };
18

19 int main() {
20 Join* j = new Join();
21 Base* b = j; // OK: unambiguous
22 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 511

Section 2.7.4

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 512

References I

1 N. Meyers. The empty base C++ optimization.
Dr. Dobb’s Journal, Aug. 1997.
Available online at http://www.cantrip.org/emptyopt.html.

2 J. O. Coplien. Curiously recurring template patterns.
C++ Report, pages 24–27, Feb. 1995.

3 S. Meyers. Counting objects in C++.
C++ User’s Journal, Apr. 1998.
Available online at http:
//www.drdobbs.com/cpp/counting-objects-in-c/184403484.

4 A. Nasonov. Better encapsulation for the curiously recurring template
pattern.
Overload, 70:11–13, Dec. 2005.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 513

http://www.cantrip.org/emptyopt.html
http://www.drdobbs.com/cpp/counting-objects-in-c/184403484
http://www.drdobbs.com/cpp/counting-objects-in-c/184403484

Section 2.8

C++ Standard Library

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 514

C++ Standard Library

� C++ standard library provides huge amount of functionality (orders of
magnitude more than C standard library)

� uses std namespace (to avoid naming conflicts)

� well worth effort to familiarize yourself with all functionality in library in
order to avoid writing code unnecessarily

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 515

C++ Standard Library (Continued)

� functionality can be grouped into following sublibraries:
1 language support library (e.g., exceptions, memory management)
2 diagnostics library (e.g., assertions, exceptions, error codes)
3 general utilities library (e.g., functors, date/time)
4 strings library (e.g., C++ and C-style strings)
5 localization library (e.g., date/time formatting and parsing, character

classification)
6 containers library (e.g., sequence containers and associative containers)
7 iterators library (e.g., stream iterators)
8 algorithms library (e.g., searching, sorting, merging, set operations, heap

operations, minimum/maximum)
9 numerics library (e.g., complex numbers, math functions)
10 input/output (I/O) library (e.g., streams)
11 regular expressions library (e.g., regular expression matching)
12 atomic operations library (e.g., atomic types, fences)
13 thread support library (e.g., threads, mutexes, condition variables, futures)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 516

Commonly-Used Header Files

Language-Support Library
Header File Description

cstdlib run-time support, similar to stdlib.h from C
(e.g., exit)

limits properties of fundamental types (e.g.,
numeric_limits)

exception exception handling support (e.g.,
set_terminate, current_exception)

initializer_list initializer_list class template

Diagnostics Library
Header File Description

cassert assertions (e.g., assert)
stdexcept predefined exception types (e.g., invalid_argument,

domain_error, out_of_range)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 517

Commonly-Used Header Files (Continued 1)
General-Utilities Library

Header File Description

utility basic function and class templates (e.g., swap, move,
pair)

memory memory management (e.g., unique_ptr, shared_ptr,
addressof)

functional functors (e.g., less, greater)
type_traits type traits (e.g., is_integral, is_reference)
chrono clocks (e.g., system_clock, steady_clock,

high_resolution_clock)

Strings Library
Header File Description

string C++ string classes (e.g., string)
cstring C-style strings, similar to string.h from C (e.g., strlen)
cctype character classification, similar to ctype.h from C (e.g.,

isdigit, isalpha)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 518

Commonly-Used Header Files (Continued 2)

Containers, Iterators, and Algorithms Libraries
Header File Description

array array class
vector vector class
deque deque class
list list class
set set classes (i.e., set, multiset)
map map classes (i.e., map, multimap)
unordered_set unordered set classes (i.e., unordered_set,

unordered_multiset)
unordered_map unordered map classes (i.e., unordered_map,

unordered_multimap)
iterator iterators (e.g., reverse_iterator,

back_inserter)
algorithm algorithms (e.g., min, max, sort)
forward_list forward_list class

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 519

Commonly-Used Header Files (Continued 3)

Numerics Library
Header File Description

cmath C math library, similar to math.h from C (e.g., sin, cos)
complex complex numbers (e.g., complex)
numeric generalized numeric operations (e.g., gcd, lcm,

inner_product)
random random number generation (e.g.,

uniform_int_distribution,
uniform_real_distribution,
normal_distribution)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 520

Commonly-Used Header Files (Continued 4)

I/O Library
Header File Description

iostream iostream objects (e.g., cin, cout, cerr)
istream input streams (e.g., istream)
ostream output streams (e.g., ostream)
ios base classes and other declarations for streams

(e.g., ios_base, hex, fixed)
fstream file streams (e.g., fstream)
sstream string streams (e.g., stringstream)
iomanip manipulators (e.g., setw, setprecision)

Regular-Expressions Library
Header File Description

regexp regular expressions (e.g., basic_regex)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 521

Commonly-Used Header Files (Continued 5)

Atomic-Operations and Thread-Support Libraries
Header File Description

atomic atomics (e.g., atomic)
thread threads (e.g., thread)
mutex mutexes (e.g., mutex, recursive_mutex,

timed_mutex)
condition_variable condition variables (e.g., condition_variable)
future futures (e.g., future, shared_future, promise)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 522

Section 2.8.1

Containers, Iterators, and Algorithms

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 523

Standard Template Library (STL)

� large part of C++ standard library is collection of class/function templates
known as standard template library (STL)

� STL comprised of three basic building blocks:
1 containers
2 iterators
3 algorithms

� containers store elements for processing (e.g., vector)

� iterators allow access to elements for processing (which are often, but not
necessarily, in containers)

� algorithms perform actual processing (e.g., search, sort)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 524

Containers

� container: class that represents collection/sequence of elements

� usually container classes are template classes

� sequence container: collection in which every element has certain
position that depends on time and place of insertion

� examples of sequence containers include:
2 array (fixed-size array)
2 vector (dynamic-size array)
2 list (doubly-linked list)

� ordered/unordered associative container: collection in which position of
element in depends on its value or associated key and some predefined
sorting/hashing criterion

� examples of associative containers include:
2 set (collection of unique keys, sorted by key)
2 map (collection of key-value pairs, sorted by key, keys are unique)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 525

Sequence Containers and Container Adapters

Sequence Containers
Name Description

array fixed-size array
vector dynamic-size array
deque double-ended queue
forward_list singly-linked list
list doubly-linked list

Container Adapters
Name Description

stack stack
queue FIFO queue
priority_queue priority queue

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 526

Associative Containers

Ordered Associative Containers
Name Description

set collection of unique keys, sorted by key
map collection of key-value pairs, sorted by key, keys are unique
multiset collection of keys, sorted by key, duplicate keys allowed
multimap collection of key-value pairs, sorted by key, duplicate keys al-

lowed

Unordered Associative Containers
Name Description

unordered_set collection of unique keys, hashed by key
unordered_map collection of key-value pairs, hashed by key, keys are

unique
unordered_multiset collection of keys, hashed by key, duplicate keys al-

lowed)
unordered_multimap collection of key-value pairs, hashed by key, duplicate

keys allowed

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 527

Typical Sequence Container Member Functions

� some member functions typically provided by sequence container classes
listed below (where T denotes name of container class)

Function Description

T() create empty container (default constructor)
T(const T&) copy container (copy constructor)
T(T&&) move container (move constructor)
~T destroy container (including its elements)
empty test if container empty
size get number of elements in container
push_back insert element at end of container
clear remove all elements from container
operator= assign all elements of one container to other
operator[] access element in container

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 528

Container Example

1 #include <iostream>
2 #include <vector>
3

4 int main() {
5 std::vector<int> values;
6

7 // append elements with values 0 to 9
8 for (int i = 0; i < 10; ++i) {
9 values.push_back(i);

10 }
11

12 // print each element followed by space
13 for (int i = 0; i < values.size(); ++i) {
14 std::cout << values[i] << ’ ’;
15 }
16 std::cout << ’\n’;
17 }
18

19 /* This program produces the following output:
20 0 1 2 3 4 5 6 7 8 9
21 */

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 529

Motivation for Iterators

� different containers organize elements (of container) differently in memory

� want uniform manner in which to access elements in any arbitrary
container

� organization of elements in array/vector container:

v[3]v[1]v[0] v[2]

begin end

� organization of elements in doubly-linked list container:

end

v[0]

begin

v[1] v[2] v[3]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 530

Motivation for Iterators (Continued)

� consider array/vector container with int elements:

v[3]v[1]v[0] v[2]

begin end

� suppose we want to set all elements in container to zero

� we could use code like:

// int* begin; int* end;
for (int* iter = begin; iter != end; ++iter)

*iter = 0;

� could we make similar-looking code work for more complicated
organization like doubly-linked list?

� yes, create user-defined type that provides all pointer operations used
above (e.g., dereference, increment, comparison, assignment)

� this leads to notion of iterator

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 531

Iterators

� iterator: object that allows iteration over collection of elements, where
elements are often (but not necessarily) in container

� iterators support many of same operations as pointers
� in some cases, iterator may actually be pointer; more frequently, iterator is

user-defined type
� five different categories of iterators: 1) input, 2) output, 3) forward,

4) bidirectional, and 5) random access
� iterator has particular level of functionality, depending on category
� one of three possibilities of access order:

1 forward (i.e., one direction only)
2 forward and backward
3 any order (i.e., random access)

� one of three possibilities in terms of read/write access:
1 can only read referenced element (once or multiple times)
2 can only write referenced element (once or multiple times)
3 can read and write referenced element (once or multiple times)

� const and mutable (i.e., non-const) variants (i.e., read-only or read/write
access, respectively)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 532

Abilities of Iterator Categories

Category Ability Providers

Input Reads (once only)
forward

istream
(istream_iterator)

Output Writes (once only)
forward

ostream
(ostream_iterator),
inserter_iterator

Forward Reads and writes
forward

forward_list,
unordered_set,
unordered_multiset,
unordered_map,
unordered_multimap

Bidirectional Reads and writes
forward and backward

list, set, multiset,
map, multimap

Random access Reads and writes
with random access

(built-in) array, array,
vector, deque, string

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 533

Input Iterators

Expression Effect

T(a) copies iterator (copy constructor)
*a
a->m

dereference as rvalue (i.e., read only); cannot
dereference at old position

++a steps forward (returns new position)
a++ steps forward
a == b test for equality
a != b test for inequality

� not assignable (i.e., no assignment operator)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 534

Output Iterators

Expression Effect

T(a) copies iterator (copy constructor)
*a
a->m

dereference as lvalue (i.e., write only); can only
be dereferenced once; cannot dereference at old
position

++a steps forward (returns new position)
a++ steps forward (returns old position)

� not assignable (i.e., no assignment operator)

� no comparison operators (i.e., operator==, operator!=)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 535

Forward Iterators

Expression Effect

T() default constructor
T(a) copy constructor
a = b assignment
*a
a->m

dereference

++a steps forward (returns new position)
a++ steps forward (returns old position)
a == b test for equality
a != b test for inequality

� must ensure that valid to dereference iterator before doing so

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 536

Bidirectional Iterators

� bidirectional iterators are forward iterators that provide additional
functionality of being able to iterate backward over elements

� bidirectional iterators have all functionality of forward iterators as well as
those listed in table below

Expression Effect

--a steps backward (returns new position)
a-- steps backward (returns old position)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 537

Random-Access Iterators
� random access iterators provide all functionality of bidirectional iterators

as well as providing random access to elements
� random access iterators provide all functionality of bidirectional iterators

as well as those listed in table below
Expression Effect

a[n] dereference element at index n (where n can be nega-
tive)

a += n steps n elements forward (where n can be negative)
a -= n steps n elements backward (where n can be negative)
a + n iterator for nth next element
n + a iterator for nth next element
a - n iterator for nth previous element
a - b distance from a to b
a < b test if a before b
a > b test if a after b
a <= b test if a not after b
a >= b test if a not before b

� pointers (built into language) are examples of random-access iterators
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 538

Iterator Example

1 #include <iostream>
2 #include <vector>
3

4 int main() {
5 std::vector<int> values(10);
6

7 std::cout << "number of elements: " <<
8 (values.end() - values.begin()) << ’\n’;
9

10 // initialize elements of vector to 0, 1, 2, ...
11 for (std::vector<int>::iterator i = values.begin();
12 i != values.end(); ++i) {
13 *i = i - values.begin();
14 }
15

16 // print elements of vector
17 for (std::vector<int>::const_iterator i =
18 values.cbegin(); i != values.cend(); ++i) {
19 std::cout << ’ ’ << *i;
20 }
21 std::cout << ’\n’;
22 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 539

Iterator Gotchas

� do not dereference iterator unless it is known to validly reference some
object

� some operations on container can invalidate some or all iterators
referencing elements in container

� critically important to know which operations invalidate iterators in order
to avoid using iterator that has been invalidated

� incrementing iterator past end of container or decrementing iterator before
beginning of container results in undefined behavior

� input and output iterators can only be dereferenced once at each position

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 540

Algorithms

� algorithm: sequence of computations applied to some generic type

� algorithms use iterators to access elements involved in computation

� often pair of iterators used to specify range of elements on which to
perform some computation

� what follows only provides brief summary of algorithms
� for more details on algorithms, see:

2 http://www.cplusplus.com/reference/algorithm
2 http://en.cppreference.com/w/cpp/algorithm

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 541

http://www.cplusplus.com/reference/algorithm
http://en.cppreference.com/w/cpp/algorithm

Functions
Non-Modifying Sequence Operations

Name Description

all_of test if condition true for all elements in range
any_of test if condition true for any element in range
none_of test if condition true for no elements in range
for_each apply function to range
for_each_n apply function to first n elements in sequence
find find values in range
find_if find element in range
find_if_not find element in range (negated)
find_end find last subsequence in range
find_first_of find element from set in range
adjacent_find find equal adjacent elements in range
count count appearances of value in range
count_if count number of elements in range satisfying condition
mismatch get first position where two ranges differ
equal test whether elements in two ranges differ
search find subsequence in range
search_n find succession of equal values in range

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 542

Functions (Continued 1)

Modifying Sequence Operations
Name Description

copy copy range of elements
copy_if copy certain elements of range
copy_n copy n elements
copy_backward copy range of elements backwards
move move range of elements
move_backward move range of elements backwards
swap exchange values of two objects (in utility header)
swap_ranges exchange values of two ranges
iter_swap exchange values of objects referenced by two iterators
transform apply function to range
replace replace value in range
replace_if replace values in range
replace_copy copy range replacing value
replace_copy_if copy range replacing value
sample selects n random elements from sequence

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 543

Functions (Continued 2)

Modifying Sequence Operations (Continued)
Name Description

fill fill range with value
fill_n fill sequence with value
generate generate values for range with function
generate_n generate values for sequence with function
remove remove value from range (by shifting elements)
remove_if remove elements from range (by shifting elements)
remove_copy copy range removing value
remove_copy_if copy range removing values
unique remove consecutive duplicates in range
unique_copy copy range removing duplicates
reverse reverse range
reverse_copy copy range reversed
rotate rotate elements in range
rotate_copy copies and rotates elements in range
shuffle randomly permute elements in range

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 544

Functions (Continued 3)

Partition Operations
Name Description

is_partitioned test if range is partitioned by predicate
partition partition range in two
partition_copy copies range partition in two
stable_partition partition range in two (stable ordering)
partition_point get partition point

Sorting
Name Description

is_sorted test if range is sorted
is_sorted_until find first unsorted element in range
sort sort elements in range
stable_sort sort elements in range, preserving order of

equivalents
partial_sort partially sort elements in range
partial_sort_copy copy and partially sort range
nth_element sort element in range

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 545

Functions (Continued 4)

Binary Search (operating on sorted ranges)
Name Description

lower_bound get iterator to lower bound
upper_bound get iterator to upper bound
equal_range get subrange of equal elements
binary_search test if value exists in sorted range

Set Operations (on sorted ranges)
Name Description

merge merge sorted ranges
inplace_merge merge consecutive sorted ranges
includes test whether sorted range includes another

sorted range
set_union union of two sorted ranges
set_intersection intersection of two sorted ranges
set_difference difference of two sorted ranges
set_symmetric_difference symmetric difference of two sorted ranges

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 546

Functions (Continued 5)

Heap Operations
Name Description

is_heap test if range is heap
is_heap_until first first element not in heap order
push_heap push element into heap range
pop_heap pop element from heap range
make_heap make heap from range
sort_heap sort elements of heap

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 547

Functions (Continued 6)

Minimum/Maximum
Name Description

min get minimum of given values
max get maximum of given values
minmax get minimum and maximum of given values
min_element get smallest element in range
max_element get largest element in range
minmax_element get smallest and largest elements in range
clamp clamp value between pair of boundary values
lexicographic_compare lexicographic less-than comparison
is_permutation test if range permutation of another
next_permutation transform range to next permutation
prev_permutation transform range to previous permutation

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 548

Functions (Continued 7)

Numeric Operations
Name Description

iota fill range with successive values
accumulate accumulate values in range
adjacent_difference compute adjacent difference of range
inner_product compute inner product of range
partial_sum compute partial sums of range
reduce similar to accumulate except out of order
exclusive_scan similar to partial_sum, excludes ith input el-

ement from ith sum
inclusive_scan similar to partial_sum, includes ith input el-

ement in ith sum
transform_reduce applies functor, then reduces out of order
transform_exclusive_scan applies functor then, calculates exclusive

scan
transform_inclusive_scan applies functor, then calculates inclusive scan

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 549

Functions (Continued 8)

Other Numeric Algorithms
Name Description

gcd compute greatest common divisor of two integers
lcm compute least common multiple of two integers

. .Functions for Uninitialized Storage

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 550

Algorithms Example

1 #include <iostream>
2 #include <vector>
3 #include <algorithm>
4 #include <random>
5

6 int main() {
7 std::vector<int> values;
8

9 int x;
10 while (std::cin >> x) {values.push_back(x);}
11

12 std::cout << "zero count: " << std::count(
13 values.begin(), values.end(), 0) << ’\n’;
14

15 std::default_random_engine engine;
16 std::shuffle(values.begin(), values.end(), engine);
17 std::cout << "random order:";
18 for (auto i : values) {std::cout << ’ ’ << i;}
19 std::cout << ’\n’;
20

21 std::sort(values.begin(), values.end());
22 std::cout << "sorted order:";
23 for (auto i : values) {std::cout << ’ ’ << i;}
24 std::cout << ’\n’;
25 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 551

Prelude to Functor Example
� consider std::transform function template:

template <class InputIterator, class OutputIterator,
class UnaryOperator>
OutputIterator transform(InputIterator first,
InputIterator last, OutputIterator result,
UnaryOperator op);

� applies op to each element in range [first,last) and stores each
returned value in range beginning at result (where ranges can overlap)

� std::transform might be written as:
template <class InputIterator, class OutputIterator,
class UnaryOperator>
OutputIterator transform(InputIterator first,
InputIterator last, OutputIterator result,
UnaryOperator op) {
while (first != last) {

*result = op(*first);
++first;
++result;

}
return result;

}

� op is entity that can be used with function call syntax (i.e., function or
functor)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 552

Functor Example

1 #include <iostream>
2 #include <vector>
3 #include <algorithm>
4

5 struct MultiplyBy { // Functor class
6 MultiplyBy(double factor) : factor_(factor) {}
7 double operator()(double x) const
8 {return factor_ * x;}
9 private:

10 double factor_; // multiplicative factor
11 };
12

13 int main() {
14 MultiplyBy mb(2.0);
15 std::vector v{1.0, 2.0, 3.0};
16 // v contains 1 2 3
17 std::transform(v.begin(), v.end(), v.begin(), mb);
18 // v contains 2 4 6
19 for (auto i : v) {std::cout << i << ’\n’;}
20 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 553

Section 2.8.2

The std::array Class Template

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 554

The std::array Class Template

� one-dimensional array type, where size of array is fixed at compile time

� array declared as:

template <class T, std::size_t N>
class array;

� T: type of elements in array

� N: number of elements in array

� what follows only intended to provide overview of array
� for additional details on array, see:

2 http://en.cppreference.com/w/cpp/container/array
2 http://www.cplusplus.com/reference/stl/array

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 555

http://en.cppreference.com/w/cpp/container/array
http://www.cplusplus.com/reference/stl/array

Member Types

Member Type Description

value_type T (i.e., element type)
size_type type used for measuring size (i.e., std::size_t)
difference_type type used to measure distance (i.e.,

std::ptrdiff_t)
reference value_type&
const_reference const value_type&
pointer value_type*
const_pointer const value_type*
iterator random-access iterator type
const_iterator const random-access iterator type
reverse_iterator reverse iterator type (i.e.,

reverse_iterator<iterator>)
const_reverse_iterator const reverse iterator type (i.e.,

reverse_iterator<const_iterator>)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 556

Member Functions

Construction, Destruction, and Assignment
Member Name Description

constructor initializes array
destructor destroys each element of array
operator= overwrites every element of array with corre-

sponding element of another array

Iterators
Member Name Description

begin return iterator to beginning
end return iterator to end
cbegin return const iterator to beginning
cend return const iterator to end
rbegin return reverse iterator to beginning
rend return reverse iterator to end
crbegin return const reverse iterator to beginning
crend return const reverse iterator to end

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 557

Member Functions (Continued 1)

Capacity
Member Name Description

empty test if array is empty
size return size
max_size return maximum size

Element Access
Member Name Description

operator[] access element (no bounds checking)
at access element (with bounds checking)
front access first element
back access last element
data return pointer to start of element data

Modifiers
Member Name Description

fill fill container with specified value
swap swap contents of two arrays

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 558

array Example

1 #include <array>
2 #include <iostream>
3 #include <algorithm>
4 #include <experimental/iterator>
5

6 int main() {
7 std::array<int, 3> a1{3, 1, 2};
8 std::array<int, 3> a2;
9 a2.fill(42);

10 for (auto i : a2) {
11 std::cout << i << ’\n’;
12 }
13 a2 = a1;
14 std::sort(a1.begin(), a1.end());
15 std::copy(a1.begin(), a1.end(),
16 std::experimental::make_ostream_joiner(std::cout, ", "));
17 std::cout << ’\n’;
18 for(auto i = a2.begin(); i != a2.end(); ++i) {
19 std::cout << *i;
20 if (i != a2.end() - 1) {std::cout << ", ";}
21 }
22 std::cout << ’\n’;
23 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 559

array Example

1 #include <array>
2 #include <iostream>
3 #include <algorithm>
4

5 int main() {
6 // Fixed-size array with 4 elements.
7 std::array<int, 4> a{2, 4, 3, 1};
8

9 // Print elements of array.
10 for (auto i = a.cbegin(); i != a.cend(); ++i) {
11 std::cout << ’ ’ << *i;
12 }
13 std::cout << ’\n’;
14

15 // Sort elements of array.
16 std::sort(a.begin(), a.end());
17

18 // Print elements of array.
19 for (auto i = a.cbegin(); i != a.cend(); ++i) {
20 std::cout << ’ ’ << *i;
21 }
22 std::cout << ’\n’;
23 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 560

Section 2.8.3

The std::vector Class Template

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 561

The std::vector Class Template

� dynamically-sized one-dimensional array type, where type of array
elements and storage allocator specified by template parameters

� vector declared as:

template <class T, class Allocator = allocator<T>>
class vector;

� T: type of elements in vector

� Allocator: type of object used to handle storage allocation (unless
custom storage allocator needed, use default allocator<T>)

� what follows only intended to provide overview of vector
� for additional details on vector, see:

2 http://www.cplusplus.com/reference/stl/vector
2 http://en.cppreference.com/w/cpp/container/vector

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 562

http://www.cplusplus.com/reference/stl/vector
http://en.cppreference.com/w/cpp/container/vector

Member Types

Member Type Description

value_type T (i.e., element type)
allocator_type Allocator (i.e., allocator)
size_type type used for measuring size (typically unsigned in-

tegral type)
difference_type type used to measure distance (typically signed in-

tegral type)
reference value_type&
const_reference const value_type&
pointer allocator_traits<Allocator>::pointer
const_pointer allocator_traits<Allocator>::

const_pointer
iterator random-access iterator type
const_iterator const random-access iterator type
reverse_iterator reverse iterator type

(reverse_iterator<iterator>)
const_reverse_iterator const reverse iterator type

(reverse_iterator<const_iterator>)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 563

Member Functions

Construction, Destruction, and Assignment
Member Name Description

constructor construct vector (overloaded)
destructor destroy vector
operator= assign vector

Iterators
Member Name Description

begin return iterator to beginning
end return iterator to end
cbegin return const iterator to beginning
cend return const iterator to end
rbegin return reverse iterator to beginning
rend return reverse iterator to end
crbegin return const reverse iterator to beginning
crend return const reverse iterator to end

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 564

Member Functions (Continued 1)

Capacity
Member Name Description

empty test if vector is empty
size return size
max_size return maximum size
capacity return allocated storage capacity
reserve request change in capacity
shrink_to_fit shrink to fit

Element Access
Member Name Description

operator[] access element (no bounds checking)
at access element (with bounds checking)
front access first element
back access last element
data return pointer to start of element data

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 565

Member Functions (Continued 2)

Modifiers
Member Name Description

clear clear content
assign assign vector content
insert insert elements
emplace insert element, constructing in place
push_back add element at end
emplace_back insert element at end, constructing in place
erase erase elements
pop_back delete last element
resize change size
swap swap content of two vectors

Allocator
Member Name Description

get_allocator get allocator used by vector

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 566

Invalidation of References, Iterators, and Pointers

� capacity: total number of elements that vector could hold without
requiring reallocation of memory

� any operation that causes reallocation of memory used to hold elements
of vector invalidates all iterators, references, and pointers referring to
elements in vector

� any operation that changes capacity of vector causes reallocation of
memory

� any operation that adds or deletes elements can invalidate references,
iterators, and pointers

� operations that can potentially invalidate references, iterators, and
pointers to elements in vector include:

insert, erase, push_back, pop_back, emplace, emplace_back,
resize, reserve, operator=, assign, clear, shrink_to_fit, swap
(past-the-end iterator only)

::::::::
[C++17 26.2.1/9]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 567

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/container.requirements.general#9

Iterator Invalidation Example
� start denotes pointer to first element in array holding elements of vector

� i is iterator for vector (e.g., vector<T>::const_iterator or vector<T>::iterator)

� initial vector has three elements and capacity of three

ba c

start i

� push_back(d) invoked

� new larger array is allocated (say, twice size of original); elements in old array
moved/copied to new array; then new element added

?? ? dba c

i start

unused unused

� elements in old array destroyed and memory for old array deallocated; iterator i
is now invalid:

dba c

i start

unused unused

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 568

vector Example: Constructors

1 std::vector<double> v0;
2 // empty vector
3

4 std::vector<double> v1(10);
5 // vector with 10 elements, each initialized to 0.0
6 // (effectively via value initialization)
7

8 std::vector<double> v2(10, 5.0);
9 // vector with 10 elements, each initialized to 5.0

10

11 std::vector<int> v3{1, 2, 3};
12 // vector with 3 elements: 1, 2, 3
13 // std::initializer_list (note brace brackets)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 569

vector Example: Iterators

1 #include <iostream>
2 #include <vector>
3

4 int main() {
5 std::vector v{0, 1, 2, 3};
6 for (auto& i : v) {++i;}
7 for (auto i : v) {
8 std::cout << ’ ’ << i;
9 }

10 std::cout << ’\n’;
11 for (auto i = v.begin(); i != v.end(); ++i) {
12 --(*i);
13 }
14 for (auto i = v.cbegin(); i != v.cend(); ++i) {
15 std::cout << ’ ’ << *i;
16 }
17 std::cout << ’\n’;
18 for (auto i = v.crbegin(); i != v.crend(); ++i) {
19 std::cout << ’ ’ << *i;
20 }
21 std::cout << ’\n’;
22 }

� program output:
1 2 3 4
0 1 2 3
3 2 1 0

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 570

vector Example

1 #include <iostream>
2 #include <vector>
3

4 int main() {
5 std::vector<double> values;
6 // ...
7

8 // Erase all elements and then read elements from
9 // standard input.

10 values.clear();
11 double x;
12 while (std::cin >> x) {
13 values.push_back(x);
14 }
15 std::cout << "number of values read: " <<
16 values.size() << ’\n’;
17

18 // Loop over all elements and print the number of
19 // negative elements found.
20 int count = 0;
21 for (auto i = values.cbegin(); i != values.cend(); ++i) {
22 if (*i < 0.0) {
23 ++count;
24 }
25 }
26 std::cout << "number of negative values: " << count <<
27 ’\n’;
28 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 571

vector Example: Emplace

1 #include <iostream>
2 #include <vector>
3

4 int main() {
5 std::vector<std::vector<int>> v{{1, 2, 3}, {4, 5, 6}};
6 v.emplace_back(10, 0);
7 // The above use of emplace_back is more efficient than:
8 // v.push_back(std::vector<int>(10, 0));
9 for (const auto& i : v) {

10 for (const auto& j : i) {
11 std::cout << ’ ’ << j;
12 }
13 std::cout << ’\n’;
14 }
15 }

� program output:
1 2 3
4 5 6
0 0 0 0 0 0 0 0 0 0

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 572

Section 2.8.4

The std::basic_string Class Template

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 573

The std::basic_string Class Template
� character string type, parameterized on character type, character traits,

and storage allocator
� basic_string declared as:

template <class CharT,
class Traits = char_traits<CharT>,
class Allocator = allocator<CharT>>
class basic_string;

� CharT: type of characters in string
� Traits: class that describes certain properties of CharT (normally, use

default)
� Allocator: type of object used to handle storage allocation (unless

custom storage allocator needed, use default)
� string is simply abbreviation for basic_string<char>
� what follows is only intended to provide overview of basic_string

template class (and string class)
� for more details on basic_string, see:

2 http://www.cplusplus.com/reference/string/basic_string
2 http://en.cppreference.com/w/cpp/string/basic_string

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 574

http://www.cplusplus.com/reference/string/basic_string
http://en.cppreference.com/w/cpp/string/basic_string

Member Types

Member Type Description

traits_type Traits (i.e., character traits)
value_type Traits::char_type (i.e., character type)
allocator_type Allocator
size_type allocator_traits<Allocator>::size_type
difference_type allocator_traits<Allocator>::

difference_type
reference value_type&
const_reference const value_type&
pointer allocator_traits<Allocator>::pointer
const_pointer allocator_traits<Allocator>::

const_pointer
iterator random-access iterator type
const_iterator const random-access iterator type
reverse_iterator reverse iterator type

(reverse_iterator<iterator>)
const_reverse_iterator const reverse iterator type

(reverse_iterator<const_iterator>)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 575

Member Functions

Construction, Destruction, and Assignment
Member Name Description

constructor construct
destructor destroy
operator= assign

Iterators
Member Name Description

begin return iterator to beginning
end return iterator to end
cbegin return const iterator to beginning
cend return const iterator to end
rbegin return reverse iterator to reverse beginning
rend return reverse iterator to reverse end
crbegin return const reverse iterator to reverse beginning
crend return const reverse iterator to reverse end

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 576

Member Functions (Continued 1)

Capacity
Member Name Description

empty test if string empty
size get length of string
length same as size
max_size get maximum size of string
capacity get size of allocated storage
reserve change capacity
shrink_to_fit shrink to fit

Element Access
Member Name Description

operator[] access character in string (no bounds checking)
at access character in string (with bounds checking)
front access first character in string
back access last character in string

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 577

Member Functions (Continued 2)

Operations
Member Name Description

clear clear string
assign assign content to string
insert insert into string
push_back append character to string
operator+= append to string
append append to string
erase erase characters from string
pop_back delete last character from string
replace replace part of string
resize resize string
swap swap contents with another string

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 578

Member Functions (Continued 3)

Operations (Continued)
Member Name Description

c_str get nonmodifiable C-string equivalent
data obtain pointer to first character of string
copy copy sequence of characters from string
substr generate substring
compare compare strings

Search
Member Name Description

find find first occurrence of content in string
rfind find last occurrence of content in string
find_first_of find first occurrence of characters in string
find_first_not_of find first absence of characters in string
find_last_of find last occurrence of characters in string
find_last_not_of find last absence of characters in string

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 579

Member Functions (Continued 4)

Allocator
Member Name Description

get_allocator get allocator

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 580

Non-Member Functions

Numeric Conversions
Name Description

stoi convert string to int
stol convert string to long
stoll convert string to long long
stoul convert string to unsigned long
stoull convert string to unsigned long long
stof convert string to float
stod convert string to double
stold convert string to long double
to_string convert integral or floating-point value to string
to_wstring convert integral or floating-point value to wstring

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 581

string Example

1 #include <iostream>
2 #include <string>
3

4 int main() {
5 std::string s;
6 if (!(std::cin >> s)) {
7 s.clear();
8 }
9 std::cout << "string: " << s << ’\n’;

10 std::cout << "length: " << s.size() << ’\n’;
11 std::string b;
12 for (auto i = s.crbegin(); i != s.crend(); ++i) {
13 b.push_back(*i);
14 }
15 std::cout << "backwards: " << b << ’\n’;
16

17 std::string msg = "Hello";
18 msg += ", World!"; // append ", World!"
19 std::cout << msg << ’\n’;
20

21 const char* cstr = s.c_str();
22 std::cout << "C-style string: " << cstr << ’\n’;
23 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 582

Numeric/String Conversion Example

1 #include <iostream>
2 #include <string>
3

4 int main() {
5 double x = 42.24;
6 // Convert double to string.
7 std::string s = std::to_string(x);
8 std::cout << s << ’\n’;
9

10 s = "3.14";
11 // Convert string to double.
12 x = std::stod(s);
13 std::cout << x << ’\n’;
14

15 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 583

Section 2.8.5

Other Container Classes

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 584

The std::pair Class Template

� collection of two heterogeneous objects

� pair declared as:

template <class T1, class T2>
struct pair;

� T1: type of first element in pair

� T2: type of second element in pair

� first and second elements accessible via data members first and
second, respectively

� elements of pair can also be accessed with std::get function template

� pair is effectively equivalent to std::tuple (to be discussed shortly)
with two elements

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 585

pair Example

1 #include <tuple>
2 #include <cassert>
3

4 int main() {
5 std::pair p(true, 42);
6 assert(p.first && p.second == 42);
7 assert(p.first == std::get<0>(p) &&
8 p.second == std::get<1>(p));
9 std::pair q(true, 42);

10 assert(p == q);
11 p = {false, 0};
12 assert(p != q);
13 p.swap(q);
14 auto [b, i] = p;
15 assert(b == true && i == 42);
16 assert(std::get<bool>(p) && std::get<0>(p));
17 assert(std::get<int>(p) == 42 &&
18 std::get<1>(p) == 42);
19 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 586

The std::tuple Class Template

� fixed-size collection of heterogeneous values

� tuple is generalization of std::pair

� tuple declared as:

template <class... Ts>
class tuple;

� Ts: types of elements that tuple holds (which may be empty)

� elements of tuple can be accessed with std::get function template

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 587

tuple Example

1 #include <tuple>
2 #include <cassert>
3

4 int main() {
5 std::tuple t(true, 42, ’Z’);
6 auto u = std::tuple(true, 42, ’Z’);
7 assert(t == u);
8 assert(std::get<bool>(t) && std::get<0>(t));
9 assert(std::get<char>(t) == ’Z’ && std::get<2>(t) == ’Z’);

10 std::get<0>(t) = false;
11 assert(t != u);
12 std::tuple v(false, 0, ’0’);
13 u = std::tuple(true, 1, ’1’);
14 v.swap(u);
15 assert(std::get<0>(v));
16 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 588

The std::optional Class Template

� simple container that manages optional value (i.e., value that may or may
not be present)

� declaration:
template <class T> class optional;

� T is type of optional value

� T cannot be reference type

� at any given point in time, object either contains value or does not

� object can be given value by initialization or assignment

� common use case is return value of function that can fail

� std::bad_optional_access exception indicates checked access to
optional object that does not contain value

� optional value is required to be stored directly in optional object itself

::::::::
[C++17 23.6.3/1]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 589

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/optional.general#1

optional Member Functions

Construction, Destruction, and Assignment
Name Description

constructor constructs optional object
destructor destroys optional object (and contained value)
operator= assigns contents

Observers
Name Description

operator-> accesses contained value
operator* accesses contained value
operator bool tests if object contains value
has_value tests if object contains value
value returns contained value
value_or returns contained value if available and spec-

ified default value otherwise

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 590

optional Member Functions (Continued)

Modifiers
Name Description

swap exchange contents
reset clear any contained value
emplace constructs contained value in place

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 591

optional Example

1 #include <optional>
2 #include <string>
3 #include <exception>
4 #include <cassert>
5 #include <iostream>
6

7 int main() {
8 using namespace std::literals;
9 auto s = std::optional("Hello!"s);

10 assert(s && s.has_value());
11 assert(s.value() == "Hello!");
12 auto t = std::optional("Goodbye!"s);
13 s.swap(t);
14 assert(*s == "Goodbye!" && *t == "Hello!");
15 s.reset();
16 assert(!s && !s.has_value());
17 std::cout << s.value_or("Goodbye!") << ’\n’;
18 try {std::cout << s.value() << ’\n’;}
19 catch (const std::bad_optional_access&) {
20 std::cout << "caught exception\n";
21 }
22 s.emplace("Salut!");
23 std::cout << s.value() << ’\n’;
24 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 592

Example: Return Type of Function That Can Fail

1 #include <optional>
2 #include <string>
3 #include <fstream>
4 #include <iostream>
5

6 std::optional<std::string> read_file(const char* file_name) {
7 std::ifstream in(file_name);
8 std::optional<std::string> result;
9 result.emplace(std::istreambuf_iterator<char>(in),

10 std::istreambuf_iterator<char>());
11 if (in.fail() && !in.eof()) {
12 result.reset();
13 }
14 return result;
15 }
16

17 int main(int argc, char** argv) {
18 if (argc <= 1) {return 1;}
19 auto s = read_file(argv[1]);
20 if (!s) {
21 std::cerr << "unable to read file\n";
22 return 1;
23 }
24 std::cout << *s;
25 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 593

The std::variant Class Template

� simple container that corresponds to type-safe union

� can hold single value of one of set of allowable types

� declaration:
template <class... Ts> class variant;

� Ts parameter pack containing all allowable types of value that can be
stored in object

� container cannot hold references, arrays, or void

� can hold same type more than once and can hold differently cv-qualified
versions of same type

� default initialized variant holds value of first alternative, which is default
constructed

� std::monostate can be used as placeholder for empty type

� invalid accesses to value of variant object result in
std::bad_variant_access exception being thrown

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 594

variant Member Functions

Construction, Destruction, and Assignment
Name Description

constructor constructs variant object
destructor destroys variant object (and contained value)
operator= assigns variant

Observers
Name Description

index returns zero-based index of alternative held
by variant

valueless_by_exception tests if variant in invalid state

Modifiers
Name Description

emplace constructs value in variant in place
swap swaps value with another variant

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 595

variant Example

1 #include <variant>
2 #include <cassert>
3 #include <iostream>
4

5 int main() {
6 std::variant<int, double> x;
7 std::variant<int, double> y;
8 x = 2;
9 assert(std::get<int>(x) == std::get<0>(x));

10 assert(!x.valueless_by_exception());
11 y = 0.5;
12 assert(std::get<double>(y) == std::get<1>(y));
13 std::cout << std::get<int>(x) << ’\n’;
14 std::cout << std::get<double>(y) << ’\n’;
15 try {std::cout << std::get<double>(x) << ’\n’;}
16 catch (const std::bad_variant_access&) {
17 std::cout << "bad variant access\n";
18 }
19 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 596

The std::any Class

� type-safe container for single value of any type

� container may also hold no value

� declaration:
class any;

� at any given time, object may or may not hold value

� non-member function any_cast provides type-safe access to contained
object

� std::bad_any_cast exception thrown by value-returning forms of
any_cast upon type mismatch

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 597

any Member Functions

Construction, Destruction, and Assignment
Name Description

constructor constructs any object
destructor destroys any object
operator= assigns any object

Observers
Name Description

has_value tests if object holds value
type returns typeid of contained value

Modifiers
Name Description

emplace change contained object by constructing new
value in place

reset clear any contained object
swap swaps contents of two any objects

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 598

any Example

1 #include <any>
2 #include <cassert>
3 #include <string>
4 #include <iostream>
5

6 int main() {
7 std::any x{std::string("Hello")};
8 assert(x.has_value() && x.type() == typeid(std::string));
9 std::any y;

10 assert(!y.has_value());
11 x.swap(y);
12 assert(!x.has_value() && y.has_value());
13 x = y;
14 std::cout << std::any_cast<std::string>(x) << ’\n’;
15 y.reset();
16 assert(!y.has_value());
17 try {std::any_cast<int>(x);}
18 catch (const std::bad_any_cast&) {
19 std::cout << "any_cast failed\n";
20 }
21 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 599

Section 2.8.6

Time Measurement

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 600

Time Measurement

� time measurement capabilities provided by part of general utilities library
(of standard library)

� header file chrono

� identifiers in namespace std::chrono

� time point: specific point in time (measured relative to epoch)

� duration: time interval

� clock: measures time in terms of time points

� several clocks provided for measuring time

� what follows only intended to provide overview of chrono part of library
� for additional information on chrono part of library, see:

2 http://www.cplusplus.com/reference/chrono
2 http://en.cppreference.com/w/cpp/chrono

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 601

http://www.cplusplus.com/reference/chrono
http://en.cppreference.com/w/cpp/chrono

std::chrono Types

Time Points and Intervals
Name Description

duration time interval
time_point point in time

Clocks
Name Description

system_clock system clock (which may be adjusted)
steady_clock monotonic clock that ticks at constant rate
high_resolution_clock clock with shortest tick period available

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 602

std::chrono Example: Measuring Elapsed Time

1 #include <iostream>
2 #include <chrono>
3 #include <cmath>
4

5 double get_result() {
6 double sum = 0.0;
7 for (long i = 0L; i < 1000000L; ++i) {
8 sum += std::sin(i) * std::cos(i);
9 }

10 return sum;
11 }
12

13 int main() {
14 // Get the start time.
15 auto start_time =
16 std::chrono::high_resolution_clock::now();
17 // Do some computation.
18 double result = get_result();
19 // Get the end time.
20 auto end_time = std::chrono::high_resolution_clock::now();
21 // Compute elapsed time in seconds.
22 double elapsed_time = std::chrono::duration<double>(
23 end_time - start_time).count();
24 // Print result and elapsed time.
25 std::cout << "result " << result << ’\n’;
26 std::cout << "time (in seconds) " << elapsed_time << ’\n’;
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 603

std::chrono Example: Determining Clock Resolution

1 #include <iostream>
2 #include <chrono>
3

4 // Get the granularity of a clock in seconds.
5 template <class C>
6 double granularity() {
7 return std::chrono::duration<double>(
8 typename C::duration(1)).count();
9 }

10

11 int main() {
12 std::cout << "system clock:\n" << "period "
13 << granularity<std::chrono::system_clock>() << ’\n’
14 << "steady "
15 << std::chrono::system_clock::is_steady << ’\n’;
16 std::cout << "high resolution clock:\n" << "period "
17 << granularity<std::chrono::high_resolution_clock>()
18 << ’\n’ << "steady "
19 << std::chrono::high_resolution_clock::is_steady << ’\n’;
20 std::cout << "steady clock:\n" << "period "
21 << granularity<std::chrono::steady_clock>() << ’\n’
22 << "steady "
23 << std::chrono::steady_clock::is_steady << ’\n’;
24 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 604

Section 2.8.7

Miscellany

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 605

The std::basic_string_view Class Template

� std::basic_string_view class template represents constant
contiguous sequence of char-like objects (i.e., read-only view of string)

� basic_string_view declared as:

template <class CharT,
class Traits = char_traits<CharT>>
class basic_string_view;

� CharT: type of characters in string

� Traits: class that describes certain properties of CharT (normally, use
default)

� string_view is simply abbreviation for basic_string_view<char>
� for more details on basic_string_view, see:

2 http://en.cppreference.com/w/cpp/string/basic_string_view

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 606

http://en.cppreference.com/w/cpp/string/basic_string_view

std::basic_string_view Example

1 #include <string_view>
2 #include <string>
3 #include <iostream>
4 #include <cassert>
5

6 void output(std::string_view s) {
7 std::cout << s << ’\n’;
8 }
9

10 int main() {
11 std::string_view hello("hello");
12 assert(!hello.empty());
13 std::string_view he = hello.substr(0, 2);
14 assert(he.size() == 2);
15 assert(he[0] == ’h’ && he[1] == ’e’);
16 assert(hello.find("ell") == 1);
17 assert(hello.rfind("l") == 3);
18
19 std::string goodbye("goodbye");
20 std::string_view bye(goodbye);
21 bye.remove_prefix(4);
22 std::cout << bye << ’\n’;
23 std::string_view good(goodbye);
24 good.remove_suffix(3);
25 std::cout << good << ’\n’;
26 assert(goodbye.substr(4, 3) == bye);
27 output(bye);
28 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 607

Section 2.9

Miscellany

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 608

Name Lookup

� Since C++ name lookup rules are quite complicated, we only present a
simplified (and therefore not fully correct) description of them here.

� Qualified lookup. If the name A is preceded by the scope-resolution
operator, as in ::A or X::A, then use qualified name lookup.

2 In the first case, look in the global namespace for A. In the second case,
look up X, and then look inside it for A.

2 If X is a class and A is not a direct member, look in all of the direct bases of
X (and then each of their bases). If A is found in more than one base, fail.

� Argument-dependent lookup. Otherwise, if the name is used as a
function call, such as A(X), use argument-dependent lookup.

2 Look for A in the namespace in which the type of X was declared, in the
friends of X, and if X is a template instantiation, similarly for each of the
arguments involved.

� Unqualified lookup. Start with unqualified lookup if argument-dependent
lookup does not apply.

2 Start at the current scope and work outwards until the name is found.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 609

Argument-Dependent Lookup (ADL)

� argument-dependent lookup (ADL) applies to lookup of unqualified
function name

� during ADL, other namespaces not considered during normal lookup may
be searched

� in particular, namespace that declares each function argument type is
included in search

� ADL also commonly referred to as Koenig lookup

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 610

ADL Example
1 #include <iostream>
2

3 namespace N {
4 class C { /* ... */ };
5 void f(C x) {std::cout << "N::f\n";}
6 void g(int x) {std::cout << "N::g\n";}
7 void h(C x) {std::cout << "N::h\n";}
8 }
9

10 struct D {
11 struct E {};
12 static void p(E e) {std::cout << "D::p\n";};
13 };
14

15 void h(N::C x) {std::cout << "::h\n";}
16

17 int main() {
18 N::C x;
19 f(x); // OK: calls N::f via ADL
20 N::f(x); // OK: calls N::f
21 g(42); // ERROR: g not found
22 N::g(42); // OK: calls N::g
23 h(x); // ERROR: ambiguous function call due to ADL
24 ::h(x); // OK: calls ::h
25 N::h(x); // OK: calls N::h
26 D::E e;
27 p(e); // ERROR: ADL only considers namespaces
28 D::p(e); // OK: calls D::p
29 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 611

ADL Example

1 #include <iostream>
2

3 namespace N {
4 struct W {};
5 void f(W x) {std::cout << "N::f\n";}
6 }
7

8 struct C {
9 void f(N::W x) {std::cout << "C::f\n";}

10 void g() {
11 N::W x;
12 f(x); // calls C::f (not N::f)
13 }
14 };
15

16 int main() {
17 C c;
18 c.g();
19 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 612

ADL Example

1 #include <iostream>
2 #include <string>
3

4 using namespace std::string_literals;
5

6 namespace N {
7 struct C {};
8 void f(int) {std::cout << "N::f\n";}
9 void g(C x) {std::cout << "N::g\n";}

10 void h(const std::string& x) {std::cout << "N::h\n";}
11 namespace M {
12 void f(int x) {std::cout << "N::M::f\n";}
13 // hides N::f
14 void g(int x) {std::cout << "N::M::g\n";}
15 // hides N::g
16 void h() {std::cout << "N::M::h\n";} // hides N::h
17 void u() {
18 N::C c;
19 f(42); // calls N::M::f (ADL looks nowhere)
20 g(c); // calls N::g via ADL (ADL looks in N)
21 h("hi"s); // ERROR: lookup finds N::M::h
22 // (ADL does not look in N)
23 }
24 }
25 }
26

27 int main() {N::M::u();}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 613

Swapping Values and ADL

� Consider two objects x and y of class type T whose values are to be
swapped.

� If the class T provides its own swap function for reasons of efficiency, one
would normally want to use it.

� In the absence of such a function, one would normally want to fall back on
the use of std::swap.

� The above behavior can be achieved using code like the following:

using std::swap;
swap(x, y);

� If the type T provides its own swap function, the name lookup on swap will
yield this function through ADL.

� Otherwise, the name lookup will find std::swap.

� Thus, code like the above will result in a more efficient swap function
being used if available, with the std::swap function used as a fallback.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 614

Part 3

More C++

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 615

Section 3.1

Initialization

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 616

Typical Memory Organization for Program

� memory organized into several regions: code segment, initialized data
segment, uninitialized data segment, heap, and stack

� code segment (also known as text segment) contains machine code of
compiled program; may be marked read only

� initialized data segment contains variables that are initialized to
particular program-specified values upon program loading (i.e., prior to
execution)

� uninitialized data segment (also known as BSS segment) contains
variables that are not initialized to particular program-specified values
upon program loading; typically cleared to zero when program loaded

� heap is where dynamic memory allocation takes place

� stack consists of stack frames used for local variables, function
arguments, function return values, and caller return addresses

� stack and heap grow towards each other, with stack usually being at
higher address in memory than heap

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 617

Typical Memory Organization for Program: Diagram

High Address

Low Address

Environment and
Program Arguments

loaded from
program image

Segment

Segment

Code

Initialized Data

Segment
Uninitialized Data

Stack

Heap

program execution
cleared to zero before

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 618

Storage Duration

� storage duration: how long memory for object exists
� four types of storage duration:

1 automatic
2 static
3 dynamic
4 thread

� automatic storage duration: storage allocated at start of enclosing code
block and deallocated at end

� all local objects have automatic storage duration, except those declared
with static, extern, or thread_local qualifiers

� objects with automatic storage duration stored on stack
� static storage duration: storage is allocated at start of program and

deallocated when program ends
� all objects declared at namespace scope (including global namespace)

have static storage duration as well as those declared with static or
extern qualifiers (e.g., static data members and static function-local
variables)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 619

Storage Duration (Continued)

� objects with static storage duration stored in initialized and uninitialized
data segments

� dynamic storage duration: storage is allocated and deallocated upon
request using dynamic memory allocation functions (e.g.,
operator new and operator delete)

� objects with dynamic storage duration stored in heap

� thread storage duration: storage allocated when thread starts and
deallocated when thread ends

� all objects declared as thread_local have thread storage duration

� how objects with thread storage duration handled is very platform
dependent (e.g., may involve additional segments such as .tbss and .tdata
sections in ELF)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 620

Initialization

� initialization provides initial value to object at time of construction

� initialization in C++ somewhat complicated

� initializer: specifies initial value for object and appears in initializer
section of declarator or new expression

� initializer may be one of following:
1 braced initializer list (i.e., possibly-empty comma-separated list of

expressions and other braced initializer lists); for example:
std::vector<int> v{1, 2, 3};
// initializer is {1, 2, 3}

2 comma-separated list of expressions and braced initializer lists in
parentheses; for example:

std::vector<int> v(10, 42);
// initializer is (10, 42)

3 equals sign followed by expression; for example:
std::string s = "hello";
// initializer is "=" plus literal "hello"

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 621

Types of Initialization

� constant initialization (used to initialize objects of static storage duration
from constant expressions)

� zero initialization (for initializing to zero)
� default initialization; for when no initializer is provided, such as:

int x; // where x is local object

� value initialization; for when initializer is empty, such as:
Widget::Widget() : x() {} // where x is data member

� direct initialization; for when initializer is explicit set of constructor
arguments, such as:

int x(1); // where x is local object

� copy initialization; for when initializing object from another object, such as:
int x = 1; // where x is local object

� list initialization; for when initializer is braced initializer list, such as:
int x{1}; // where x is local object

� aggregate initialization; for initializing aggregate type from braced
initializer list (as part of list initialization), such as:

int a[] = {1, 2, 3}; // where a is local object

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 622

Initialization-Type Use Relationships

Zero
Initialization

Default
Initialization

Value
Initialization

Direct
Initialization

Copy
Initialization

Aggregate
Initialization

List
Initialization

Character Array
Initialization

From String Literal

� constant initialization can use all other types of initialization (i.e., zero, default,
value, direct, copy, list, and aggregate)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 623

Initialization Phases

� initialization performed in two phases:
1 static initialization
2 dynamic initialization

� static initialization: initialization that is conceptually performed when
program loaded (i.e., before program begins execution)

� dynamic initialization: initialization that takes place at run time

� all static initialization happens before any dynamic initialization
:::::::
[C++17 6.6.2/2]

� for static initialization, only constant and zero initialization used directly
(but constant initialization can result in other types of initialization being
invoked indirectly)

� for dynamic initialization, all types of initialization other than constant
initialization can be used

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 624

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.start.static#2

How May I Initialize Thee? Let Me Count the Ways
1 #include <complex>
2 #include <string>
3 #include <array>
4 using Complex = std::complex<float>;
5
6 Complex gz{0, 1}; // gz is constant initialized (statically)
7 int gi; // gi is zero initialized (statically)
8 char buf[1024]; // buf is zero initialized (statically)
9

10 int main() {
11 int i; // i is default initialized (to indeterminate value)
12 Complex z1; // z1 is default initialized
13 Complex z2(); // function declaration
14 Complex z3{}; /* z3 is value initialized as part of
15 direct-list initialization */
16 Complex z4{1, -1}; /* z4 is direct initialized as part of
17 direct-list initialization */
18 Complex z5(1, -1); // z5 is direct initialized
19 Complex z6 = {1, -1}; /* z6 is copy initialized as part of
20 copy-list initialization */
21 Complex z7 = Complex(1, -1); // z7 is copy initialized
22 static Complex u = Complex(); // u is constant initialized (statically)
23 z1 = {1, -1}; /* temporary object is direct initialized as part of
24 direct-list initialization */
25 z1 = {}; /* temporary object is value initialized as part of
26 direct-list initialization */
27 std::array<int, 3> a{1, 2, 3}; /* a is aggregate initialized as part
28 of direct-list initialization */
29 std::string s1{’h’, ’i’}; // s1 is direct-list initialized
30 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 625

Initialization Order and Namespace-Scope Static-Storage-Duration Objects

� must be careful about dynamic initialization order of namespace-scope
objects with static storage duration (e.g., global variables)

� language makes no guarantees about order of initialization of such
objects across translation units

� that is, if x and y are namespace-scope objects with static storage
duration defined in different translation units, order in which x and y
initialized is arbitrary

� in practice, initialization order will typically be determined by order in
which linker processes corresponding object files

� language only guarantees order of initialization within translation unit,
namely, initialization takes place in order of appearance of definitions

� that is, if x and y are namespace-scope objects with static storage
duration defined in same translation unit, x and y initialized in order of
appearance of their definitions

� initialization of namespace-scope object with static storage duration
behaves as if performed prior to main function being called

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 626

Initialization Order and Block-Scope Static-Storage-Duration Objects

� dynamic initialization of block-scope (i.e., local) object with static storage
duration performed (in thread-safe manner) first time control passes
through declaration of object

:::::::
[C++17 9.7/4]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 627

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/stmt.dcl#4

Example: Initialization Order Fiasco

util_1.cpp
1 #include <vector>
2

3 std::vector<int> v{1, 2, 3, 4};
4 // invoked constructor is not constexpr; cannot use
5 // constant initialization; constructor invoked as
6 // part of dynamic initialization

util_2.cpp
1 #include <vector>
2 extern std::vector<int> v;
3

4 std::vector<int> w{v[0], v[1]};
5 // arguments for invoked constructor not constant
6 // expressions; cannot use constant initialization;
7 // constructor invoked as part of dynamic initialization;
8 // construction of w can invoke undefined behavior
9 // since v might not yet have been constructed

main.cpp
1 int main() {
2 // ...
3 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 628

Constant Initialization

� constant initialization is type of initialization that relates to (possibly
non-const) object with static or thread storage duration being initialized
with constant expression

� approximately speaking, constant initialization is performed:
:::::::

[C++17 6.6.2/2]

2 if object/reference with static or thread storage duration is initialized by
constant expression

� effect of constant initialization is same as effect of corresponding
initialization except must be performed before any dynamic initialization
(i.e., as part of static initialization)

� this usually means, in practice, constant initialization performed at compile
time and computed object stored as part of program image

� constant initialization provides means to initialize objects with static and
thread storage duration that eliminates some potential problems due to
data races and dependencies on initialization order

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 629

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.start.static#2

Constant Initialization Example: Smart Pointers

1 #include <memory>
2 #include <string>
3

4 std::unique_ptr<std::string> p1; /* std::unique_ptr<std::string>
5 not of literal type, but...
6 constructor being invoked is constexpr; p1 is constant
7 initialized */
8

9 std::unique_ptr<std::string> p2(nullptr); /*
10 std::unique_ptr<std::string> not of literal type, but...
11 constructor being invoked is constexpr and argument to
12 constructor is constant expression; p2 is constant
13 initialized */
14

15 std::unique_ptr<std::string> q1; /* std::shared_ptr<std::string>
16 not of literal type, but...
17 constructor being invoked is constexpr; q1 is constant
18 initialized */
19

20 std::shared_ptr<std::string> q2(nullptr); /*
21 std::shared_ptr<std::string> not of literal type, but...
22 constructor being invoked is constexpr and argument to
23 constructor is constant expression; q2 is constant
24 initialized */

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 630

Constant Initialization Example: Fiasco-Free Initialization

constant_initialization_2_util.hpp
1 #include <complex>
2 extern std::complex<double> z0;
3 extern std::complex<double> z1;

util_1.cpp
1 #include "constant_initialization_2_util.hpp"
2 constexpr double x{1};
3 constexpr double y{2};
4 std::complex<double> z0{x, y};
5 // invoked constructor is constexpr; all arguments to
6 // constructor are constant expressions; as part of static
7 // initialization, z0 is constant initialized to (1, 2)

util_2.cpp
1 #include "constant_initialization_2_util.hpp"
2 std::complex<double> z1 = z0 - std::complex<double>{0, 2};
3 // as part of dynamic initialization, z1 is copy
4 // initialized to (1, 2) - (0, 2) = (1, 0); static
5 // initialization of z0 guaranteed to have been already
6 // performed

main.cpp
1 int main() {/* ... */}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 631

Zero Initialization

� zero initialization: initial value of object, including any padding, set to
zero

� zero initialization is performed:
1 for every named variable with static or thread storage duration that is not

subject to constant initialization (i.e., initialized by constant expression)

:::::::
[C++17 6.6.2/2]

2 when character array initialized with string literal that is too short to fill entire
array, unfilled part of array is zero initialized

::::::::
[C++17 11.6.2/3]

3 as part of value initialization in certain situations
::::::::

[C++17 11.6/8.2]
::::::::
[C++17 11.6/8.4] (see

later slides on value initialization for details)

� every object of static storage duration is either constant or zero initialized
at program startup before any other initialization takes place

:::::::
[C++17 11.6/10]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 632

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.start.static#2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.string#3
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#4
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#10

Zero Initialization (Continued)

� zero initialization of object of type T has following behavior:
:::::::
[C++17 11.6/6]

2 if T is scalar type, object is initialized to value obtained by converting integer
literal 0 to T

2 if T is class type, each of following is zero initialized and any padding
initialized to zero bits:

2 each non-static data member
2 each non-virtual base class subobject
2 if object is not base class subobject (i.e., T is most-derived class), each virtual

base class subobject anywhere in inheritance hierarchy
2 if T is union type, object’s first non-static named data member is zero

initialized and any padding is initialized to zero bits
2 if T is array type, each element is zero initialized
2 if T is reference type, nothing is done

� note that zero initialization not same as setting all bits of storage to zero,
since some types may have zero value that is not represented as all zero
bits (such as null pointer to member in case of some C++ language
implementations)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 633

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#6

Zero Initialization Example

1 #include <string>
2
3 struct Point {int x; int y;};
4
5 static int ga[2]; /* ga is statically zero initialized
6 (to {0, 0}) 1 */
7 static int gb[2] = {1}; /* gb[1] is statically zero initialized
8 (to 0) as part of constant initializing gb to {1, 0} 1 */
9 char *gp; /* gp is statically zero initialized (to null

10 pointer) 1 */
11 std::string gs; /* gs is statically zero initialized
12 (to indeterminate value) and (later) dynamically
13 default initialized to empty string 1 */
14 int gi; // gi is statically zero initialized (to 0)
15
16 int main() {
17 char buf[4] = "hi"; /* buf[3] is zero initialized (to 0) as
18 part of initializing buf to {’h’, ’i’, ’\0’, 0} 2 */
19 static float f; /* f is statically zero initialized
20 (to 0.0f) 1 */
21 int i{}; /* i is zero initialized (to 0) as part of
22 list initialization 3 */
23 const Point& p = Point(); /* referenced object is
24 zero initialized (to {0, 0}) as part of
25 value initialization 3 */
26 }

Note: n indicates case n from earlier slide

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 634

Default Initialization

� default initialization: object constructed with no initializer; for example:
int x; // where x is local object

� default initialization performed when:
1 variable with automatic, static, or thread storage duration declared with no

initializer
::::::::
[C++17 11.6/12]

2 object created by new expression with no initializer
::::::::
[C++17 8.3.4/18]

3 non-static data member or base class not mentioned in constructor
initializer list of invoked constructor

::::::::::
[C++17 15.6.2/(9.3)]

� default initialization of object of type T has following behavior:
:::::::
[C++17 11.6/7]

2 if T is class type, default constructor invoked through overload resolution
against empty argument list and called constructor provides initial value for
new object

2 if T is array type, each element of array is default initialized
2 otherwise, nothing is done (which results in indeterminate value in case of

object with automatic storage duration)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 635

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#12
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.new#18
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.base.init#9.3
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#7

Default Initialization Example

1 #include <string>
2

3 struct Widget {
4 Widget() {} /* w is default initialized to indeterminate
5 value 3 */
6 int w;
7 };
8

9 static std::string gs; /* gs is (statically) zero initialized
10 and then (dynamically) default initialized to
11 empty string 1 */
12

13 int main() {
14 std::string s; /* s is default initialized to
15 empty string 1 */
16 std::string* sp = new std::string; /* heap-allocated object is
17 default initialized to empty string 2 */
18 int i; /* i is default initialized to indeterminate
19 value 1 */
20 int* ip = new int; /* heap-allocated object is
21 default initialized to indeterminate value 2 */
22 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 636

Value Initialization

� value initialization: object constructed with empty initializer; for example:
Widget::Widget() : x() {}
// where x is data member of Widget class

� value initialization performed when:
1 (unnamed) temporary created with initializer consisting of empty pair of

parentheses or braces
::::::::
[C++17 11.6/11]

2 object created by new expression with initializer consisting of empty pair of
parentheses or braces

3 non-static data member or base class initialized using member initializer list
with empty pair of parentheses or braces

::::::::
[C++17 11.6/11]

4 named object declared with initializer consisting of empty pair of braces

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 637

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#11
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#11

Value Initialization (Continued)

� value initialization of object of type T has following behavior:
:::::::
[C++17 11.6/8]

2 if T is class type with no default constructor or with user-provided or deleted
default constructor, object is default initialized

2 if T is class type with default constructor that is neither user-provided nor
deleted (i.e., class where default constructor is implicitly-defined or
defaulted), object is zero initialized and then, if T has non-trivial default
constructor, default initialized

2 if T is array type, each element of array is value initialized
2 otherwise, object is zero initialized

� if T is aggregate type and initializer is empty pair of braces, aggregate
initialization is performed (as part of list initialization) instead of value
initialization

� if T is class type with no default constructor but with constructor taking
std::initializer_list, list initialization is performed

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 638

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#8

Value Initialization Example
1 #include <string>
2
3 struct Point {int x; int y;};
4 struct Widget {
5 Widget() : x() {} // x is value initialized to 0 3

6 int x; int y{}; // y is value initialized to 0 4
7 };
8
9 int main() {

10 Point p; // p is default initialized to indeterminate value
11 Point q{}; /* q is aggregate initialized to {0, 0} as part of
12 list initialization */
13 Point* p1 = new Point(); /* heap-allocated object is
14 value initialized to {0, 0} 2 */
15 Point* p2 = new Point{}; /* heap-allocated object is aggregate
16 initialized to {0, 0} as part of list initialization */
17 std::string s{}; /* s is value initialized to empty string as part
18 of list initialization 4 */
19 const Point& pr = Point(); /* referenced object is value initialized
20 to {0, 0} 1 */
21 const Point& pr2 = Point{}; /* referenced object is aggregate
22 initialized to {0, 0} as part of list initialization */
23 const std::string& sr = std::string{}; /* referenced object is
24 value initialized to empty string as part of
25 list initialization 1 */
26 Widget w{}; /* w is value initialized to {0, 0} as part of
27 list initialization 4 */
28 int i{}; /* i is value initialized to 0 as part of
29 list initialization 4 */
30 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 639

Direct Initialization

� direct initialization: object initialized from explicit set of constructor
arguments; for example:

int x(1); // where x is local object

� direct initialization performed when:
:::::::

[C++17 11.6/16]

1 initializing with nonempty list of expressions in parentheses or braces

::::::::
[C++17 11.6/16]

2 initializing object by new expression with nonempty initializer
::::::::::
[C++17 8.3.4/(18.2)]

3 initializing temporary by static_cast expression
::::::::
[C++17 8.2.9/4]

4 initializing temporary by functional-notation conversions
:::::::

[C++17 8.2.3/2]

5 initializing non-static member or base object with constructor initializer list

::::::::
[C++17 15.6.2/7]

6 initializing closure member from object captured by value in lambda
expression

:::::::::
[C++17 8.1.5.2/15]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 640

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#16
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#16
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.new#18.2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.static.cast#4
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.type.conv#2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.base.init#7
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.prim.lambda.capture#15

Direct Initialization (Continued)

� direct initialization of object of type T has following behavior:
2 if T is class type:

2 if initializer is prvalue expression whose type is same as T ignoring
cv-qualification, initializer expression used to directly initialize object without
materializing temporary (i.e., mandatory copy elision takes place)

::::::::::
[C++17 11.6/(17.6.1)]

2 constructors of T examined, and best match obtained by overload resolution
invoked to initialize object

::::::::::
[C++17 11.6/(17.6.2)]

::::::::::
[C++17 11.6/(17.7)]

2 if T is non-class type but source type is class type, conversion functions of
source type and its base classes, if any, examined and best match selected
by overload resolution used to convert initializer expression into object
being initialized

::::::::::
[C++17 11.6/(17.6.3)]

2 if T is bool and source type is std::nullptr_t, value of initialized object is
false

:::::::
[C++17 7.14/1]

2 otherwise (neither T nor source type is class type), standard conversions
used, if needed, to convert source value to same type as T and this
(possibly converted) value used to set initial value of object

::::::::::
[C++17 11.6/(17.8)]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 641

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#17.6.1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#17.6.2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#17.7
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#17.6.3
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/conv.bool#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#17.8

Direct Initialization Example

1 #include <string>
2 #include <vector>
3
4 struct Widget {
5 Widget() : s("hi") {} // s is direct initialized to "hi" 5

6 explicit Widget(const std::string& s_) : s(s_) {}
7 std::string s;
8 std::string t{"bye"}; /* t is direct initialized to "bye" via
9 direct-list initialization 1 */

10 };
11
12 int main() {
13 std::vector<int> u(2, 42); // u is direct initialized to {42, 42} 1

14 std::vector<int> v(3); // v is direct initialized to {0, 0, 0} 1

15 std::string s("bye"); // s is direct initialized to "bye" 1

16 int i(1); // i is direct initialized to 1 1

17 int j{1}; /* j is direct initialized to 1 as part of
18 direct-list initialization */
19 double d = static_cast<double>(i); /* temporary object is
20 direct initialized to 1.0 3 */
21 std::string* sp = new std::string("hi"); /* heap-allocated object is
22 direct initialized to "hi" 2 */
23 [s](){return s.size();}(); /* s data member in closure is
24 direct initialized to value of s in main 5 */
25 Widget w = Widget("hi"); /* temporary object is direct initialized
26 to {"hi", "bye"} 4 */
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 642

Copy Initialization

� copy initialization: initialize object from another object; for example:
int x = 1; // where x is local object

� copy initialization performed in following situations:
:::::::

[C++17 11.6/15]

1 when named variable of non-reference type declared with initializer that
consist of equals sign followed by expression (including default member
initializer)

::::::::
[C++17 11.6/15]

::::::
[C++17 9.4]

2 when passing argument to function by value
::::::::

[C++17 11.3.6/5]
::::::::
[C++17 11.6/15]

3 when returning from function that returns by value
::::::::
[C++17 9.6.3/2]

4 when throwing exception by value
:::::::
[C++17 18.1/3]

5 when catching exception by value
::::::::
[C++17 18.3/15]

6 as part of aggregate initialization, to initialize each element for which
initializer provided (see later slides on aggregate initialization for details)

::::::::
[C++17 11.6.1/3]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 643

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#15
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#15
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/stmt.select
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.fct.default#5
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#15
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/stmt.return#2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/except.throw#3
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/except.handle#15
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.aggr#3

Copy Initialization (Continued)

� copy initialization of object of type T has following behavior:

::::::
[C++17 9.4]

::::::
[C++17 18.1]

::::::
[C++17 18.3]

:::::::
[C++17 11.6.1]

:::::::
[C++17 15.8]

2 if T is class type and initializer is prvalue expression whose cv-unqualified
type same as T, initializer expression itself (rather than temporary
materialized therefrom) used to initialize object (i.e., mandatory copy elision
takes place)

2 if T is class type and cv-unqualified version of source type is T or class
derived from T, non-explicit constructors of T examined and best match
selected by overload resolution used to initialize object

2 if T is class type and cv-unqualified version of source type is not T or
derived from T or T is non-class type but source type is class type,
user-defined conversion sequences that can convert from source type to T
(or type derived from T) examined and best match selected by overload
resolution used to direct initialize object

2 otherwise (i.e., if neither T nor source type is class type), standard
conversions used, if necessary, to convert source value to cv-unqualified
version of T

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 644

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/stmt.select
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/except.throw
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/except.handle
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.aggr
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy

Copy Initialization Example

1 #include <string>
2 using namespace std::literals;
3
4 struct Widget {
5 std::string s = "hi"; // s is copy initialized to "hi" 1
6 };
7
8 std::string identity(std::string p) {
9 return p; // return value copy initialized from p 3

10 }
11
12 int main() {
13 std::string a[2] = {"hi", "bye"}; /*
14 as part of aggregate initialization:
15 a[0] is copy initialized to "hi" and
16 a[1] is copy initialized to "bye" 6 */
17 std::string s = "hello"s; // s is copy initialized to "hello" 1
18 std::string t = {3, ’A’}; /* t is copy initialized to "AAA" as
19 part of copy-list initialization 1 */
20 s = identity(s); // function parameter is copy initialized from s 2
21 try {
22 throw t; // exception object copy initialized from t 4
23 } catch (std::string s) {
24 // s is copy initialized from exception object 5
25 }
26 if (auto i = s.begin(); i != s.end()) {/* ... */}
27 // i is copy initialized from s.begin() 1
28 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 645

Aggregates

� aggregate is array or class with:
::::::::

[C++17 11.6.1/1]

2 no user-provided, explicit, or inherited constructors
2 no private or protected non-static data members
2 no virtual functions
2 no virtual, private, or protected base classes

� elements of aggregate are:
::::::::
[C++17 11.6.1/2]

2 for array: array elements in increasing subscript order
2 for class: direct base classes in declaration order, followed by direct

non-static data members that are not members of anonymous union in
declaration order

� example:
// aggregate type
struct Point {

int x;
int y;

};

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 646

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.aggr#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.aggr#2

Aggregate Initialization
� aggregate initialization: initializes aggregate from braced initializer list

(or string literal)
� aggregate initialization is used:

2 when aggregate is initialized by braced initializer list (or string literal in case
of initializing character array, since braces around string literal are implied)

::::::::
[C++17 11.6.1/3]

� approximately speaking, aggregate initialization has following behavior:
2 each direct public base, array element, or non-static class member in order

of array subscript or appearance in class definition copy initialized from
corresponding clause of initializer list

2 if initializer clause is expression, only non-narrowing implicit conversions
allowed

2 if initializer clause is braced initializer list, base/element/member list initialized
from clause

2 if number of initializer clauses less than number of members and bases,
remaining members and bases initialized by default initializer if provided in
class definition and otherwise by empty lists in accordance with usual list
initialization rules (e.g., performs value initialization for non-class types and
non-aggregate classes with default constructors)

2 if T is union type, only first non-static data member initialized
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 647

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.aggr#3

Aggregate Initialization Example

1 struct Point {int x; int y;};
2

3 static Point gp{1, 2}; /* aggregate initialized to {1, 2} as
4 part of constant initialization */
5

6 int main() {
7 int a[3] = {1, 2, 3}; /* aggregate initialized to {1, 2, 3}
8 as part of copy-list initialization */
9 int b[3]{1, 2, 3}; /* aggregate initialized to {1, 2, 3} as

10 part of direct-list initialization */
11 int c[4]{1, 2}; /* aggregate initialized to {1, 2, 0, 0} as
12 part of direct-list initialization */
13 Point p{1, 2}; /* aggregate initialized to {1, 2} as
14 part of direct-list initialization */
15 Point q{1}; /* aggregate initialized to {1, 0} as
16 part of direct-list initialization */
17 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 648

List Initialization

� list initialization: initialize object from braced initializer list

� if initializer is braced initializer list (possibly preceded by equals sign), list
initialization always used (which may then, in turn, directly invoke other
types of initialization, such as value, direct, copy, or aggregate
initialization)

� list initialization can occur in both direct and copy initialization contexts

� direct-list initialization: list initialization used in direct-initialization
context; for example:

int x{1}; // where x is local object

� direct-list initialization used:
::::::::

[C++17 11.6.4/1]

1 to initialize named variable with braced initializer list
2 to initialize (unnamed) temporary with braced initializer list
3 to initialize object created by new expression that has braced initializer list

as initializer
4 for non-static data member initializer that does not use equals sign
5 in constructor initializer list where braced initializer list used for initializer

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 649

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#1

List Initialization (Continued 1)

� copy-list initialization: list initialization used in copy-initialization context;
for example:

int x = {1}; // where x is local variable

� copy-list initialization used:
::::::::
[C++17 11.6.4/1]

1 to initialize named variable where initializer is braced initializer list that
follows equals sign

2 to initialize function parameter for function call where braced initializer list
used for corresponding function argument

3 to initialize returned object for return statement where return expression is
braced initializer list

4 to initialize parameter of overloaded subscript operator in subscript
expression where braced initializer list used

5 to initialize parameter of overloaded assignment operator in assignment
expression where right-hand side of assignment is braced initializer list

6 to initialize parameter of constructor in functional cast expression where
corresponding constructor argument is braced initializer list

7 for non-static data member initializer that uses equals sign

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 650

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#1

List Initialization (Continued 2)

� list initialization does not allow narrowing conversions

� direct-list initialization is allowed to use explicit constructors, whereas
copy-list initialization is not

� approximately speaking, list initialization of object of aggregate type T has
following behavior:

::::::::
[C++17 11.6.4/3]

2 if initializer list has single element of same or derived type (possibly
cv-qualified), object initialized from element by copy initialization (for
copy-list initialization) or direct initialization (for direct-list initialization)

::::::::::
[C++17 11.6.4/(3.1)]

2 otherwise, if T is character array and initializer list has single element of
appropriately-typed string literal, array initialized from string literal in usual
manner

:::::::::
[C++17 11.6.4/(3.2)]

2 otherwise, object is aggregate initialized
::::::::::
[C++17 11.6.4/(3.3)]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 651

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#3
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#3.1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#3.2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#3.3

List Initialization (Continued 3)
� approximately speaking, list initialization of object of non-aggregate type T

has following behavior:
::::::::

[C++17 11.6.4/3]

2 if T is class type with default constructor and braced initializer list empty,
object is value initialized

:::::::::
[C++17 11.6.4/(3.4)]

2 if T is specialization of std::initializer_list, object is direct initialized
or copy initialized, depending on context, from braced initializer list

::::::::::
[C++17 11.6.4/(3.5)]

2 if T is class type, constructors of T considered in two phases (first, using
constructors that can be called with std::initializer_list as single
argument; then using all constructors)

:::::::::
[C++17 11.6.4/(3.6)]

2 if T is enumeration type, if braced initializer list has only one initializer (and
some other constraints satisfied), enumeration initialized with result of
converting initializer to enumeration’s underlying type

:::::::::
[C++17 11.6.4/(3.7)]

2 if T is not class type and braced initializer list has exactly one element and
either T is not reference type or is reference type that is compatible with
type of element, object is direct initialized (for direct-list initialization) or copy
initialized (for copy-list initialization)

::::::::::
[C++17 11.6.4/(3.8)]

2 if T is reference type that is not compatible with type of element, temporary
of referenced type is list initialized and reference bound to temporary

::::::::::
[C++17 11.6.4/(3.9)]

2 otherwise, if braced initializer list empty, object is value initialized

::::::::::
[C++17 11.6.4/(3.10)]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 652

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#3
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#3.4
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#3.5
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#3.6
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#3.7
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#3.8
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#3.9
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#3.10

Direct-List Initialization Example

1 #include <initializer_list>
2 #include <vector>
3
4 struct Widget {
5 Widget() : w{1, 2, 3} {} // w is direct-list initialized 5
6 Widget(std::initializer_list<int> w_) : w{w_} {} /* w is
7 direct initialized as part of direct-list initialization 5 */
8 std::vector<int> v{3, 2, 1}; // v is direct-list initialized 4
9 std::vector<int> w;

10 };
11
12 int main() {
13 Widget w1{1, 2, 3}; // w1 is direct-list initialized 1
14 const Widget& w2 = Widget{1, 2, 3};
15 // temporary object is direct-list initialized 2
16 Widget* w3 = new Widget{1, 2, 3};
17 // heap-allocated object is direct-list initialized 3
18 for (auto&& i : {1, 2, 3}) {}
19 // temporary object is direct-list initialized 2
20 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 653

Copy-List Initialization Example

1 #include <vector>
2 #include <tuple>
3 #include <initializer_list>
4
5 struct Widget {
6 Widget() : v({1, 2, 3}) {}
7 // constructor argument is copy-list initialized 2

8 Widget(std::initializer_list<int> v_) : v{v_} {}
9 const int& operator[] (std::pair<int, int> i) const

10 {return i.first ? v[i.second] : w[i.second];}
11 std::vector<int> v;
12 std::vector<int> w = {3, 2, 1}; // w is copy-list initialized 7
13 };
14
15 Widget func(Widget w) {
16 return {1, 2, 3}; // returned value is copy-list initialized 3
17 }
18
19 int main() {
20 Widget w = {1, 2, 3}; // w is copy-list initialized 1
21 w = {1, 2, 3}; // temporary object is copy-list initialized 5
22 func({1, 2, 3}); // function argument is copy-list initialized 2
23 Widget({1, 2, 3}); // constructor argument is copy-list initialized 6

24 int i = w[{0, 1}];
25 // operator[] function parameter is copy-list initialized 4
26 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 654

Initialization of Character Array From String Literal

� special rule employed for initializing character array from string literal

:::::::::
[C++17 11.6/17.3]

� array element type and character type of string literal must be compatible

� each character in string literal (including null-terminator) placed in order
into successive array elements

::::::::
[C++17 11.6.2]

� if number of characters in initializer less than number of array elements,
remaining array elements are zero initialized

� number of characters in initializer must not exceed array capacity

� special initialization rule invoked either directly or via list initialization

::::::::::
[C++17 11.6.4/(3.2)]

::::::::::
[C++17 16.3.3.1.5/3]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 655

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#17.3
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.string
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.list#3.2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/over.ics.list#3

Character Array Initialization Example

1 int main() {
2 char a1[] = "hi";
3 // initialized to {’h’, ’i’, ’\0’} from string literal
4 char a2[] = {"hi"}; /* initialized to {’h’, ’i’, ’\0’} as
5 part of copy-list initialization */
6 char a3[]{"hi"};
7 char a4[3]{"hi"};
8 /* each of a3 and a4 is initialized to {’h’, ’i’, ’\0’}
9 as part of direct-list initialization */

10

11 char b1[4] = "hi";
12 char b2[4] = {"hi"};
13 char b3[4]{"hi"};
14 /* each of b1, b2, and b3 is initialized to
15 {’h’, ’i’, ’\0’, ’\0’} */
16

17 char16_t c[] = u"hi"; /* initialized to
18 {u’h’, u’i’, u’\0’} from string literal */
19 char32_t d[] = U"hi"; /* initialized to
20 {U’h’, U’i’, U’\0’} from string literal */
21 wchar_t e[4]{L"hi"}; /* initialized to
22 {L’h’, L’i’, L’\0’, L’\0’} as part of
23 direct-list initialization */
24 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 656

Example: Aggregates and Brace Elision

1 struct Gadget {
2 int x;
3 int y;
4 };
5

6 struct Widget {
7 Gadget g;
8 int i;
9 };

10

11 int main() {
12 int x[2][2] = {1, 2, 3, 4};
13 // effectively initializer is {{1, 2}, {3, 4}}
14 Widget v = {1, 2, 3};
15 // effectively initializer is {{1, 2}, 3}
16 Widget w = {1, 2};
17 // effectively initializer is {{1, 2}}
18 // w initialized to {{1, 2}, 0}
19 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 657

Example: Auto and Initialization

1 #include <initializer_list>
2

3 auto i1 = 42; // type of i1 deduced as int
4 auto i2(42); // type of i2 deduced as int
5 auto i3{42}; // type of i3 deduced as int
6 // auto i4{42, 42}; // ERROR: exactly one element required
7 auto i5 = {42};
8 // type of i5 deduced as std::initializer_list<int>

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 658

Example: Braced Initializer Lists and Constructor Selection

1 #include <initializer_list>
2

3 struct Widget {
4 Widget();
5 Widget(std::initializer_list<int>);
6 Widget(int);
7 };
8

9 int main() {
10 Widget w{};
11 // invokes default constructor; for empty
12 // braced initializer list, default constructor
13 // preferred over std::initializer_list constructor
14 Widget v{42};
15 // invokes constructor taking std::initializer_list;
16 // for non-empty braced initializer list, constructor
17 // taking std::initializer_list preferred over those
18 // that do not
19 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 659

Example: List Initialization

1 #include <map>
2 #include <vector>
3 #include <string>
4

5 std::map<int, std::string> m{
6 {42, "forty two"},
7 {0, "zero"}
8 }; // initialized to map with two elements
9

10 std::vector<std::string> v1{"hi", "bye"};
11 // initialized to vector with two elements
12

13 std::vector<std::string> v2{{"hi", "bye"}};
14 // ERROR: will try to initialize to vector with
15 // one element; invokes std::string constructor that
16 // takes two iterators as parameters; pointers
17 // to "hi" and "bye" passed as begin and end
18 // iterators; this results in undefined behavior

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 660

Example: Initialization and Narrowing Conversions

1 struct Widget {
2 Widget(int i_) : i(i_) {}
3 int i;
4 };
5

6 int main() {
7 Widget v(42.0);
8 // OK: narrowing conversion allowed in
9 // direct initialization

10 // Widget w{42.0};
11 // ERROR: narrowing conversion not allowed in
12 // list initialization
13 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 661

Example: Initializers and Braces/Parentheses

1 #include <vector>
2 #include <string>
3

4 std::vector<int> v1(3, 42);
5 // initialized to vector with elements 42, 42, 42
6 std::vector<int> v2{3, 42};
7 // initialized to vector with elements 3, 42
8

9 std::string s1(3, ’a’);
10 // initialized to string consisting of 3 ’a’ characters
11 std::string s2{3, ’a’};
12 // initialized to string consisting of characters ’\3’, ’a’

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 662

Example: std::initializer_list and Lifetime

1 #include <iostream>
2 #include <initializer_list>
3

4 auto f(int a, int b, int c) {
5 return std::initializer_list<int>{a, b, c};
6 // ERROR: initializer_list references elements in
7 // temporary array whose lifetime need not extend
8 // beyond lifetime of initializer_list;
9 // therefore, returned initializer_list

10 // likely references invalid data
11 }
12

13 int main() {
14 // nothing good likely to happen here
15 for (auto i : f(1, 2, 3)) {
16 std::cout << i << ’\n’;
17 }
18 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 663. .I1 . .I2 . .I3 . .I4

Section 3.1.1

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 664

Talks I

1 Nicolai Josuttis. The Nightmare of Initialization in C++. CppCon, Bellevue,
WA, USA, Sept. 24, 2018. Available online at
https://youtu.be/7DTlWPgX6zs.

2 Greg Falcon. Initialization, Shutdown, and constexpr. CppCon, Bellevue,
WA, USA, Sept. 27, 2018. Available online at
https://youtu.be/6ZOygaUjzjQ.

3 Timur Doumler. Initialization in Modern C++. Meeting C++, Berlin,
Germany, Nov. 17, 2018. Available online at
https://youtu.be/ZfP4VAK21zc.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 665

https://youtu.be/7DTlWPgX6zs
https://youtu.be/6ZOygaUjzjQ
https://youtu.be/ZfP4VAK21zc

Section 3.2

Temporary Objects

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 666

Temporary Objects
� A temporary object is an unnamed object introduced by the compiler.
� Temporary objects may be used during:

:::::::
[C++17 15.2/1]

:::::::
[C++17 15.2/2]

2 evaluation of expressions
2 argument passing
2 function returns (that return by value)
2 reference initialization

� It is important to understand when temporary objects can be introduced,
since the introduction of temporaries impacts performance.

� Evaluation of expression:
std::string s1("Hello ");
std::string s2("World");
std::string s;
s = s1 + s2; // must create temporary
// std::string _tmp(s1 + s2);
// s = _tmp;

� Argument passing:
double func(const double& x);
func(3); // must create temporary
// double _tmp = 3;
// func(_tmp);

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 667

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.temporary#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.temporary#2

Temporary Objects (Continued)

� Reference initialization:
int i = 2;
const double& d = i; // must create temporary
// double _tmp = i;
// const double& d = _tmp;

� Function return:
std::string getMessage();
std::string s;
s = getMessage(); // must create temporary
// std::string _tmp(getMessage());
// s = _tmp;

� In most (but not all) circumstances, a temporary object is destroyed as the
last step in evaluating the full expression that contains the point where the
temporary object was created.

:::::::
[C++17 15.2/4]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 668

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.temporary#4

Temporary Objects Example

1 class Complex {
2 public:
3 Complex(double re = 0.0, double im = 0.0) : re_(re),
4 im_(im) {}
5 Complex(const Complex& a) = default;
6 Complex(Complex&& a) = default;
7 Complex& operator=(const Complex& a) = default;
8 Complex& operator=(Complex&& a) = default;
9 ~Complex() = default;

10 double real() const {return re_;}
11 double imag() const {return im_;}
12 private:
13 double re_; // The real part.
14 double im_; // The imaginary part.
15 };
16

17 Complex operator+(const Complex& a, const Complex& b) {
18 return Complex(a.real() + b.real(), a.imag() + b.imag());
19 }
20

21 int main() {
22 Complex a(1.0, 2.0);
23 Complex b(1.0, 1.0);
24 Complex c;
25 // ...
26 c = a + b;
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 669

Temporary Objects Example (Continued)

Original code:
int main() {

Complex a(1.0, 2.0);
Complex b(1.0, 1.0);
Complex c;
// ...
c = a + b;

}

Code showing temporaries:
int main() {

Complex a(1.0, 2.0);
Complex b(1.0, 1.0);
Complex c;
// ...
Complex _tmp(a + b);
c = _tmp;

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 670

Prefix Versus Postfix Increment/Decrement

1 class Counter {
2 public:
3 Counter() : count_(0) {}
4 int getCount() const {return count_;}
5 Counter& operator++() { // prefix increment
6 ++count_;
7 return *this;
8 }
9 Counter operator++(int) { // postfix increment

10 Counter old(*this);
11 ++count_;
12 return old;
13 }
14 private:
15 int count_; // counter value
16 };
17

18 int main() {
19 Counter x;
20 Counter y;
21 y = ++x;
22 // no temporaries, int increment, operator=
23 y = x++;
24 // 1 temporary, 1 named, 2 constructors,
25 // 2 destructors, int increment, operator=
26 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 671NEXT SLIDE: copying/moving

Compound Assignment Versus Separate Assignment

1 #include <complex>
2 using std::complex;
3

4 int main() {
5 complex<double> a(1.0, 1.0);
6 complex<double> b(1.0, -1.0);
7 complex<double> z(0.0, 0.0);
8

9 // 2 temporary objects
10 // 2 constructors, 2 destructors
11 // 1 operator=, 1 operator+, 1 operator*
12 z = b * (z + a);
13

14 // no temporary objects
15 // only 1 operator+= and 1 operator*=
16 z += a;
17 z *= b;
18 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 672

SKIP SLIDE

Lifetime of Temporary Objects

� Normally, a temporary object is destroyed as the last step in evaluating the
full expression that contains point where temporary object was created.

:::::::
[C++17 15.2/5]

:::::::
[C++17 15.2/6]

� First exception: When a default constructor with one or more default
arguments is called to initialize an element of an array.

:::::::
[C++17 15.2/5]

� Second exception: When a reference is bound to a temporary (or a
subobject of a temporary), the lifetime of the temporary is extended to
match the lifetime of the reference, with following exceptions:

:::::::
[C++17 15.2/6]

2 A temporary bound to a reference member in a constructor initializer list
persists until the constructor exits.

2 A temporary bound to a reference parameter in a function call persists until
the completion of the full expression containing the call.

2 A temporary bound to the return value of a function in a return statement is
not extended, and is destroyed at end of the full expression in the return
statement.

2 A temporary bound to a reference in an initializer used in a new-expression
persists until the end of the full expression containing that new-expression.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 673

SKIP SLIDE

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.temporary#5
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.temporary#6
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.temporary#5
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.temporary#6

Lifetime of Temporary Objects Examples

� Example:
void func() {

std::string s1("Hello");
std::string s2(" ");
std::string s3("World!\n");
const std::string& s = s1 + s2 + s3;
std::cout << s; // OK?

}

� Example:
const std::string& getString() {

return std::string("Hello");
}
void func() {

std::cout << getString(); // OK?
}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 674

SKIP SLIDE

Temporary Object Creation

� temporary objects are created:
::::::::
[C++17 15.2/1]

2 when prvalue is materialized so that it can be used as xvalue
2 when needed to pass or return object of trivially-copyable type
2 when throwing exception

� materialization of temporary object is always delayed as long as possible
in order to avoid creating unnecessary temporary objects

:::::::
[C++17 15.2/2]

� temporary objects are materialized:
::::::::
[C++17 15.2/2]

::::::
[C++17 7.4/1]

::::::
[C++17 8/10]

2 when binding a reference to a prvalue
2 when performing member access on a class prvalue
2 when performing array-to-pointer conversion or subscripting on array

prvalue
2 when initializing object of type std::initializer_list from braced

initializer list
2 for certain unevaluated operands
2 when prvalue appears as discarded expression

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 675

SKIP SLIDE

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.temporary#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.temporary#2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.temporary#2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/conv.rval#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr#10

Section 3.3

Lvalues and Rvalues

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 676

Expressions

� An expression is a sequence of operators and operands that specifies a
computation.

::::::
[C++17 8/1]

� An expression has a type and, if the type is not void, a value.

� Example:

int x = 0;
int y = 0;
int* p = &x;
double d = 0.0;
// Evaluate some
// expressions here.

Expression Type Value
x int 0
y = x int& reference to y
x + 1 int 1
x * x + 2 * x int 0
y = x * x int& reference to y
x == 42 bool false
*p int& reference to x
p == &x bool true
x > 2 * y bool false
std::sin(d) double 0.0

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 677

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.prim

Value Categories of Expressions

expression

lvalue xvalue prvalue

glvalue
rvalue

� Every expression can be classified into exactly one of three value
categories:

:::::::
[C++17 6.10/1]

1 lvalue
2 xvalue (which stands for “expiring value”)
3 prvalue (which stands for “pure rvalue”)

� An expression that is an lvalue or xvalue is called a glvalue (which stands
for “generalized lvalue”).

� An expression that is a prvalue or an xvalue is called an rvalue.

� Every expression is either an lvalue or rvalue (but not both).

� Every expression is either a glvalue or prvalue (but not both).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 678

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.lval#1

Value Categories of Expressions (Continued)

� How an expression can be used is dictated, in part, by its value category.

� Whether or not it is safe to move (instead of copy) depends on whether an
lvalue or rvalue is involved.

� In the context of values categories, the notion of identity is important.

� An entity (such as an object or function) is said to have an identity if it
can be distinguished from other like entities with identical attributes.

� For example, any object that is stored at a well-defined location in memory
has an identity, since, given two objects with well-defined locations (and
possibly identical values), one can always determine if these objects are
the same object by comparing their locations.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 679

Lvalues

� An lvalue is an expression that:
:::::::
[C++17 6.10/1]

2 denotes a function, object, or bitfield; and
2 has an identity.

� Since an lvalue establishes the identity of a function, object, or bitfield, an
lvalue is always associated with some well-defined location in memory
(which, in some cases, can be determined by the address-of operator).

:::::::
[C++17 8.3.1/3]

� If an lvalue expression corresponds to an object, the resources of that
object are not guaranteed to be safe to reuse (i.e., the object is not
guaranteed to be safe to use as the source for a move operation).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 680

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.lval#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.unary.op#3

Lvalues (Continued 1)

� A named object or named function is an lvalue.
::::::::

[C++17 8.1.4.1/1]
:::::::::
[C++17 8.1.4.2/2]

Example:
int get_value();
int i;
int j;
i = get_value();
// i and get_value are lvalues
// Note: get_value is not the same as get_value()

j = i + 1; // i and j are lvalues

� The result of calling a function whose return type is an lvalue reference
type is an lvalue.

::::::::
[C++17 8.2.2/11] Example:

int& get_value();
++get_value(); // get_value() is an lvalue

� A string literal is an lvalue.
:::::::

[C++17 8.1.1/1] Example:
const char *s = "Hello"; // "Hello" is an lvalue

� A named rvalue reference is an lvalue.
:::::
[C++17 8/7] Example:

int&& i = 1 + 3;
int j = i; // i is an lvalue

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 681

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.prim.id.unqual#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.prim.id.qual#2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.call#11
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.prim.literal#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr#7

Lvalues (Continued 2)

� An rvalue reference to a function (both named and unnamed) is an
lvalue.

::::::
[C++17 8/7] Example:

void func();
void (&&f)() = func;
f(); // f is an lvalue
std::move(func)(); // std::move(func) is an lvalue

� The result of each of the following built-in operators is an lvalue:
2 built-in subscripting operator (except when array rvalue involved)

:::::::
[C++17 8.2.1/1]

2 built-in indirection operator
:::::::

[C++17 8.3.1/1]

2 built-in pre-increment and pre-decrement operators
::::::::
[C++17 8.3.2/1]

::::::::
[C++17 8.3.2/2]

2 built-in assignment and compound-assignment operators
:::::::
[C++17 8.18/1]

Example:
char buffer[] = "Hello";
char* s = buffer;
*s = ’a’; // *s is an lvalue
*(s + 1) = ’b’; // *(s + 1) is an lvalue
++s; // ++s is an lvalue
--s; // --s is an lvalue
s += 2; // s += 2 is an lvalue
s = &buffer[1];
// s = &buffer[1] is an lvalue
// buffer[1] is an lvalue

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 682

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr#7
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.sub#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.unary.op#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.pre.incr#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.pre.incr#2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.ass#1

Moving and Lvalues

� Using a move (instead of a copy) is not guaranteed to be safe when the
source is an lvalue (since other code can access the associated object by
name or through a pointer or reference).

� Example:
void func() {

std::vector<int> x;
std::vector<int> y(x);
/* can we construct by moving (instead of copying)?
source x is lvalue; not safe to move x to y since
value of x might be used later */

y = x;
/* can we assign by moving (instead of copying)?
source x is lvalue; not safe to move x to y since
value of x might be used later */

// ...
}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 683

Rvalues

� A prvalue (i.e., pure rvalue) is an expression whose evaluation:
:::::::
[C++17 6.10/1]

2 computes the value of an operand of an operator; or
2 initializes an object or a bitfield.

� A prvalue never corresponds to an object (but, in some contexts, might be
used to materialize a temporary object).

� A prvalue does not have an identity.
� An xvalue (i.e., expiring value) is an expression that:

::::::::
[C++17 6.10/1]

2 denotes an object or bitfield (usually near the end of its lifetime);
2 has an identity; and
2 the resources of the object/bitfield can safely be reused (i.e., is deemed to

be safe to use as the source for a move).
� An xvalue is associated with certain kinds of expressions involving rvalue

references or the materialization of a temporary object.
� An rvalue is an expression that is either a prvalue or an xvalue.
� Unlike an lvalue, an rvalue need not have an identity.
� Therefore, applying the (built-in) address-of operator to an rvalue

(corresponding to an object) is not allowed.
::::::::
[C++17 8.3.1/3]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 684

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.lval#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.lval#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.unary.op#3

Prvalues

� The result of calling a function that returns by value (i.e., the return type is
not a reference type) is a prvalue.

::::::::
[C++17 8.2.2/11] Example:

int get_value();
int i = get_value();
// get_value() is a prvalue
// Note: get_value() is not the same as get_value

� All literals other than string literals are prvalues.
::::::::
[C++17 8.1.1/1] Example:

double pi = 3.1415; // 3.1415 is a prvalue
int i = 42; // 42 is a prvalue
i = 2 * i + 1; // 2 and 1 are prvalues
char c = ’A’; // ’A’ is a prvalue

� The this keyword is a prvalue.
:::::::
[C++17 8.1.2/2]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 685

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.call#11
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.prim.literal#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.prim.this#2

Prvalues (Continued)

� The result of each of the following built-in operators is a prvalue:
2 built-in post-increment and post-decrement operators

:::::::
[C++17 8.2.6/1]

2 built-in arithmetic operators excluding increment and decrement operators
(e.g., unary plus, unary minus, addition, subtraction, multiplication, division,
and modulus)

:::::::::::
[C++17 8.3.1/2 unary?]

::::::::::
[C++17 8.7 missing?]

2 built-in bitwise operators (e.g., bitwise NOT, bitwise AND, and bitwise OR)
2 built-in logical operators (e.g., logical NOT, logical AND, and logical OR)
2 built-in relational operators (e.g., equal, not equal, and less than)
2 built-in address-of operator

:::::::
[C++17 8.3.1/3]

Example:
int i;
int j;
i = -(3 + 5); // 3 + 5 and -(3 + 5) are prvalues
j = i * i; // i * i is a prvalue
j = (i == 42); // i == 42 is a prvalue
j = (i & 7) | 2; // (i & 7) and (i & 7) | 2 are prvalues
i = j++; // j++ is a prvalue
int *ip = &i; // &i is a prvalue

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 686

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.post.incr#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.unary.op#2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.add
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.unary.op#3

Xvalues

� The result of calling a function whose return type is an rvalue reference
type is an xvalue.

::::::
[C++17 8/7.1] Example:

std::string s("Hello");
std::string t = std::move(s); // std::move(s) is xvalue
// Note: std::move returns rvalue reference type

� An unnamed rvalue reference to an object is an xvalue.
::::::
[C++17 8/7] Example:

std::string s("Hello");
std::string t;
t = static_cast<std::string&&>(s);
// static_cast<std::string&&>(s) is xvalue

s = std::move(t); // std::move(t) is an xvalue

� A temporary object materialized from a prvalue is an xvalue.
:::::::
[C++17 7.4/1]

Example:
std::vector<int> v;
v = std::vector<int>(10, 2);
// temporary object materialized from prvalue
// std::vector<int>(10, 2) is an xvalue

std::complex<double> u;
u = std::complex<double>(1, 2);
// temporary object materialized from prvalue
// std::complex<double>(1, 2) is an xvalue

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 687

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr#7.1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr#7
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/conv.rval#1

Moving and Rvalues
� When the source object whose value is to be propagated is an rvalue,

using a move (instead of a copy) is always safe (either because this must
be so or the programmer has explicitly deemed this to be so).

� Example (move from temporary object):
void func() {

std::vector<int> x;
x = std::vector<int>(42, 0);
/* safe to move from temporary object materialized
from prvalue std::vector<int>(42, 0) since any change
to its value cannot be observed by other code */

// ...
}

� Example (forced move):
void func() {

std::string s("hello");
std::cout << s << ’\n’;
std::string t(std::move(s));
/* safe to move from s to t since std::move(s) is
xvalue; programmer has, in effect, said "trust me, it
is safe to use move here"; of course, if programmer is
wrong, bad things will happen; programmer correct
in this case, since value of s not used again */
std::cout << t << ’\n’;

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 688

More on Lvalues and Rvalues

� Lvalues and rvalues can be either modifiable or nonmodifiable.
Example:

int i = 0;
const int j = 2;
i = j + 3;
// i is modifiable lvalue
// j is nonmodifiable lvalue
// j + 3 is modifiable rvalue

const std::string getString();
std::string s = getString();
// getString() is nonmodifiable rvalue

� Class rvalues can have cv-qualified types, while non-class rvalues always
have cv-unqualified types.

::::::
[C++17 8/6] Example:

const int getConstInt(); // const is ignored
const std::string getConstString();
int i = getConstInt();
// getConstInt() is modifiable rvalue of type int
// (not const int)

std::string s = getConstString();
// getConstString() is nonmodifiable rvalue

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 689

SKIP SLIDE

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr#6

Moving and Lvalues/Rvalues

� With regard to propagating the value from one object to another, we can
summarize the results from the earlier slides as follows:

2 If the source for a copy operation is an lvalue, the copy operation is not
guaranteed to be safely replaceable by a move operation.

2 If the source for a copy operation is an rvalue, the copy operation is
guaranteed to be safely replaceable by a move operation (where the
guarantee may effectively come from the programmer in some cases).

� It would be highly desirable if the language would provide a mechanism
that would automatically allow a move to be used in the rvalue case and a
copy to be employed otherwise.

� In fact, this is exactly what the language does.
� The rules in the language for reference binding and overload resolution

conspire to achieve the following final overall effect:
2 When the value of an object must be propagated to another object, a move

operation is used if such an operation is available and the source object is
an rvalue; otherwise, a copy operation is employed.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 690

Moving/Copying and Lvalues/Rvalues

� Consider the following code with respect to moving/copying:
1 /* Note: std::string provides copy and move constructors
2 and copy and move assignment operators. */
3

4 std::string get_value();
5 const std::string get_const_value(); // WARNING: bad idea
6

7 void func() {
8 std::string s(get_value());
9 // move elided (for reasons to be seen later)

10 std::string t(s); // copy construction
11 std::string u(std::move(t)); // move construction
12 t = s; // copy assignment
13 t = std::string("Hello"); // move assignment
14 s = std::move(t); // move assignment
15 t = get_const_value(); // copy assignment (not move!)
16 }

� One further complication exists that is yet to be discussed.

� In some circumstances, a move/copy operation is either allowed or
required to be elided (i.e., copy elision).

� This complication will be considered in detail later.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 691NEXT SLIDE: copy elision

Built-In Operators, Rvalues, and Lvalues

� Aside from the exceptions noted below, all of the built-in operators require
operands that are prvalues.

::::::::
[C++17 8.2.1/1]

::::::::
[C++17 8.2.5/2]

� The operand of each of the following built-in operators must be an lvalue:
2 address of

:::::::
[C++17 8.3.1/3]

2 pre- and post-increment
:::::::

[C++17 8.2.6/1]
:::::::

[C++17 8.3.2/1]

2 pre- and post-decrement
::::::::
[C++17 8.2.6/1]

::::::::
[C++17 8.3.2/1]

� The left operand of the following built-in operators must be an lvalue:
2 assignment

:::::::
[C++17 8.18/1]

2 compound assignment
:::::::

[C++17 8.18/1]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 692

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.sub#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.ref#2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.unary.op#3
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.post.incr#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.pre.incr#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.post.incr#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.pre.incr#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.ass#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.ass#1

Operators, Lvalues, and Rvalues

� Whether an operator for a class type requires operands that are lvalues or
rvalues or yield lvalues or rvalues is determined by the parameter types
and return type of the operator function.

� The member selection operator may yield an lvalue or rvalue, depending
on the particular manner in which the operator is used. (The behavior is
fairly intuitive.)

::::::::
[C++17 8.2.5/4]

� The value category and type of the result produced by the ternary
conditional operator depends on the particular manner in which the
operator is employed.

:::::::
[C++17 8.16/5]

:::::::
[C++17 8.16/6]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 693

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.ref#4
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.cond#5
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.cond#6

Implicit Lvalue-to-Rvalue Conversion

� The lvalue-to-rvalue conversion (which would be more accurately called
the glvalue-to-prvalue conversion) is an implicit conversion from lvalues
and xvalues to prvalues, which can be used in numerous circumstances.

:::::::
[C++17 7.1/1]

� For non-class types, the above conversion also removes cv-qualifiers.

� Whenever an lvalue/xvalue appears as an operand of an operator that
expects a prvalue operand, the lvalue-to-rvalue conversion is applied to
convert the expression to a prvalue.

:::::
[C++17 8/9] Example:

int i = 1;
int j = 2;
int k = i + j;
/* since built-in binary addition operator requires
prvalue operands, i and j implicitly converted from
lvalues to prvalues */

� The lvalue-to-rvalue conversion is not used for reference binding.

::::::::
[C++17 11.6.3/5]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 694

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/conv.lval#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr#9
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.ref#5

Section 3.4

Copy Elision and Implicit Moving

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 695

Copy Elision
� normally, compiler forbidden from applying optimizations to code that

would change its observable behavior (i.e., so called “as if” rule)
� one important exception to as-if rule is copy elision
� copy elision is code transformation that omits copy/move operation by

constructing object in place to which it would later be copied/moved
� copy elision allows copy/move operations to be eliminated, thus avoiding

cost of copy/move constructors
� copy elision may also eliminate need for some temporary objects, which

avoids cost of constructing and destroying those objects
� copy elision either allowed or required in several contexts:

2 initialization
2 returning by value
2 passing by value
2 throwing by value
2 catching by value

� in cases where copy elision is mandatory, copy/move constructors need
not be accessible or even provided at all, which provides more flexibility in
dealing with non-movable non-copyable types

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 696

Copy Elision and Returning by Value
� in return statement of function with class return type, when expression is

name of non-volatile automatic object (other than function or catch-clause
parameter) with same cv-unqualified type as function return type,
automatic object can be constructed directly in function’s return value

::::::::::
[C++17 15.8.3/(1.1)]

� copy elision required if (allowed as per above and) return expression is
prvalue (i.e., placeholder for temporary object)

::::::::::
[C++17 11.6/(17.6.1)]

� example:
1 struct Widget {
2 Widget();
3 Widget(const Widget&);
4 Widget(Widget&&);
5 // ...
6 };
7
8 Widget func1() {return Widget();}
9 // returns prvalue (i.e., placeholder for temporary object)

10 Widget func2() {Widget w; return w;} // returns named object
11
12 int main() {
13 Widget w(func1());
14 // required copy elision (not named object returned)
15 Widget x(func2());
16 // possible copy elision (named object returned)
17 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 697

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.elision#1.1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#17.6.1

Copy Elision and Returning by Value (Continued)

� in context of returning by value, two forms of copy elision known by special
names

� code transformation that eliminates copy from unnamed object associated
with prvalue return expression to returned value in caller known as return
value optimization (RVO)

� that is, RVO is copy elision in case that return expression is prvalue

� as seen previously, RVO is mandatory

� code transformation that eliminates copy from named object specified by
return expression to returned value in caller known as named return
value optimization (NRVO)

� that is, NRVO is copy elision in case that return expression is named
object (i.e., not prvalue)

� as seen previously, NRVO is allowed but not required

� terms RVO and NRVO frequently used when discussing copy elision in
context of returning by value

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 698

SKIP SLIDE

Return-By-Value Example 1: Summary

� consider following code (where type T is default constructible):
1 T callee() {return T();}
2 void caller() {T x(callee()); /* ... */}

� goal is to construct object x in caller with value corresponding to T()
(i.e., default constructed T)

� without copy elision, this would be achieved by:

temporary
object

in callee

temporary
object

in caller

x
in caller

default
construct

copy/move
construct

copy/move
construct

� by maximally utilizing copy elision (and delaying creation of any temporary
objects as long as possible), this can be reduced to single step:

x
in caller

default
construct

� not only were two copy/move operations eliminated, need for any
temporary objects also eliminated

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 699:::::::
copyElision.1.1

Return-By-Value Example 1: Without Copy Elision
� again, consider following code (where type T is default constructible):

T callee() {return T();}
void caller() {T x(callee()); /* ... */}

� consider what happens without copy elision (in violation of standard in this
case)

� executing body of caller proceeds as follows:
1 storage for temporary object allocated in caller to hold return value of
callee

2 caller invokes callee
3 expression in return statement of callee evaluated, resulting in

construction of temporary object in callee (via default constructor) to hold
return value

4 before callee returns, value of temporary object in callee propagated to
temporary object in caller (via move/copy construction)

5 callee returns (after destroying its temporary object holding return value)
6 value of temporary object in caller propagated to x (via move/copy

construction); then temporary object destroyed

� overhead: two temporary objects created (two constructor and destructor
invocations); must propagate value into and out of temporary objects

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 700

SKIP SLIDE

Return-By-Value Example 1: With Copy Elision

� again, consider following code (where type T is default constructible):
T callee() {return T();}
void caller() {T x(callee()); /* ... */}

� consider what happens with copy elision (which is required by standard in
this case)

� executing body of caller proceeds as follows:
1 caller invokes callee
2 expression in return statement of callee evaluated, resulting in return

value of callee being constructed directly in x in caller (via default
constructor)

� no overhead: no temporary objects created and therefore no need to
propagate values into or out of temporary objects

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 701

SKIP SLIDE

Return-By-Value Example 2: Summary
� consider following code (where type T is default constructible and

copyable/movable):
1 T callee() {return T();}
2 void caller() {T x; x = callee(); /* ... */}

� goal is to assign value corresponding to T() to x in caller

� without copy elision, this would be achieved by:

temporary
object

in callee

temporary
object

in caller

x
in caller

default
construct

copy/move
construct

copy/move
assign

� with copy elision, this can be reduced to:

temporary
object

in caller

x
in caller

default
construct

copy/move
assign

� able to eliminate one move/copy operation and one temporary object

� unlike in case of previous example, cannot eliminate temporary object in
caller since temporary object must be materialized in order to perform
assignment to x in caller

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 702:::::::
copyElision.1.2

Return-By-Value Example 2: Without Copy Elision
� again, consider following code (where type T is default constructible and

copyable/movable):
T callee() {return T();}
void caller() {T x; x = callee(); /* ... */}

� consider what happens without copy elision (in violation of standard in this
case)

� executing body of caller proceeds as follows:
1 storage for temporary object allocated in caller to hold return value of
callee

2 caller invokes callee
3 expression in return statement of callee evaluated, resulting in

construction of temporary object in callee (via default constructor) to hold
return value

4 before callee returns, value of temporary object in callee propagated to
temporary object in caller (via move/copy construction)

5 callee returns (after destroying its temporary object holding return value)
6 value of temporary object in caller propagated to x (via move/copy

assignment); then temporary object destroyed
� overhead: two temporary objects created; must propagate value from

temporary object in callee to temporary object in caller
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 703

SKIP SLIDE

Return-By-Value Example 2: With Copy Elision
� again, consider following code (where type T is default constructible and

copyable/movable):
T callee() {return T();}
void caller() {T x; x = callee(); /* ... */}

� consider what happens with copy elision (which is required by standard in
this case)

� executing body of caller proceeds as follows:
1 storage for temporary object allocated in caller to hold return value of
callee

2 caller invokes callee
3 expression in return statement of callee evaluated, resulting in return

value of callee being constructed directly in temporary object in caller
(via default constructor)

4 callee returns
5 value of temporary object in caller propagated to x (via move/copy

assignment); then temporary object destroyed

� overhead: one temporary object created; but no need to propagate value
from temporary object in callee to temporary object in caller

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 704

SKIP SLIDE

Example Where Copy Elision Allowed But Likely Impossible
1 class Widget {
2 public:
3 Widget(int) {/* ... */}
4 Widget(const Widget&) = default;
5 Widget(Widget&&) = default;
6 // ...
7 };
8

9 bool get_flag();
10

11 // eliding copy of return value is not possible
12 Widget func() {
13 Widget w(0);
14 // w must be constructed before it is known if
15 // w will be returned; so cannot know whether to
16 // construct w in returned value
17 Widget v(42);
18 // v must be constructed before it is known if
19 // v will be returned; so cannot know whether to
20 // construct v in returned value
21 if (get_flag()) {return w;}
22 else {return v;}
23 }
24

25 int main() {
26 Widget w(func());
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 705

Copy Elision and Passing by Value

� in function call, when temporary class object not bound to reference would
be copied/moved to class object with same cv-unqualified type, temporary
object can be constructed directly in target of omitted copy/move

::::::::
[C++17 11.6/15]

:::::::
[C++17 8.2.2/4]

� copy elision always required if allowed (as per above)
::::::::::
[C++17 11.6/(17.6.1)]

� example:
1 struct Widget {
2 Widget();
3 Widget(const Widget&);
4 Widget(Widget&&);
5 // ...
6 };
7

8 void func(Widget w) {/* ... */}
9

10 int main() {
11 func(Widget()); // required copy elision
12 func(std::move(Widget())); /* BAD IDEA:
13 copy elision not allowed; move performed */
14 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 706

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#15
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.call#4
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#17.6.1

Pass-By-Value Example: Summary

� consider following code (where type T is default constructible):
1 void callee(T p) {/* ... */}
2 void caller() {callee(T());}

� goal is to invoke callee with its function parameter p having value
corresponding to T() (i.e., default constructed T)

� without copy elision, this would be accomplished by:

temporary
object

in caller

parameter p
in callee

default
construct

copy/move
construct

� with copy elision, this can be reduced to:

parameter p
in callee

default
construct

� by using copy elision, not only was one copy/move operation eliminated,
but temporary object also eliminated

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 707:::::::
copyElision.1.3

Pass-By-Value Example: Without Copy Elision
� again, consider following code (where type T is default constructible):

void callee(T p) {/* ... */}
void caller() {callee(T());}

� consider what happens without copy elision (in violation of standard in this
case)

� executing body of caller proceeds as follows:
1 temporary object created in caller with value corresponding to T() (via

default constructor)
2 storage for callee’s function parameter p allocated (on stack)
3 value of temporary object in caller propagated (via move/copy

constructor) to callee’s function parameter p
4 caller transfers control to callee
5 callee returns, resulting in its function parameter being destroyed (and

deallocated)
6 temporary object in caller destroyed (and deallocated)

� overhead: one temporary object created (constructor and destructor
invocations); one move/copy required to propagate value from temporary
object elsewhere

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 708

SKIP SLIDE

Pass-By-Value Example: With Copy Elision

� again, consider following code (where type T is default constructible):
void callee(T p) {/* ... */}
void caller() {callee(T());}

� consider what happens with copy elision (as required by standard in this
case)

� executing body of caller proceeds as follows:
1 function parameter p constructed (on stack) with value corresponding to
T() (via default constructor)

2 caller transfers control to callee
3 callee returns, resulting in its function parameter being destroyed (and

deallocated)

� no overhead: no temporary objects created and therefore no need to
propagate values into or out of temporary objects

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 709

SKIP SLIDE

Copy Elision and Throwing by Value

� in throw expression, when operand is name of non-volatile automatic
object (other than function or catch-clause parameter) whose scope does
not extend beyond end of innermost enclosing try block (if there is one),
copy/move operation from operand to exception object can be omitted by
constructing automatic object directly into exception object

::::::::::
[C++17 15.8.3/(1.2)]

� copy elision required if (allowed as per above and) throw expression is
prvalue

::::::::::
[C++17 11.6/(17.6.1)]

� example:
1 struct Widget {
2 Widget();
3 Widget(const Widget &);
4 Widget(Widget&&);
5 // ...
6 };
7

8 void func_1(){
9 throw Widget(); // required copy elision (prvalue)

10 }
11

12 void func_2(){
13 Widget w; throw w; // possible copy elision (not prvalue)
14 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 710

SKIP SLIDE

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.elision#1.2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#17.6.1

Copy Elision and Catching by Value

� when exception declaration of exception handler declares object of same
type (except for cv-qualification) as exception object, copy/move operation
can be omitted by treating exception declaration as alias for exception
object if meaning of program will be unchanged except for execution of
constructors and destructors for object declared by exception declaration

::::::::::
[C++17 15.8.3/(1.3)]

� in this context, copy elision never required

� example:
1 struct Widget {
2 Widget();
3 Widget(const Widget &);
4 Widget(Widget&&);
5 // ...
6 };
7

8 int main() {
9 try {throw Widget();}

10 catch (Widget foo) { // possible copy elision
11 /* ... (foo not modified) */
12 }
13 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 711

SKIP SLIDE

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.elision#1.3

Copy Elision and Initialization

� if prvalue used as initializer of object with same type (except for
cv-qualification), object must be initialized directly

::::::::::
[C++17 11.6/(17.6.1)]

� example:
1 class Widget {
2 public:
3 Widget();
4 Widget(const Widget&);
5 Widget(Widget&&);
6 // ...
7 };
8
9 Widget func();

10
11 int main() {
12 Widget w = Widget(func());
13 // copy elision required for initialization;
14 // no copy/move in main function;
15 // returned value from func directly constructed in w;
16 // func may need copy/move to propagate return value
17 // out of func, if not elided
18 Widget u{Widget()};
19 // copy elision required for initialization;
20 // no copy/move; new Widget object is default
21 // constructed directly in u
22 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 712:::::::
copyElision.1A

:::::::
copyElision.1B

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init#17.6.1

Mandatory Copy Elision Example: Factory Function

1 class Widget {
2 public:
3 Widget() {/* ... */}
4 // not copyable
5 Widget(const Widget&) = delete;
6 Widget& operator=(const Widget&) = delete;
7 // not movable
8 Widget(Widget&&) = delete;
9 Widget& operator=(Widget&&) = delete;

10 // ...
11 };
12

13 Widget make_widget() {
14 return Widget();
15 }
16

17 int main() {
18 Widget w(make_widget());
19 // OK: copy elision required
20 Widget v{Widget()};
21 // OK: copy elision required
22 Widget u(Widget());
23 // function declaration
24 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 713

Maximally Delayed Materialization of Temporary Objects

1 #include <cassert>
2
3 class Widget {
4 public:
5 Widget() : c_(0) {}
6 Widget(const Widget& other) : c_(other.c_ + 1) {}
7 Widget& operator=(const Widget& other) {c_ = other.c_ + 1; return *this;}
8 int count() const {return c_;}
9 private:

10 int c_;
11 };
12
13 Widget widget_1() {return Widget();}
14 // mandatory copy elision for return value
15 Widget widget_2() {return widget_1();}
16 // mandatory copy elision for return value
17 Widget widget_3() {return widget_2();}
18 // mandatory copy elision for return value
19
20 int main() {
21 Widget w{widget_3()}; // no temporary object; no copy/move
22 assert(w.count() == 0);
23 w = widget_3();
24 // widget_1 directly constructs return value into
25 // temporary object in main
26 assert(w.count() == 1);
27 Widget v{Widget(Widget(Widget(Widget(Widget(Widget())))))};
28 // default constructs directly into v; no copy/move
29 assert(v.count() == 0);
30 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 714

SKIP SLIDE

Return Statements and Moving/Copying

� A copy operation associated with a return statement may be (elided or)
converted to a move operation if an automatic storage duration variable is
returned.

:::::::
[C++17 9.6.3/2]

:::::::::
[C++17 18.8.3/(3.1)]

� Overload resolution to select the constructor for the copy is first
performed as if the object were designated by an rvalue.

:::::::
[C++17 15.8.3]

� If the first overload resolution fails or was not performed, or if the type of
the first parameter of the selected constructor is not an rvalue reference to
the object’s type (possibly cv-qualified), overload resolution is performed
again, considering the object as an lvalue.

:::::::
[C++17 15.8.3]

� In a future version of the C++ standard, the condition on a constructor
being selected seems likely to be relaxed to cover the cases of conversion
operators and slicing.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 715

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/stmt.return#2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.elision#3.1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.elision
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.elision

Example: Return Statements and Moving/Copying
1 #include <string>
2
3 class Widget {
4 public:
5 Widget(const std::string&) {/* ... */}
6 Widget(const Widget&) = default;
7 Widget(Widget&&) = default;
8 // ...
9 };

10
11 Widget get_value_1() {
12 Widget w("goodbye");
13 return w;
14 // copy elision is allowed, but not required;
15 // if move/copy not elided:
16 // since w is local object, w first treated as if rvalue,
17 // resulting in move constructor being selected
18 // to propagate return value to caller
19 }
20
21 Widget get_value_2() {
22 std::string s("hello");
23 return s;
24 // effectively: return Widget(s);
25 // copy elision required (since returning temporary)
26 }
27
28 int main() {
29 Widget w(get_value_1());
30 Widget v(get_value_2());
31 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 716

Use of std::move in Return Expressions

� consider function that returns by value

� for such function, almost never desirable to use result of invocation of
std::move as return expression, since this prohibits copy elision

� example (bad use of std::move):
Widget make_widget() {

return std::move(Widget());
// BAD: move performed instead of eliding move

}

� only use result of invoking std:move as return expression if:
1 copy elision cannot be used; and
2 copy would be performed instead of move

� example (potentially good use of std::move):
Buffer read(Buffer&& buffer) {

// ... (read data into buffer)
return std::move(buffer);
// OK: not eligible for copy elision and
// would have copied (not moved)

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 717NEXT SLIDE: go to Q.MC1 (moving/copy/elision example)

Example: Incorrect Use of std::move
1 #include <string>
2
3 class Widget {
4 public:
5 Widget(const std::string&) {/* ... */}
6 Widget(const Widget&) = default;
7 Widget(Widget&&) = default;
8 // ...
9 };

10
11 Widget get_value_1() {
12 return Widget("hello");
13 // copy elision required
14 }
15
16 // Note: This type of usage of std::move is highly undesirable,
17 // as it prevents copy elision.
18 Widget get_value_2() {
19 return std::move(Widget("hello"));
20 // since cv-unqualified return-expression type and
21 // cv-unqualified return type differ, copy elision is not
22 // allowed; move constructor is selected to propagate return
23 // value to caller; if std::move had not been used, copy/move
24 // would have been completely eliminated (due to required
25 // copy elision)
26 }
27
28 int main() {
29 Widget w(get_value_1());
30 Widget v(get_value_2());
31 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 718

Copy/Move/Elide Example: Widget (1)

1 #include <utility>
2
3 class Widget {
4 public:
5 Widget();
6 Widget(const Widget&);
7 Widget(Widget&&);
8 Widget& operator=(const Widget&);
9 Widget& operator=(Widget&&);

10 // ...
11 };
12
13 Widget func_0(Widget w) {
14 // copy elision for return value not allowed since object being
15 // returned is function parameter; treating return expression as
16 // rvalue results in move being performed
17 return w;
18 }
19
20 Widget func_1() {
21 try {
22 // copy elision for exception object is required
23 throw Widget();
24 } catch (Widget w) {
25 // copy elision for return value not allowed since object
26 // being returned is catch-clause parameter; treating return
27 // expression as rvalue results in move being performed
28 return w;
29 }
30 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 719

Copy/Move/Elide Example: Widget (2)

32 Widget func_2(Widget& w) {
33 // copy elision for return value not allowed for several reasons
34 // (e.g., function parameter, not automatic, cv-unqualified type
35 // mismatch); return expression cannot be treated as rvalue since
36 // w is not automatic object; so copy is performed
37 return w;
38 }
39
40 Widget func_3() {
41 static Widget w;
42 // copy elision for return value not allowed since w is not
43 // automatic object; return expression cannot be treated as
44 // rvalue since w is not automatic object; so copy is performed
45 return w;
46 }
47
48 Widget g;
49 Widget func_4() {
50 // copy elision for return value not allowed since g is not
51 // automatic; cannot treat w as rvalue since not automatic
52 // object; so copy is performed
53 return g;
54 }
55
56 void func_5() {
57 Widget w;
58 // copy elision for exception object is allowed; if copy not
59 // elided, move performed
60 throw w;
61 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 720

Copy/Move/Elide Example: Widget (3)

63 void func_6(Widget w) {
64 // copy elision is not allowed since object in throw expression
65 // is function parameter; copy performed in C++17, but may become
66 // move in future (P1155)
67 throw w;
68 }
69
70 Widget func_7(Widget&& w) {
71 // copy elision is not allowed for several reasons (e.g.,
72 // cv-unqualified return type does not match cv-unqualified
73 // return-expression type, not automatic object); return
74 // expression cannot be treated as rvalue since w is not
75 // automatic object; copy performed in C++17, but may become
76 // move in future (P0527)
77 return w;
78 }
79
80 Widget func_8(Widget& w) {
81 Widget&& x = std::move(w);
82 // copy elision is not allowed for several reasons (e.g.,
83 // cv-unqualified return type does not match cv-unqualified
84 // return-expression type and not automatic object); copy
85 // performed in C++17, but may become move in future (P0527)
86 return x;
87 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 721

Copy/Move/Elide Example: Conversion (1)

1 class Widget {
2 public:
3 Widget();
4 Widget(const Widget&);
5 Widget(Widget&&);
6 // ...
7 };
8
9 class Gadget {

10 public:
11 Gadget();
12 Gadget(const Gadget&);
13 Gadget(Gadget&&);
14 Gadget(const Widget& w); // copying converting constructor
15 Gadget(Widget&& w); // moving converting constructor
16 // ...
17 };
18
19 class Doodad {
20 public:
21 Doodad();
22 Doodad(const Doodad&);
23 Doodad(Doodad&&);
24 operator Widget() const&; // copying conversion operator
25 operator Widget() &&; // moving conversion operator
26 // ...
27 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 722

Copy/Move/Elide Example: Conversion (2)

29 Gadget func_1() {
30 Widget w;
31 // copy elision is not permitted since cv-unqualified return type
32 // and cv-unqualified return-expression type do not match;
33 // when w treated as rvalue, moving converting constructor found;
34 // performs move via moving converting constructor
35 return w;
36 }
37
38 Widget func_2() {
39 Doodad t;
40 // copy elision is not permitted since cv-unqualified return type
41 // does not match cv-unqualified return-expression type;
42 // when t treated as rvalue, no constructor is found;
43 // performs copy via copying conversion operator in C++17,
44 // but may change to move in future (P1155) since some compilers
45 // do this anyways (in violation of standard)
46 return t;
47 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 723

Copy/Move/Elide Example: Slicing

1 #include <iostream>
2
3 class Base {
4 public:
5 Base();
6 Base(const Base&);
7 Base(Base&&);
8 Base& operator=(const Base&);
9 Base& operator=(Base&&);

10 // ...
11 };
12
13 class Derived : public Base {
14 public:
15 Derived();
16 Derived(const Derived&);
17 Derived(Derived&&);
18 Derived& operator=(const Derived&);
19 Derived& operator=(Derived&&);
20 // ...
21 };
22
23 Base base_1() {
24 Derived x;
25 // copy elision is not permitted since cv-unqualified
26 // return-expression type does not match cv-unqualified return
27 // type; copy is performed in C++17, but may become move in
28 // future (P1155)
29 return x;
30 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 724

Copy/Move/Elide Example: Other Operators (1)

1 class BigInt {
2 public:
3 BigInt();
4 BigInt(const BigInt&);
5 BigInt(BigInt&&);
6 BigInt& operator=(const BigInt&);
7 BigInt& operator=(BigInt&&);
8 BigInt& operator+=(int);
9 BigInt& operator++();

10 // ...
11 };
12
13 BigInt func_1(BigInt c) {
14 c += 1;
15 // copy elision for return value not allowed since return
16 // expression is function parameter; move is performed
17 return c;
18 }
19
20 BigInt func_2(BigInt c) {
21 // copy elision for return value not allowed since
22 // cv-unqualified return-expression type does not match
23 // cv-unqualified return type; copy is performed
24 return c += 1;
25 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 725

Copy/Move/Elide Example: Other Operators (2)

27 BigInt func_3(const BigInt& c) {
28 // copy elision for return value not allowed for several
29 // reasons (e.g., function parameter, not automatic,
30 // cv-unqualified type mismatch); copy is performed
31 return BigInt(c) += 1;
32 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 726

Copy/Move/Elide Example: Parentheses

1 class Widget {
2 public:
3 Widget();
4 Widget(const Widget&);
5 Widget(Widget&&);
6 // ...
7 };
8

9 Widget func_0() {
10 Widget w;
11 // copy elision is permitted
12 // if not elided, move is performed
13 return w;
14 }
15

16 Widget func_1() {
17 Widget w;
18 // standard seems to suggest copy elision not
19 // permitted since (w) is not name of object, but:
20 // Clang 7.0.0 (-std=c++17 -O2) elides copy;
21 // MSVC 19.15 (/std:c++17 /O2) elides copy;
22 // GCC 8.2 (-std=c++17 -O2) performs move
23 return (w);
24 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 727

Section 3.5

Rvalue References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 728

Section 3.5.1

Introduction

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 729

Motivation Behind Rvalue References

� Rvalue references were added to the language in C++11 in order to
provide support for:

1 move operations; and
2 perfect forwarding.

� A move operation is used to propagate the value from one object to
another, much like a copy operation, except that a move operation makes
fewer guarantees, allowing for greater efficiency and flexibility in many
situations.

� Perfect forwarding relates to being able to pass function arguments from a
template function through to another function (called by the template
function) while preserving certain properties of those arguments.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 730

Terminology: Named and Cv-Qualified

� A type that includes one or both of the qualifiers const and volatile
is called a cv-qualified type.

� A type that is not cv-qualified is called cv-unqualified.
:::::::
[C++17 6.9.3/1]

� Example:
The types const int and volatile char are cv-qualified.
The types int and char are cv-unqualified.

� An object or function that is named by an identifier is said to be named.

� An object or function that cannot be referred to by name is said to be
unnamed.

� Example:
std::vector<int> v = {1, 2, 3, 4};
std::vector<int> w;
w = v; // w and v are named
w = std::vector<int>(2, 0);
// w is named
// std::vector<int>(2, 0) is unnamed

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 731

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.type.qualifier#1

Section 3.5.2

Copying and Moving

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 732

Propagating Values: Copying and Moving

� Suppose that we have two objects of the same type and we want to
propagate the value of one object (i.e., the source) to the other object (i.e.,
the destination).

� This can be accomplished in one of two ways:
1 copying; or
2 moving.

� Copying propagates the value of the source object to the destination
object without modifying the source object.

� Moving propagates the value of the source object to the destination
object and is permitted to modify the source object.

� Moving is always at least as efficient as copying, and for many types,
moving is more efficient than copying.

� For some types, copying does not make sense, while moving does (e.g.,
std::ostream and std::istream).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 733

Buffer Example: Moving Versus Copying

� Consider a class that represents a character buffer (whose size is fixed at
run time).

class Buffer {
public:

// ...
private:

char* data_; // pointer to buffer data
std::size_t size_; // buffer size (in characters)

};

� Pictorially, the data structure looks like the following:

data_
size_ d1

Buffer

n

dn−1

...

d0

� How would copying be implemented?

� How would moving be implemented?

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 734

Buffer Example: Copying

� code for copying from source src to destination dst (not self assignment):
delete [] dst.data_;
dst.data_ = new T[src.size_];
dst.size_ = src.size_;
std::copy_n(src.data_, src.size_, dst.data_);

� copying requires: one array delete, one array new, copying of element
data, and updating data_ and size_ data members

� copying proceeds as follows:

data_
size_

sn−1

...

s1

s0
n

src
data_
size_

dm−1

...

d1

d0

dst

m

data_
size_

sn−1

...

s1

s0
n

src
data_
size_

sn−1

...

s1

s0

dst

n

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 735

Buffer Example: Moving
� code for moving from source src to destination dst:

std::swap(src.data_, dst.data_);
std::swap(src.size_, dst.size_);

� moving only requires updating data_ and size_ data members

� although not considered here, could also free data array associated with
src if desirable to release memory as soon as possible

� moving proceeds as follows:

data_
size_

sn−1

...

s1

s0
n

src
data_
size_

dm−1

...

d1

d0

dst

m

data_
size_

sn−1

...

s1

s0
m

src
data_
size_

dm−1

...

d1

d0

dst

n

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 736

Moving Versus Copying

� Moving is usually more efficient than copying, often by very large margin.

� So, we should prefer moving to copying.

� We can safely replace a copy by a move when subsequent code does not
depend on the value of source object.

� It would be convenient if the language could provide a mechanism for
automatically using a move (instead of a copy) in situations where doing
so is always guaranteed to be safe.

� For reasons of efficiency, it would also be desirable for the language to
provide a mechanism whereby the programmer can override the normal
behavior and force a move (instead of a copy) in situations where such a
transformation is known to be safe only due to some special additional
knowledge about program behavior.

� Rvalue references (in concert with the rules for reference binding and
overload resolution) provide the above mechanisms.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 737NEXT SLIDE: value categories

Section 3.5.3

References, Reference Binding, and Overload Resolution

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 738

References

� A reference is an alias (i.e., nickname) for an already existing object.
� The language has two kinds of references:

1 lvalue references
2 rvalue references

� An lvalue reference is denoted by & (often read as “ref”).
int i = 5;
int& j = i; // j is lvalue reference to int
const int& k = i; k is lvalue reference to const int

� An rvalue reference is denoted by && (often read as “ref ref”).
int&& i = 5; // i is rvalue reference to int
const int&& j = 17; // j is rvalue reference to const int

� The act of initializing a reference is known as reference binding.
� Lvalue and rvalues references differ only in their properties relating to:

2 reference binding; and
2 overload resolution.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 739

References: Binding and Overload Resolution

� The kinds of expressions, to which lvalue and rvalue references can bind,
differ.

� For a nonreference type T (such as int or const int), what kinds of
expressions can validly be placed in each of the boxes in the example
below?

T& r = ;
T&& r = ;

� Lvalue and rvalue references also behave differently with respect to
overload resolution.

� Let T be a cv-unqualified nonreference type. Which overloads of func will
be called in the example below?

T operator+(const T&, const T&);
void func(const T&);
void func(T&&);
T x;
func(x); // calls which version of func?
func(x + x); // calls which version of func?

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 740

Reference Binding

� Implicit lvalue-to-rvalue conversion is disabled when binding to
references.

::::::::
[C++17 11.6.3?]

:::::::::
[C++17 16.3.3.1.4/1]

::::::
[C++17 7.1]

� An lvalue reference can bind to an lvalue as long as doing so would not
result in the loss of any cv qualifiers.

const int i = 0;
int& r1 = i; // ERROR: drops const
const int& r2 = i; // OK
const volatile int& r3 = i; // OK

� The loss of cv qualifiers must be avoided for const and volatile
correctness.

� Similarly, an rvalue reference can bind to an rvalue as long as doing so
would not result in the loss of any cv qualifiers.

const std::string getValue();
std::string&& r1 = getValue(); // ERROR: drops const
const std::string&& r2 = getValue(); // OK

� Again, the loss of cv qualifiers must be avoided for const and volatile
correctness.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 741

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.init.ref
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/over.ics.ref#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/conv.lval#1

Reference Binding (Continued)

� An lvalue reference can be bound to an rvalue only if doing so would not
result in the loss of any cv qualifier and the lvalue reference is const.

const std::string getConstValue();
std::string& r1 = getConstValue(); // ERROR: drops const
const std::string& r2 = getValue(); // OK
int& ri1 = 42; // ERROR: not const reference
const int& ri2 = 42; // OK

� The requirement that the lvalue reference be const is to prevent temporary
objects from being modified in a very uncontrolled manner, which can lead
to subtle bugs.

� An rvalue reference can never be bound to an lvalue.
int i = 0;
int&& r1 = i; // ERROR: cannot bind to lvalue
int&& r2 = 42; // OK

� Allowing rvalue reference to bind to lvalues would violate the principle of
type-safe overloading, which can lead to subtle bugs.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 742

Why Rvalue References Cannot Bind to Lvalues

� In effect, rvalue references were introduced into the language to allow a
function to know if one of its reference parameters is bound to an object
whose value is safe to change without impacting other code, namely, an
rvalue (i.e., a temporary object or xvalue).

� Since an rvalue reference can only bind to an rvalue, any rvalue reference
parameter to a function is guaranteed to be bound to a temporary object
or xvalue.

� Example:
class Thing {
public:

// Move constructor
// parameter x known to be safe to use as source for move
Thing(Thing&& x);
// Move assignment operator
// parameter x known to be safe to use as source for move
Thing& operator=(Thing&& x);
// ...

};
// parameter x known to be safe to modify
void func(Thing&& x);

� If rvalue references could bind to lvalues, the above guarantee could not
be made, as an rvalue reference could then refer to an object whose value
cannot be changed safely, namely, an lvalue.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 743

Why Non-Const Lvalue References Cannot Bind to Rvalues

� If non-const lvalue references could bind to rvalues, temporary objects
could be modified in many undesirable circumstances.

void func(int& x) {
// ...

}

int main() {
int i = 1;
int j = 2;
func(i + j);
// ERROR: cannot bind non-const lvalue
// reference to rvalue
// What would be consequence if allowed?

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 744

Reference Binding Summary

Rvalue Lvalue

T
const

T
volatile

T

const
volatile

T
T

const
T

volatile
T

const
volatile

T
T&& 3 C V C,V 7 7 7 7

const
T&&

3 3 V V 7 7 7 7

volatile
T&&

3 7 3 C 7 7 7 7

const
volatile

T&&
3 3 3 3 7 7 7 7

T& 7 7 7 7 3 C V C,V
const T& 3 3 V V 3 3 V V
volatile

T&
7 7 7 7 3 C 3 C

const
volatile

T&
7 7 7 7 3 3 3 3

3: allowed C: strips const V: strips volatile 7: other

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 745

Reference Binding Example

1 #include <string>
2 using std::string;
3
4 string value() {
5 return string("Hello");
6 }
7
8 const string constValue() {
9 return string("World");

10 }
11
12 int main() {
13 string i("mutable");
14 const string j("const");
15
16 string& r01 = i;
17 string& r02 = j; // ERROR: drops const
18 string& r03 = value(); // ERROR: non-const lvalue reference from rvalue
19 string& r04 = constValue(); // ERROR: non-const lvalue reference from rvalue
20
21 const string& r05 = i;
22 const string& r06 = j;
23 const string& r07 = value();
24 const string& r08 = constValue();
25
26 string&& r09 = i; // ERROR: rvalue reference from lvalue
27 string&& r10 = j; // ERROR: rvalue reference from lvalue
28 string&& r11 = value();
29 string&& r12 = constValue(); // ERROR: drops const
30
31 const string&& r13 = i; // ERROR: rvalue reference from lvalue
32 const string&& r14 = j; // ERROR: rvalue reference from lvalue
33 const string&& r15 = value();
34 const string&& r16 = constValue();
35 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 746

Overload Resolution

� Lvalues strongly prefer binding to lvalue references.

� Rvalues strongly prefer binding to rvalue references.

� Modifiable lvalues and rvalues weakly prefer binding to non-const
references.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 747

Overload Resolution Summary

Priority
Rvalue Lvalue

T
const

T
volatile

T

const
volatile

T
T

const
T

volatile
T

const
volatile

T
T&& 1

const
T&&

2 1

volatile
T&&

2 1

const
volatile

T&&
3 2 2 1

T& 1
const T& 4 3 2 1
volatile

T&
2 1

const
volatile

T&
3 2 2 1

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 748

Overloading Example 1

1 #include <iostream>
2 #include <string>
3
4 void func(std::string& x) {
5 std::cout << "func(std::string&) called\n";
6 }
7
8 void func(const std::string& x) {
9 std::cout << "func(const std::string&) called\n";

10 }
11
12 void func(std::string&& x) {
13 std::cout << "func(std::string&&) called\n";
14 }
15
16 void func(const std::string&& x) {
17 std::cout << "func(const std::string&&) called\n";
18 }
19
20 const std::string&& constValue(const std::string&& x) {
21 return static_cast<const std::string&&>(x);
22 }
23
24 int main() {
25 const std::string cs("hello");
26 std::string s("world");
27 func(s);
28 func(cs);
29 func(cs + s);
30 func(constValue(cs + s));
31 }
32
33 /* Output:
34 func(std::string&) called
35 func(const std::string&) called
36 func(std::string&&) called
37 func(const std::string&&) called
38 */

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 749

Overloading Example 2

1 #include <iostream>
2 #include <string>
3
4 void func(const std::string& x) {
5 std::cout << "func(const std::string&) called\n";
6 }
7
8 void func(std::string&& x) {
9 std::cout << "func(std::string&&) called\n";

10 }
11
12 const std::string&& constValue(const std::string&& x) {
13 return static_cast<const std::string&&>(x);
14 }
15
16 int main() {
17 const std::string cs("hello");
18 std::string s("world");
19 func(s);
20 func(cs);
21 func(cs + s);
22 func(constValue(cs + s));
23 }
24
25 /* Output:
26 func(const std::string&) called
27 func(const std::string&) called
28 func(std::string&&) called
29 func(const std::string&) called
30 */

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 750

Why Rvalue References Cannot Bind to Lvalues (Revisited)

� If an rvalue reference could bind to an lvalue, this would violate the
principle of type-safe overloading.
1 #include <iostream>
2 #include <string>
3

4 template <class T>
5 class Container {
6 public:
7 // ...
8 // Forget to provide the following function:
9 // void push_back(const T& value); // Copy semantics

10 void push_back(T&& value); // Move semantics
11 private:
12 // ...
13 };
14

15 int main() {
16 std::string s("Hello");
17 Container<std::string> c;
18 // What would happen here if lvalues
19 // could bind to rvalue references?
20 c.push_back(s);
21 std::cout << s << ’\n’;
22 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 751

Section 3.5.4

Moving

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 752

Move Constructors

� A non-template constructor for class T is a move constructor if it can be
called with one parameter that is of type T&&, const T&&,
volatile T&&, or const volatile T&&.

::::::::
[C++17 15.8.1/2]

� Example:
class T {
public:

T();
T(const T&); // copy constructor
T(T&&); // move constructor
// ...

};

T a;
T b(std::move(a)); // calls T::T(T&&)
T c(b); // calls T::T(const T&)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 753

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.ctor#2

Move Assignment Operators

� A move assignment operator T::operator= is a non-static
non-template member function of class T with exactly one parameter of
type T&&, const T&&, volatile T&&, or const volatile T&&.

::::::::
[C++17 15.8.2/3]

� Example:
class T {
public:

T();
T(const T&); // copy constructor
T(T&&); // move constructor
T& operator=(const T&); // copy assignment operator
T& operator=(T&&); // move assignment operator
// ...

};

T func(int);

T a;
T b;
a = func(1); // calls T::operator=(T&&)
b = a; // calls T::operator=(const T&)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 754

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.copy.assign#3

Buffer Example Revisited

� Recall the class from earlier that represents a character buffer (whose
size is fixed at run time).

class Buffer {
public:

// ...
private:

char* data_; // pointer to buffer data
std::size_t size_; // buffer size (in characters)

};

� Pictorially, the data structure looks like the following:

data_
size_ d1

Buffer

n

dn−1

...

d0

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 755

Example Without Move Construction/Assignment

1 #include <algorithm>
2 #include <cstddef>
3
4 class Buffer {
5 public:
6 Buffer(std::size_t size, char value = 0) :
7 size_(size), data_(new char[size])
8 {std::fill_n(data_, size, value);}
9 Buffer(const Buffer& b) : size_(b.size_), data_(new char[b.size_])

10 {std::copy_n(b.data_, b.size_, data_);}
11 Buffer& operator=(const Buffer& b) {
12 if (this != &b) {
13 delete[] data_;
14 size_ = b.size_; data_ = new char[b.size_];
15 std::copy_n(b.data_, b.size_, data_);
16 }
17 return *this;
18 }
19 ~Buffer() {delete[] data_;}
20 private:
21 char* data_; // pointer to buffer data
22 std::size_t size_; // buffer size (in characters)
23 };
24
25 Buffer getBuffer() {return Buffer(65536, ’A’);}
26
27 int main() {
28 Buffer x(0);
29 Buffer y = getBuffer(); // construct from temporary object
30 x = Buffer(32768, ’B’); // assign from temporary object
31 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 756

Example With Move Construction/Assignment
1 #include <algorithm>
2 #include <cstddef>
3 #include <utility>
4
5 class Buffer {
6 public:
7 Buffer(std::size_t size, char value = 0) :
8 size_(size), data_(new char[size])
9 {std::fill_n(data_, size, value);}

10 Buffer(const Buffer& b) : size_(b.size_), data_(new char[b.size_])
11 {std::copy_n(b.data_, b.size_, data_);}
12 Buffer& operator=(const Buffer& b) {
13 if (this != &b) {
14 delete[] data_;
15 size_ = b.size_; data_ = new char[b.size_];
16 std::copy_n(b.data_, b.size_, data_);
17 }
18 return *this;
19 }
20 // Move constructor
21 Buffer(Buffer&& b) : size_(b.size_), data_(b.data_)
22 {b.size_ = 0; b.data_ = nullptr;}
23 // Move assignment operator
24 Buffer& operator=(Buffer&& b) {
25 std::swap(size_, b.size_);
26 std::swap(data_, b.data_);
27 return *this;
28 }
29 ~Buffer() {delete[] data_;}
30 private:
31 char* data_; // pointer to buffer data
32 std::size_t size_; // buffer size (in characters)
33 };
34
35 Buffer getBuffer() {return Buffer(65536, ’A’);}
36
37 int main() {
38 Buffer x(0);
39 Buffer y = getBuffer(); // construct from temporary object
40 x = Buffer(32768, ’B’); // assign from temporary object
41 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 757

Allowing Move Semantics in Other Contexts via std::move

� As we have seen, a reference parameter of a function that is bound to
modifiable rvalue can be modified safely (i.e., no observable change in
behavior outside of function).

� Sometimes may want to allow a move to be used instead of a copy, when
this would not normally be permitted.

� We can allow moves by casting to a non-const rvalue reference.

� This casting can be accomplished by std::move, which is declared (in
the header file utility) as:

template <class T>
constexpr typename std::remove_reference<T>::type&&
move(T&&) noexcept;

� For an object x of type T, std::move(x) is similar to
static_cast<T&&>(x) but saves typing and still works correctly when
T is a reference type (a technicality yet to be discussed).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 758

Old-Style Swap

� Prior to C++11, a swap function (such as std::swap) would typically look
like this:

1 template <class T>
2 void swap(T& x, T& y) {
3 T tmp(x); // copy x to tmp
4 x = y; // copy y to a
5 y = tmp; // copy tmp to y
6 }

� In the above code, a swap requires three copy operations (namely, one
copy constructor call and two copy assignment operator calls).

� For many types T, this use of copying is very inefficient.
� Furthermore, the above code requires that T must be copyable (i.e., T has

a copy constructor and copy assignment operator).

� In C++11, we can write a much better swap function.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 759

Improved Swap

� As of C++11, a swap function would typically look like this:

1 template <class T>
2 void swap(T& x, T& y) {
3 T tmp(std::move(x)); // move x to tmp
4 x = std::move(y); // move y to x
5 y = std::move(tmp); // move tmp to y
6 }

� The function std::move casts its argument to an rvalue reference.

� Assuming that T provides a move constructor and move assignment
operator, a swap requires three move operations (i.e., one move
constructor call and two move assignment operator calls) and no copying.

� The use of std::move above is essential in order for copying to be
avoided.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 760

Implication of Rvalue-Reference Type Function Parameters

� Due to the properties of rvalue references, a function parameter of
rvalue-reference type may be regarded as being bound to an object
whose value will not be relied upon in the caller.

� Therefore, an object associated with a function parameter of
rvalue-reference type can always be safely modified (i.e., without fear of
adversely affecting the caller).

� This fact can often be exploited in order to obtain more efficient code.

� Consider the code for a function with the following declaration:
void func(std::vector<double>&& x);

� Since x is of rvalue-reference type, we are guaranteed that the caller will
not rely upon the value of the object referenced by x.

� If obliterating the value of x would allow us to more efficiently implement
func, we can safely do so.

� For example, we could safely modify x in place or move from it, without
fear of adversely affecting the caller.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 762NEXT SLIDE: Exceptions

Reference-Qualified Member Functions

� every nonstatic member function has implicit parameter *this

� possible to provide reference qualifiers for implicit parameter

� allows overloading member functions on lvalueness/rvalueness of *this

� cannot mix reference qualifiers and non-reference qualifiers in single
overload set

� provides mechanism for treating lvalue and rvalue cases differently

� useful for facilitating move semantics or preventing operations not
appropriate for lvalues or rvalues

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 763

Reference-Qualified Member Functions Example

1 #include <iostream>
2

3 class Widget {
4 public:
5 void func() const &
6 {std::cout << "const lvalue\n";}
7 void func() &
8 {std::cout << "non-const lvalue\n";}
9 void func() const &&

10 {std::cout << "const rvalue\n";}
11 void func() &&
12 {std::cout << "non-const rvalue\n";}
13 };
14

15 const Widget getConstWidget() {return Widget();}
16

17 int main(){
18 Widget w;
19 const Widget cw;
20 w.func(); // non-const lvalue
21 cw.func(); // const lvalue
22 Widget().func(); // non-const rvalue
23 getConstWidget().func(); // const rvalue
24 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 764

Lvalueness/Rvalueness and the *this Parameter

1 class Int {
2 public:
3 Int(int x = 0) : value_(x) {}
4 // only allow prefix increment for lvalues
5 Int& operator++() & {++value_; return *this;}
6 // The following allows prefix increment for rvalues:
7 // Int& operator++() {++value_; return *this;}
8 // ...
9 private:

10 int value_;
11 };
12

13 int one() {return 1;}
14

15 int main() {
16 int i = 0;
17 int j = ++i; // OK
18 // int k = ++one(); // ERROR (not lvalue)
19 Int x(0);
20 Int y = ++x; // OK
21 // Int z = ++Int(1); // ERROR (not lvalue)
22 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 765

Move Semantics and the *this Parameter

1 #include <iostream>
2 #include <vector>
3 #include <utility>
4

5 class Buffer {
6 public:
7 Buffer(char value = 0) : data_(1024, value) {}
8 void data(std::vector<char>& x) const &
9 {x = data_;}

10 void data(std::vector<char>& x) &&
11 {x = std::move(data_);}
12 // ...
13 private:
14 std::vector<char> data_;
15 };
16

17 Buffer getBuffer() {return Buffer(42);}
18

19 int main() {
20 std::vector<char> d;
21 Buffer buffer;
22 buffer.data(d); // copy into d
23 getBuffer().data(d); // move into d
24 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 766

Section 3.5.5

Reference Collapsing and Forwarding References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 767

References to References

� A reference to a reference is not allowed, since such a construct clearly
makes no sense.

::::::::
[C++17 11.3.2/5]

int i = 0;
int& & j = i; // ILLEGAL: reference to reference

� Although one cannot directly create a reference to a reference, a
reference to a reference can arise indirectly in several contexts.

� Typedef name:
typedef int& RefToInt;
typedef RefToInt& T; // reference to reference

� Template function parameters:
template <class T> T func(const T& x) {return x;}
int x = 1;
func<int&>(x); // reference to reference

� Decltype specifier:
int i = 1;
decltype((i))& j = i; // reference to reference

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 768

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.ref#5

References to References (Continued)

� Auto specifier:
int i = 0;
auto&& j = i; // reference to reference

� Class templates:
template <class T>
struct Thing {

void func(T&&) {} // reference to reference
// if T is reference type

};
Thing<int&> x;

� If, during type analysis, a reference to a reference type is obtained, the
reference to reference is converted to a simple reference via a process
called reference collapsing.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 769

Reference Collapsing Rules

� Let TR denote a type that is a reference to type T (where T may be cv
qualified).

� The effect of reference collapsing is summarized below.
::::::::
[C++17 11.3.2/6].

Before Collapse After Collapse
TR& T&
const TR& T&
volatile TR& T&
const volatile TR& T&
TR&& TR
const TR&& TR
volatile TR&& TR
const volatile TR&& TR

� In other words:
2 An lvalue reference to any reference yields an lvalue reference.
2 An rvalue reference to an lvalue reference yields an lvalue reference.
2 An rvalue reference to an rvalue reference yields rvalue reference.
2 Any cv qualifiers applied to a reference type are discarded (since cv

qualifiers cannot be applied to a reference).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 770

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/dcl.ref#6

Reference Collapsing Examples

� Due to reference collapsing, T&& syntax may not always be an rvalue
reference. Example:

using IntRef = int&;
int i = 0;
IntRef&& r = i; // r is int& (i.e., lvalue reference)

� Example:
using IntRef = int&;
using IntRefRef = int&&;
using ConstIntRefRef = const int&&;
using ConstIntRef = const int&;
using T1 = const IntRef&; // T1 is int&
using T2 = const IntRefRef&; // T2 is int&
using T3 = IntRefRef&&; // T3 is int&&
using T4 = ConstIntRef&&; // T4 is const int&
using T5 = ConstIntRefRef&&; // T5 is const int&&

� Example:
int i = 0;
int& j = i;
auto&& k = j;
// j cannot be inferred to have type int
// since rvalue reference cannot be bound to lvalue
// j inferred to have type int&
// reference collapsing of int& && yields int&

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 771

Forwarding References
� A cv-unqualified rvalue reference that appears in a type-deducing context

for template parameters is called a forwarding reference.
:::::::::

[C++17 17.8.2.1/3]

� Type deduction for template parameters of template functions is defined in
such a way as to facilitate perfect forwarding.

� Consider the following template-parameter type-deduction scenario:
template<class T>
void f(T&& p);

f(expr); // invoke f

� Let E denote the type of the expression expr. The type T is then deduced
as follows:

1 If expr is an lvalue, T is deduced as E&, in which case the type of p yielded
by reference collapsing is E&.

2 If expr is an rvalue, T is deduced as E, in which case p will have the type
E&&.

� Thus, the type T&& will be an lvalue reference type if expr is an lvalue, and
an rvalue reference type if expr is an rvalue.

� Therefore, the lvalue/rvalue-ness of expr can be determined inside f
based on whether T&& is an lvalue reference type or rvalue reference type.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 772

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/temp.deduct.call#3

Forwarding References Example
1 #include <utility>
2

3 template <class T> void f(T&& p);
4 int main() {
5 int i = 42;
6 const int ci = i;
7 const int& rci = i;
8 f(i);
9 // i is lvalue with type int

10 // T is int&
11 // p has type int&
12 f(ci);
13 // ci is lvalue with type const int
14 // T is const int&
15 // p has type const int&
16 f(rci);
17 // rci is lvalue with type const int&
18 // T is const int&
19 // p has type const int&
20 f(2);
21 // 2 is rvalue with type int
22 // T is int
23 // p has type int&&
24 f(std::move(i));
25 // std::move(i) is rvalue with type int&&
26 // T is int
27 // p has type int&&
28 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 773

Section 3.5.6

Perfect Forwarding

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 774

Perfect Forwarding

� Perfect forwarding is the act of passing a template function’s arguments
to another function:

2 without rejecting any arguments that can be passed to that other function
2 without losing any information about the arguments’ cv-qualifications or

lvalue/rvalue-ness; and
2 without requiring overloading.

� In C++03, for example, the best approximations of perfect forwarding turn
all rvalues into lvalues and require at least two (and often more) overloads.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 775

Perfect-Forwarding Example

� Consider a template function wrapper and another function func, each of
which takes one argument.

� Suppose that we want to perfectly forward the argument of wrapper to
func.

� The function wrapper is to do nothing other than simply call func.

� In doing so, wrapper must pass its actual argument through to func.

� This must be done in such a way that the argument to wrapper and
argument to func have identical properties (i.e., match in terms of
cv-qualifiers and lvalue/rvalue-ness).

� In other words, the following two function calls must have identical
behavior, where expr denotes an arbitrary expression:

wrapper(expr);
func(expr);

� The solution to a perfect-forwarding problem, such as this one, turns out to
be more difficult than it might first seem.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 776

Perfect-Forwarding Example: First Failed Attempt

� For our first attempt, we propose the following code for the (template)
function wrapper:

template <class T>
void wrapper(T p) {

func(p);
}

� If func takes its parameter by reference, calls to wrapper and func (with
the same argument) can have different behaviors.

� Suppose, for example, that we have the following declarations:
void func(int&); // uses pass by reference
int i;

� Then, the following two function calls are not equivalent:
wrapper(i);
// T is deduced as int
// copy of i passed to func
// wrapper cannot change i

func(i);
// i passed by reference
// func can change i

� Problem: The original and forwarded arguments are distinct objects.
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 777

Perfect-Forwarding Example: Second Failed Attempt
� For our second attempt, we propose the following code for the (template)

function wrapper:
template <class T>
void wrapper(T& p) {

func(p);
}

� If, for example, the function argument is an rvalue (such as a non-string
literal or temporary object), calls to wrapper and func (with the same
argument) can have different behaviors.

� Suppose, for example, that we have the following declaration:
void func(int); // uses pass by value

� Then, the following two function calls are not equivalent:
wrapper(42);
// T is deduced as int
// ERROR: cannot bind rvalue to
// nonconst lvalue reference

func(42);
// OK

� Problem: The original and forwarded arguments do not match in terms of
lvalue/rvalue-ness.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 778

Perfect-Forwarding Example: Third Failed Attempt

� For our third attempt, we propose the following code for the (template)
function wrapper:

template <class T>
void wrapper(const T& p) {

func(p);
}

� If, for example, the function argument is a non-const object, calls to
wrapper and func (with the same argument) will have different behaviors.

� Suppose, for example, that we have the following declaration:
void func(int&);
int i;

� Then, the following two function calls are not equivalent:
wrapper(i);
// ERROR: wrapper cannot call func, as this
// would discard const qualifier

func(i);
// OK

� Problem: The original and forwarded arguments do not match in terms of
cv-qualifiers.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 779

Perfect-Forwarding Example: Solution

� Finally, we propose the following code for the (template) function wrapper:
template <class T>
void wrapper(T&& p) {

func(static_cast<T&&>(p));
}

� Consider now, for example, the following scenario:
int i = 42;
const int ci = i;
int& ri = i;
const int& rci = i;
wrapper(expr); // invoke wrapper

� The parameter p is an alias for the object yielded by the expression expr.

� The argument expr and argument to func match in terms of cv-qualifiers
and lvalue/rvalue-ness.

expr argument to func
expr Type Category T Type (T&&) Category
i int lvalue int& int& lvalue
ci const int lvalue const int& const int& lvalue
ri int& lvalue int& int& lvalue
rci const int& lvalue const int& const int& lvalue
42 int rvalue int int&& rvalue

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 780

Perfect-Forwarding Example: Solution (Continued)

� Although we only considered one specific scenario on the previous slide,
the solution works in general.

� That is, the wrapper function from the previous slide will perfectly forward
its single argument, regardless of what the argument happens to be (or
which overload of func is involved).

� Thus, we have a general solution to the perfect-forwarding problem in the
single-argument case.

� This solution is easily extended to an arbitrary number of arguments.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 781

The std::forward Template Function

� To avoid the need for an explicit type-cast operation when forwarding an
argument, the standard library provides the std::forward function
specifically for performing such a type conversion.

� The template function forward is defined as:
template<class T>
T&& forward(typename std::remove_reference<T>::type& x)
noexcept {
return static_cast<T&&>(x);

}

� A typical usage of forward might look something like:
template <class T1, class T2>
void wrapper(T1&& x1, T2&& x2) {

func(std::forward<T1>(x1), std::forward<T2>(x2));
}

� The expression forward<T>(a) is an lvalue if T is an lvalue reference
type and an rvalue otherwise.

� The use of std::forward instead of an explicit type cast improves code
readability by making the programmer’s intent clear.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 782

Perfect-Forwarding Example Revisited

� We now revisit the perfect-forwarding example from earlier.

� In the earlier example, perfect forwarding was performed by the following
function:

template <class T>
void wrapper(T&& e) {

func(static_cast<T&&>(e));
}

� The above code can be made more readable, however, by rewriting it to
make use of std::forward as follows:

template <class T>
void wrapper(T&& e) {

func(std::forward<T>(e));
}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 783

Forwarding Example

1 #include <iostream>
2 #include <string>
3 #include <utility>
4

5 void func(std::string& s) {
6 std::cout << "func(std::string&) called\n";
7 }
8

9 void func(std::string&& s) {
10 std::cout << "func(std::string&&) called\n";
11 }
12

13 template <class T>
14 void wrapper(T&& x) {
15 func(std::forward<T>(x));
16 }
17

18 template <class T>
19 void buggy_wrapper(T x) {func(x);}
20

21 int main() {
22 using namespace std::literals;
23 std::string s("Hi"s);
24 wrapper(s); // which overload of func called?
25 buggy_wrapper(s); // which overload of func called?
26 wrapper("Hi"s); // which overload of func called?
27 buggy_wrapper("Hi"s); // which overload of func called?
28 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 784

Perfect-Forwarding Use Case: Wrapper Functions

� A wrapper function is simply a function used to invoke another function,
possibly with some additional processing.

� Example:
1 #include <iostream>
2 #include <utility>
3 #include <string>
4

5 std::string emphasize(const std::string& s)
6 {return s + "!";}
7

8 std::string emphasize(std::string&& s)
9 {return s + "!!!!";}

10

11 template <class A>
12 auto wrapper(A&& arg) {
13 std::cout << "Calling with argument " << arg << ’\n’;
14 auto result = emphasize(std::forward<A>(arg));
15 std::cout << "Return value " << result << ’\n’;
16 return result;
17 }
18

19 int main() {
20 std::string s("Bonjour");
21 wrapper(s);
22 wrapper(std::string("Hello"));
23 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 785

Perfect-Forwarding Use Case: Factory Functions

� A factory function is simply a function used to create objects.
� Often, perfect forwarding is used by factory functions in order to pass

arguments through to a constructor, which performs the actual object
creation.

� Example:
1 #include <iostream>
2 #include <string>
3 #include <complex>
4 #include <utility>
5 #include <memory>
6

7 // Make an object of type T.
8 template<typename T, typename Arg>
9 std::shared_ptr<T> factory(Arg&& arg) {

10 return std::shared_ptr<T>(
11 new T(std::forward<Arg>(arg)));
12 }
13

14 int main() {
15 using namespace std::literals;
16 auto s(factory<std::string>("Hello"s));
17 auto z(factory<std::complex<double>>(1.0i));
18 std::cout << *s << ’ ’ << *z << ’\n’;
19 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 786

Perfect-Forwarding Use Case: Emplace Operations

� Many container classes provide an operation that creates a new element
directly inside the container, often referred to as an emplace operation.

� Some or all of the arguments to a member function performing an
emplace operation correspond to arguments for a constructor invocation.

� Thus, an emplace operation typically employs perfect forwarding.

� The member function performing the emplace operation forwards some or
all of its arguments to the constructor responsible for actually creating the
new object.

� Some examples of emplace operations in the standard library include:
2 std::list class: emplace, emplace_back, emplace_front
2 std::vector class: emplace, emplace_back
2 std::set class: emplace, emplace_hint
2 std::forward_list class: emplace_front, emplace_after

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 787

Other Perfect-Forwarding Examples

� std::thread constructor uses forwarding to pass through arguments to
thread function

� std::packaged_task function-call operator uses forwarding to pass
through arguments to associated function

� std::async uses forwarding to pass through arguments to specified
callable entity

� std::make_unique forwards arguments to std::unique_ptr
constructor

� std::make_shared forwards arguments to std::shared_ptr
constructor

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 788

Section 3.5.7

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 789

References I

1 S. Meyers. Universal references in C++11.
Overload, 111:8–12, Oct. 2012.

2 T. Becker, C++ Rvalue References Explained, 2013, http:
//thbecker.net/articles/rvalue_references/section_01.html

3 E. Bendersky, Understanding Lvalues and Rvalues in C and C++, 2011,
http://eli.thegreenplace.net/2011/12/15/
understanding-lvalues-and-rvalues-in-c-and-c

4 E. Bendersky, Perfect Forwarding and Universal References in C++, 2014,
http://eli.thegreenplace.net/2014/
perfect-forwarding-and-universal-references-in-c/

5 M. Kilpelainen. Lvalues and rvalues.
Overload, 61:12–13, June 2004.

6 H. E. Hinnant, Forward, ISO/IEC JTC1/SC22/WG21/N2951, Sept. 27,
2009, http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2009/n2951.html

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 790

http://thbecker.net/articles/rvalue_references/section_01.html
http://thbecker.net/articles/rvalue_references/section_01.html
http://eli.thegreenplace.net/2011/12/15/understanding-lvalues-and-rvalues-in-c-and-c
http://eli.thegreenplace.net/2011/12/15/understanding-lvalues-and-rvalues-in-c-and-c
http://eli.thegreenplace.net/2014/perfect-forwarding-and-universal-references-in-c/
http://eli.thegreenplace.net/2014/perfect-forwarding-and-universal-references-in-c/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2951.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2951.html

References II

7 H. Hinnant and D. Krugler, Proposed Wording for US 90, ISO/IEC
JTC1/SC22/WG21/N3143, Oct. 15, 2010, http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2010/n3143.html

8 R. Smith, Guaranteed copy elision through simplified value categories,
ISO/IEC JTC1/SC22/WG21 P0135R0, Sept. 27, 2015, http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0135r0.html

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 791

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3143.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3143.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0135r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0135r0.html

Talks I

1 S. Meyers. Universal References in C++11. C++ and Beyond, Asheville,
NC, USA, Aug. 5–8, 2012. Available online at
https://channel9.msdn.com/Shows/Going+Deep/Cpp-and-Beyon
d-2012-Scott-Meyers-Universal-References-in-Cpp11.
This talk discusses rvalue/forwarding references.

2 S. Meyers. Adventures in Perfect Forwarding, Facebook C++ Conference.
Menlo Park, CA, USA, June 2, 2012. Available online at https:
//www.facebook.com/Engineering/videos/10151094464083109.
This talk introduces perfect forwarding and discusses matters such as how to
specialize forwarding templates and how to address interactions between
forwarding and the pimpl idiom.

3 H. Hinnant. Everything You Ever Wanted to Know About Move Semantics.
Inside Bloomberg, July 25, 2016. Available online at
https://youtu.be/vLinb2fgkHk.
This talk discusses various aspects of move semantics.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 792

https://channel9.msdn.com/Shows/Going+Deep/Cpp-and-Beyond-2012-Scott-Meyers-Universal-References-in-Cpp11
https://channel9.msdn.com/Shows/Going+Deep/Cpp-and-Beyond-2012-Scott-Meyers-Universal-References-in-Cpp11
https://www.facebook.com/Engineering/videos/10151094464083109
https://www.facebook.com/Engineering/videos/10151094464083109
https://youtu.be/vLinb2fgkHk

Section 3.6

Exceptions

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 793

Section 3.6.1

Introduction

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 794

Exceptions

� exceptions are language mechanism for handling exceptional (i.e.,
abnormal) situations

� exceptional situation perhaps best thought of as case when code could
not do what it was asked to do and usually (but not always) corresponds
to error condition

� exceptions often employed for error handling

� exceptions propagate information from point where error detected to point
where error handled

� code that encounters error that it is unable to handle throws exception

� code that wants to handle error catches exception and performs
processing necessary to handle error

� exceptions provide convenient way in which to separate error detection
from error handling

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 795

The Problem

main

...

High-Level
Code

Low-Level
Code

� error detected in low-level code

� want to handle error in high-level
code

� must propagate error information
up call chain

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 796

Traditional Error Handling

� if any error occurs, terminate program
2 overly draconian

� pass error code back from function (via return value, reference parameter,
or global object) and have caller check error code

2 errors are ignored by default (i.e., explicit action required to check for error
condition)

2 caller may forget to check error code allowing error to go undetected
2 code can become cluttered with many checks of error codes, which can

adversely affect code readability and maintainability
� call error handler if error detected

2 may not be possible or practical for handler to recover from particular error
(e.g., handler may not have access to all information required to recover
from error)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 797

Example: Traditional Error Handling

1 #include <iostream>
2

3 bool func3() {
4 bool success = false;
5 // ...
6 return success;
7 }
8

9 bool func2() {
10 if (!func3()) {return false;}
11 // ...
12 return true;
13 }
14

15 bool func1() {
16 if (!func2()) {return false;}
17 // ...
18 return true;
19 }
20

21 int main() {
22 if (!func1()) {
23 std::cout << "failed\n";
24 return 1;
25 }
26 // ...
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 798

Error Handling With Exceptions

� when error condition detected, signalled by throwing exception (with
throw statement)

� exception is object that describes error condition

� thrown exception caught by handler (in catch clause of try statement),
which takes appropriate action to handle error condition associated with
exception

� handler can be in different function from where exception thrown

� error-free code path tends to be relatively simple, since no need to
explicitly check for error conditions

� error condition less likely to go undetected, since uncaught exception
terminates program

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 799

Example: Exceptions

1 #include <iostream>
2 #include <stdexcept>
3

4 void func3() {
5 bool success = false;
6 // ...
7 if (!success) {throw std::runtime_error("Yikes!");}
8 }
9

10 void func2() {
11 func3();
12 // ...
13 }
14

15 void func1() {
16 func2();
17 // ...
18 }
19

20 int main() {
21 try {func1();}
22 catch (...) {
23 std::cout << "failed\n";
24 return 1;
25 }
26 // ...
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 800

safe_divide Example: Traditional Error Handling

1 #include <iostream>
2 #include <vector>
3 #include <utility>
4

5 std::pair<bool, int> safe_divide(int x, int y) {
6 if (!y) {
7 return std::pair(false, 0);
8 }
9 return std::pair(true, x / y);

10 }
11

12 int main() {
13 std::vector<std::pair<int, int>> v = {{10, 2}, {10, 0}};
14 for (auto p : v) {
15 auto result = safe_divide(p.first, p.second);
16 if (result.first) {
17 int quotient = result.second;
18 std::cout << quotient << ’\n’;
19 } else {
20 std::cerr << "division by zero\n";
21 }
22 }
23 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 801

safe_divide Example: Exceptions

1 #include <iostream>
2 #include <stdexcept>
3 #include <utility>
4 #include <vector>
5

6 int safe_divide(int x, int y) {
7 if (!y) {
8 throw std::overflow_error("divide by zero");
9 }

10 return x / y;
11 }
12

13 int main() {
14 std::vector<std::pair<int, int>> v = {{10, 2}, {10, 0}};
15 for (auto p : v) {
16 try {
17 std::cout << safe_divide(p.first, p.second) <<
18 ’\n’;
19 }
20 catch(const std::overflow_error& e) {
21 std::cerr << "division by zero\n";
22 }
23 }
24 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 802

safe_add Example: Traditional Error Handling

1 #include <limits>
2 #include <vector>
3 #include <iostream>
4

5 std::pair<bool, int> safe_add(int x, int y) {
6 return ((y > 0 && x > std::numeric_limits<int>::max() - y)
7 || (y < 0 && x < std::numeric_limits<int>::min() - y)) ?
8 std::pair(false, 0) : std::pair(true, x + y);
9 }

10

11 int main() {
12 constexpr int int_min = std::numeric_limits<int>::min();
13 constexpr int int_max = std::numeric_limits<int>::max();
14 std::vector<std::pair<int, int>> v{
15 {int_max, int_max}, {1, 2}, {int_min, int_min},
16 {int_max, int_min}, {int_min, int_max}
17 };
18 for (auto x : v) {
19 auto result = safe_add(x.first, x.second);
20 if (result.first) {
21 std::cout << result.second << ’\n’;
22 } else {
23 std::cout << "overflow\n";
24 }
25 }
26 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 803

SKIP SLIDE

safe_add Example: Exceptions
1 #include <limits>
2 #include <vector>
3 #include <iostream>
4 #include <stdexcept>
5

6 int safe_add(int x, int y) {
7 return ((y > 0 && x > std::numeric_limits<int>::max() - y)
8 || (y < 0 && x < std::numeric_limits<int>::min() - y)) ?
9 throw std::overflow_error("addition") : x + y;

10 }
11

12 int main() {
13 constexpr int int_min = std::numeric_limits<int>::min();
14 constexpr int int_max = std::numeric_limits<int>::max();
15 std::vector<std::pair<int, int>> v{
16 {int_max, int_max}, {1, 2}, {int_min, int_min},
17 {int_max, int_min}, {int_min, int_max}
18 };
19 for (auto x : v) {
20 try {
21 int result = safe_add(x.first, x.second);
22 std::cout << result << ’\n’;
23 }
24 catch (const std::overflow_error&) {
25 std::cout << "overflow\n";
26 }
27 }
28 }
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 804

SKIP SLIDE

Exceptions Versus Traditional Error Handling

� advantages of exceptions:
2 exceptions allow for error handling code to be easily separated from code

that detects error
2 exceptions can easily pass error information many levels up call chain
2 passing of error information up call chain managed by language (no explicit

code required)
� disadvantages of exceptions:

2 writing code that always behaves correctly in presence of exceptions
requires great care (as we shall see)

2 although possible to have no execution-time cost when exceptions not
thrown, still have memory cost (to store information needed for stack
unwinding for case when exception is thrown)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 805

Section 3.6.2

Exceptions

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 806

Exceptions

� exceptions are objects

� type of object used to indicate kind of error

� value of object used to provide details about particular occurrence of error

� exception object can have any type (built-in or class type)

� for convenience, standard library provides some basic exception types

� all exception classes in standard library derived (directly or indirectly) from
std::exception class

� exception object is propagated from one part of code to another by
throwing and catching

� exception processing disrupts normal control flow

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 807

Standard Exception Classes

Exception Classes Derived from exception Class
Type Description

logic_error faulty logic in program
runtime_error error caused by circumstances beyond scope of

program
bad_typeid invalid operand for typeid operator
bad_cast invalid expression for dynamic_cast
bad_weak_ptr bad weak_ptr given
bad_function_call function has no target
bad_alloc storage allocation failure
bad_exception use of invalid exception type in certain contexts
bad_variant_access variant accessed in invalid way

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 808

Standard Exception Classes (Continued 1)

Exception Classes Derived from bad_cast Class
Type Description

bad_any_cast invalid cast for any

Exception Classes Derived from logic_error Class
Type Description

domain_error domain error (e.g., square root of negative
number)

invalid_argument invalid argument
length_error length too great (e.g., resize vector beyond

max_size)
out_of_range out of range argument (e.g., subscripting error

in vector::at)
future_error invalid operations on future objects
bad_optional_access optional accessed in invalid way

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 809

Standard Exception Classes (Continued 2)

Exception Classes Derived from runtime_error Class
Type Description

range_error range error
overflow_error arithmetic overflow error
underflow_error arithmetic underflow error
regex_error error in regular expressions library
system_error operating-system or other low-level error

Exception Classes Derived from runtime_error::system_error Class
Type Description

ios_base::failure I/O failure

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 810

Section 3.6.3

Throwing and Catching Exceptions

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 811

Throwing Exceptions

� throwing exception accomplished by throw statement

� throwing exception transfers control to handler

� object is passed

� type of object determines which handlers can catch it

� handlers specified with catch clause of try block

� for example
throw "OMG!";

can be caught by handler of const char* type, as in:
try {

// ...
}
catch (const char* p) {

// handle character string exceptions here
}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 812

Throwing Exceptions (Continued)

� throw statement initializes temporary object called exception object
� type of exception object determined by static type of operand of throw

(so slicing can occur)
:::::::
[C++17 18.1/3]

� if thrown object is class object, copy/move constructor and destructor
must be accessible

:::::::
[C++17 18.1/5]

� temporary may be moved/copied several times before caught

� advisable for type of exception object to be user defined to reduce
likelihood of different parts of code using type in conflicting ways

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 813

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/except.throw#3
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/except.throw#5

Catching Exceptions

� exception can be caught by catch clause of try-catch block
� code that might throw exception placed in try block
� code to handle exception placed in catch block
� try-catch block can have multiple catch clauses
� catch clauses checked for match in order specified and only first match

used
� catch (...) can be used to catch any exception
� example:

try {
// code that might throw exception

}
catch (const std::logic_error& e) {

// handle logic_error exception
}
catch (const std::runtime_error& e) {

// handle runtime_error exception
}
catch (...) {

// handle other exception types
}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 814

Catching Exceptions (Continued)

� catch exceptions by reference in order to:
2 avoid copying, which might throw
2 allow exception object to be modified and then rethrown
2 avoid slicing

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 815

Exception During Exception: Catching By Value

1 #include <iostream>
2 #include <stdexcept>
3

4 class Error {
5 public:
6 Error(int value) : value_(value) {}
7 Error(Error&& e) : value_(e.value_) {}
8 Error(const Error&) {throw std::runtime_error("copy");}
9 int get() const {return value_;}

10 private:
11 int value_; // error code
12 };
13

14 void func2() {throw Error(42);} // might move
15

16 void func1() {
17 try {func2();}
18 // catch by value (copy throws)
19 catch (Error e) {
20 std::cerr << "yikes\n";
21 }
22 }
23

24 int main() {
25 try {func1();}
26 catch (...) {std::cerr << "exception\n";}
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 816

SKIP SLIDE

Throwing Polymorphically: Failed Attempt

1 #include <iostream>
2

3 class Base {};
4 class Derived : public Base {};
5

6 void func(Base& x) {
7 throw x; // always throws Base
8 }
9

10 int main() {
11 Derived d;
12 try {func(d);}
13 catch (Derived& e) {
14 std::cout << "Derived\n";
15 }
16 catch (...) {
17 std::cout << "not Derived\n";
18 }
19 }

� type of exception object determined from static type of throw expression

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 817

SKIP SLIDE

Throwing Polymorphically

1 #include <iostream>
2

3 class Base {
4 public:
5 virtual void raise() {throw *this;}
6 };
7 class Derived : public Base {
8 public:
9 virtual void raise() {throw *this;}

10 };
11

12 void func(Base& x) {
13 x.raise();
14 }
15

16 int main() {
17 Derived d;
18 try {func(d);}
19 catch (Derived& e) {
20 std::cout << "Derived\n";
21 }
22 catch (...) {
23 std::cout << "not Derived\n";
24 }
25 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 818

SKIP SLIDE

Rethrowing Exceptions

� caught exception can be rethrown by throw statement with no operand

� example:
try {

// code that may throw exception
}
catch (...) {

throw; // rethrow caught exception
}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 819

Rethrowing Example: Exception Dispatcher Idiom

1 void handle_exception() {
2 try {throw;}
3 catch (const exception_1& e) {
4 log_error("exception_1 occurred");
5 // ...
6 }
7 catch (const exception_2& e) {
8 log_error("exception_2 occurred");
9 // ...

10 }
11 // ...
12 }
13

14 void func() {
15 try {operation();}
16 catch (...) {handle_exception();}
17 // ...
18 try {another_operation();}
19 catch (...) {handle_exception();}
20 }

� allows reuse of exception handling code

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 820

SKIP SLIDE

Transfer of Control from Throw Site to Handler

� when exception is thrown, control is transferred to nearest handler (in
catch clause) with matching type, where “nearest” means handler for try
block most recently entered (by thread) and not yet exited

:::::::
[C++17 18.1/2]

� if no matching handler found, std::terminate() is called
:::::::
[C++17 18.3/9]

� as control passes from throw expression to handler, destructors are
invoked for all automatic objects constructed since try block entered,
where automatic objects destroyed in reverse order of construction

:::::::
[C++17 18.2/2]

� process of calling destructors for automatic objects constructed on path
from try block to throw expression called stack unwinding

:::::::
[C++17 18.2/1]

� object not deemed to be constructed if constructor exits due to exception
(in which case destructor will not be invoked)

� do not throw exception in destructor since destructors called during
exception processing and throwing exception during exception processing
will terminate program

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 821

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/except.throw#2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/except.handle#9
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/except.ctor#2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/except.ctor#1

Stack Unwinding Example
1 void func1() {
2 std::string dave("dave");
3 try {
4 std::string bye("bye");
5 func2();
6 }
7 catch (const std::runtime_error& e) { // Handler
8 std::cerr << e.what() << ’\n’;
9 }

10 }
11
12 void func2() {
13 std::string world("world");
14 func3(0);
15 }
16
17 void func3(int x) {
18 std::string hello("hello");
19 if (x == 0) {
20 std::string first("first");
21 std::string second("second");
22 throw std::runtime_error("yikes"); // Throw site
23 }
24 }

� calling func1 will result in exception being thrown in func3

� during stack unwinding, destructors called in order for second, first, hello,
world, and bye (i.e., reverse order of construction); dave unaffected

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 822

Another Stack Unwinding Example
1 #include <iostream>
2 #include <stdexcept>
3 #include <string>
4 #include <utility>
5
6 class Widget {
7 public:
8 Widget(const std::string& s) : s_(s) {}
9 Widget(const Widget& other) : s_(other.s_) {std::cerr << "copy ctor\n";}

10 Widget(Widget&& other) : s_(std::move(other.s_)) {std::cerr << "move ctor\n";}
11 std::string get() const {return s_;}
12 ~Widget() {std::cerr << "dtor " << s_ << ’\n’;}
13 private:
14 std::string s_;
15 };
16
17 Widget func_1(Widget w) {
18 Widget bjarne("bjarne");
19 {
20 Widget hello("hello");
21 Widget bye("bye");
22 throw std::runtime_error("Yikes");
23 Widget bonjour("bonjour");
24 }
25 return bjarne;
26 }
27
28 int main() {
29 Widget zaphod("zaphod");
30 try {
31 Widget ford("ford");
32 Widget u = func_1(zaphod);
33 Widget arthur("arthur");
34 } catch (...) {std::cerr << "exception\n";}
35 }

� objects destroyed during stack unwinding: bye, hello, bjarne, w, ford
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 823

SKIP SLIDE

Function Try Blocks

� function try blocks allow entire function to be wrapped in try block
� function returns when control flow reaches end of catch block (return

statement needed for non-void function)
� example:

1 #include <iostream>
2 #include <stdexcept>
3

4 int main()
5 try {
6 throw std::runtime_error("yikes");
7 }
8 catch (const std::runtime_error& e) {
9 std::cerr << "runtime error " << e.what() << ’\n’;

10 }

� although function try blocks can be used for any function, most important
use cases are for constructors and destructors

� function try block only way to catch exceptions thrown during construction
of data members or base objects (which happens before constructor body
is entered) or during destruction of data members or base objects (which
happens after destructor body exited)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 824

Exceptions and Construction/Destruction
� order of construction (assuming no virtual base classes):

1 non-virtual base class objects as listed from left to right in class definition
2 non-static data members as listed from top to bottom in class definition
3 constructor body

� order of destruction is exact reverse of order of construction, namely:
1 destructor body
2 non-static data members as listed from bottom to top in class definition
3 non-virtual base class objects as listed from right to left in class definition

� lifetime of object begins when constructor completes
� constructor might throw in:

2 constructor of base class object
2 constructor of data member
2 constructor body

� need to perform cleanup for constructor body
� will assume destructors do not throw (since very bad idea to throw in

destructor)
� any exception caught in function try block of constructor or destructor

rethrown implicitly (at end of catch block)
::::::::
[C++17 18.3/14]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 825

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/except.handle#14

Construction/Destruction Example

1 #include <string>
2 #include <iostream>
3

4 struct Base {
5 Base() {}
6 ~Base() {};
7 };
8

9 class Widget : public Base {
10 public:
11 Widget() {}
12 ~Widget() {}
13 // ...
14 private:
15 std::string s_;
16 std::string t_;
17 };
18

19 int main() {
20 Widget w;
21 // ...
22 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 826

Function Try Block Example

1 #include <iostream>
2 #include <stdexcept>
3

4 class Gadget {
5 public:
6 Gadget() {throw std::runtime_error("ctor");}
7 ~Gadget() {}
8 };
9

10 class Widget {
11 public:
12 // constructor uses function try block
13 Widget()
14 try {std::cerr << "ctor body\n";}
15 catch (...) {std::cerr << "exception in ctor\n";}
16 ~Widget() {std::cerr << "dtor body\n";}
17 private:
18 Gadget g_;
19 };
20

21 int main()
22 try {Widget w;}
23 catch (...) {
24 std::cerr << "terminating due to exception\n";
25 return 1;
26 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 827

Function Try Block Example [Constructor]

1 #include <iostream>
2 #include <stdexcept>
3

4 struct Gadget {
5 Gadget(bool b) {
6 if (b) {throw std::runtime_error("yikes");}
7 }
8 };
9

10 struct Widget : public Gadget {
11 Widget(bool b) try : Gadget(b) {}
12 catch(const std::exception& e) {
13 std::cerr << e.what() << ’\n’;
14 // exception automatically rethrown
15 }
16 };
17

18 int main() try {
19 Widget v(true);
20 } catch (const std::exception& e) {
21 std::cerr << e.what() << ’\n’;
22 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

SKIP SLIDE

Function Try Block Example [Destructor]

1 #include <iostream>
2 #include <stdexcept>
3

4 struct Gadget {
5 ~Gadget() noexcept(false)
6 {throw std::runtime_error("yikes");}
7 };
8

9 class Widget : public Gadget {
10 public:
11 ~Widget() try {}
12 catch(const std::exception& e) {
13 std::cerr << e.what() << ’\n’;
14 // exception automatically rethrown
15 }
16 };
17

18 int main() try {
19 Widget w;
20 } catch (const std::exception& e) {
21 std::cerr << e.what() << ’\n’;
22 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

SKIP SLIDE

Function Try Block Example [Normal Function]

1 #include <iostream>
2 #include <stdexcept>
3

4 int func(int x) try {
5 throw std::runtime_error("whatever");
6 } catch(const std::exception& e) {
7 std::cerr << e.what() << ’\n’;
8 return x;
9 // exception not automatically rethrown

10 // function does not emit exception
11 }
12

13 int main() {
14 std::cout << func(42) << ’\n’;
15 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

SKIP SLIDE

Section 3.6.4

Exception Specifications

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 828

The noexcept Specifier
� noexcept specifier in function declaration indicates whether or not

function can throw exceptions
� noexcept specifier with bool constant expression argument indicates

function does not throw exceptions if expression true (otherwise, may
throw)

� noexcept without argument equivalent to noexcept(true)
� except for destructors, not providing noexcept specifier equivalent to
noexcept(false)

� if noexcept specifier not provided for destructor, specifier identical to
that of implicit declaration (which is, in practice, usually noexcept)

:::::::
[C++17 15.4/3]

� example:
void func1(); // may throw anything
void func2() noexcept(false); // may throw anything
void func3() noexcept(true); // does not throw
void func4() noexcept; // does not throw
template <class T>
void func5(T) noexcept(sizeof(T) <= 4);
// does not throw if sizeof(T) <= 4

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 829

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/class.dtor#3

The noexcept Specifier (Continued 1)

� exception specification for function is part of function’s type
� example:

void f() noexcept;
auto g = f; // g is noexcept

� exception specification for function is not part of function’s signature
� consequently, cannot overload on noexcept specifier

� example:
void f();
void f() noexcept;
// ERROR: both functions have same signature

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 830

The noexcept Specifier (Continued 2)

� nontrivial bool expression for noexcept specifier often useful in
templates

� example (swap function):

1 #include <type_traits>
2 #include <utility>
3

4 // swap two values
5 template <class T>
6 void exchange(T& a, T& b) noexcept(
7 std::is_nothrow_move_constructible_v<T> &&
8 std::is_nothrow_move_assignable_v<T>) {
9 T tmp(std::move(a)); // move construction

10 a = std::move(b); // move assignment
11 b = std::move(tmp); // move assignment
12 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 831

The noexcept Specifier (Continued 3)

� if function with noexcept(true) specifier throws exception,
std::terminate is called immediately

� example:

// This function will terminate the program.
void die_die_die() noexcept {

throw 0;
}

� advisable not to use noexcept(true) specifier unless clear that no
reasonable usage of function can throw (in current or any future version
of code)

� in practice, can often be difficult to guarantee that function will never throw
exception (especially when considering all future versions of code)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 832

Exceptions and Function Calls

� for some (nonreference) class type T and some constant bool
expression expr, consider code such as:

T func(T) noexcept(expr);
T x;
T y = func(x); // function call

� function call can throw exception as result of:
1 parameter passing (if pass by value)
2 function execution including return statement

� in parameter passing, construction and destruction of each parameter
happens in context of calling function

::::::::
[C++17 8.2.2/4]

� consequently, invocation of noexcept function can still result in exception
being thrown due to parameter passing

� in case of return by value, construction of temporary (if not elided) to hold
return value happens in context of called function

:::::::
[C++17 9.6.3/2]

:::::::
[C++17 9.6.3/3]

� consequently, must exercise care not to violate noexcept contract if
noexcept function returns by value

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 833

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.call#4
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/stmt.return#2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/stmt.return#3

Avoiding Exceptions Due to Function Calls

� if exception due to parameter passing must be avoided:
2 pass by reference; or
2 ensure noexcept move and/or copy constructor as appropriate; or
2 ensure function invoked in manner such that copy elision is guaranteed

� if exception due to return by value must be avoided:
2 ensure noexcept move or copy constructor as appropriate; or
2 ensure that function invoked in manner such that copy elision is guaranteed

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 834

noexcept Operator
� noexcept operator takes expression and returns bool indicating if

expression can throw exception
� does not actually evaluate expression
� in determining result, only considers noexcept specifications for

functions involved
� example:

1 #include <cstdlib>
2 #include <utility>
3

4 void increment(int&) noexcept;
5 char* memAlloc(std::size_t);
6

7 // does not throw exception, but not declared noexcept
8 void doesNotThrow() {}
9

10 int main() {
11 static_assert(noexcept(1 + 1) == true);
12 static_assert(noexcept(memAlloc(0)) == false);
13 // Note: does not evaluate expression
14 static_assert(noexcept(increment(*((int*)0))) == true);
15 static_assert(noexcept(increment(std::declval<int&>())) ==
16 true);
17 // Note: only uses noexcept specifiers
18 static_assert(noexcept(doesNotThrow()) == false);
19 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 835

noexcept Operator (Continued)
� noexcept operator particularly useful for templates

� example:
1 #include <iostream>
2 #include <type_traits>
3

4 class Int256 { /* ... */ }; // 256-bit integer
5 class BigInt { /* ... */ }; // arbitrary-precision integer
6

7 // function will not throw exception
8 Int256 operator+(const Int256& x, const Int256& y) noexcept;
9

10 // function may throw exception
11 BigInt operator+(const BigInt& x, const BigInt& y);
12

13 // whether function may throw exception depends on T
14 template <class T>
15 T add(const T& x, const T& y) noexcept(noexcept(x + y) &&
16 std::is_nothrow_move_constructible_v<T>)
17 {return x + y;}
18

19 int main() {
20 Int256 i1, i2;
21 BigInt b1, b2;
22 std::cout << "int " << noexcept(add(1, 1)) << ’\n’
23 << "Int256 " << noexcept(add(i1, i2)) << ’\n’
24 << "BigInt " << noexcept(add(b1, b2)) << ’\n’;
25 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 836NEXT SLIDE: Interval Arithmetic

Section 3.6.5

Storing and Retrieving Exceptions

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 837

Storing and Retrieving Exceptions

� might want to store exception and then later retrieve and rethrow it

� exception can be stored using std::exception_ptr type

� current exception can be retrieved with std::current_exception

� rethrow exception stored in exception_ptr object using
std::rethrow_exception

� provides mechanism for moving exceptions between threads:
2 store exception on one thread
2 then retrieve and rethrow stored exception on another thread

� std::make_exception_ptr can be used to make exception_ptr
object

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 838

Example: Storing and Retrieving Exceptions

1 #include <exception>
2 #include <stdexcept>
3

4 void yikes() {
5 throw std::runtime_error("Yikes!");
6 }
7

8 std::exception_ptr getException() {
9 try {

10 yikes();
11 }
12 catch (...) {
13 return std::current_exception();
14 }
15 return nullptr;
16 }
17

18 int main() {
19 std::exception_ptr e = getException();
20 std::rethrow_exception(e);
21 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 839

Section 3.6.6

Exception Safety

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 840

Resource Management

� resource: physical or virtual component of limited availability within
computer system

� examples of resources include: memory, files, devices, network
connections, processes, threads, and locks

� essential that acquired resource properly released when no longer needed

� when resource not properly released when no longer needed, resource
leak said to occur

� exceptions have important implications in terms of resource management

� must be careful to avoid resource leaks

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 841

Resource Leak Example

1 void useBuffer(char* buf) { /* ... */ }
2

3 void doWork() {
4 char* buf = new char[1024];
5 useBuffer(buf);
6 delete[] buf;
7 }

� if useBuffer throws exception, code that deletes buf is never reached

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 842

Cleanup

� cleanup operations should always be performed in destructors

� following structure for code is fundamentally flawed:

void func()
{

initialize();
do_work();
cleanup();

}

� code with preceding structure not exception safe
� if do_work throws exception, cleanup never called and cleanup operation

not performed

� in best case, not performing cleanup will probably cause resource leak

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 843

Exception Safety and Exception Guarantees

� in order for exception mechanism to be useful, must know what can be
assumed about state of program when exception thrown

� operation said to be exception safe if it leaves program in valid state when
operation is terminated by exception

� several levels of exception safety: basic, strong, nothrow

� basic guarantee: all invariants preserved and no resources leaked

� with basic guarantee, partial execution of failed operation may cause side
effects

� strong guarantee: in addition to basic guarantee, failed operation
guaranteed to have no side effects (i.e., commit semantics)

� with strong guarantee, operation can still fail causing exception to be
thrown

� nothrow guarantee: in addition to basic guarantee, promises not to emit
exception (i.e., operation guaranteed to succeed even in presence of
exceptional circumstances)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 844

Exception Guarantees

� assume all functions throw if not known otherwise

� code must always provide basic guarantee

� nothrow guarantee should always be provided by destructors
� whenever possible, nothrow guarantee should be provided by:

2 move operations (i.e., move constructors and move assignment operators)
2 swap operations

� provide strong guarantee when natural to do so and not more costly than
basic guarantee

� examples of strong guarantee:
2 push_back for container, subject to certain container-dependent conditions

being satisfied (e.g., for std::vector, element type has nonthrowing move
or is copyable)

2 insert on std::list

� examples of nothrow guarantee:
2 swap of two containers
2 pop_back for container

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 845

Resource Acquisition Is Initialization (RAII)

� resource acquisition is initialization (RAII) is programming idiom used to
avoid resource leaks and provide exception safety

� associate resource with owning object (i.e., RAII object)

� period of time over which resource held is tied to lifetime of RAII object

� resource acquired during creation of RAII object

� resource released during destruction of RAII object

� provided RAII object properly destroyed, resource leak cannot occur

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 846

Resource Leak Example Revisited
� implementation 1 (not exception safe; has memory leak):

1 void useBuffer(char* buf) { /* ... */ }
2
3 void doWork() {
4 char* buf = new char[1024];
5 useBuffer(buf);
6 delete[] buf;
7 }

� implementation 2 (exception safe):
1 template <class T> class SmartPtr {
2 public:
3 SmartPtr(int size) : ptr_(new T[size]) {}
4 ~SmartPtr() {delete[] ptr_;}
5 SmartPtr(SmartPtr&& other) {ptr_ = other.ptr_; other.ptr_ = nullptr;}
6 SmartPtr& operator=(SmartPtr&& other) {
7 delete[] ptr_; ptr_ = other.ptr_; other.ptr_ = nullptr;
8 return *this;
9 }

10 T* get() const {return ptr_;}
11 private:
12 T* ptr_;
13 };
14
15 void useBuffer(char* buf) { /* ... */ }
16
17 void doWork() {
18 SmartPtr<char> buf(1024);
19 useBuffer(buf.get());
20 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 847

RAII Example: Stream Formatting Flags

1 #include <iostream>
2 #include <ios>
3 #include <boost/io/ios_state.hpp>
4

5 // not exception safe
6 void unsafeOutput(std::ostream& out, unsigned int x) {
7 auto flags = out.flags();
8 // if exception thrown during output of x, old
9 // formatting flags will not be restored

10 out << std::hex << std::showbase << x << ’\n’;
11 out.flags(flags);
12 }
13

14 // exception safe
15 void safeOutput(std::ostream& out, unsigned int x) {
16 boost::io::ios_flags_saver ifs(out);
17 out << std::hex << std::showbase << x << ’\n’;
18 }

� RAII objects can be used to save and restore state

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 848

Other RAII Examples

� std::unique_ptr and std::shared_ptr can be used to manage
memory; memory is released in destructor [seesmart pointers]

� std::scoped_lock std::unique_lock, and std::shared_lock (and
std::lock_guard) can be used to manage locks held on mutexes; lock
is released in destructor

� std::ifstream, std::ofstream, and std::fstream can be used to
manage files; file is closed in destructor

� std::string can be used to manage strings; string buffer freed in
destructor

� std::vector can be used to manage dynamic arrays; array data freed in
destructor

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 849

Section 3.6.7

Exceptions: Implementation, Cost, and Usage

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 850

Implementation of Exception Handling

� standard does not specify how exception handling is to be implemented;
only specifies behavior of exception handling

� consider typical implementation here

� potentially significant memory overhead for storing exception object and
information required for stack unwinding

� possible to have zero time overhead if no exception thrown

� time overhead significant when exception thrown

� not practical to create exception object on stack, since object frequently
needs to be propagated numerous levels up call chain

� exception objects tend to be small

� exception object can be stored in small fixed-size buffer falling back on
heap if buffer not big enough

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 851

SKIP SLIDE

Implementation of Exception Handling (Continued)

� memory required to maintain sufficient information to unwind stack when
exception thrown

� two common strategies for maintaining information for stack unwinding:
stack-based and table-based strategies

� stack-based strategy:
2 information for stack unwinding is saved on call stack, including list of

destructors to execute and exception handlers that might catch exception
2 when exception is thrown, walk stack executing destructors until matching

catch found
� table-based strategy:

2 store information to assist in stack unwinding in static tables outside stack
2 call stack used to determine which scopes entered but not exited
2 use look-up operation on static tables to determine where thrown exception

will be handled and which destructors to execute

� table-based strategy uses less space on stack but potentially requires
considerable storage for tables

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 852

SKIP SLIDE

Appropriateness of Using Exceptions

� use of exceptions not appropriate in all circumstances
� in practice, exceptions can sometimes (depending on C++

implementation) have prohibitive memory cost for systems with very
limited memory (e.g., some embedded systems)

� since throwing exception has significant time overhead only use for
infrequently occurring situations (not common case)

� in code where exceptions can occur, often much more difficult to bound
how long code path will take to execute

� since difficult to predict response time of code in presence of exceptions,
exceptions often cannot be used in time critical component of real-time
system (where operation must be guaranteed to complete in specific
maximum time)

� considerable amount of code in existence that is not exception safe,
especially legacy code

� cannot use exceptions in manner that would allow exceptions to
propagate into code that is not exception safe

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 853

Enforcing Invariants: Exceptions Versus Assertions

� whether invariants should be enforced by exceptions or assertions
somewhat controversial

� would recommend only using exceptions for errors from which recovery is
likely to be possible

� if error condition detected is indicative of serious programming error,
program state may already be sufficiently invalid (e.g., stack trampled,
heap corrupted) that exception handling will not work correctly anyhow

� tendency amongst novice programmers is to use exceptions in places
where their use is either highly questionable or clearly inappropriate

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 854NEXT SLIDE: smart pointers

Section 3.6.8

Exception Gotchas

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 855

shared_ptr Example: Not Exception Safe (Prior to C++17)

1 #include <memory>
2

3 class T1 { /* ... */ };
4 class T2 { /* ... */ };
5

6 void func(std::shared_ptr<T1> p, std::shared_ptr<T2> q)
7 { /* ... */ }
8

9 void doWork() {
10 // potential memory leak
11 func(std::shared_ptr<T1>(new T1),
12 std::shared_ptr<T2>(new T2));
13 // ...
14 }

� one problematic order:

1 allocate memory for T1
2 construct T1
3 allocate memory for T2
4 construct T2
5 construct shared_ptr<T1>
6 construct shared_ptr<T2>
7 call func

� if step 3 or 4 throws, memory leaked

� another problematic order:

1 allocate memory for T1
2 allocate memory for T2
3 construct T1
4 construct T2
5 construct shared_ptr<T1>
6 construct shared_ptr<T2>
7 call func

� if step 3 or 4 throws, memory leaked
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 856

shared_ptr Example: Exception Safe (Prior to C++17)

1 #include <memory>
2

3 class T1 { /* ... */ };
4 class T2 { /* ... */ };
5

6 void func(std::shared_ptr<T1> p, std::shared_ptr<T2> q)
7 { /* ... */ }
8

9 void doWork() {
10 func(std::make_shared<T1>(), std::make_shared<T2>());
11 // ...
12 }

� previously problematic line of code now does following:
1 perform following operations in any order:

2 construct shared_ptr<T1> via make_shared<T1>
2 construct shared_ptr<T2> via make_shared<T2>

2 call func

� each of T1 and T2 objects managed by shared_ptr at all times so no
memory leak possible if exception thrown

� similar issue arises in context of std::unique_ptr and can be resolved
by using std::make_unique in similar way as above

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 857

Stack Example

� stack class template parameterized on element type T

1 template <class T>
2 class Stack
3 {
4 public:
5 // ...
6 // Pop the top element from the stack.
7 T pop() {
8 // If the stack is empty...
9 if (top_ == start_)

10 throw "stack is empty";
11 // Remove the last element and return it.
12 return *(--top_);
13 }
14 private:
15 T* start_; // start of array of stack elements
16 T* end_; // one past end of array
17 T* top_; // one past current top element
18 };

� what is potentially problematic about this code with respect to exceptions?

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 858

Section 3.6.9

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 859

References I

1 D. Abrahams. Exception-safety in generic components.
In Lecture Notes in Computer Science, volume 1766, pages 69–79.
Springer, 2000.
A good tutorial on exception safety by an expert on the subject.

2 T. Cargill. Exception handling: A false sense of security.
C++ Report, 6(9), Nov. 1994.
Available online at http://ptgmedia.pearsoncmg.com/images/
020163371x/supplements/Exception_Handling_Article.html.
An early paper that first drew attention to some of the difficulties in writing
exception-safe code.

3 Exception-Safe Coding in C++, http://exceptionsafecode.com,
2014.

4 V. Kochhar, How a C++ Compiler Implements Exception Handling,
http://www.codeproject.com/Articles/2126/
How-a-C-compiler-implements-exception-handling, 2002.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 860

http://ptgmedia.pearsoncmg.com/images/020163371x/supplements/Exception_Handling_Article.html
http://ptgmedia.pearsoncmg.com/images/020163371x/supplements/Exception_Handling_Article.html
http://exceptionsafecode.com
http://www.codeproject.com/Articles/2126/How-a-C-compiler-implements-exception-handling
http://www.codeproject.com/Articles/2126/How-a-C-compiler-implements-exception-handling

References II

5 C++ FAQ — Exceptions and Error Handling,
https://isocpp.org/wiki/faq/exceptions, 2016.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 861

https://isocpp.org/wiki/faq/exceptions

Talks I

1 Jon Kalb. Exception-Safe Code. CppCon, Bellevue, WA, USA, Sep 7–12,
2014. Available online at https://youtu.be/W7fIy_54y-w,
https://youtu.be/b9xMIKb1jMk, and
https://youtu.be/MiKxfdkMJW8. (This talk is in three parts.)

2 Jon Kalb. Exception-Safe Coding. C++Now, Aspen, CO, USA, May
13–18, 2012. Available online at https://youtu.be/N9bR0ztmmEQ and
https://youtu.be/UiZfODgB-Oc. (This talk is in two parts.)

3 Peter Edwards. C++ Exception Handling — The Gory Details of an
Implementation. Dublin C/C++ User Group Meetup, Feb. 2018. Available
online at https://youtu.be/XpRL7exdFL8.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 862

https://youtu.be/W7fIy_54y-w
https://youtu.be/b9xMIKb1jMk
https://youtu.be/MiKxfdkMJW8
https://youtu.be/N9bR0ztmmEQ
https://youtu.be/UiZfODgB-Oc
https://youtu.be/XpRL7exdFL8

Section 3.7

Smart Pointers

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 863

Section 3.7.1

Introduction

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 864

Memory Management, Ownership, and Raw Pointers

� responsibility of owner of chunk of dynamically-allocated memory to
deallocate that memory when no longer needed

� so managing dynamically-allocated memory essentially reduces to
problem of ownership management

� raw pointer does not have any ownership relationship with memory to
which pointer refers

� consequently, raw pointer does not itself directly participate in memory
management (e.g., deallocation)

� raw pointers often problematic in presence of exceptions, since such
pointers do not know how to free their pointed-to memory

� raw pointers should only be used in situations where no ownership
responsibility for pointees is needed (e.g., to simply observe object
without managing its associated memory)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 865

Smart Pointers

� smart pointer is object that has interface similar to raw pointer (e.g.,
provides operations such as indirection/dereferencing and assignment)
but offers some additional functionality

� smart pointers provide RAII mechanism for managing memory resource
(i.e., pointed-to memory)

� unlike raw pointer, smart pointer owns its pointed-to memory
� consequently, smart pointer must provide mechanism for deallocating

pointed-to memory when no longer needed
� some smart-pointer types allow only exclusive ownership, while others

allow shared ownership
� destructor for smart pointer releases memory to which pointer refers if no

longer needed (i.e., no other owners remain)
� smart pointers play crucial role in writing exception-safe code
� smart pointers should always be used (instead of raw pointers) when

ownership of piece of memory needs to be tracked (e.g., so that it can be
deallocated when no longer needed)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 866

Section 3.7.2

The std::unique_ptr Class Template

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 867

The std::unique_ptr Template Class

� std::unique_ptr is smart pointer that retains exclusive ownership of
object through pointer

� declaration:
template <class T, class Deleter = std::default_delete<T>>
class unique_ptr;

� T is type of object to be managed (i.e., owned object)
� Deleter is callable entity used to delete owned object
� also correctly handles array types via partial specialization (e.g., T could

be array of char)
� owned object destroyed when unique_ptr object goes out of scope
� no two unique_ptr objects can own same object
� unique_ptr object is movable; move operation transfers ownership
� unique_ptr object is not copyable, as copying would create additional

owners
� std::make_unique template function often used to create unique_ptr

objects (for exception-safety reasons)
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 868

The std::unique_ptr Template Class (Continued)

T Object

Managed Object

Pointer to T Object

unique_ptr<T>

T Object

Managed Object

Pointer to T Object

unique_ptr<T,D>

Deleter State (if any)

� reasonable implementation would have zero memory cost for deleter state
in case of:

2 default deleter
2 deleter of functor/closure type with no state

� if no memory cost for deleter state, unique_ptr has same memory cost
as raw pointer

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 869:::
moving

:::::::::
why not copyable?

std::unique_ptr Member Functions

Construction, Destruction, and Assignment
Member Name Description

constructor constructs new unique_ptr
destructor destroys managed object (if any)
operator= assigns unique_ptr

Modifiers
Member Name Description

release returns pointer to managed object and releases ownership
reset replaces managed object
swap swaps managed objects

Observers
Member Name Description

get returns pointer to managed object
get_deleter returns deleter used for destruction of managed object
operator bool checks if there is associated managed object

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 870

std::unique_ptr Member Functions (Continued)

Dereferencing/Subscripting
Member Name Description

operator* dereferences pointer to managed object
operator-> dereferences pointer to managed object
operator[] provides indexed access to managed array

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 871

std::unique_ptr Example 1

1 #include <memory>
2 #include <cassert>
3

4 void func() {
5 auto p1(std::make_unique<int>(42));
6 assert(*p1 == 42);
7

8 // std::unique_ptr<int> p3(p1); // ERROR: not copyable
9 // p3 = p1; // ERROR: not copyable

10

11 std::unique_ptr<int> p2(std::move(p1)); // OK: movable
12 // Transfers ownership from p1 to p2, invalidating p1.
13 assert(p1.get() == nullptr && *p2 == 42);
14

15 p1 = std::move(p2); // OK: movable
16 // Transfers ownership from p2 to p1, invalidating p2.
17 assert(p2.get() == nullptr && *p1 == 42);
18

19 p1.reset();
20 // Invalidates p1.
21 assert(p1.get() == nullptr);
22 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 872::::
diagram NEXT SLIDE: unique_ptr uses

std::unique_ptr Example 2

1 #include <memory>
2 #include <cassert>
3

4 int main() {
5 auto p0 = std::make_unique<int>(0);
6 assert(*p0 == 0);
7 int* r0 = p0.get();
8 auto p1 = std::make_unique<int>(1);
9 assert(*p1 == 1);

10 auto r1 = p1.get();
11 p0.swap(p1);
12 assert(p0.get() == r1 && p1.get() == r0);
13 p1.swap(p0);
14 assert(p0.get() == r0 && p1.get() == r1);
15 p1.reset();
16 assert(p1.get() == nullptr);
17 assert(!p1);
18 int* ip = p1.release();
19 assert(!p1);
20 // ... Do not throw exceptions here.
21 delete ip;
22 p1.reset(new int(42));
23 assert(*p1 == 42);
24 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 873

SKIP SLIDE

Example: std::unique_ptr with Custom Deleter
1 #include <memory>
2 #include <iostream>
3 #include <cstring>
4 #include <cstdlib>
5

6 using up = std::unique_ptr<char[], void(*)(char*)>;
7

8 char *allocate(std::size_t n) {
9 return static_cast<char*>(std::malloc(n));

10 }
11

12 void deallocate(char* p) {
13 std::cout << "deallocate called\n";
14 std::free(p);
15 }
16

17 up string_duplicate(const char *s) {
18 std::size_t len = std::strlen(s);
19 up result(allocate(len + 1), deallocate);
20 std::strcpy(result.get(), s);
21 return result;
22 }
23

24 int main() {
25 auto p = string_duplicate("Hello, World!");
26 std::cout << p.get() << ’\n’;
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 874

SKIP SLIDE

TwoBufs Example With Resource Leak

1 #include <cstddef>
2 #include <limits>
3

4 class TwoBufs {
5 public:
6 TwoBufs(std::size_t aSize, std::size_t bSize) :
7 a_(nullptr), b_(nullptr) {
8 a_ = new char[aSize];
9 // If new throws, a_ will be leaked.

10 b_ = new char[bSize];
11 }
12 ~TwoBufs() {
13 delete[] a_;
14 delete[] b_;
15 }
16 // ...
17 private:
18 char* a_;
19 char* b_;
20 };
21

22 void doWork() {
23 // This may leak memory.
24 TwoBufs x(1000000,
25 std::numeric_limits<std::size_t>::max());
26 // ...
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 875

SKIP SLIDE

TwoBufs Example Corrected With unique_ptr

1 #include <cstddef>
2 #include <limits>
3 #include <memory>
4

5 class TwoBufs {
6 public:
7 TwoBufs(std::size_t aSize, std::size_t bSize) :
8 a_(std::make_unique<char[]>(aSize)),
9 b_(std::make_unique<char[]>(bSize)) {}

10 ~TwoBufs() {}
11 // ...
12 private:
13 std::unique_ptr<char[]> a_;
14 std::unique_ptr<char[]> b_;
15 };
16

17 void doWork() {
18 // This will not leak memory.
19 TwoBufs x(1000000,
20 std::numeric_limits<std::size_t>::max());
21 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 876

SKIP SLIDE

Section 3.7.3

The std::shared_ptr Class Template

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 877

The std::shared_ptr Template Class
� std::shared_ptr is smart pointer that retains shared ownership of

object through pointer
� declaration:

template <class T> class shared_ptr;

� T is type of pointed-to object, where pointed-to object is object being
managed (i.e., owned) or subobject thereof

� multiple shared_ptr objects may own same object
� owned object is deleted when last remaining owning shared_ptr object

is destroyed, assigned another pointer via assignment, or reset via reset
� shared_ptr object is movable, where move transfers ownership
� shared_ptr object is copyable, where copy creates additional owner
� shared_ptr only guarantees access to underlying control block is thread

safe (e.g., no guarantee made for accesses to owned object)
� std::make_shared (and std::allocate_shared) often used to create

shared_ptr objects (for both efficiency and exception-safety reasons)
� shared_ptr has more overhead than unique_ptr so unique_ptr

should be preferred unless shared ownership required
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 878

The std::shared_ptr Template Class (Continued)

Pointer to T Object

Weak Count

Use Count

Pointer to Managed Object

Control Block Managed Object

T Object
...

...

Pointer to T Object

Pointer to Control Block

shared_ptr<T>

Pointer to Control Block

shared_ptr<T>

Other Data

� each shared_ptr<T> object contains:
2 pointer to object of type T (i.e., managed object or subobject thereof)
2 pointer to control block

� control block contains:
2 pointer to managed object (for deletion)
2 use count: number of shared_ptr instances pointing to object
2 weak count: to be discussed later
2 other data (i.e., deleter and allocator)

� managed object is deleted when use count reaches zero
� make_shared can allow memory for control block and managed object to

be allocated together in single memory allocation
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 879

std::shared_ptr Reference Counting Example

Weak Count (1)

Use Count (1)

Pointer to Managed Object

Control Block

Other Data

Managed Object

T Object
...

...

Pointer to T Object

Pointer to Control Block

shared_ptr<T>

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 880

std::shared_ptr Reference Counting Example (Continued 1)

Weak Count (1)

Use Count (2)

Pointer to Managed Object

Control Block

Other Data

Managed Object

T Object
...

...

Pointer to T Object

Pointer to Control Block

shared_ptr<T>

Pointer to T Object

Pointer to Control Block

shared_ptr<T>

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 881

std::shared_ptr Reference Counting Example (Continued 2)

Weak Count (1)

Use Count (3)

Pointer to Managed Object

Control Block

Other Data

Managed Object

T Object
...

...

Pointer to T Object

Pointer to Control Block

shared_ptr<T>

Pointer to T Object

Pointer to Control Block

shared_ptr<T>

Pointer to T Object

Pointer to Control Block

shared_ptr<T>

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 882

std::shared_ptr Member Functions

Construction, Destruction, and Assignment
Member Name Description

constructor constructs new shared_ptr
destructor destroys managed object if no other references to it

remain
operator= assigns shared_ptr

Modifiers
Member Name Description

reset replaces managed object
swap swaps values of two shared_ptr objects

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 883

std::shared_ptr Member Functions (Continued)

Observers
Member Name Description

get returns pointer to pointed-to object
use_count returns number of shared_ptr objects referring

to same managed object
operator bool checks if there is associated pointed-to/managed

object
owner_before provides owner-based ordering of shared pointers

Dereferencing/Subscripting
Member Name Description

operator* dereferences pointer to pointed-to object
operator-> dereferences pointer to pointed-to object
operator[] provides indexed access to pointed-to array

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 884

Prefer Use of std::make_shared

� when creating std::shared_ptr objects, prefer to use
std::make_shared (as opposed to explicit use of new with shared_ptr)

� use of make_shared allows for greater efficiency

� control block and owned object can be allocated together

� one less memory-allocation operation required

� better cache efficiency due to control block and owned object being
placed contiguously in memory

� better exception safety (avoid resource leaks)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 885

std::shared_ptr Example

1 #include <memory>
2 #include <cassert>
3

4 int main() {
5 auto p1(std::make_shared<int>(0));
6 assert(*p1 == 0 && p1.use_count() == 1);
7

8 std::shared_ptr<int> p2(p1);
9 assert(*p2 == 0 && p2.use_count() == 2);

10

11 *p2 = 42;
12 assert(*p1 == 42);
13

14 p2.reset();
15 assert(!p2);
16 assert(*p1 == 42 && p1.use_count() == 1);
17

18 int* ip = p1.get();
19 assert(*ip == 42);;
20

21 ip = p2.get();
22 assert(ip == nullptr);
23 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 886::::
diagram

std::shared_ptr and const

1 #include <memory>
2 #include <iostream>
3 #include <string>
4

5 int main() {
6 std::shared_ptr<std::string> s =
7 std::make_shared<std::string>("hello");
8

9 std::shared_ptr<const std::string> cs = s;
10

11 *s = "goodbye";
12

13 // *cs = "bonjour"; // ERROR: const
14

15 std::cout << *cs.get() << ’\n’;
16 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 887NEXT SLIDE: sharedptr uses

Example: Shared Pointer to Subobject of Managed Object
1 #include <memory>
2 #include <vector>
3 #include <cassert>
4 #include <iostream>
5

6 struct Widget {
7 Widget(const std::vector<int>& v_, int i_) :
8 v(v_), i(i_) {}
9 ~Widget() {std::cout << "destructor called\n";}

10 std::vector<int> v;
11 int i;
12 };
13

14 int main() {
15 auto wp(std::make_shared<Widget>(
16 std::vector<int>{1, 2, 3}, 42));
17 assert(wp.use_count() == 1);
18 assert(wp->i == 42 && wp->v.size() == 3);
19 std::shared_ptr<std::vector<int>> vp(wp, &wp->v);
20 assert(wp.use_count() == 2 && vp.use_count() == 2);
21 assert(vp->size() == 3);
22 wp = nullptr; // equivalently: wp.reset();
23 // managed Widget object not destroyed
24 assert(vp.use_count() == 1 && vp->size() == 3);
25 vp = nullptr; // equivalently: vp.reset();
26 // managed Widget object destroyed
27 // ...
28 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 888. .shared_ptr diagram

Example: Shared Pointer to Subobject of Managed Object
(Continued 1)

wp

i

v

cb

p

p

rc = 1

15 auto wp(std::make_shared<Widget>(
16 std::vector<int>{1, 2, 3}, 42));
17 assert(wp.use_count() == 1);
18 assert(wp->i == 42 && wp->v.size() == 3);

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 889

Example: Shared Pointer to Subobject of Managed Object
(Continued 2)

wp vp

i

v

cb

p

cb

p

p

rc = 2

19 std::shared_ptr<std::vector<int>> vp(wp, &wp->v);
20 assert(wp.use_count() == 2 && vp.use_count() == 2);
21 assert(vp->size() == 3);

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 890

Example: Shared Pointer to Subobject of Managed Object
(Continued 3)

wp vp

i

v

cb = 0

p = 0

cb

p

p

rc = 1

22 wp = nullptr; // equivalently: wp.reset();
23 // managed Widget object not destroyed
24 assert(vp.use_count() == 1 && vp->size() == 3);

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Example: Shared Pointer to Subobject of Managed Object
(Continued 4)

wp vp

cb = 0

p = 0

cb = 0

p = 0

25 vp = nullptr; // equivalently: vp.reset();
26 // managed Widget object destroyed

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The std::enable_shared_from_this Class Template

� may want class object to be able to generate additional shared_ptr
instances referring to itself

� requires object to have access to information in its associated
shared_ptr control block

� access to such information obtained through use of
std::enable_shared_from_this class template

� declaration:

template <class T> class enable_shared_from_this;

� T is type of object being managed by shared_ptr

� class can inherit from enable_shared_from_this to inherit
shared_from_this member functions that can be used to obtain
shared_ptr instance pointing to *this

� shared_from_this is overloaded to provide both const and non-const
versions

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 891

SKIP SLIDE

enable_shared_from_this Example

1 #include <memory>
2 #include <cassert>
3

4 // Aside: This is an example of the CRTP.
5 class Widget : public std::enable_shared_from_this<Widget>
6 {
7 public:
8 std::shared_ptr<Widget> getSharedPtr() {
9 return shared_from_this();

10 }
11 std::shared_ptr<const Widget> getSharedPtr() const {
12 return shared_from_this();
13 }
14 // ...
15 };
16

17 int main() {
18 std::shared_ptr<Widget> a(new Widget);
19 std::shared_ptr<Widget> b = a->getSharedPtr();
20 assert(b == a);
21 std::shared_ptr<const Widget> c = a->getSharedPtr();
22 assert(c == a);
23 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 892

SKIP SLIDE

Example: std::shared_ptr

1 #include <memory>
2 #include <array>
3 #include <string>
4 #include <iostream>
5

6 using namespace std::literals;
7

8 int main() {
9 std::array<std::shared_ptr<const std::string>, 3> all = {

10 std::make_shared<const std::string>("apple"s),
11 std::make_shared<const std::string>("orange"s),
12 std::make_shared<const std::string>("banana"s)
13 };
14 std::array<std::shared_ptr<const std::string>, 2> some =
15 {all[0], all[1]};
16

17 for (auto& x : all) {
18 std::cout << *x << ’ ’ << x.use_count() << ’\n’;
19 }
20 }
21

22 /* output:
23 apple 2
24 orange 2
25 banana 1
26 */

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 893

Example: std::shared_ptr (Continued)

p

p

cb

some

cb

p

cb

p

p

cb

cb

all

apple

rc = 2

p

...

orange

banana

rc = 1

p

...

rc = 2

p

...

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 894NEXT SLIDE: vectorization

Section 3.7.4

The std::weak_ptr Class Template

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 895

std::shared_ptr and Circular References

� reference counting nature of std::shared_ptr causes it to leak memory
in case of circular references

� such cycles should be broken with std::weak_ptr (to be discussed
shortly)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 896

Circular Reference Example

1 #include <memory>
2 #include <iostream>
3 #include <cassert>
4

5 struct Node {
6 Node(int id_) : id(id_) {}
7 ~Node() {std::cout << "destroying node " << id << ’\n’;}
8 std::shared_ptr<Node> parent;
9 std::shared_ptr<Node> left;

10 std::shared_ptr<Node> right;
11 int id;
12 };
13

14 void func() {
15 std::shared_ptr<Node> root(std::make_shared<Node>(1));
16 assert(root.use_count() == 1);
17 root->left = std::make_shared<Node>(2);
18 assert(root.use_count() == 1 &&
19 root->left.use_count() == 1);
20 root->left->parent = root;
21 assert(root.use_count() == 2 &&
22 root->left.use_count() == 1);
23 // When root is destroyed, the reference count for each
24 // of the managed Node objects does not reach zero, and
25 // no Node object is destroyed.
26 // Node::~Node is not called here
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 897

Circular Reference Example (Continued 1)

cb

p

p

rc = 1

p

cb

r

i = 1

p

cb

cb

pp

l

root

� create new node, referenced by root

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 898

Circular Reference Example (Continued 2)

cb

p

p

rc = 1

p

rc = 1

p

cb

r

i = 1

p

cb

cb

pp

l p

cb

r

i = 2

p

cb

l

p

cb

p

root

� create new node, making it left child of root node (parent link not set)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 899

Circular Reference Example (Continued 3)

cb

p

p

rc = 1

p

rc = 2

p

cb

r

i = 1

p

cb

cb

pp

l p

cb

r

i = 2

p

cb

l

p

cb

p

root

� set parent link for left child of root node

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 900

Circular Reference Example (Continued 4)

p

rc = 1

p

rc = 1

p

cb

r

i = 1

p

cb

cb

pp

l p

cb

r

i = 2

p

cb

l

p

cb

p

� after destroying root, neither node destroyed

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 901

The std::weak_ptr Template Class

� std::weak_ptr is smart pointer that holds non-owning (i.e., “weak”)
reference to object managed by std::shared_ptr

� weak_ptr must be converted to std::shared_ptr in order to access
referenced object

� declaration:
template <class T> class weak_ptr;

� T is type of referenced object

� weak_ptr object is movable and copyable
� std::weak_ptr is used to break circular references with

std::shared_ptr

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 902

std::weak_ptr Member Functions

Construction, Destruction, and Assignment
Member Name Description

constructor constructs new weak_ptr
destructor destroys weak_ptr
operator= assigns weak_ptr

Modifiers
Member Name Description

reset releases reference to managed object
swap swaps values of two weak_ptr objects

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 903

std::weak_ptr Member Functions (Continued)

Observers
Member Name Description

use_count returns number of shared_ptr objects referring to
same managed object

expired checks if referenced object was already deleted
lock creates shared_ptr that manages referenced object
owner_before provides owner-based ordering of weak pointers

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 904

Typical shared_ptr/weak_ptr Implementation

Pointer to T Object

Pointer to Control Block

shared_ptr<T> or weak_ptr<T>

Other Data

Weak Count

Use Count

Pointer to Managed Object

Control Block Managed Object

T Object
...

...

� each shared_ptr<T> and weak_ptr<T> object contains:
2 pointer to object of type T (i.e., managed object or subobject thereof)
2 pointer to control block

� control block contains:
2 pointer to managed object (for deletion)
2 use count: number of shared_ptr instances pointing to object
2 weak count: number of weak_ptr instances pointing to object, plus one if

use count is nonzero
2 other data (i.e., deleter and allocator)

� managed object is deleted when use count reaches zero
� control block is deleted when weak count reaches zero (which implies use

count is also zero)
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 905

Typical shared_ptr/weak_ptr Implementation (Continued)

� shared_ptr destructor pseudocode:
decrement use count and if it reaches zero {

delete managed object
decrement weak count and if it reaches zero {

delete control block
}

}

� weak_ptr destructor pseudocode:
decrement weak count and if it reaches zero {

delete control block
}

� must be thread safe

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 906

std::weak_ptr Example

1 #include <memory>
2 #include <iostream>
3 #include <cassert>
4

5 void func(std::weak_ptr<int> wp) {
6 auto sp = wp.lock();
7 if (sp) {
8 std::cout << *sp << ’\n’;
9 } else {

10 std::cout << "expired\n";
11 }
12 }
13

14 int main() {
15 std::weak_ptr<int> wp;
16 {
17 auto sp = std::make_shared<int>(42);
18 wp = sp;
19 assert(wp.use_count() == 1 && wp.expired() == false);
20 func(wp);
21 // When sp destroyed, wp becomes expired.
22 }
23 assert(wp.use_count() == 0 && wp.expired() == true);
24 func(wp);
25 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 907

Avoiding Circular References With std::weak_ptr

1 #include <memory>
2 #include <iostream>
3 #include <cassert>
4

5 struct Node {
6 Node(int id_) : id(id_) {}
7 ~Node() {std::cout << "destroying node " << id << ’\n’;}
8 std::weak_ptr<Node> parent;
9 std::shared_ptr<Node> left;

10 std::shared_ptr<Node> right;
11 int id;
12 };
13

14 void func() {
15 std::shared_ptr<Node> root(std::make_shared<Node>(1));
16 assert(root.use_count() == 1);
17 root->left = std::make_shared<Node>(2);
18 assert(root.use_count() == 1 &&
19 root->left.use_count() == 1);
20 root->left->parent = root;
21 assert(root.use_count() == 1 &&
22 root->left.use_count() == 1);
23 // The reference count for each of the managed Node
24 // objects reaches zero, and these objects are
25 // destroyed.
26 // Node::~Node is called twice here
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 908

Avoiding Circular References Example (Continued 1)

cb

p

p

cb

r

i = 1

p

cb

cb

pp

l

root

p

rc = 1

wc = 1

� created new node, referenced by root

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 909

Avoiding Circular References Example (Continued 2)

cb

p

p

cb

r

i = 1

p

cb

cb

pp

l p

cb

r

i = 2

p

cb

l

p

cb

p

root

p

rc = 1

p

rc = 1

wc = 1wc = 1

� created new node, making it left child of root node (parent link not set)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 910

Avoiding Circular References Example (Continued 3)

cb

p

p

cb

r

i = 1

p

cb

cb

pp

l p

cb

r

i = 2

p

cb

l

p

cb

p

root

p

rc = 1

p

rc = 1

wc = 2 wc = 1

� set parent link (which is weak_ptr) for left child of root node

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 911

Avoiding Circular References Example (Continued 4)

cb

p

p

cb

r

i = 1

p

cb

cb

pp

l p

cb

r

i = 2

p

cb

l

p

cb

p

root

p

rc = 0

p

rc = 1

wc = 2 wc = 1

� started to destroy root; decremented use count, which reaches zero

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 912

Avoiding Circular References Example (Continued 5)

cb

p

p

cb

r

i = 1

p

cb

cb

pp

l p

cb

r

i = 2

p

cb

l

p

cb

p

root

p

rc = 0

p

rc = 1

wc = 2 wc = 1

� started to destroy root node; r has been destroyed; about to destroy l

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 913

Avoiding Circular References Example (Continued 6)

cb

p

p

cb

r

i = 1

p

cb

cb

pp

l p

cb

r

i = 2

p

cb

l

p

cb

p

root

p

rc = 0

p

rc = 0

wc = 2 wc = 1

� started to destroy l (in root node); decremented use count, which reaches zero

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 914

Avoiding Circular References Example (Continued 7)

cb

p

p

cb

r

i = 1

p

cb

cb

pp

l p

cb

r

i = 2

p

cb

l

p

cb

p

root

p

rc = 0

p

rc = 0

wc = 2 wc = 1

� started to destroy left node

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 915

Avoiding Circular References Example (Continued 8)

cb

p

p

cb

r

i = 1

p

cb

cb

pp

l p

cb

r

i = 2

p

cb

l

p

cb

p

root

p

rc = 0

p

rc = 0

wc = 1 wc = 1

� started to destroy p in left node; decremented weak count (which is not yet zero)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 916

Avoiding Circular References Example (Continued 9)

cb

p

p

cb

r

i = 1

p

cb

cb

pp

l p

cb

r

i = 2

p

cb

l

p

cb

p

root

p

rc = 0

p

rc = 0

wc = 1 wc = 1

� destroyed p in left node, and completed destruction of left node

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 917

Avoiding Circular References Example (Continued 10)

cb

p

p

cb

r

i = 1

p

cb

cb

pp

l

root

p

rc = 0

p

rc = 0

wc = 1 wc = 1

� left node has been destroyed

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 918

Avoiding Circular References Example (Continued 11)

cb

p

p

cb

r

i = 1

p

cb

cb

pp

l

root

p

rc = 0

p

rc = 0

wc = 1 wc = 0

� continue destruction of l in root node; decrement weak count, which
reaches zero

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 919

Avoiding Circular References Example (Continued 12)

cb

p

p

cb

r

i = 1

p

cb

cb

pp

l

root

p

rc = 0

wc = 1

� destroyed control block for (previously destroyed) left child of root node

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 920

Avoiding Circular References Example (Continued 13)

cb

p

p

cb

r

i = 1

p

cb

cb

pp

l

root

p

rc = 0

wc = 1

� finished destroying l in root node; destroyed p in root node; and
completed destruction of root node

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 921

Avoiding Circular References Example (Continued 14)

cb

p

root

p

rc = 0

wc = 1

� root node has been destroyed

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 922

Avoiding Circular References Example (Continued 15)

cb

p

root

p

rc = 0

wc = 0

� continuing with destruction of root; decremented weak count, which
reaches zero

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 923

Avoiding Circular References Example (Continued 16)

cb

p

root

� destroyed control block

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 924

Avoiding Circular References Example (Continued 17)

cb

p

root

� root has been destroyed

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 925

Section 3.7.5

The boost::intrusive_ptr Class Template

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 926

The boost::intrusive_ptr Class Template

� boost::intrusive_ptr provides intrusive shared pointer type

� aside from being intrusive, similar to boost::shared_ptr (which is
similar to std::shared_ptr)

� declaration:
template <class T> class intrusive_ptr;

� T is type of referenced object

� new reference is added by calling user-provided function with signature:
void intrusive_ptr_add_ref(T*)

� reference is eliminated by calling user-provided function with signature:
void intrusive_ptr_release(T*)

� intrusive_ptr_release responsible for destroying underlying object
when reference count reaches zero

� functions intrusive_ptr_add_ref and intrusive_ptr_release must
be provided in such way as to be found when called unqualified

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 927

The boost::intrusive_ptr Class Template (Continued 1)

Pointer to T Object

intrusive_ptr<T>

T Object

Managed Object

Containing Reference Count

� intrusive_ptr itself has same memory cost as raw pointer

� managed object (of type T) must provide means for reference counting,
which is accessed through user-provided functions
intrusive_ptr_add_ref and intrusive_ptr_release

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 928

intrusive_ptr Example
1 #include <boost/intrusive_ptr.hpp>
2 #include <iostream>
3 #include <string>
4 #include <cassert>
5

6 class Person {
7 public:
8 Person(const std::string& name) : name_(name),
9 refCount_(0) {}

10 void hold() {++refCount_;}
11 void release() {if (--refCount_ == 0) {delete this;}}
12 unsigned refCount() const {return refCount_;}
13 private:
14 ~Person() {std::cout << "dtor called\n";}
15 std::string name_;
16 unsigned refCount_; // reference count
17 };
18

19 void intrusive_ptr_add_ref(Person* p) {p->hold();}
20 void intrusive_ptr_release(Person* p) {p->release();}
21

22 int main() {
23 boost::intrusive_ptr<Person> a(new Person("Bjarne"));
24 {
25 boost::intrusive_ptr<Person> b = a;
26 assert(a->refCount() == 2);
27 }
28 assert(a->refCount() == 1);
29 }
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 929

Section 3.7.6

Smart-Pointer Usage Examples

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 930

Temporary Heap-Allocated Objects

� create heap-allocated object for temporary use inside function/block

� object will be automatically deallocated upon leaving function/block

1 #include <memory>
2

3 void func() {
4 // ...
5 int size = /* ... */;
6 auto buffer(std::make_unique<char[]>(size));
7 // ... (use buffer)
8 // when buffer destroyed, pointee automatically
9 // freed

10 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 931

Decoupled Has-A Relationship

� instead of making object member of class, store object outside class and
make pointer to object member of class

� might want to do this for object that:
2 is optional (e.g., is not always used or is lazily initialized)
2 has one of several base/derived types

� pointer in class object owns decoupled object

1 #include <memory>
2

3 class Widget {
4 // ...
5 private:
6 // ...
7 std::unique_ptr<Type> item_;
8 // decoupled object has type Type
9 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 932NEXT SLIDE: shared_ptr

Decoupled Fixed-But-Dynamically-Sized Array

� array stored outside class object, where array size fixed but determined at
run time

� class object has pointer that owns decoupled array

1 #include <memory>
2

3 class Widget {
4 public:
5 using Element = int;
6 Widget(std::size_t size) :
7 array_(std::make_unique(Element[]>(size),
8 size_(size) {}
9 // ...

10 private:
11 // ...
12 std::unique_ptr<Element[]> array_;
13 std::size_t size_;
14 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 933

Pimpl Idiom

� withpimpl idiom, interface and implementation split across two classes,
namely, handle class and implementation class

� handle object has pointer that owns implementation object

1 #include <experimental/propagate_const>
2 #include <memory>
3

4 class Widget {
5 public:
6 // ... (member functions that forward calls to
7 // implementation object)
8 private:
9 class WidgetImpl; // implementation class defined elsewhere

10 std::experimental::propagate_const<std::unique_ptr<
11 WidgetImpl>> impl_;
12 // incomplete type WidgetImpl is allowed
13 // ...
14 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 934

Tree

� tree, where tree owns root node and each node owns its children

� recursive destruction of nodes may cause stack-overflow problems,
especially for unbalanced trees (but such problems can be avoided by
dismantling tree from bottom upwards)

1 #include <memory>
2 #include <array>
3
4 class Tree {
5 public:
6 class Node {
7 // ...
8 private:
9 std::array<std::unique_ptr<Node>, 2> children_;

10 // owning pointers (parent owns children)
11 Node* parent_; // non-owning pointer
12 // ...
13 };
14 // ...
15 private:
16 std::unique_ptr<Node> root_;
17 // ...
18 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 935

Doubly-Linked List

� doubly-linked list, where list owns first list node and each list node owns its
successor

� recursive destruction of nodes can cause stack-overflow problems, for
sufficiently large lists (but deep recursions can be avoided with extra work)

1 #include <memory>
2

3 class List {
4 public:
5 class Node {
6 // ...
7 private:
8 std::unique_ptr<Node> next_;
9 // owning pointer (node owns successor)

10 Node* prev_; // non-owning pointer
11 };
12 // ...
13 private:
14 // ...
15 std::unique_ptr<Node> head_;
16 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 936

Tree That Provides Strong References

� tree that provides strong references to data in nodes
� tree owns root node and each node owns its children
� accessor for node data returns object having pointer that keeps node alive

1 #include <memory>
2 #include <array>
3
4 class Tree {
5 public:
6 using Data = /* ... */;
7 class Node {
8 // ...
9 private:

10 std::array<std::shared_ptr<Node>, 2> children_;
11 std::weak_ptr<Node> parent_;
12 Data data_;
13 };
14 std::shared_ptr<Data> find(/* ... */) {
15 std::shared_ptr<Node> sp;
16 // ...
17 return {sp, &(sp->data)};
18 // use shared_ptr aliasing constructor
19 }
20 private:
21 std::shared_ptr<Node> root_;
22 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 937

Directed Acyclic Graph

� encapsulated directed acyclic graph (DAG), where graph owns root nodes
and each node owns its children

� pointers in graph object own root nodes
� pointers in each node object owns children
� care needed for destruction, otherwise may overflow stack

1 #include <memory>
2 #include <vector>
3

4 class Dag {
5 public:
6 class Node {
7 // ...
8 private:
9 std::vector<std::shared_ptr<Node>> children_;

10 // owning pointers
11 std::vector<Node*> parents_; // non-owning pointers
12 // ...
13 };
14 private:
15 std::vector<std::shared_ptr<Node>> roots_; // owning pointers
16 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 938

Factory Function

� factory function that returns object on heap

� factory function should use std::unique_ptr if object will not be shared

� factory function should use std::shared_ptr if object will be shared

� provide factory functions using each of std::unique_ptr and
std::shared_ptr if both sharing and non-sharing cases are common

1 #include <memory>
2

3 std::unique_ptr<Widget> makeWidget() {
4 return std::make_unique<Widget>();
5 }
6

7 std::shared_ptr<Gadget> makeGadget() {
8 return std::make_shared<Gadget>();
9 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 939NEXT SLIDE: more shared_ptr

Factory Function With Cache

� cache of objects on heap

� object in cache should only continue to live while it has external user

� object returned to user is owning pointer

� cache entries have non-owning pointers to corresponding objects

1 #include <memory>
2

3 std::shared_ptr<Widget> makeWidget(int id) {
4 static std::map<int, std::weak_ptr<Widget>> cache;
5 static std::mutex mut;
6 std::scoped_lock<std::mutex> lock(mut);
7 auto sp = cache[id].lock();
8 if (!sp) {
9 sp = std::make_shared<Widget>(id);

10 cache[id] = sp;
11 }
12 return sp;
13 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 940

Section 3.7.7

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 941

Talks I

1 Michael VanLoon. Lightning Talk: Anatomy of a Smart Pointer. CppCon,
Bellevue, WA, USA, Sept. 9, 2014. Available online at
https://youtu.be/bxaj_0o4XAI.

2 Herb Sutter. Leak-Freedom in C++. . . By Default. CppCon, Bellevue, WA,
USA, Sept. 23, 2016. Available online at
https://youtu.be/JfmTagWcqoE.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 942

https://youtu.be/bxaj_0o4XAI
https://youtu.be/JfmTagWcqoE

Section 3.8

Memory Management

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 943

Memory Management

� object said to have dynamic storage duration if its lifetime is
independent of scope in which object created (i.e., lifetime of object does
not end until explicitly ended)

� often need to use objects (or arrays of objects) with dynamic storage
duration

� in what follows, we consider how such objects are managed

� new expressions used to create objects or arrays of objects with dynamic
storage duration

� delete expressions used to destroy such objects

� in order to handle any necessary memory allocation and deallocation,
new and delete expressions in turn use (single-object and array) operator
new and (single-object and array) operator delete

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 944

Potential Problems Arising in Memory Management

� leaked object: object created but not destroyed when no longer needed

� leaked objects are problematic because can cause program to waste
memory or exhaust all available memory

� premature deletion (a.k.a. dangling references): object is deleted when
one or more references to object still exist

� premature deletion is problematic because, if object accessed after
deletion, results of doing so will be unpredictable (e.g., read garbage
value or overwrite other variables in program)

� double deletion: object is deleted twice, invoking destructor twice

� double deletion is problematic invoking destructor on nonexistent object is
unpredictable and furthermore double deletion can often corrupt data
structures used by memory allocator

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 945

Alignment

� type can have restriction on address at which objects of that type can
start, called alignment requirement

:::::::
[C++17 6.11/1]

� for given object type T, starting address for objects of type T must be
integer multiple of N bytes, where integer N is called alignment of type

� alignment of 1 corresponds to no restriction on alignment (since starting
address of object can be any address in memory)

� alignment of 2 restricts starting address of object to be even (i.e., integer
multiple of 2)

� for efficiency reasons and due to restrictions imposed by hardware,
alignment of particular type may be greater than 1

� for fundamental type T, not uncommon for alignment of T to equal
sizeof(T)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 946

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.align#1

The alignof Operator

� alignof operator is used to query alignment of type

� for object type T, alignof(T) yields alignment used for objects of this
type

� alignof(char), alignof(signed char), and
alignof(unsigned char) guaranteed to be 1

� fundamental types of size greater than 1 often have alignment greater
than 1

� std::max_align_t is type having maximum alignment supported by
implementation in all contexts

� extended alignment is alignment exceeding
alignof(std::max_align_t)

:::::::
[C++17 6.11/3]

� in some contexts, may be possible to use extended alignment

� every alignment value must be nonnegative power of two
:::::::
[C++17 6.11/4]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 947

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.align#3
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/basic.align#4

The alignas Specifier

� in some contexts, alignment can be controlled using alignas specifier

� when declaring variable, can specify its alignment in memory with
alignas specifier

� when defining class, can impose stricter alignment on class with
alignas specifier

� example:
1 // Widget objects have maximal alignment
2 struct alignas(std::max_align_t) Widget {
3 char c;
4 };
5 static_assert(alignof(Widget) == alignof(std::max_align_t));
6

7 alignas(4096) static char x[8192];
8 static_assert(alignof(x) == 4096);
9 // x is aligned on 4096-byte boundary

10

11 alignas(double) float f;
12 static_assert(alignof(f) == alignof(double));
13 // f has same alignment as double

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 948

Section 3.8.1

New and Delete Expressions

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 949

New Expressions

� new expression used to create object or array of objects with dynamic
storage duration

� new expression has one of following forms:
scope_prefix new placement_args type initializer
scope_prefix new placement_args (type) initializer

� scope_prefix: optional unary :: operator which controls lookup of
allocation function

� placement_args: optional list of additional arguments for memory
allocation function enclosed in parentheses

� type: type of object to be created which may be array type
� initializer: optional list of arguments used to initialize newly created object

or array (e.g., constructor arguments for class type object)
� new expression where optional placement arguments provided referred to

placement new expression
� new expression returns pointer to object created for non-array type or

pointer to first element in array for array type
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 950

New Expressions (Continued)

� examples of new expressions:
int* ip1 = new int;
int* ip2 = new int(42);
std::vector<int>* vp1 = new std::vector<int>(100, 42);
int* aip1 = new int[256];
std::string* asp = new std::string[64];
int* aip2 = new (std::nothrow) int[10000];
alignas(std::string) char buf[sizeof(std::string)];
std::string* sp = new (static_cast<void*>(&buf))
std::string("Hello");

Widget* wp = ::new Widget; // Note: Widget is class

� evaluating new expression performs following:
1 invokes allocation function to obtain address in memory where new object

or array of objects should be placed
2 invokes constructors to create objects in storage obtained from allocation

function
3 if constructor fails (i.e., throws), any successfully constructed objects are

destroyed (in reverse order from construction) and deallocation function
called to free memory in which object or array was being constructed

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 951

Delete Expressions

� delete expression used to destroy object or array of objects created by
new expression and deallocate associated memory

� delete expression has one of two forms:
scope_prefix delete expr
scope_prefix delete[] expr

� scope_prefix: optional unary :: operator which controls lookup of
deallocation function

� expr: pointer to object or array previously created by new expression or
null pointer

� first form (sometimes called single-object delete expression) is used to
dispose of single object obtained from new expression

� second form (sometimes called array delete expression) is used to
dispose of array of objects obtained from new expression

� delete expression has void type
� if expr is null pointer, evaluation of delete expression effectively does

nothing (i.e., no destructors called and no deallocation function called)
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 952

Delete Expressions (Continued 1)

� single object created by new expression must be deleted with
single-object delete expression

� array created by new expression must be deleted with array delete
expression

� examples of delete expressions:
int *ip = new int(42);
delete ip;
std::vector<int> *vp = new std::vector<int>;
delete vp;
std::string* asp = new std::string[1024];
delete[] asp;

� examples of incorrect delete expressions:
std::string* sp = new std::string;
delete[] sp;
// ERROR: must use single-object delete expression

std::string* asp = new std::string[1024];
delete asp;
// ERROR: must use array delete expression

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 953

Delete Expressions (Continued 2)

� evaluating single-object delete expression performs following:
1 if object of class type, invokes destructor
2 invokes deallocation function for object

� evaluating array delete expression performs following:
1 if array element of class type (with non-trivial destructor):

1 determines size of array (which is typically stored just before array element
data)

2 invokes destructor for each array element (in reverse order from construction,
namely, backwards order)

2 invokes deallocation function for array

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 954

Typical Strategy for Determining Array Size in Array Delete
1 #include <cassert>
2 #include <cstdlib>
3 #include <iostream>
4

5 // A class with a nontrivial destructor.
6 struct Widget {
7 ~Widget();
8 // ...
9 };

10

11 int main(int argc, char** argv) {
12 for (std::size_t n = 1; n < 1024; ++n) {
13 /* Allocate an array of a class type with a nontrivial
14 destructor. */
15 Widget* p = new Widget[n];
16 std::cout << p << ’\n’;
17 /* Assert that the array size n is stored immediately
18 before the first array element. This approach is
19 not required by the C++ language standard, but some
20 C++ implementations do this. */
21 assert(reinterpret_cast<std::size_t*>(p)[-1] == n);
22 /* The array delete expression must invoke the
23 destructor for n objects before deallocating memory.
24 What is at issue here is how n is determined, since
25 it is not specified in the delete expression. */
26 delete[] p;
27 }
28 }
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475:::::::::::
array new delete impl

New Expressions and Allocation

� new expression uses allocation function to determine where object (or
array of objects) to be created should be placed in memory

� for non-array types, allocation function is single-object operator new (i.e.,
operator new) (discussed later), which can be overloaded

� for array types, allocation function is array operator new (i.e.,
operator new[]) (discussed later), which can be overloaded

� allocation function need not allocate memory (since placement arguments
of new expression may be used to specify address at which to place new
object)

� if allocation function has non-throwing exception specification, new
expression returns null pointer upon failure otherwise std::bad_alloc
exception is thrown

� for array type, requested size of memory may exceed size of actual array
data (i.e., overhead to store size of array for use at deletion time)

� if new expression begins with unary :: operator, allocation function’s
name looked up in global scope; otherwise, looked up in class scope if
applicable and then global scope

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 955

Allocation Function Overload Resolution

� overload resolution for (single-object and array) operator new performed
using argument list consisting of:

1 amount of space requested, which has type std::size_t
2 if type has extended alignment, type’s alignment, which has type
std::align_val_t

3 if placement new expression, placement arguments

� if no matching function found, alignment removed from argument list and
overload resolution performed again

� expression “new T” results in one of following calls:
operator new(sizeof(T))
operator new(sizeof(T), std::align_val_t(alignof(T)))

� expression “new(42, f) T” results in one of following calls:
operator new(sizeof(T), 42, f)
operator new(sizeof(T), std::align_val_t(alignof(T),
42, f))

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 956

Allocation Function Overload Resolution (Continued)

� expression “new T[7]” results in one of following calls:
operator new[](sizeof(T) * 7 + x)
operator new[](sizeof(T) * 7 + x, std::align_val_t(
alignof(T)))

where x is nonnegative implementation-dependent constant representing
array allocation overhead (typically, x> 0 if T has nontrivial destructor)

� expression “new (42, f) T[7]” results in one of following calls:
operator new[](sizeof(T) * 7 + x, 42, f)
operator new[](sizeof(T) * 7 + x, std::align_val_t(
alignof(T)), 42, f)

where x is nonnegative implementation-dependent constant representing
array allocation overhead (typically, x> 0 if T has nontrivial destructor)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 957

New Expressions and Deallocation

� when evaluating new expression, if allocation function succeeds but
construction fails, must invoke deallocation function (as part of cleanup)

� for non-array types, deallocation function is single-object operator delete
(i.e., operator delete) (to be discussed shortly)

� for array types, deallocation function is array operator delete (i.e.,
operator delete[]) (to be discussed shortly)

� if new expression begins with unary :: operator, deallocation function’s
name looked up in global scope; otherwise, looked up in class scope and
then global scope

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 958

Delete Expressions and Deallocation

� for single-object delete expression, deallocation function is single-object
operator delete (i.e., operator delete) (to be discussed shortly)

� for array delete expression, deallocation function is array operator delete
(i.e., operator delete[]) (to be discussed shortly)

� if delete expression prefixed by unary :: operator, deallocation function’s
name looked up only at global scope; otherwise at class scope if
applicable and then global scope

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Single-Object Operator New (i.e., operator new)

� single-object operator new (i.e., operator new) is operator used to
determine address at which to place new object to be created

� most frequently invoked indirectly via new expression, but can be called
directly

� operator new may or may not allocate memory

� operator can be overloaded as global function or (implicitly static) member
function

� operator has return type void* and returns address at which new object
to be created should be placed

� first parameter to operator always of type std::size_t and specifies
number of bytes of storage needed for new object to be created

� several overloads of global operator new provided by language and
standard library

� std::nothrow is dummy variable of type const std::nothrow_t that
can be used for overload disambiguation

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 959

Single-Object Operator New Overloads

� void* operator new(std::size_t size);
2 allocates size bytes of storage that is suitably aligned for any object of this

size not having extended alignment
2 throws std::bad_alloc exception upon failure

� void* operator new(std::size_t size,
std::align_val_t align);

2 allocates size bytes of storage with guaranteed alignment of align
2 throws std::bad_alloc exception upon failure

� void* operator new(std::size_t size,
const std::nothrow_t& tag);

2 allocates size bytes of storage suitably aligned for any object of this size
not having extended alignment

2 returns null pointer upon failure
� void* operator new(std::size_t size,

std::align_val_t align, const std::nothrow_t& tag);
2 allocates size bytes of storage with guaranteed alignment of align
2 returns null pointer upon failure

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 960

Single-Object Operator New Overloads (Continued)

� void* operator new(std::size_t size, void* ptr)
noexcept;

2 non-allocating
2 simply returns ptr, assuming ptr points to storage of at least size bytes

with appropriate alignment
2 cannot fail
2 not useful to invoke directly, since function effectively does nothing
2 intended to be invoked by non-allocating placement new expressions

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 961

Single-Object Operator New Examples

1 #include <new>
2 #include <cassert>
3 #include <string>
4

5 void func_1() {
6 // allocating operator new
7 std::string* sp = static_cast<std::string*>(
8 ::operator new(sizeof(std::string)));
9 // allocation succeeded since no exception thrown

10 assert(sp);
11 // ... (deallocate memory)
12 }
13

14 void func_2() {
15 // allocating and non-throwing operator new
16 std::string* sp = static_cast<std::string*>(
17 ::operator new(sizeof(std::string), std::nothrow));
18 // sp may be null since allocation might have failed
19 // ... (deallocate memory)
20 }
21

22 void func_3() {
23 int i;
24 // non-allocating operator new
25 int* ip = static_cast<int*>(::operator new(sizeof(int),
26 static_cast<void*>(&i)));
27 assert(ip == &i);
28 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 962

Array Operator New (i.e., operator new[])

� array operator new (i.e., operator new[]) is operator used to
determine address at which to place array of objects to be created

� array operator new may or may not allocate memory

� array operator new can be overloaded as global function or (implicitly
static) member function

� operator has return type void* and returns address at which new array
of objects to be created should be placed

� first parameter to operator always of type std::size_t and specifies
number of bytes of storage needed for new array of objects to be created

� several overloads of global array operator new provided by language and
standard library

� std::nothrow is dummy variable of type const std::nothrow_t that
can be used for overload disambiguation

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 963

Array Operator New Overloads

� void* operator new[](std::size_t size);
2 allocates size bytes of storage that is suitably aligned for any object of this

size not having extended alignment
2 throws std::bad_alloc exception upon failure

� void* operator new[](std::size_t size,
std::align_val_t align);

2 allocates size bytes of storage with alignment of align
2 throws std::bad_alloc exception upon failure

� void* operator new[](std::size_t size,
const std::nothrow_t& tag);

2 allocates size bytes of storage suitably aligned for any object of this size
not having extended alignment

2 returns null pointer upon failure
� void* operator new[](std::size_t size,

std::align_val_t align, const std::nothrow_t& tag);
2 allocates size bytes of storage with guaranteed alignment of align
2 returns null pointer upon failure

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 964

Array Operator New Overloads (Continued)

� void* operator new[](std::size_t size, void* ptr)
noexcept;

2 non-allocating
2 simply returns ptr, assuming ptr points to storage of at least size bytes

with appropriate alignment
2 cannot fail
2 not useful to invoke directly, since function effectively does nothing
2 intended to be invoked by non-allocating (array) placement new

expressions

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 965

Array Operator New Examples

1 #include <new>
2 #include <cassert>
3 #include <string>
4

5 void func_1() {
6 // allocating array operator new
7 std::string* sp = static_cast<std::string*>(
8 ::operator new[](1000 * sizeof(std::string)));
9 // allocation succeeded since no exception thrown

10 assert(sp);
11 // ... (deallocate)
12 }
13

14 void func_2() {
15 std::string* sp = static_cast<std::string*>(
16 ::operator new[](1000 * sizeof(std::string), std::nothrow));
17 // sp may be null since allocation might have failed
18 // ... (deallocate)
19 }
20

21 void func_3() {
22 static int a[1000];
23 int* ip = static_cast<int*>(::operator new[](1000 * sizeof(int),
24 static_cast<void*>(a)));
25 assert(ip == a);
26 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 966

Single-Object Operator Delete (i.e., operator delete)

� single-object operator delete (i.e., operator delete) is operator used
to deallocate memory for object allocated with operator new

� can be invoked through delete expression or through new expression if
constructor throws exception

� always has return type of void

� first parameter always pointer of type void*

� standard library deallocation functions do nothing if pointer is null

� can be overloaded as global function or (implicitly static) member function

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 967

Single-Object Operator Delete Overloads

� void operator delete(void* ptr) noexcept;
void operator delete(void* ptr, std::size_t size)
noexcept;
void operator delete (void* ptr,
std::align_val_t align) noexcept;
void operator delete (void* ptr, std::size_t size,
std::align_val_t align) noexcept;

2 deallocates storage associated with object at address ptr, which was
allocated by single-object operator new

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 968

Single-Object Operator Delete Examples

1 #include <new>
2 #include <cassert>
3 #include <string>
4

5 void func_1() {
6 // allocating operator new
7 std::string* sp = static_cast<std::string*>(
8 ::operator new(sizeof(std::string)));
9 // allocation succeeded since no exception thrown

10 assert(sp);
11 ::operator delete(sp);
12 }
13

14 void func_2() {
15 // allocating and non-throwing operator new
16 std::string* sp = static_cast<std::string*>(
17 ::operator new(sizeof(std::string), std::nothrow));
18 // sp may be null since allocation might have failed
19 // deleting null pointer is allowed
20 ::operator delete(sp);
21 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 969

Array Operator Delete (i.e., operator delete[])

� array operator delete (i.e., operator delete[]) is operator used to
deallocate memory for array of objects allocated with array operator new

� can be invoked through delete expression or through new expression if
constructor throws exception

� always has return type of void

� first parameter always pointer of type void*

� standard library deallocation functions do nothing if pointer is null

� can be overloaded as global function or (implicitly static) member function

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 970

Array Operator Delete Overloads

� void operator delete[](void* ptr) noexcept;
void operator delete[](void* ptr, std::size_t size)
noexcept;
void operator delete[](void* ptr,
std::align_val_t align) noexcept;
void operator delete[](void* ptr, std::size_t size,
std::align_val_t align) noexcept;

2 deallocates storage associated with array of objects at address ptr, which
was allocated by array operator new

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 971

Array Operator Delete Examples

1 #include <new>
2 #include <cassert>
3 #include <string>
4

5 void func_1() {
6 // allocating array operator new
7 std::string* sp = static_cast<std::string*>(
8 ::operator new[](1000 * sizeof(std::string)));
9 // allocation succeeded since no exception thrown

10 assert(sp);
11 ::operator delete[](sp);
12 }
13

14 void func_2() {
15 std::string* sp = static_cast<std::string*>(
16 ::operator new[](1000 * sizeof(std::string), std::nothrow));
17 // sp may be null since allocation might have failed
18 // deleting null pointer is allowed
19 ::operator delete[](sp);
20 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 972

Example: New/Delete Expression and Overload Resolution

1 #include <cstddef>
2 #include <new>
3
4 // Gadget does not have extended alignment
5 struct Gadget {
6 int i;
7 };
8
9 // Widget has extended alignment

10 struct alignas(2 * alignof(std::max_align_t)) Widget {
11 int i;
12 };
13

14 int main() {
15 Gadget* gp = new Gadget;
16 // invokes operator new(std::size_t)
17 delete gp;
18 // invokes operator delete(void *)
19 Widget* wp = new Widget;
20 // invokes operator new(std::size_t, std::align_val_t)
21 delete wp;
22 // invokes operator delete(void *, std::align_val_t)
23 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

SKIP SLIDE

Replacing Global Operator New/Delete

� some global versions of single-object and array operator new and operator
delete can be replaced

� to replace function, define in single translation unit

� undefined behavior if more than one replacement provided in program or if
replacement defined with inline specifier

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 973

SKIP SLIDE

Example: Replacing Global Operator New/Delete
1 #include <cstdio>
2 #include <cstdlib>
3 #include <new>
4 #include <string>
5
6 void* operator new(std::size_t size) {
7 auto ptr = std::malloc(size);
8 if (!ptr) {throw std::bad_alloc();}
9 std::printf("operator new(%zu) returning %p\n", size, ptr);

10 return ptr;
11 }
12
13 void operator delete(void* ptr) noexcept {
14 std::printf("operator delete(%p)\n", ptr);
15 std::free(ptr);
16 }
17
18 void* operator new[](std::size_t size) {
19 auto ptr = std::malloc(size);
20 if (!ptr) {throw std::bad_alloc();}
21 std::printf("operator new[](%zu) returning %p\n", size, ptr);
22 return ptr;
23 }
24
25 void operator delete[](void* ptr, std::size_t size) noexcept {
26 std::printf("operator delete[](%p)\n", ptr);
27 std::free(ptr);
28 }
29
30 int main() {
31 std::string* ip = new std::string;
32 delete ip;
33 std::string* ap = new std::string[10];
34 delete[] ap;
35 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 974

SKIP SLIDE

Example: Overloading Operator New/Delete

1 #include <cstdlib>
2 #include <cstdio>
3 #include <stdexcept>
4
5 class Widget {
6 public:
7 void *operator new(std::size_t size) {
8 std::printf("Widget::operator new\n");
9 if (void *p = std::malloc(size); !p) {throw std::bad_alloc();}

10 else {return p;}
11 }
12 void operator delete(void* p) noexcept {
13 std::printf("Widget::operator delete\n");
14 std::free(p);
15 }
16 // ...
17 };
18
19 int main() {
20 Widget* wp = new Widget; // invokes Widget::operator new
21 delete wp; // invokes Widget::operator delete
22 Widget* vp = ::new Widget; // invokes global operator new
23 ::delete vp; // invokes global operator delete
24 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

SKIP SLIDE

Motivation for Placement New

1 #include <cstdint>
2

3 // heap-allocated array of bounded size
4 template <class T>
5 class bvec {
6 public:
7 // create empty vector that can hold max_size elements
8 // why is this implementation extremely inefficient?
9 bvec(std::size_t max_size) {

10 start_ = new T[max_size];
11 end_ = start_ + max_size;
12 finish_ = start_; // mark array empty
13 }
14 // why is this implementation extremely inefficient?
15 ~bvec() {
16 delete[] start_;
17 }
18 // ...
19 private:
20 T* start_; // start of storage for element data
21 T* finish_; // one past end of element data
22 T* end_; // end of storage for element data
23 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 975

Motivation for Placement New: Diagram

end_

finish_

start_

bvec<T>

...

...

Array of T

x1

x0

xn−1

xn

xn+1

xm−1

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Placement New

� placement new expression is new expression that specifies one or more
(optional) placement arguments

� often, placement new used for purpose of constructing object at specific
place in memory

� this is accomplished by forcing non-allocating overload of operator new to
be used (via placement arguments of new expression)

� example:
alignas(std::string) char buffer[sizeof(std::string)];
std::string* sp =
new (static_cast<void*>(buffer)) std::string("Hello");

assert(static_cast<void*>(sp) == buffer);
// ... (destroy)

� although, in principle, placement new can also be used with new
expressions for arrays, not very practically useful (since objects in array
can always be created using single-object placement new expressions)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 976

Placement New Examples
1 #include <new>
2 #include <vector>
3 #include <string>
4 #include <cassert>
5 #include <utility>
6
7 void func_1() {
8 alignas(int) char buffer[sizeof(int)];
9 int* ip = ::new (static_cast<void*>(buffer)) int(42);

10 assert(static_cast<void*>(ip) == buffer && *ip == 42);
11 }
12
13 void func_2() {
14 alignas(std::string) char buffer[sizeof(std::string)];
15 std::string* vp = ::new (static_cast<void*>(buffer)) std::string("hello");
16 assert(static_cast<void*>(vp) == buffer && vp->size() == 5 &&
17 (*vp)[0] == ’h’);
18 // ... (destroy)
19 }
20
21 template <class T, class... Args> T* construct_at(void* ptr, Args&&... args)
22 {return ::new (ptr) T(std::forward<Args>(args)...);}
23
24 void func_3() {
25 alignas(std::vector<int>) char buffer[sizeof(std::vector<int>)];
26 std::vector<int>* vp = construct_at<std::vector<int>>(buffer, 1000, 42);
27 assert(static_cast<void*>(vp) == buffer && vp->size() == 1000 &&
28 (*vp)[0] == 42);
29 // ... (destroy vector)
30 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 977

Direct Destructor Invocation

� can directly invoke destructor of class object

� only very special circumstances necessitate direct invocation of destructor

� used in situations where deallocation must be performed separately from
destruction (in which case delete expression cannot be used as it
performs both destruction and deallocation together)

� typical use case is for implementing container classes where destruction
of object stored in container and deallocation of memory occupied by that
object done at different points in time

� given pointer p to class object of type T, can directly invoke destructor
through pointer using syntax p->~T() or (*p).~T()

� example:
alignas(std::vector<int>) char buf[
sizeof(std::vector<int>)];

std::vector<int>* vp = ::new (static_cast<void*>(buf))
std::vector<int>(1024);

vp->~vector();

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 978

Pseudodestructors

� as discussed previously, given identifier T that names type and pointer p
to object of that type, can directly invoke destructor with syntax p->~T()

� language allows for T to name built-in type
::::::::
[C++17 8.2.4/1]

� if T names built-in type, above syntax invokes placeholder for destructor
called pseudodestructor, which effectively does nothing

� example:
void func() {

using T = int;
int i = 0;
int* ip = &i;
ip->~T();
// OK: pseudodestructor invocation (does nothing)

//ip->~int(); // ERROR: int is not identifier
}

� consequently, in code that directly invokes destructor, do not need to treat
built-in type as special case

� pseudodestructor functionality often extremely useful in template code
that directly invokes destructors

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 979

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/expr.pseudo#1

Section 3.8.2

More on Memory Management

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 980

std::addressof Function Template

� for memory management purposes, often necessary to obtain address of
object

� if class overloads address-of operator, obtaining address of object
becomes more difficult

� for convenience, standard library provides std::addressof function
template for querying address of object, which yields correct result even if
class overloads address-of operator

� declaration:
template <class T>
constexpr T* addressof(T& arg) noexcept;

template <class T>
const T* addressof(const T&&) = delete;

� addressof function should be used any time address of object is required
whose class may have overloaded address-of operator

� example:
template <class T> foo(const T& x) {

const T* p = std::addressof(x);
// ...

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 981

std::addressof Example

1 #include <iostream>
2 #include <cassert>
3 #include <memory>
4

5 // class that overloads address-of operator
6 class Foo {
7 public:
8 Foo(int i) : i_(i) {}
9 const Foo* operator&() const {return nullptr;}

10 Foo* operator&() {return nullptr;}
11 int get() const {return i_;}
12 // ...
13 private:
14 int i_;
15 };
16

17 int main() {
18 Foo f(42);
19 assert(&f == nullptr);
20 assert(std::addressof(f) != nullptr &&
21 std::addressof(f)->get() == 42);
22 std::cout << std::addressof(f) << ’\n’;
23 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 982

The std::aligned_storage Class Template

� often need can arise for buffer of particular size and alignment
� for convenience, standard library provides std::aligned_storage class

template for specifying such buffers
� declaration:

template <std::size_t Size, std::size_t Align =
__default_alignment> struct aligned_storage;

� Size is size of storage buffer in bytes
� Align is alignment of storage buffer (which has

implementation-dependent default)
� for additional convenience, std::aligned_storage_t alias template

also provided
� declaration:

template <std::size_t Size, std::size_t Align =
__default_alignment> using aligned_storage_t = typename
aligned_storage<Len, Align>::type;

� example:
std::aligned_storage_t<sizeof(std::string),
alignof(std::string)> buffer;

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 983

Optional Value Example

� consider container class template called optval that can hold optional
value

� class templated on type T of optional value
� container object in one of two states:

1 holding value of type T
2 not holding any value

� can query if container is holding value, and if so, access held value

� somewhat similar in spirit to std::optional

� want to store object of type T in optval object itself
� no memory allocation required

� example demonstrates use of placement new (to construct object at
particular place in memory) and direct invocation of destructor

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 984

Optional Value Example: Diagram

optval<T>

storage_

valid_

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Optional Value Example: optval.hpp

1 #include <new>
2 #include <type_traits>
3
4 template <class T> class optval {
5 public:
6 optval() : valid_(false) {}
7 ~optval() {clear();}
8 optval(const optval&) = delete; // for simplicity
9 optval& operator=(const optval&) = delete; // for simplicity

10 bool has_value() const noexcept {return valid_;}
11 const T& get() const {return reinterpret_cast<const T&>(storage_);}
12 void clear() noexcept {
13 if (valid_) {
14 valid_ = false;
15 reinterpret_cast<T*>(&storage_)->~T();
16 }
17 }
18 void set(const T& value) {
19 clear();
20 ::new (static_cast<void*>(&storage_)) T(value);
21 valid_ = true;
22 }
23 private:
24 bool valid_; // is value valid?
25 std::aligned_storage_t<sizeof(T), alignof(T)> storage_;
26 // storage for value
27 // or alternatively: alignas(T) char storage_[sizeof(T)];
28 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 985

Optional Value Example: User Code

1 #include <cassert>
2 #include <string>
3 #include <iostream>
4 #include "optional_1_util.hpp"
5

6 int main() {
7 optval<std::string> s;
8 assert(!s.has_value());
9 s.set("Hello, World");

10 assert(s.has_value());
11 std::cout << s.get() << ’\n’;
12 s.clear();
13 assert(!s.has_value());
14 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 986

Handling Uninitialized Storage

� sometimes need may arise to work with uninitialized storage

� may want to construct objects in uninitialized storage (by using placement
new to invoke constructor) and later destroy objects

� may want to move or copy objects into uninitialized storage (by using
placement new to invoke move or copy constructor)

� code required to perform above operations is not very long, but must be
written with some care to ensure that exceptions handled correctly

� standard library provides functions that perform these operations for
convenience

� these functions useful for code that manages memory without using
standard-compliant allocators

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 987

Functions for Uninitialized Storage

Operations on Uninitialized Memory
Name Description

uninitialized_copy copy range of objects to uninitialized
area of memory

uninitialized_copy_n copy number of objects to uninitial-
ized area of memory

uninitialized_fill copy object to uninitialized area of
memory, defined by range

uninitialized_fill_n copy object to uninitialized area of
memory, defined by start and count

uninitialized_move move range of objects to uninitialized
area of memory

uninitialized_move_n move number of objects to uninitial-
ized area of memory

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 988:::::
copy/move

::::::
copy/move-n

:
fill

Functions for Uninitialized Storage (Continued)

Operations on Uninitialized Memory (Continued)
Name Description

uninitialized_default_construct construct objects by default initializa-
tion in uninitialized area of memory
defined by range

uninitialized_default_construct_n construct objects by default initializa-
tion in uninitialized area of memory
defined by start and count

uninitialized_value_construct construct objects by value initializa-
tion in uninitialized area of memory
defined by range

uninitialized_value_construct_n construct objects by value initializa-
tion in uninitialized area of memory
defined by start and count

destroy_at destroy object at given address
destroy destroy range of objects
destroy_n destroy number of objects in range

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 989::::::::
default construct

:::
destroy

Some Example Implementations

1 template<class InputIter, class ForwardIter>
2 ForwardIter uninitialized_copy(InputIter first, InputIter last,
3 ForwardIter result) {
4 using Value = typename std::iterator_traits<ForwardIter>::value_type;
5 ForwardIter current = result;
6 try {
7 for (; first != last; ++first, (void) ++current) {
8 ::new (static_cast<void*>(std::addressof(*current))) Value(*first);
9 }

10 } catch (...) {
11 for (; result != current; ++result) {
12 result->~Value();
13 }
14 throw;
15 }
16 return current;
17 }

1 template <class ForwardIter>
2 void destroy(ForwardIter first, ForwardIter last) {
3 for (; first != last; ++first) {
4 std::destroy_at(std::addressof(*first));
5 }
6 }

1 template <class T>
2 void destroy_at(T* p) {p->~T();}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 990

Bounded Array Example

� consider class template array for bounded one-dimensional array whose
maximum size is compile-time constant

� class templated on element type T and number N of elements in array

� array element data is stored in array object itself
� no memory allocation required

� provide only basic container functionality in order to keep example to
reasonable size for slides

� example demonstrates handling of uninitialized memory using standard
library functions

� similar in spirit to boost::static_vector

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 991

Bounded Array Example: Diagram

...

...

x1

x0

xs−1

xs

xs+1

xN−1

buf_

finish_

array<T, N>

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Bounded Array Example: aligned_buffer.hpp

1 // type-aware aligned buffer class
2 // provides buffer suitably aligned for N elements of type T
3 template <class T, std::size_t N>
4 class aligned_buffer {
5 public:
6 const T* start() const noexcept
7 {return reinterpret_cast<const T*>(storage_);}
8 T* start() noexcept {return reinterpret_cast<T*>(storage_);}
9 const T* end() const noexcept {return start() + N;}

10 T* end() noexcept {return start() + N;}
11 private:
12 alignas(T) char storage_[N * sizeof(T)]; // aligned buffer
13 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 992

Bounded Array Example: array.hpp (1)

1 #include <memory>
2 #include <algorithm>
3 #include <type_traits>
4 #include "aligned_buffer.hpp"
5
6 template <class T, std::size_t N> class array {
7 public:
8 array() : finish_(buf_.start()) {}
9 array(const array& other);

10 array(array&& other);
11 ~array() {clear();}
12 array& operator=(const array& other);
13 array& operator=(array&& other);
14 explicit array(std::size_t size);
15 array(std::size_t size, const T& value);
16 constexpr std::size_t max_size() const noexcept {return N;}
17 std::size_t size() const noexcept {return finish_ - buf_.start();}
18 T& operator[](std::size_t i) {return buf_.start()[i];}
19 const T& operator[](std::size_t i) const {return buf_.start()[i];}
20 T& back() {return finish_[-1];}
21 const T& back() const {return finish_[-1];}
22 void push_back(const T& value);
23 void pop_back();
24 void clear() noexcept;
25 private:
26 T* finish_; // one past last element in buffer
27 aligned_buffer<T, N> buf_; // buffer for array elements
28 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 993

Bounded Array Example: array.hpp (2)
30 template <class T, std::size_t N>
31 array<T, N>::array(const array& other) {
32 finish_ = std::uninitialized_copy(other.buf_.start(),
33 static_cast<const T*>(other.finish_), buf_.start());
34 }
35
36 template <class T, std::size_t N>
37 array<T, N>::array(array&& other) {
38 finish_ = std::uninitialized_move(other.buf_.start(), other.finish_,
39 buf_.start());
40 }
41
42 template <class T, std::size_t N>
43 array<T, N>& array<T, N>::operator=(const array& other) {
44 if (this != &other) {
45 clear();
46 finish_ = std::uninitialized_copy(other.buf_.start(),
47 static_cast<const T*>(other.finish_), buf_.start());
48 }
49 return *this;
50 }
51
52 template <class T, std::size_t N>
53 array<T, N>& array<T, N>::operator=(array&& other) {
54 if (this != &other) { // self-assignment check of questionable value
55 clear();
56 finish_ = std::uninitialized_move(other.buf_.start(), other.finish_,
57 buf_.start());
58 }
59 return *this;
60 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 994

Bounded Array Example: array.hpp (3)

62 template <class T, std::size_t N>
63 array<T, N>::array(std::size_t size) {
64 if (size > max_size()) {size = max_size();}
65 std::uninitialized_default_construct_n(buf_.start(), size);
66 finish_ = buf_.start() + size;
67 }
68
69 template <class T, std::size_t N>
70 array<T, N>::array(std::size_t size, const T& value) {
71 if (size > max_size()) {size = max_size();}
72 finish_ = std::uninitialized_fill_n(buf_.start(), size, value);
73 }
74
75 template <class T, std::size_t N>
76 void array<T, N>::push_back(const T& value) {
77 if (finish_ == buf_.end()) {return;}
78 finish_ = std::uninitialized_fill_n(finish_, 1, value);
79 }
80
81 template <class T, std::size_t N>
82 void array<T, N>::pop_back() {
83 --finish_;
84 std::destroy_at(finish_);
85 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 995

Bounded Array Example: array.hpp (4)

87 template <class T, std::size_t N>
88 void array<T, N>::clear() noexcept {
89 std::destroy(buf_.start(), finish_);
90 finish_ = buf_.start();
91 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 996

Vector Example

� consider class template vec that is one-dimensional dynamically-resizable
array

� class templated on array element type T

� storage for element data allocated with operator new
� similar in spirit to std::vector but much simplified:

2 cannot specify allocator to be used (i.e., always uses operator new and
operator delete for memory allocation)

2 does not provide iterators
2 only provides strong exception-safety guarantee for element insertion if

move constructor for container element type does not throw

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 997

Vector Example: Diagram

end_

finish_

start_

vec<T>

...

...

Array of T

x1

x0

xn−1

xn

xn+1

xm−1

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Vector Example: vec.hpp (1)
1 #include <new>
2 #include <algorithm>
3 #include <type_traits>
4 #include <memory>
5
6 template <class T> class vec {
7 public:
8 vec() noexcept : start_(nullptr), finish_(nullptr), end_(nullptr) {}
9 vec(const vec& other);

10 vec(vec&& other) noexcept;
11 ~vec();
12 vec& operator=(const vec& other);
13 vec& operator=(vec&& other) noexcept;
14 explicit vec(std::size_t size);
15 vec(std::size_t n, const T& value);
16 std::size_t capacity() const noexcept {return end_ - start_;}
17 std::size_t size() const noexcept {return finish_ - start_;}
18 T& operator[](int i) {return start_[i];}
19 const T& operator[](int i) const {return start_[i];}
20 T& back() {return finish_[-1];}
21 const T& back() const {return finish_[-1];}
22 void push_back(const T& value);
23 void pop_back();
24 void clear() noexcept;
25 private:
26 void grow(std::size_t n);
27 T* start_; // start of element storage
28 T* finish_; // one past last valid element
29 T* end_; // end of element storage
30 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 998

Vector Example: vec.hpp (2)

32 template <class T>
33 vec<T>::vec(const vec& other) {
34 start_ = static_cast<T*>(::operator new(other.size() * sizeof(T)));
35 end_ = start_ + other.size();
36 try {
37 finish_ = std::uninitialized_copy(other.start_, other.finish_, start_);
38 } catch (...) {
39 ::operator delete(start_);
40 throw;
41 }
42 }
43
44 template <class T>
45 vec<T>::vec(vec&& other) noexcept {
46 start_ = other.start_;
47 other.start_ = nullptr;
48 end_ = other.end_;
49 other.end_ = nullptr;
50 finish_ = other.finish_;
51 other.finish_ = nullptr;
52 }
53
54 template <class T>
55 vec<T>::~vec() {
56 clear();
57 ::operator delete(start_);
58 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 999

Vector Example: vec.hpp (3)

60 template <class T>
61 vec<T>& vec<T>::operator=(const vec& other) {
62 if (this != &other) {
63 clear();
64 if (other.size() > capacity()) {grow(other.size());}
65 finish_ = std::uninitialized_copy(other.start_, other.finish_, start_);
66 }
67 return *this;
68 }
69
70 template <class T>
71 vec<T>& vec<T>::operator=(vec&& other) noexcept {
72 if (this != &other) { // self-assignment check of questionable value
73 clear();
74 ::operator delete(start_);
75 start_ = other.start_;
76 other.start_ = nullptr;
77 finish_ = other.finish_;
78 other.finish_ = nullptr;
79 end_ = other.end_;
80 other.end_ = nullptr;
81 }
82 return *this;
83 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1000

Vector Example: vec.hpp (4)

85 template <class T>
86 vec<T>::vec(std::size_t n) {
87 start_ = static_cast<T*>(::operator new(n * sizeof(T)));
88 end_ = start_ + n;
89 try {std::uninitialized_default_construct_n(start_, n);}
90 catch (...) {
91 ::operator delete(start_);
92 throw;
93 }
94 finish_ = end_;
95 }
96
97 template <class T>
98 vec<T>::vec(std::size_t n, const T& value) {
99 start_ = static_cast<T*>(::operator new(n * sizeof(T)));

100 end_ = start_ + n;
101 try {std::uninitialized_fill_n(start_, n, value);}
102 catch (...) {
103 ::operator delete(start_);
104 throw;
105 }
106 finish_ = end_;
107 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1001

Vector Example: vec.hpp (5)

109 template <class T>
110 void vec<T>::push_back(const T& value) {
111 if (finish_ == end_) {
112 // might want to check for overflow here
113 grow(2 * capacity());
114 }
115 finish_ = std::uninitialized_fill_n(finish_, 1, value);
116 }
117
118 template <class T>
119 void vec<T>::pop_back() {
120 --finish_;
121 std::destroy_at(finish_);
122 }
123
124 template <class T>
125 void vec<T>::clear() noexcept {
126 if (size()) {
127 std::destroy(start_, finish_);
128 finish_ = start_;
129 }
130 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1002

Vector Example: vec.hpp (6)

132 template <class T>
133 void vec<T>::grow(std::size_t n) {
134 T* new_start = static_cast<T*>(::operator new(n * sizeof(T)));
135 std::size_t old_size = size();
136 try {
137 std::uninitialized_move(start_, finish_, new_start);
138 } catch (...) {
139 ::operator delete(new_start);
140 throw;
141 }
142 ::operator delete(start_);
143 start_ = new_start;
144 finish_ = new_start + old_size;
145 end_ = new_start + n;
146 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1003NEXT SLIDE: Intrusive Containers

Section 3.8.3

Allocators

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1004

Allocators

� allocators provide uniform interface for allocating and deallocating
memory for object of particular type

� interface that allocator must provide specified in C++ standard

� each allocator type embodies particular memory allocation policy

� perform allocation, construction, destruction, and deallocation

� allocation separate from construction

� destruction separate from deallocation

� encapsulate information about allocation strategy and addressing model

� hide memory management and addressing model details from containers

� allow reuse of code implementing particular allocation strategy with any
allocator-aware container

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1005

Containers, Allocators, and the Default Allocator

� container class templates typically take allocator type as parameter

� this allows more than one memory allocation policy to be used with given
container class template

� in case of standard library, many container class templates take allocator
type as template parameter, including:

2 vector, list
2 set, multiset, map, multimap
2 unordered_set, unordered_multiset, unordered_map,

unordered_multimap

� all container class templates in standard library that take allocator as
parameter use default of std::allocator<T> where T must be type of
element held by container

� std::allocator employs operator new and operator delete for memory
allocation

� in many contexts, default allocator is quite adequate

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1006

Application Use of Allocator

1 #include <memory>
2 #include <vector>
3 #include <map>
4 #include <cassert>
5 #include <boost/pool/pool_alloc.hpp>
6

7 int main() {
8 // use default allocator
9 std::vector<int> u;

10 u.push_back(42);
11

12 // explicitly specify default allocator
13 std::vector<int, std::allocator<int>> v;
14 static_assert(std::is_same_v<decltype(u), decltype(v)>);
15 assert(u.get_allocator() == v.get_allocator());
16 v.push_back(42);
17

18 // specify an allocator type from Boost
19 std::vector<int, boost::pool_allocator<int>> w;
20 w.push_back(42);
21

22 // explicitly specify default allocator
23 std::map<int, long, std::less<int>,
24 std::allocator<std::pair<const int, long>>> x;
25 x.insert({1, 2});
26 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1007

Why Not Just Always Use the Default Allocator?

� custom allocators used when greater control is needed over how memory
is managed

� often this greater control is desired for:
2 improved efficiency (e.g., better locality and less contention)
2 debugging
2 performance analysis (e.g., collecting statistics on memory allocation)
2 testing (e.g., forcing allocation failures)
2 security (e.g., locking and clearing memory)

� since many allocation strategies are possible, one strategy cannot be best
in all situations

� some allocation strategies include:
2 stack-based allocation
2 per-container allocation
2 per-thread allocation (which avoids synchronization issues)
2 pooled allocation
2 arena allocation

� may want to handle relocatable data (e.g., shared memory)
� may want to use memory mapped files

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1008

Examples of Allocators

� other examples of (standard-compliant) allocators include:
2 std::pmr::polymorphic_allocator (allocator whose behavior depends

on memory resource with which it was constructed)
2 boost::interprocess::allocator (shared memory allocator)
2 boost::pool_alloc (pool allocator)
2 boost::fast_pool_alloc (pool allocator)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1009

Allocators

� allocator handles memory allocation for objects of specific type (e.g.,
allocator for ints)

� allocator normally accessed by container type through interface of traits
class called std::allocator_traits

� container class typically use allocator for managing memory associated
with container element data

� four basic types of operations provided by allocator through traits class:
2 allocate memory
2 deallocate memory
2 construct object
2 destroy object

� two allocator instances deemed equal if memory allocated with each
instance can be deallocated with other

� allocator objects may have state

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1010

Allocator Members

� allocator type for objects of (cv-unqualified) type T
� many members are optional, with std::allocator_traits class

effectively providing defaults for omitted members
� value_type:

2 type T of object for which allocator manages (i.e., allocates and deallocates)
memory

� pointer:
2 pointer type used to refer to storage obtained from allocator (not necessarily

T*)
2 optional: default of T* provided by allocator_traits

� const_pointer:
2 const version of pointer
2 optional: default of const T* provided by allocator_traits

� pointer allocate(size_type n):
2 allocate storage suitable for n objects of type T

� void deallocate(pointer ptr, size_type n):
2 deallocates storage pointed to by ptr, where ptr must have been obtained

by previous call to allocate and n must match value given in that call
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1011

Allocator Members (Continued)

� void construct(value_type* ptr, Args&&... args):
2 constructs object of type T in storage pointed to by ptr using specified

arguments args
2 optional: default behavior provided by allocator_traits is to use

placement new expression
� void destroy(value_type* ptr):

2 destroys object of type T in storage pointed to by ptr
2 optional: default behavior provided by allocator_traits is to directly

invoke destructor

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1012

Remarks on Allocators

� pointer and const_pointer must satisfy requirements of
random-access and contiguous iterators

:::::::::
[C++17 20.5.3.5/5]

� pointer and const_pointer can be fancy pointers (i.e., smart pointers)

� fancy pointers useful, for example, in allocating storage in shared memory
region

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1013

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/allocator.requirements#5

Malloc-Based Allocator: Allocator Code

1 #include <cstdlib>
2 #include <limits>
3 #include <new>
4
5 template <class T> struct mallocator {
6 using value_type = T;
7 mallocator() noexcept {};
8 template <class U> mallocator(const mallocator<U>&) noexcept {}
9 T* allocate(std::size_t n) const;

10 void deallocate(T* p, std::size_t n) const noexcept;
11 template <class U> bool operator==(const mallocator<U>&)
12 const noexcept {return true;}
13 template <class U> bool operator!=(const mallocator<U>&)
14 const noexcept {return false;}
15 };
16
17 template <class T> T* mallocator<T>::allocate(std::size_t n) const {
18 if (!n) {return nullptr;}
19 if (n > std::numeric_limits<std::size_t>::max() / sizeof(T))
20 {throw std::bad_array_new_length();}
21 void* p = std::malloc(n * sizeof(T));
22 if (!p) {throw std::bad_alloc();}
23 return static_cast<T*>(p);
24 }
25

26 template <class T> void mallocator<T>::deallocate(T* p, std::size_t)
27 const noexcept
28 {std::free(p);}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1014

Malloc-Based Allocator: User Code

1 #include "mallocator.hpp"
2 #include <cassert>
3 #include <vector>
4 #include <type_traits>
5

6 int main() {
7 std::vector<int, mallocator<int>> v;
8 // uses mallocator<int> for memory allocation
9 std::vector<int> w;

10 // or equivalently, std::vector<int, std::allocator<int>>
11 // uses std::allocator<int> for memory allocation
12 static_assert(!std::is_same_v<decltype(v)::allocator_type,
13 decltype(w)::allocator_type>);
14 for (int i = 0; i < 128; ++i) {
15 v.push_back(42);
16 w.push_back(42);
17 }
18 std::vector<int, mallocator<int>> x;
19 assert(v.get_allocator() == x.get_allocator());
20 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1015

Allocator Propagation

� in certain contexts, must consider if and how allocators should be
propagated between container objects

� lateral propagation refers to propagation of allocator when copying,
moving, and swapping containers:

2 when container copy/move constructed, what allocator does new container
receive?

2 when container copy/move assigned, what allocator does
copied-to/moved-to container receive?

2 when containers swapped, what allocator does each container receive?
� deep propagation refers to propagation of allocator from parent container

to its descendants in hierarchy of nested containers:
2 if container contains types which themselves require allocators, how can

contained elements be made aware of container’s allocator so that
compatible allocator can be used?

� each allocator has its own lateral propagation properties, which can be
accessed via std::allocator_traits

� deep allocator propagation can be controlled via
std::scoped_allocator_adaptor

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1016

New-Based Allocator

1 #include <limits>
2 #include <new>
3 #include <type_traits>
4
5 template <class T> struct allocator {
6 using value_type = T;
7 using propagate_on_container_move_assignment = std::true_type;
8 using is_always_equal = std::true_type;
9 allocator() noexcept {};

10 allocator(const allocator&) noexcept {};
11 template <class U> allocator(const allocator<U>&) noexcept {}
12 ~allocator() {}
13 T* allocate(std::size_t n);
14 void deallocate(T* p, std::size_t n) const noexcept
15 {::operator delete(p);}
16 };
17
18 template <class T> T* allocator<T>::allocate(std::size_t n) {
19 if (n > std::numeric_limits<std::size_t>::max() / sizeof(T))
20 {throw std::bad_array_new_length();}
21 return static_cast<T*>(::operator new(n * sizeof(T)));
22 }
23
24 template <class T, class U> inline bool operator==(const allocator<T>&,
25 const allocator<U>&) noexcept
26 {return true;}
27
28 template <class T, class U> inline bool operator!=(const allocator<T>&,
29 const allocator<U>&) noexcept
30 {return false;}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1017

Fixed-Size Arena Allocator: Example

� consider example of simple allocator that allocates memory from
fixed-size buffer

� arena class (called arena) provides memory allocation from fixed-size
buffer with some prescribed minimum alignment

� allocator class (called salloc) provides interface to particular arena
instance

� salloc object holds pointer to arena object (so allocator is stateful)

� arena object makes no attempt to deallocate memory (i.e., deallocate
operation does nothing)

� allocator might be used for relatively small allocations from stack (where
arena object would be local variable)

� allocator always propagated for copy, move, and swap (i.e., POCMA,
POCCA, and POCS, as defined later, all true)

� two instances of allocator not necessarily equal

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1018

Fixed-Size Arena Allocator: Code (1)

1 #include <cstddef>
2 #include <limits>
3 #include <memory>
4 #include <new>
5
6 template <std::size_t N, std::size_t Align = alignof(std::max_align_t)>
7 class arena {
8 public:
9 arena() : ptr_(buf_) {}

10 arena(const arena&) = delete;
11 arena& operator=(const arena&) = delete;
12 ~arena() = default;
13 constexpr std::size_t alignment() const {return Align;}
14 constexpr std::size_t capacity() const {return N;}
15 constexpr std::size_t used() const {return ptr_ - buf_;}
16 constexpr std::size_t free() const {return N - used();}
17 template <std::size_t ReqAlign> void* allocate(std::size_t n);
18 void deallocate(void* ptr, std::size_t n) {}
19 void clear() {ptr_ = buf_;}
20 private:
21 template <std::size_t ReqAlign>
22 static char* align(char* ptr, std::size_t n, std::size_t max);
23 alignas(Align) char buf_[N]; // storage buffer
24 char* ptr_; // pointer to first unused byte
25 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1019

Fixed-Size Arena Allocator: Code (2)

27 template <std::size_t N, std::size_t Align>
28 template <std::size_t ReqAlign>
29 char* arena<N, Align>::align(char* ptr, std::size_t n, std::size_t max) {
30 void* p = ptr;
31 return static_cast<char*>(std::align(ReqAlign, n, p, max));
32 }
33
34 template <std::size_t N, std::size_t Align>
35 template <std::size_t ReqAlign>
36 void* arena<N, Align>::allocate(std::size_t n) {
37 char* ptr = this->align<std::max(Align, ReqAlign)>(ptr_, n, free());
38 if (!ptr) {throw std::bad_alloc();}
39 ptr_ = ptr + n;
40 return ptr;
41 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1020

Fixed-Size Arena Allocator: Code (3)

43 template <class T, std::size_t N, std::size_t Align = alignof(T)>
44 class salloc {
45 public:
46 using value_type = T;
47 using propagate_on_container_move_assignment = std::true_type;
48 using propagate_on_container_copy_assignment = std::true_type;
49 using propagate_on_container_swap = std::true_type;
50 using is_always_equal = std::false_type;
51 using arena_type = arena<N, Align>;
52 salloc select_on_container_copy_construction() const {return *this;}
53 template <class U> struct rebind {using other = salloc<U, N, Align>;};
54 template <class T2>
55 salloc(const salloc<T2, N, Align>& other) : a_(other.a_) {}
56 salloc(arena_type& a) : a_(&a) {}
57 ~salloc() = default;
58 salloc(const salloc&) = default;
59 salloc(salloc&& other) = default;
60 salloc& operator=(const salloc&) = default;
61 salloc& operator=(salloc&& other) = default;
62 T* allocate(std::size_t n) {
63 if (n > std::numeric_limits<std::size_t>::max() / sizeof(T))
64 {throw std::bad_alloc();}
65 return static_cast<T*>(a_->template allocate<alignof(T)>(
66 n * sizeof(T)));
67 }
68 void deallocate(T* p, std::size_t n)
69 {return a_->deallocate(p, n * sizeof(T));}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1021

Fixed-Size Arena Allocator: Code (4)

70 private:
71 template <class T1, std::size_t N1, std::size_t A1, class T2,
72 std::size_t N2, std::size_t A2>
73 friend bool operator==(const salloc<T1, N1, A1>&,
74 const salloc<T2, N2, A2>&);
75 template <class, std::size_t, std::size_t> friend class salloc;
76 arena_type* a_; // arena from which to allocate storage
77 };
78
79 template <class T1, std::size_t N1, std::size_t A1, class T2, std::size_t N2,
80 std::size_t A2>
81 inline bool operator==(const salloc<T1, N1, A1>& a,
82 const salloc<T2, N2, A2>& b)
83 {return N1 == N2 && A1 == A2 && a.a_ == b.a_;}
84
85 template <class T1, std::size_t N1, std::size_t A1, class T2, std::size_t N2,
86 std::size_t A2>
87 inline bool operator!=(const salloc<T1, N1, A1>& a,
88 const salloc<T2, N2, A2>& b)
89 {return !(a == b);}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1022

Fixed-Size Arena Allocator: User Code

1 #include <vector>
2 #include <list>
3 #include <iostream>
4 #include "salloc.hpp"
5
6 int main() {
7 using alloc = salloc<int, 1024, sizeof(int)>;
8 alloc::arena_type a;
9 std::vector<int, alloc> v{{0, 1, 2, 3}, a};

10 std::vector<int, alloc> w{{0, 2, 4, 6}, a};
11 std::list<int, alloc> p{{1, 3, 5, 7}, a};
12 std::cout << a.free() << ’\n’;
13 v.push_back(42);
14 for (auto&& i : v) {std::cout << i << ’\n’;}
15 for (auto&& i : w) {std::cout << i << ’\n’;}
16 for (auto&& i : p) {std::cout << i << ’\n’;}
17 std::cout << a.free() << ’\n’;
18
19 // std::vector<int, alloc> x(1024);
20 // std::list<int, alloc> y;
21 // ERROR: allocator cannot be default constructed
22 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1023

Allocator-Aware Containers

� container that uses allocator sometimes referred to as allocator aware
� typically much more difficult to develop allocator-aware container than

container that does not use allocator

� type of pointer returned by allocator not necessarily same as pointer to
element type, which sometimes complicates code somewhat

� much of complexity in implementing allocator-aware container, however,
arises from issue of allocator propagation

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1024

The std::allocator_traits Class Template

� allocators intended to be used via allocator user (e.g., container) indirectly
through traits class std::allocator_traits

� declaration:
template <class Alloc> struct allocator_traits;

� allocator_traits provides uniform interface to allocators used by
containers

� some properties of allocator types are optional

� in cases where allocator type did not specify optional properties,
allocator_traits provides default

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1025

Lateral Allocator Propagation

� properties of allocator in std::allocator_traits used to control lateral
allocator propagation

� container copy constructor obtains allocator for new container by invoking
select_on_container_copy_construction in allocator_traits

� container move constructor always propagates allocator by move
� container copy assignment replaces allocator (in copied-to container) only

if propagate_on_container_copy_assignment (POCCA) in
allocator_traits is true

� container move assignment replaces allocator (in moved-to container)
only if propagate_on_container_move_assignment (POCMA) in
allocator_traits is true

� container swap will swap allocators of two containers only if
propagate_on_container_swap (POCS) in allocator_traits is true

� if POCS is false, swapping two standard-library containers with unequal
allocators is undefined behavior (since swap must not invalidate iterators
and iterators would have to be invalidated in this case)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1026

Allocator-Traits Querying Example

1 #include <memory>
2 #include <type_traits>
3 #include <boost/interprocess/managed_shared_memory.hpp>
4 #include <boost/interprocess/allocators/allocator.hpp>
5 #include <iostream>
6

7 template <class T> void print(std::ostream& out = std::cout) {
8 out << std::is_same_v<typename T::pointer, typename T::value_type*> << ’ ’
9 << std::is_same_v<typename T::const_pointer,

10 const typename T::value_type*> << ’ ’
11 << T::is_always_equal::value << ’ ’
12 << T::propagate_on_container_move_assignment::value << ’ ’
13 << T::propagate_on_container_copy_assignment::value << ’ ’
14 << T::propagate_on_container_swap::value << ’\n’;
15 }
16

17 int main() {
18 namespace bi = boost::interprocess;
19 print<std::allocator_traits<std::allocator<int>>>();
20 print<std::allocator_traits<bi::allocator<int,
21 bi::managed_shared_memory::segment_manager>>>();
22 }
23
24 /* Output:
25 1 1 1 1 0 0
26 0 0 0 0 0 0
27 */

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1027

Optional Value Example

� consider container class template called optval that can hold optional
value

� class templated on element type T and allocator type
� container object in one of two states:

1 holding value of type T
2 not holding any value

� can query if container is holding value, and if so, access held value

� want to store object of type T in memory obtained from allocator
� example illustrates basic use of allocator in container class

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1028

Optional Value Example: Code (1)
1 #include <memory>
2 #include <type_traits>
3 #include <utility>
4
5 template <class T, class Alloc = std::allocator<T>>
6 class optval : private Alloc {
7 public:
8 using value_type = T;
9 using allocator_type = Alloc;

10 private:
11 using traits = typename std::allocator_traits<Alloc>;
12 public:
13 using pointer = typename traits::pointer;
14 using const_pointer = typename traits::const_pointer;
15 optval(std::allocator_arg_t, const allocator_type& alloc) :
16 Alloc(alloc), value_(nullptr) {}
17 optval() : optval(std::allocator_arg, allocator_type()) {}
18 optval(std::allocator_arg_t, const allocator_type& alloc,
19 const optval& other);
20 optval(const optval& other);
21 optval(std::allocator_arg_t, const allocator_type& alloc, optval&& other)
22 noexcept;
23 optval(optval&& other) noexcept;
24 optval(std::allocator_arg_t, const allocator_type& alloc, const T& value);
25 optval(const T& value);
26 ~optval();
27 optval& operator=(const optval& other);
28 optval& operator=(optval&& other)
29 noexcept(traits::propagate_on_container_move_assignment::value);
30 void swap(optval& other) noexcept;

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1029

Optional Value Example: Code (2)

31 allocator_type get_allocator() const {return alloc_();}
32 bool has_value() const noexcept {return value_;}
33 const T& get() const {return *value_;}
34 void clear() noexcept;
35 void set(const T& value);
36 private:
37 pointer copy_(allocator_type a, const value_type& value);
38 allocator_type& alloc_() {return *this;}
39 const allocator_type& alloc_() const {return *this;}
40 pointer value_; // pointer to optional value
41 };
42
43 template <class T, class Alloc>
44 optval<T, Alloc>::optval(const optval& other) : optval(std::allocator_arg,
45 traits::select_on_container_copy_construction(other.alloc_()), other) {}
46
47 template <class T, class Alloc>
48 optval<T, Alloc>::optval(std::allocator_arg_t, const allocator_type& alloc,
49 const optval& other) : Alloc(alloc), value_(nullptr) {
50 if (other.value_) {value_ = copy_(alloc_(), *other.value_);}
51 }
52
53 template <class T, class Alloc>
54 optval<T, Alloc>::optval(optval&& other) noexcept : Alloc(std::move(other)) {
55 value_ = other.value_;
56 other.value_ = nullptr;
57 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1030

Optional Value Example: Code (3)

59 template <class T, class Alloc>
60 optval<T, Alloc>::optval(std::allocator_arg_t, const allocator_type& alloc,
61 optval&& other) noexcept : Alloc(alloc) {
62 value_ = other.value_;
63 other.value_ = nullptr;
64 }
65
66 template <class T, class Alloc>
67 optval<T, Alloc>::optval(std::allocator_arg_t, const allocator_type& alloc,
68 const T& value) : Alloc(alloc), value_(nullptr)
69 {value_ = copy_(alloc_(), value);}
70
71 template <class T, class Alloc>
72 optval<T, Alloc>::optval(const T& value) : optval(std::allocator_arg,
73 allocator_type(), value) {}
74
75 template <class T, class Alloc>
76 optval<T, Alloc>::~optval()
77 {clear();}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1031

Optional Value Example: Code (4)

79 template <class T, class Alloc>
80 auto optval<T, Alloc>::operator=(const optval& other) -> optval& {
81 if (this != &other) {
82 if constexpr(traits::propagate_on_container_copy_assignment::value) {
83 allocator_type a = other.alloc_();
84 pointer p = other.value_ ? copy_(a, *other.value_) : nullptr;
85 clear();
86 alloc_() = other.alloc_();
87 value_ = p;
88 } else {
89 pointer p = other.value_ ? copy_(alloc_(), *other.value_) : nullptr;
90 clear();
91 value_ = p;
92 }
93 }
94 return *this;
95 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1032

Optional Value Example: Code (5)
97 template <class T, class Alloc>
98 auto optval<T, Alloc>::operator=(optval&& other)
99 noexcept(traits::propagate_on_container_move_assignment::value) -> optval& {

100 using std::swap;
101 if (this != &other) {
102 if constexpr (traits::propagate_on_container_move_assignment::value) {
103 clear();
104 swap(alloc_(), other.alloc_());
105 swap(value_, other.value_);
106 } else if (alloc_() == other.alloc_()) {
107 clear();
108 swap(value_, other.value_);
109 } else {
110 pointer p = copy_(alloc_(), other.value_);
111 swap(value_, other.value_);
112 other.clear();
113 value_ = p;
114 }
115 }
116 return *this;
117 }
118
119 template <class T, class Alloc>
120 void optval<T, Alloc>::swap(optval& other) noexcept {
121 using std::swap;
122 assert(traits::propagate_on_container_swap::value ||
123 alloc_() == other.alloc_());
124 if constexpr (traits::propagate_on_container_swap::value)
125 {swap(alloc_(), other.alloc_());}
126 swap(value_, other.value_);
127 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1033

Optional Value Example: Code (6)

129 template <class T, class Alloc>
130 void optval<T, Alloc>::clear() noexcept {
131 if (value_) {
132 traits::destroy(alloc_(), std::addressof(*value_));
133 traits::deallocate(alloc_(), value_, 1);
134 value_ = nullptr;
135 }
136 }
137
138 template <class T, class Alloc>
139 void optval<T, Alloc>::set(const T& value) {
140 pointer p = copy_(alloc_(), value);
141 clear();
142 value_ = p;
143 }
144
145 template <class T, class Alloc>
146 auto optval<T, Alloc>::copy_(allocator_type a, const value_type& value) ->
147 pointer {
148 pointer p = traits::allocate(alloc_(), 1);
149 try {traits::construct(a, std::addressof(*p), value);}
150 catch (...) {
151 traits::deallocate(a, p, 1);
152 throw;
153 }
154 return p;
155 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1034

The std::scoped_allocator_adaptor Class Template

� when using stateful allocators with nested containers, often need to
ensure that allocator state is propagated from parent container to its
descendants

� std::scoped_allocator_adaptor can be used to address this type of
allocator propagation problem (i.e., deep allocator propagation)

� declaration:
template <class OuterAlloc, class... InnerAllocs>
class scoped_allocator_adaptor : public OuterAlloc;

� OuterAlloc: allocator type for outermost container in nesting

� InnerAllocs: parameter pack with allocator types for each subsequent
container in nesting

� if InnerAllocs has too few allocator types for number of nesting levels,
last allocator type repeated as necessary

� scoped_allocator_adaptor useful when all containers in nesting must
use same stateful allocator, such as typically case when using
shared-memory-segment allocator

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1035

scoped_allocator_adaptor Example

1 #include <scoped_allocator>
2 #include <vector>
3 #include <list>
4 #include <iostream>
5 #include "salloc.hpp"
6

7 int main() {
8 constexpr std::size_t align = alignof(std::max_align_t);
9 using inner_alloc = salloc<int, 1024, align>;

10 using inner = inner_alloc::value_type;
11 using outer_alloc = salloc<std::list<int, inner_alloc>, 1024,
12 align>;
13 using outer = outer_alloc::value_type;
14 using alloc = std::scoped_allocator_adaptor<outer_alloc,
15 inner_alloc>;
16

17 using container = std::vector<outer, alloc>;
18 alloc::arena_type a;
19 container v(container::allocator_type(a, a));
20 v.reserve(4);
21 std::list<inner, inner_alloc> p({1, 2, 3}, a);
22 v.push_back(p);
23 for (auto&& y : v) {
24 for (auto&& x : y) {
25 std::cout << x << ’\n’;
26 }
27 }
28 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1036

scoped_allocator_adaptor Example

1 #include <vector>
2 #include <scoped_allocator>
3 #include <boost/interprocess/managed_shared_memory.hpp>
4 #include <boost/interprocess/allocators/adaptive_pool.hpp>
5

6 namespace bi = boost::interprocess;
7

8 template <class T>
9 using alloc = typename bi::adaptive_pool<T, typename

10 bi::managed_shared_memory::segment_manager>;
11

12 int main () {
13 using row = std::vector<int, alloc<int>>;
14 using matrix = std::vector<row,
15 std::scoped_allocator_adaptor<alloc<row>>>;
16 bi::managed_shared_memory s(bi::create_only, "data", 8192);
17 matrix v(s.get_segment_manager());
18 v.resize(4);
19 for (int i = 0; i < 4; ++i) {v[i].push_back(0);}
20 bi::shared_memory_object::remove("data");
21 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1037

Section 3.8.4

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1038

References I

1 T. Koppe, A Visitor’s Guide to C++ Allocators,
https://rawgit.com/google/cxx-std-draft/allocator-paper/
allocator_user_guide.html.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1039

https://rawgit.com/google/cxx-std-draft/allocator-paper/allocator_user_guide.html
https://rawgit.com/google/cxx-std-draft/allocator-paper/allocator_user_guide.html

Talks I

1 Alisdair Meredith. Making Allocators Work. CppCon, Sept. 10, 2014.
Available online at http://youtu.be/YkiYOP3d64E and
http://youtu.be/Q5kyiFevMJQ. (This talk is in two parts.)

2 Alisdair Meredith. Allocators in C++11. C++Now, Aspen, CO, USA, May
2013. Available online at https://youtu.be/v7B_8IbHjxA.

3 Andrei Alexandrescu. std::allocator is to Allocation What std::vector is to
Vexation. CppCon, Bellevue, WA, USA, Sept. 24, 2015. Available online
at https://youtu.be/LIb3L4vKZ7U.

4 Alisdair Meredith. An allocator model for std2. CppCon, Bellevue, WA,
USA, Sept. 25, 2017. Available online at
https://youtu.be/oCi_QZ6K_qk.
This talk explains how allocators evolved from C++98 to C++17 and briefly how
they might be further evolved in future versions of the C++ standard.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1040

http://youtu.be/YkiYOP3d64E
http://youtu.be/Q5kyiFevMJQ
https://youtu.be/v7B_8IbHjxA
https://youtu.be/LIb3L4vKZ7U
https://youtu.be/oCi_QZ6K_qk

Talks II

5 Bob Steagall. How to Write a Custom Allocator. CppCon, Bellevue, WA,
USA, Sept. 28, 2017. Available online at
https://youtu.be/kSWfushlvB8.
This talk discusses how to write allocators for C++14/C++17 and how to use such
allocators in containers.

6 Bob Steagall. Testing the Limits of Allocator Awareness. C++Now, Aspen,
CO, USA, May 18, 2017. Available online at
https://youtu.be/fmJfKm9ano8.
This talk briefly introduces allocators and then describes a test suite for allocators
and presents some results obtained with this test suite.

7 Pablo Halpern. Modern Allocators: The Good Parts. CppCon, Bellevue,
WA, USA, Sept. 29, 2017. Available online at
https://youtu.be/v3dz-AKOVL8.
This talk introduces polymorphic allocators and considers a simple example of a
polymorphic allocator and a container that uses a polymorphic allocator.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1041

https://youtu.be/kSWfushlvB8
https://youtu.be/fmJfKm9ano8
https://youtu.be/v3dz-AKOVL8

Talks III

8 Sergey Zubkov. From Security to Performance to GPU Programming:
Exploring Modern Allocators. CppCon, Bellevue, WA, USA, Sept. 25,
2017. Available online at https://youtu.be/HdQ4aOZyuHw.

9 Stephan Lavavej. STL Features and Implementation Techniques.
CppCon, Bellevue, WA, USA, 2014. Available online at
https://youtu.be/dTeKf5Oek2c.
This talk briefly discusses allocators in C++11 at 26:26–31:32.

10 Arthur O’Dwyer. An Allocator is a Handle to a Heap. C++Now, Aspen, CO,
USA, May 7, 2018. Available online at
https://youtu.be/0MdSJsCTRkY.

11 Michael Spencer. Alignment in C++: Use, Limitations, and Extension.
C++Now, Aspen, CO, USA, May 12–17, 2013. Available online at
https://youtu.be/uSZFrmhayIM. [The part of the talk in 00:00-34:13 is
likely to be of most interest.]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1042

https://youtu.be/HdQ4aOZyuHw
https://youtu.be/dTeKf5Oek2c
https://youtu.be/0MdSJsCTRkY
https://youtu.be/uSZFrmhayIM

Section 3.9

Concurrency

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1043

Section 3.9.1

Preliminaries

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1044

Processors

Core 1

Processor

Core nCore 2 · · ·

� A core is an independent processing unit that reads and executes
program instructions, and consists of registers, an arithmetic logic unit
(ALU), a control unit, and usually a cache.

� A processor is a computing element that consists of one or more cores,
an external bus interface, and possibly a shared cache.

� A thread is a sequence of instructions (which can be executed by a core).
� At any given time, a core can execute one thread or, if the core supports

simultaneous multithreading (such as hyperthreading), multiple threads.
� In the simultaneous multithreading case, the threads share the resources

of the core.
� A processor with more than one core is said to be multicore.
� Most modern processors are multicore.
� Multicore processors can simultaneously execute multiple threads.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1045

Processors (Continued)

� A multicore processor said to be homogeneous if all of its cores are
identical.

� A multicore processor said to be heterogeneous if its has more than one
type of core.

� Different types of cores might be used in order to:
2 provide different types of functionality (e.g., CPU and GPU)
2 provide different levels of performance (e.g., high-performance CPU and

energy-efficient CPU)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1046

Memory Hierarchy

Core

Cache Cache
L1 L2

Cache
Excluding · · · LL

Cache
Bulk

Storage
Main

Memory

� The component of a system that stores program instructions and data is
called main memory.

� A cache is fast memory used to store copies of instructions and/or data
from main memory.

� Main memory is very slow compared to the speed of a processor core.

� Due to the latency of main memory, caches are essential for good
performance.

� Instruction and data caches may be separate or unified (i.e., combined).

� A cache may be local to single core or shared between two or more cores.

� The lowest-level (i.e., L1) cache is usually on the core and local to the
core.

� The higher-level (i.e., L2, L3,. . . , LL [last level]) caches are usually shared
between some or all of the cores.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1047

SKIP SLIDE

Examples of Multicore Processors

� Intel Core i7-3820QM Processor (Q2 2012)
2 used in Lenovo W530 notebook
2 64 bit, 2.7 GHz
2 128/128 KB L1 cache, 1 MB L2 cache, 8 MB L3 cache
2 4 cores
2 8 threads (2 threads/core)

� Intel Core i7-5960X Processor Extreme Edition (Q3 2014)
2 targets desktops/notebooks
2 64 bit, 3 GHz
2 256/256 KB L1 cache, 2 MB L2 cache, 20 MB L3 cache
2 8 cores
2 16 threads (2 threads/core)

� Intel Xeon Processor E7-8890 v2 (Q1 2014)
2 targets servers
2 64 bit, 2.8 GHz
2 480/480 KB L1 cache, 3.5 MB L2 cache, 37.5 MB L3 cache
2 15 cores
2 30 threads (2 threads/core)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1048

SKIP SLIDE

Examples of Multicore SoCs

� Qualcomm Snapdragon 805 SoC (Q1 2014)
2 used in Google Nexus 6
2 32-bit 2.7 GHz quad-core Qualcomm Krait 450 (ARMv7-A)
2 16/16 KB L1 cache (per core), 2 MB L2 cache (shared)
2 600 MHz Qualcomm Adreno 420 GPU

� Samsung Exynos 5 Octa 5433 SoC
2 used in Samsung Galaxy Note 4
2 high-performance 1.9 GHz quad-core ARM Cortex-A57 paired with

energy-efficient 1.3 GHz quad-core ARM Cortex-A53 (big.LITTLE); both
32-bit (64-bit capable but disabled) (ARMv8-A)

2 Cortex-A57: 48/32 KB L1 cache, 512 KB to 2 MB L2 cache?
2 700 MHz Mali-T760MP6 GPU

� Apple A8 SoC (2014)
2 used in Apple iPhone 6, Apple iPhone 6 Plus
2 64-bit 1.4 GHz dual-core CPU (ARMv8-A)
2 64/64 KB L1 cache (per core), 1 MB L2 cache (shared), 4 MB L3 cache
2 PowerVR Series 6XT GX6450 (quad-core) GPU

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1049

SKIP SLIDE

Why Multicore Processors?

� in past, greater processing power obtained through higher clock rates
� clock rates have stopped rising, topping out at about 5 GHz (little change

since about 2005)
� power consumption is linear in clock frequency and quadratic in voltage,

but higher frequency typically requires higher voltage; so, considering
effect of frequency and voltage together, power consumption grows
approximately with cube of frequency

� greater power consumption translates into increased heat production
� higher clock rates would result in processors overheating
� transistor counts still increasing (Moore’s law: since 1960s, transistor

count has doubled approximately every 18 months)
� instead of increasing processing power by raising clock rate of processor

core, simply add more processor cores
� n cores running at clock rate f use significantly less power and generate

less heat than single core at clock rate n f
� going multicore allows for greater processing power with lower power

consumption and less heat production
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1050

Section 3.9.2

Multithreaded Programming

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1051

Concurrency

� A thread is a sequence of instructions that can be independently
managed by the operating-system scheduler.

� A process provides the resources that program needs to execute (e.g.,
address space, files, and devices) and at least one thread of execution.

� All threads of a process share the same address space.
� Concurrency is the situation where multiple threads execute over time

periods (i.e., from start of execution to end) that overlap (but no threads
are required to run simultaneously).

� Parallelism refers to the situation where multiple threads execute
simultaneously.

� Concurrency can be achieved with:
1 multiple single-threaded processes; or
2 a single multithreaded process.

� A single multithreaded process is usually preferable, since this approach
is typically much less resource intensive and data can often be shared
much more easily between threads in a single process (due to the threads
having a common address space).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1052

Why Multithreading?

� Keep all of the processor cores busy (i.e., fully utilize all cores).
2 Most modern systems have multiple processor cores, due to having either

multiple processors or a single processor that is multicore.
2 A single thread cannot fully utilize the computational resources available in

such systems.
� Keep processes responsive.

2 In graphics applications, keep the GUI responsive while the application is
performing slow operations such as I/O.

2 In network server applications, keep the server responsive to new
connections while handling already established ones.

� Simplify the coding of cooperating tasks.
2 Some programs consist of several logically distinct tasks.
2 Instead of having the program manage when the computation associated

with different tasks is performed, each task can be placed in a separate
thread and the operating system can perform scheduling.

2 For certain types of applications, multithreading can significantly reduce the
conceptual complexity of the program.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1053

Section 3.9.3

Multithreaded Programming Models

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1054

Memory Model

� A memory model (also known as a memory-consistency model) is a
formal specification of the effect of read and write operations on the
memory system, which in effect describes how memory appears to
programs.

� A memory model is essential in order for the semantics of a multithreaded
program to be well defined.

� The memory model must address issues such as:
2 ordering
2 atomicity

� The memory model affects:
2 programmability (i.e., ease of programming)
2 performance
2 portability

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1055

Sequential Consistency (SC)

� The environment in which a multithreaded program is run is said to have
sequential consistency (SC) if the result of any execution of the program
is the same as if the operations of all threads are executed in some
sequential order, and the operations of each individual thread appear in
this sequence in the order specified by the program.

� In other words, in a sequentially-consistent execution of a multithreaded
program, threads behave as if their operations were simply interleaved.

� Consider the multithreaded program (with two threads) shown below,
where x, y, a, and b are all integer variables and initially zero.

Thread 1 Code
x = 1;
a = y;

Thread 2 Code
y = 1;
b = x;

� Some sequentially-consistent executions of this program include:
2 x = 1; y = 1; b = x; a = y;
2 y = 1; x = 1; a = y; b = x;
2 x = 1; a = y; y = 1; b = x;
2 y = 1; b = x; x = 1; a = y;

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1056

Sequential-Consistency (SC) Memory Model

� Since SC implies that memory must behave in a particular manner, SC
implicitly defines a memory model, known as the SC memory model.

� In particular, SC implies that each write operation is atomic and becomes
visible to all threads simultaneously.

� Thus, with the SC model, all threads see write operations on memory
occur atomically in the same order, leading to all threads having a
consistent view of memory.

� The SC model precludes (or makes extremely difficult) many hardware
optimizations, such as:

2 store buffers
2 caches
2 out-of-order instruction execution

� The SC model also precludes many compiler optimizations, including:
2 reordering of loads and stores

� Although the SC model very is intuitive, it comes at a very high cost in
terms of performance.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1057

Load/Store Reordering Example: Single Thread

� Consider the program with the code below, where x and y are integer
variables, all initially zero.
Original Thread 1 Code

x = 1;
y = 1;
// ...

� Suppose that, during optimization, the compiler transforms the preceding
code to that shown below, effectively reordering two stores.
Optimized Thread 1 Code

y = 1;
x = 1;
// ...

� The execution of the optimized code is indistinguishable from a
sequentially-consistent execution of the original code.

� The optimized program runs as if it were the original program.

� In a single-threaded program, loads and stores can be reordered without
invalidating the SC model (if data dependencies are correctly considered).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1058

Load/Store Reordering Example: Multiple Threads
� Consider the addition of a second thread to the program to yield the code

below.
Original Thread 1 Code

x = 1;
y = 1;
// ...

Thread 2 Code
if (y == 1) {

assert(x == 1);
}

� Suppose that the compiler makes the same optimization to the code for
thread 1 as on the previous slide, yielding the code below.
Optimized Thread 1 Code

y = 1;
x = 1;
// ...

(Unchanged) Thread 2 Code
if (y == 1) {

assert(x == 1);
}

� Thread 2 can observe x and y being modified in the wrong order (i.e., an
order that is inconsistent with SC execution).

� The assertion in thread 2 can never fail in the original program, but can
sometimes fail in the optimized program.

� In a multithreaded program, the reordering of loads and stores must be
avoided if SC is to be maintained.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1059

Store-Buffer Example: Without Store Buffer

� Consider the program below, where x, y, a, and b are integer variables, all
initially zero.
Thread 1 Code

x = 1;
a = y;

Thread 2 Code
y = 1;
b = x;

� Some possible sequentially-consistent executions of the program include:
2 x = 1; y = 1; b = x; a = y; (a is 1, b is 1)
2 y = 1; x = 1; a = y; b = x; (a is 1, b is 1)
2 x = 1; a = y; y = 1; b = x; (a is 0, b is 1)
2 y = 1; b = x; x = 1; a = y; (a is 1, b is 0)

� In every sequentially-consistent execution of the program, one of
“x = 1;” or “y = 1;” must execute first.

� If “x = 1;” executes first, then b cannot be assigned 0.

� If “y = 1;” executes first, then a cannot be assigned 0.

� No sequentially-consistent execution can result in a and b both being 0.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1060

SKIP SLIDE

Store-Buffer Example: Store Buffer

write r to x

(1) Store Buffer

Register

Processor

(2)

Memory

x

(2) flush store buffer to memory
(1) transfer data from register to store buffer

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1061

SKIP SLIDE

Store-Buffer Example: With Store Buffer (Not SC)
Core 1 Core 2 Memory

Code Store Buffer Code Store Buffer x y
x = 1; write 1 to x

pending
0 0

no change y = 1; write 1 to y
pending

0 0

a = y;
//a = 0;

no change no change 0 0

no change b = x;
//b = 0;

no change 0 0

write 1 to x
completed

no change 1 0

write 1 to y
completed

1 1

� The execution of the program results in a and b both being 0, which
violates SC.

� The program behaves as if the lines of code in each thread were
reordered (i.e., reversed), yielding: a = y; b = x; x = 1; y = 1;.

� A store buffer (or cache) must be avoided, if SC is to be maintained.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1062

SKIP SLIDE

Atomicity of Memory Operations

� A fundamental property of SC is that all memory operations are atomic.

� Atomic memory operations require synchronization between processor
cores.

� This synchronization greatly increases the time required to access
memory, as a result of the time needed by processor cores to
communicate and coordinate access to memory.

� Therefore, requiring all memory operations to be atomic is not desirable.

� Allowing non-atomic memory operations, however, would be inconsistent
with a fundamental property of SC.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1063

Data Races

� If memory operations are not all atomic, the possibility exists for
something known as a data race.

� Two memory operations are said to conflict if they access the same
memory location and at least one of the operations is a write.

� Two conflicting memory operations form a data race if they are from
different threads and can be executed at the same time.

� A program with data races usually has unpredictable behavior (e.g., due
to torn reads, torn writes, or worse).

� Example (data race):
2 Consider the multithreaded program listed below, where x, y, and z are

(nonatomic) integer variables shared between threads and are initially zero.
Thread 1 Code
x = 1;
a = y + z;

Thread 2 Code
y = 1;
b = x + z;

2 The program has data races on both x and y.
2 Since z is not modified by any thread, z cannot participate in a data race.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1064

Torn Reads

� A torn read is a read operation that (due to lack of atomicity) has only
partially read its value when another (concurrent) write operation on the
same location is performed.

� Consider a two-byte unsigned (big-endian) integer variable x, which is
initially 1234 (hexadecimal).

� Suppose that the following (nonatomic) memory operations overlap in
time:

2 thread 1 reads x; and
2 thread 2 writes 5678 (hexadecimal) to x.

� Initially, x is 1234: Byte 0 Byte 1
12 34

� Thread 1 reads 12 from the first byte of x.
� Thread 2 writes 56 and 78 to the first and seconds bytes of x, respectively,

yielding: Byte 0 Byte 1
56 78

� Thread 1 reads the second byte of x to obtain the value 78.
� The value read by thread 1 (i.e., 1278) is neither the value of x prior to the

write by thread 2 (i.e., 1234) nor the value of x after the write by thread 2
(i.e., 5678).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1065

Torn Writes

� A torn write is a write operation that (due to lack of atomicity) has only
partially written its value when another (concurrent) read or write
operation on the same location is performed.

� Consider a two-byte unsigned (big-endian) integer variable x, which is
initially 0.

� Suppose that the following (nonatomic) memory operations overlap in
time:

2 thread 1 writes 1234 (hexadecimal) to x; and
2 thread 2 writes 5678 (hexadecimal) to x.

� Initially, x is 0: Byte 0 Byte 1
00 00

� Thread 1 writes 12 to the first byte of x, yielding: Byte 0 Byte 1
12 00

� Thread 2 writes 56 and 78 to the first and second bytes of x, respectively,
yielding: Byte 0 Byte 1

56 78

� Thread 1 writes 34 to the second byte of x, yielding: Byte 0 Byte 1
56 34

� The resulting value in x (i.e., 5634) is neither the value written by thread 1
(i.e., 1234) nor the value written by thread 2 (i.e., 5678).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1066

SC Data-Race Free (SC-DRF) Memory Model

� From a programmability standpoint, SC is extremely desirable, as it allows
one to reason easily about the behavior of a multithreaded program.

� Unfortunately, as we saw earlier, SC precludes almost all useful compiler
optimizations and hardware optimizations.

� As it turns out, if we drop the requirement that all memory operations be
atomic and then restrict programs to be data-race free, SC can be
provided while still allowing most compiler and hardware optimizations.

� This observation is the motivation behind the so called SC-DRF memory
model.

� The sequential-consistency for data-race free programs (SC-DRF)
model provides SC only for programs that are data-race free.

� The data-race free constraint is not overly burdensome, since data races
will likely result in bugs anyhow.

� Several programming languages have used SC-DRF as the basis for their
memory model, including C++, C, and Java.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1067

C++ Memory Model

� The C++ programming language employs, at its default memory model,
the SC-DRF model.

� Again, with the SC-DRF model, a program behaves as if its execution is
sequentially consistent, provided that the program is data-race free.

� Support is also provided for other (more relaxed) memory models.

� For certain memory accesses, it is possible to override the default (i.e.,
SC-DRF) memory model, if desired.

� The execution of a program that is not data-race free results in undefined
behavior.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1068

Section 3.9.4

Thread Management

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1069

The std::thread Class

� std::thread class provides means to create new thread of execution,
wait for thread to complete, and perform other operations to manage and
query state of thread

� thread object may or may not be associated with thread (of execution)
� thread object that is associated with thread said to be joinable
� default constructor creates thread object that is unjoinable
� can also construct thread object by providing callable entity (e.g.,

function or functor) and arguments (if any), resulting in new thread
invoking callable entity

� thread function provided with copies of arguments so must use reference
wrapper class like std::reference_wrapper for reference semantics

� thread class is movable but not copyable
::::::::
[C++17 33.3.2/1]

� each thread object has ID
� IDs of joinable thread objects are unique

:::::::::
[C++17 33.3.2.1/1]

� all unjoinable thread objects have same ID, distinct from ID of every
joinable thread object

:::::::::
[C++17 33.3.2.1/1]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1070

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/thread.thread.class#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/thread.thread.id#1
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/thread.thread.id#1

The std::thread Class (Continued)

� join operation waits for thread object’s thread to complete execution
and results in object becoming unjoinable

� detach operation dissociates thread from thread object (allowing thread
to continue to execute independently) and results in object becoming
unjoinable

� using thread object as source for move operation results in object
becoming unjoinable

:::::::::
[C++17 33.3.2.2/10]

� if thread object joinable when destructor called, exception is thrown

� static member function hardware_concurrency returns number of
hardware threads that can run simultaneously (or zero if not well defined)

� thread creation and join operations establishsynchronizes-with
relationship (to be discussedlater)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1071

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/thread.thread.constr#10

std::thread Members

Member Types
Member Name Description

id thread ID type
native_handle_type system-dependent handle type for under-

lying thread entity

Construction, Destruction, and Assignment
Member Name Description

constructor construct thread (overloaded)
destructor destroy thread
operator= move assign thread

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1072

std::thread Members (Continued)

Member Functions
Member Name Description

joinable check if thread joinable
get_id get ID of thread
native_handle get native handle for thread
hardware_concurrency (static) get number of concurrent threads

supported by hardware
join wait for thread to finish executing
detach permit thread to execute indepen-

dently
swap swap threads

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1073

Example: Hello World With Threads

1 #include <iostream>
2 #include <thread>
3

4 void hello()
5 {
6 std::cout << "Hello World!\n";
7 }
8

9 int main()
10 {
11 std::thread t(hello);
12 t.join();
13 }

1 #include <iostream>
2 #include <thread>
3

4 int main()
5 {
6 std::thread t([](){
7 std::cout << "Hello World!\n";
8 });
9 t.join();

10 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1074.lambdas.hello .lambdas.linearfunc

Example: Thread-Function Argument Passing (Copy/Move Semantics)

1 #include <iostream>
2 #include <vector>
3 #include <utility>
4 #include <thread>
5

6 void doWork(const std::vector<int>& v) {
7 for (auto i : v) {
8 std::cout << i << ’\n’;
9 }

10 }
11

12 int main() {
13 std::vector v{1, 2, 3, 4};
14

15 // copy semantics
16 std::thread t1(doWork, v);
17 t1.join();
18

19 // move semantics
20 std::thread t2(doWork, std::move(v));
21 t2.join();
22 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Example: Thread-Function Argument Passing (Reference Semantics)

1 #include <iostream>
2 #include <vector>
3 #include <functional>
4 #include <thread>
5

6 void doWork(const std::vector<int>& v) {
7 for (auto i : v) {
8 std::cout << i << ’\n’;
9 }

10 }
11

12 int main() {
13 std::vector v{1, 2, 3, 4};
14

15 // copy semantics
16 std::thread t1(doWork, v);
17 t1.join();
18

19 // reference semantics
20 std::thread t2(doWork, std::ref(v));
21 t2.join();
22 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1077

Example: Moving Threads

1 #include <thread>
2 #include <iostream>
3 #include <utility>
4

5 // Return a thread that prints a greeting message.
6 std::thread makeThread() {
7 return std::thread([](){
8 std::cout << "Hello World!\n";
9 });

10 }
11

12 // Return the same thread that was passed as an argument.
13 std::thread identity(std::thread t) {
14 return t;
15 }
16

17 int main() {
18 std::thread t1(makeThread());
19 std::thread t2(std::move(t1));
20 t1 = std::move(t2);
21 t1 = identity(std::move(t1));
22 t1.join();
23 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1078

Example: Lifetime Bug

1 #include <iostream>
2 #include <vector>
3 #include <algorithm>
4 #include <chrono>
5 #include <thread>
6 #include <numeric>
7

8 void threadFunc(const std::vector<int>* v) {
9 std::cout << std::accumulate(v->begin(), v->end(), 0)

10 << ’\n’;
11 }
12

13 void startThread() {
14 std::vector<int> v(1000000, 1);
15 std::thread t(threadFunc, &v);
16 t.detach();
17 // v is destroyed here but detached thread
18 // may still be using v
19 }
20

21 int main() {
22 startThread();
23 // Give the thread started by startThread
24 // sufficient time to complete its work.
25 std::this_thread::sleep_for(std::chrono::seconds(5));
26 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1079

The std::this_thread Namespace

Name Description

get_id get ID of current thread
yield suggest rescheduling current thread so as to allow

other threads to run
sleep_for blocks execution of current thread for at least

specified duration
sleep_until blocks execution of current thread until specified

time reached

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1080

SKIP SLIDE

Example: Identifying Threads

1 #include <thread>
2 #include <iostream>
3

4 // main thread ID
5 std::thread::id mainThread;
6

7 void func() {
8 if (std::this_thread::get_id() == mainThread) {
9 std::cout << "called by main thread\n";

10 } else {
11 std::cout << "called by secondary thread\n";
12 }
13 }
14

15 int main() {
16 mainThread = std::this_thread::get_id();
17 std::thread t([](){
18 // call func from secondary thread
19 func();
20 });
21 // call func from main thread
22 func();
23 t.join();
24 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1081

SKIP SLIDE

Thread Local Storage

� thread storage duration: object initialized before first use in thread and,
if constructed, destroyed on thread exit

� each thread has its own instance of object

� only objects declared thread_local have this storage duration

� thread_local implies static for variable of block scope

� thread_local can appear together with static or extern to
adjust linkage

� example:

thread_local int counter = 0;
static thread_local int x = 0;
thread_local int y;

void func() {
thread_local int counter = 0;
// equivalent to:
// static thread_local int counter = 0;

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1082

SKIP SLIDE

Example: Thread Local Storage

1 #include <iostream>
2 #include <vector>
3 #include <thread>
4

5 thread_local int counter = 0;
6

7 void doWork(int id) {
8 static const char letters[] = "abcd";
9 for (int i = 0; i < 10; ++i) {

10 std::cout << letters[id] << counter << ’\n’;
11 ++counter;
12 }
13 }
14

15 int main() {
16 std::vector<std::thread> workers;
17 for (int i = 1; i <= 3; ++i) {
18 // invoke doWork in new thread
19 workers.emplace_back(doWork, i);
20 }
21 // invoke doWork in main thread
22 doWork(0);
23 for (auto& t : workers) {t.join();}
24 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1083

SKIP SLIDE

The std::thread Class and Exception Safety
� The astute reader will notice that most code examples on these lecture

slides (both earlier and later) that directly employ std::thread are not
exception safe.

� Some of the exception safety problems in these examples could be
eliminated by using a RAII class to wrap std::thread objects.

� Unfortunately, the standard library does not provide such a RAII class.
� At a very basic level, one could provide a thread wrapper class that has

similar functionality to std::thread, except that its destructor
automatically joins with the underlying thread if the thread is still joinable
at destruction time. (See next slide.)

� Although such an approach will work in some situations (such as in the
case of many of the simple code examples on these lecture slides), it can
potentially lead to deadlocks and other problems in more complex code.

� A more general solution would be to provide a class that allows arbitrary
code to be executed just prior to thread destruction, in order to perform
the appropriate (application-dependent) “clean-up” action. (For example,
see boost::scoped_thread in the Boost Threads library.)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1084

The std::thread Class and Exception Safety (Continued)
scoped_thread_1_1.hpp

1 #include <thread>
2
3 // A minimalist inheritance-based replacement for std::thread
4 // that joins automatically in the destructor.
5 // (One must be careful not to use this type polymorphically
6 // since the destructor is not virtual.)
7 class scoped_thread : public std::thread {
8 public:
9 using std::thread::thread;

10 scoped_thread(scoped_thread&&) = default;
11 scoped_thread& operator=(scoped_thread&&) = default;
12 scoped_thread(const scoped_thread&) = delete;
13 scoped_thread& operator=(const scoped_thread&) = delete;
14 ~scoped_thread() {if (joinable()) {join();}}
15 };

main.cpp
1 #include <vector>
2 #include <unistd.h>
3 #include "scoped_thread_1_1.hpp"
4
5 void worker() {sleep(1);}
6
7 int main() {
8 std::vector<scoped_thread> threads;
9 for (int i = 0; i < 16; ++i) {threads.emplace_back(worker);}

10 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1085NEXT SLIDE: happens before

Section 3.9.5

Sharing Data Between Threads

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1086

Shared Data

� In multithreaded programs, it is often necessary to share resources
between threads.

� Shared resources might include such things as variables, memory, files,
devices, and so on.

� The sharing of resources, however, can lead to various problems when
multiple threads want access to the same resource simultaneously.

� The most commonly shared resource is variables.
� When variables are shared between threads, the possibility exists that one

thread may attempt to access a variable while another thread is modifying
the same variable.

� Such conflicting accesses to variables can lead to data corruption and
other problems.

� More generally, when any resource is shared, the potential for problems
exists.

� Therefore, mechanisms are needed for ensuring that shared resources
can be accessed safely.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1087

Race Conditions

� A race condition is a behavior where the outcome depends on the
relative ordering of the execution of operations on two or more threads.

� Sometimes, a race condition may be benign (i.e., does not cause any
problem).

� Usually, the term “race condition” used to refer to a race condition that is
not benign (i.e., breaks invariants or results in undefined behavior).

� A data race is a particularly evil type of race condition.

� A deadlock is a situation in which two or more threads are unable to make
progress due to being blocked waiting for resources held by each other.

� A livelock is a situation in which two or more threads are not blocked but
are unable to make progress due to needing resources held by each
other.

� Often, race conditions can lead to deadlocks, livelocks, crashes, and other
unpredictable behavior.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1088

Critical Sections

� A critical section is a piece of code that accesses a shared resource
(e.g., data structure) that must not be simultaneously accessed by more
than one thread.

� A synchronization mechanism is needed at the entry to and exit from a
critical section.

� The mechanism needs to provide mutual exclusion (i.e., prevent critical
sections in multiple threads from executing simultaneously).

� Example (FIFO queue):
2 One thread is adding an element to a queue while another thread is

removing an element from the same queue.
2 Since both threads modify the queue at the same time, they could corrupt

the queue data structure.
2 Synchronization must be employed so that the execution of the parts of the

code that add and remove elements are executed in a mutually exclusive
manner (i.e., cannot run at the same time).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1089

Data-Race Example

Shared (Global) Data

double balance = 100.00; // bank account balance
double credit = 50.00; // amount to deposit
double debit = 10.00; // amount to withdraw

Thread 1 Code

// double tmp = balance;
// tmp = tmp + credit;
// balance = tmp;
balance += credit;

Thread 2 Code

// double tmp = balance;
// tmp = tmp - debit;
// balance = tmp;
balance -= debit;

� above code has data race on balance object (i.e., more than one thread
may access balance at same time with at least one thread writing)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1090

Example: Data Race (Counter)

1 #include <iostream>
2 #include <thread>
3

4 unsigned long long counter = 0;
5

6 void func() {
7 for (unsigned long long i = 0; i < 1’000’000; ++i) {
8 ++counter;
9 }

10 }
11

12 int main() {
13 std::thread t1(func);
14 std::thread t2(func);
15 t1.join();
16 t2.join();
17 std::cout << counter << ’\n’;
18 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1091

Example: Data Race and/or Race Condition (IntSet)

1 #include <iostream>
2 #include <thread>
3 #include <unordered_set>
4

5 class IntSet {
6 public:
7 bool contains(int i) const
8 {return s_.find(i) != s_.end();}
9 void add(int i)

10 {s_.insert(i);}
11 private:
12 std::unordered_set<int> s_;
13 };
14
15 IntSet s;
16

17 int main() {
18 std::thread t1([](){
19 for (int i = 0; i < 10’000; ++i) {s.add(2 * i);}
20 });
21 std::thread t2([](){
22 for (int i = 0; i < 10’000; ++i) {s.add(2 * i + 1);}
23 });
24 t1.join(); t2.join();
25 std::cout << s.contains(1000) << ’\n’;
26 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1092

Section 3.9.6

Mutexes

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1093

Mutexes

� A mutex is a locking mechanism used to synchronize access to a shared
resource by providing mutual exclusion.

� A mutex has two basic operations:
2 acquire: lock (i.e., hold) the mutex
2 release: unlock (i.e., relinquish) the mutex

� A mutex can be held by only one thread at any given time.

� If a thread attempts to acquire a mutex that is already held by another
thread, the operation will either block until the mutex can be acquired or
fail with an error.

� A thread holding a (nonrecursive) mutex cannot relock the mutex.

� A thread acquires the mutex before accessing the shared resource and
releases the mutex when finished accessing the resource.

� Since only one thread can hold a mutex at any given time and the shared
resource is only accessed by the thread holding the mutex,
mutually-exclusive access is guaranteed.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1094

The std::mutex Class

� std::mutex class provides mutex functionality

� not movable and not copyable
:::::::::
[C++17 30.4.1.2/3]

� lock member function acquires mutex (blocking as necessary)

� unlock member function releases mutex

� thread that owns mutex should not attempt to lock mutex again
:::::::::
[C++17 33.4.3.2/7]

� all prior unlock operations on given mutex synchronize with lock
operation (on same mutex) (.synchronizes-with relationship to be
discussedlater)

::::::::::
[C++17 33.4.3.2/11]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1095

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/thread.mutex.requirements.mutex#3
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/thread.mutex.requirements.mutex#7
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/thread.mutex.requirements.mutex#11

std::mutex Members

Member Types
Name Description

native_handle_type system-dependent handle type for underlying mu-
tex entity

Construction, Destruction, and Assignment
Name Description

constructor construct mutex
destructor destroy mutex

Other Member Functions
Name Description

lock acquire mutex, blocking if not available
try_lock try to lock mutex without blocking
unlock release mutex
native_handle get handle for underlying mutex entity

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1096

Example: Avoiding Data Race Using Mutex (Counter) (mutex)

1 #include <iostream>
2 #include <thread>
3 #include <mutex>
4

5 std::mutex m;
6 unsigned long long counter = 0;
7

8 void func() {
9 for (unsigned long long i = 0; i < 1’000’000; ++i) {

10 m.lock(); // acquire mutex
11 ++counter;
12 m.unlock(); // release mutex
13 }
14 }
15

16 int main() {
17 std::thread t1(func);
18 std::thread t2(func);
19 t1.join();
20 t2.join();
21 std::cout << counter << ’\n’;
22 }

� above code fixes data race fromearlier example

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1097NEXT SLIDE: lock/unlock and synchronizes-with

The std::scoped_lock Template Class
� std::scoped_lock is RAII class for mutexes
� declaration:

template <class... Ts> class scoped_lock;

� parameter pack Ts specifies types of mutexes to be locked
� can be used with any mutex types providing necessary locking interface

(e.g., std::mutex and std::recursive_mutex)
� constructor takes one or more mutexes as arguments
� mutexes acquired in constructor and released in destructor
� scoped_lock objects are not movable and not copyable
� using scoped_lock avoids problem of inadvertently failing to release

mutexes (e.g., due to exception or forgetting unlock calls)
� in multiple mutex case, employs deadlock avoidance algorithm from

std::lock (discussed later) when acquiring mutexes
� advisable to use scoped_lock instead of calling lock and unlock

explicitly
� scoped_lock effectively replaces (and extends) lock_guard

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1098

std::scoped_lock Members

Member Types
Name Description

mutex_type underlying mutex type if only one

Construction, Destruction, and Assignment
Name Description

constructor construct scoped lock, optionally locking given
mutexes

destructor destroy scoped lock, releasing underlying mutexes

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1099

Example: Avoiding Data Race Using Mutex (Counter) (scoped_lock)

1 #include <iostream>
2 #include <thread>
3 #include <mutex>
4

5 std::mutex m;
6 unsigned long long counter = 0;
7

8 void func() {
9 for (unsigned long long i = 0; i < 1’000’000; ++i) {

10 // scoped_lock constructor acquires mutex
11 std::scoped_lock lock(m);
12 ++counter;
13 // scoped_lock destructor releases mutex
14 }
15 }
16

17 int main() {
18 std::thread t1(func);
19 std::thread t2(func);
20 t1.join();
21 t2.join();
22 std::cout << counter << ’\n’;
23 }

� above code improves uponearlier example by avoiding possibility of not
releasing mutex (e.g., due to exception or forgetting to call unlock)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1100

Example: Avoiding Data Race Using Mutex (IntSet) (scoped_lock)

1 #include <iostream>
2 #include <mutex>
3 #include <thread>
4 #include <unordered_set>
5
6 class IntSet {
7 public:
8 bool contains(int i) const {
9 std::scoped_lock lock(m_);

10 return s_.find(i) != s_.end();
11 }
12 void add(int i) {
13 std::scoped_lock lock(m_);
14 s_.insert(i);
15 }
16 private:
17 std::unordered_set<int> s_;
18 mutable std::mutex m_;
19 };
20
21 IntSet s;
22
23 int main() {
24 std::thread t1([](){
25 for (int i = 0; i < 10’000; ++i) {s.add(2 * i);}
26 });
27 std::thread t2([](){
28 for (int i = 0; i < 10’000; ++i) {s.add(2 * i + 1);}
29 });
30 t1.join(); t2.join();
31 std::cout << s.contains(1000) << ’\n’;
32 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1101

Acquisition of Multiple Locks

� if multiple locks must be acquired, critical that locks always acquired in
same order; otherwise, deadlock can occur

� for example, consider scenario in which two mutexes must be acquired
before performing some processing

� if two mutexes not acquired in consistent order, situations like following
can arise:

1 thread 1 acquires mutex 1
2 thread 2 acquires mutex 2
3 thread 1 tries to acquire mutex 2 and blocks waiting for thread 2 to release

this mutex
4 thread 2 tries to acquire mutex 1 and blocks waiting for thread 1 to release

this mutex, resulting in deadlock
� if, in above example, two mutexes instead always acquired in same order,

this type of deadlock cannot occur

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Example: Acquiring Two Locks for Swap (Incorrect)
1 #include <mutex>
2 #include <thread>
3 #include <utility>
4 #include <vector>
5
6 class BigBuf // A Big Buffer
7 {
8 public:
9 static constexpr long size() {return 16 * 1024L * 1024L;}

10 BigBuf() : data_(size()) {}
11 BigBuf& operator=(const BigBuf&) = delete;
12 BigBuf& operator=(BigBuf&&) = delete;
13 void swap(BigBuf& other) {
14 if (this == &other) {return;}
15 // acquiring the two mutexes in this way can result in deadlock
16 std::scoped_lock lock1(m_);
17 std::scoped_lock lock2(other.m_);
18 std::swap(data_, other.data_);
19 }
20 // ...
21 private:
22 std::vector<char> data_;
23 mutable std::mutex m_;
24 };
25
26 BigBuf a;
27 BigBuf b;
28
29 int main() {
30 std::thread t1([](){
31 for (long i = 0; i < 1’000’000; ++i) a.swap(b);
32 });
33 std::thread t2([](){
34 for (long i = 0; i < 1’000’000; ++i) b.swap(a);
35 });
36 t1.join(); t2.join();
37 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1102

Example: Acquiring Two Locks for Swap [scoped_lock]

1 #include <mutex>
2 #include <thread>
3 #include <utility>
4 #include <vector>
5
6 class BigBuf // A Big Buffer
7 {
8 public:
9 static constexpr long size() {return 16 * 1024L * 1024L;}

10 BigBuf() : data_(size()) {}
11 BigBuf& operator=(const BigBuf&) = delete;
12 BigBuf& operator=(BigBuf&&) = delete;
13 void swap(BigBuf& other) {
14 if (this == &other) {return;}
15 std::scoped_lock sl(m_, other.m_);
16 std::swap(data_, other.data_);
17 }
18 // ...
19 private:
20 std::vector<char> data_;
21 mutable std::mutex m_;
22 };
23
24 BigBuf a;
25 BigBuf b;
26
27 int main() {
28 std::thread t1([](){
29 for (long i = 0; i < 1’000’000; ++i) a.swap(b);
30 });
31 std::thread t2([](){
32 for (long i = 0; i < 1’000’000; ++i) b.swap(a);
33 });
34 t1.join(); t2.join();
35 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1103

The std::unique_lock Template Class
� std::unique_lock is another RAII class for mutexes
� declaration:

template <class T> class unique_lock;

� template parameter T specifies type of mutex (e.g., std::mutex,
std::recursive_mutex)

� unlike case of std::scoped_lock, in case of unique_lock do not have
to hold mutex over entire lifetime of RAII object

� have choice of whether to acquire mutex upon construction
� also can acquire and release mutex many times throughout lifetime of

unique_lock object
� upon destruction, if mutex is held, it is released
� since mutex is always guaranteed to be released by destructor, cannot

forget to release mutex
� unique_lock is used in situations where want to be able to transfer

ownership of lock (e.g., return from function) or RAII object needed for
mutex but do not want to hold mutex over entire lifetime of RAII object

� movable but not copyable
::::::::
[C++17 33.4.4.3]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1104

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/thread.lock.unique

std::unique_lock Members
Member Types

Name Description

mutex_type underlying mutex type

Construction, Destruction, and Assignment
Name Description

constructor construct unique lock
destructor destroy unique lock
operator= move assign

Locking Functions
Name Description

lock acquire mutex, blocking if not available
try_lock try to lock mutex without blocking
try_lock_for try to lock mutex without blocking
try_lock_until try to lock mutex without blocking
unlock release mutex

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1105

std::unique_lock Members (Continued)

Observer Functions
Name Description

owns_lock tests if lock owns associated mutex
operator bool tests if lock owns associated mutex

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1106

Example: Avoiding Data Race Using Mutex (unique_lock)

1 #include <iostream>
2 #include <thread>
3 #include <mutex>
4
5 unsigned long counter = 0;
6 std::mutex m;
7
8 void func() {
9 for (unsigned long i = 0; i < 1’000’000; ++i) {

10 // Create a lock object without acquiring the mutex.
11 std::unique_lock lock(m, std::defer_lock);
12 // ...
13 lock.lock(); // Acquire the mutex.
14 ++counter;
15 lock.unlock(); // Release the mutex.
16 // ...
17 lock.lock(); // Acquire the mutex.
18 ++counter;
19 lock.unlock(); // Release the mutex.
20 // ...
21 // The unique_lock destructor releases the mutex (if held).
22 }
23 }
24
25 int main() {
26 std::thread t1(func);
27 std::thread t2(func);
28 t1.join();
29 t2.join();
30 std::cout << counter << ’\n’;
31 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1107

The std::lock Template Function

� std::lock variadic template function that can acquire multiple locks
simultaneously without risk of deadlock (assuming the only locks involved
are ones passed to lock)

� declaration:
template <class T1, class T2, class... TN>
void lock(T1&, T2&, TN& ...);

� takes as arguments one or more locks to be acquired

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1108

Example: Acquiring Two Locks for Swap [unique_lock and lock]

1 #include <mutex>
2 #include <thread>
3 #include <utility>
4 #include <vector>
5
6 class BigBuf // A Big Buffer
7 {
8 public:
9 static constexpr long size() {return 16 * 1024L * 1024L;}

10 BigBuf() : data_(size()) {}
11 BigBuf& operator=(const BigBuf&) = delete;
12 BigBuf& operator=(BigBuf&&) = delete;
13 void swap(BigBuf& other) {
14 if (this == &other) {return;}
15 std::unique_lock lock1(m_, std::defer_lock);
16 std::unique_lock lock2(other.m_, std::defer_lock);
17 std::lock(lock1, lock2);
18 std::swap(data_, other.data_);
19 }
20 // ...
21 private:
22 std::vector<char> data_;
23 mutable std::mutex m_;
24 };
25
26 BigBuf a;
27 BigBuf b;
28
29 int main() {
30 std::thread t1([](){
31 for (long i = 0; i < 1’000’000; ++i) a.swap(b);
32 });
33 std::thread t2([](){
34 for (long i = 0; i < 1’000’000; ++i) b.swap(a);
35 });
36 t1.join(); t2.join();
37 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1109NEXT SLIDE: static initialization

The std::timed_mutex Class

� std::timed_mutex class provides mutex that allows timeout to be
specified when acquiring mutex

� if mutex cannot be acquired in time specified, acquire operation fails (i.e.,
does not lock mutex) and error returned

� adds try_lock_for and try_lock_until member functions to try to
lock mutex with timeout

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1110

Example: Acquiring Mutex With Timeout (std::timed_mutex)

1 #include <vector>
2 #include <iostream>
3 #include <thread>
4 #include <mutex>
5 #include <chrono>
6

7 std::timed_mutex m;
8

9 void doWork() {
10 for (int i = 0; i < 10000; ++i) {
11 std::unique_lock lock(m, std::defer_lock);
12 int count = 0;
13 while (!lock.try_lock_for(
14 std::chrono::microseconds(1))) {++count;}
15 std::cout << count << ’\n’;
16 }
17 }
18

19 int main() {
20 std::vector<std::thread> workers;
21 for (int i = 0; i < 16; ++i) {
22 workers.emplace_back(doWork);
23 }
24 for (auto& t : workers) {t.join();}
25 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1111

Recursive Mutexes

� A recursive mutex is a mutex for which a thread may own multiple locks
at the same time.

� After a mutex is first locked by thread A, thread A can acquire additional
locks on the mutex (without releasing the lock already held).

� The mutex is not available to other threads until thread A releases all of its
locks on the mutex.

� A recursive mutex is typically used when code that locks a mutex must call
other code that locks the same mutex (in order to avoid deadlock).

� For example, a function that acquires a mutex and recursively calls itself
(resulting in the mutex being relocked) would need to employ a recursive
mutex.

� A recursive mutex has more overhead than a nonrecursive mutex.

� Code that uses recursive mutexes can often be more difficult to
understand and therefore more prone to bugs.

� Consequently, the use of recursive mutexes should be avoided if possible.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1112

Recursive Mutex Classes

� recursive mutexes provided by classes std::recursive_mutex and
std::recursive_timed_mutex

� recursive_mutex class similar to std::mutex class except allows
relocking

� recursive_timed_mutex class similar to std::timed_mutex class
except allows relocking

� implementation-defined limit to number of levels of locking allowed by
recursive mutex

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1113

Shared Mutexes
� A shared mutex (also known as a multiple-reader/single-writer mutex)

is a mutex that allows both shared and exclusive access.
� A shared mutex has two types of locks: shared and exclusive.
� Exclusive lock:

2 Only one thread can hold an exclusive lock on a mutex.
2 While a thread holds an exclusive lock on a mutex, no other thread can hold

any type of lock on the mutex.
� Shared lock:

2 Any number of threads (within implementation limits) can take a shared
lock on a mutex.

2 While any thread holds a shared lock on a mutex, no thread may take an
exclusive lock on the mutex.

� A shared mutex would typically be used to protect shared data that is
seldom updated but cannot be safely updated if any thread is reading it.

� A thread takes a shared lock for reading, thus allowing multiple readers.
� A thread takes an exclusive lock for writing, thus allowing only one writer

with no readers.
� A shared mutex need not be fair in its granting of locks (e.g., readers could

starve writers).
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1114

The std::shared_mutex Class

� std::shared_mutex class provides shared mutex functionality

� not movable and not copyable
� lock member function acquires exclusive ownership of mutex (blocking

as necessary)

� unlock member function releases exclusive ownership

� lock_shared member function acquires shared ownership of mutex
(blocking as necessary)

� unlock_shared member function releases shared ownership

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1115

std::shared_mutex Members

Construction, Destruction, and Assignment
Name Description

constructor construct mutex
destructor destroy mutex
operator= [deleted] not movable or copyable

Exclusive Locking Functions
Name Description

lock acquire exclusive ownership of mutex, blocking if not avail-
able

try_lock try to acquire exclusive ownership of mutex without block-
ing

unlock release exclusive ownership of mutex

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1116

std::shared_mutex Members (Continued)

Shared Locking Functions
Name Description

lock_shared acquire shared ownership of mutex, blocking
if not available

try_lock_shared try to acquire shared ownership of mutex with-
out blocking

unlock_shared release shared ownership of mutex

Other Functions
Name Description

native_handle get handle for underlying mutex entity

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1117

The std::shared_lock Template Class

� std::shared_lock is RAII class for shared mutexes

� declaration:
template <class T> class shared_lock;

� template parameter T specifies type of mutex (e.g., std::shared_mutex
or std::shared_timed_mutex)

� similar interface as std::unique_lock but uses shared locking

� constructor may optionally acquire mutex

� may acquire and release mutex many times throughout lifetime of object

� destructor releases mutex if held

� all operations mapped onto shared locking primitives (e.g., lock mapped
to lock_shared, unlock mapped to unlock_shared)

� for exclusive locking with shared mutexes, std::unique_lock and
std::scoped_lock (and std::lock_guard) can be used

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1118

Example: std::shared_mutex
1 #include <thread>
2 #include <mutex>
3 #include <iostream>
4 #include <vector>
5 #include <shared_mutex>
6
7 std::mutex coutMutex;
8 int counter = 0;
9 std::shared_mutex counterMutex;

10
11 void writer() {
12 for (int i = 0; i < 10; ++i) {
13 {
14 std::scoped_lock lock(counterMutex);
15 ++counter;
16 }
17 std::this_thread::sleep_for(std::chrono::milliseconds(100));
18 }
19 }
20
21 void reader() {
22 for (int i = 0; i < 100; ++i) {
23 int c;
24 {
25 std::shared_lock lock(counterMutex);
26 c = counter;
27 }
28 {
29 std::scoped_lock lock(coutMutex);
30 std::cout << std::this_thread::get_id() << ’ ’ << c << ’\n’;
31 }
32 std::this_thread::sleep_for(std::chrono::milliseconds(10));
33 }
34 }
35
36 int main() {
37 std::vector<std::thread> threads;
38 threads.emplace_back(writer);
39 for (int i = 0; i < 16; ++i) threads.emplace_back(reader);
40 for (auto& t : threads) t.join();
41 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1119

The std::shared_timed_mutex Class

� std::shared_timed_mutex class provides shared mutex

� shared_timed_mutex interface similar to that of shared_mutex but
allows timeout for acquiring mutex

� adds try_lock_for and try_lock_until member functions to try to
acquire exclusive ownership of mutex with timeout

� adds try_lock_shared_for and try_lock_shared_until member
functions to try to acquire shared ownership of mutex with timeout

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1120

Example: std::shared_timed_mutex
1 #include <thread>
2 #include <mutex>
3 #include <iostream>
4 #include <vector>
5 #include <shared_mutex>
6
7 std::mutex coutMutex;
8 int counter = 0;
9 std::shared_timed_mutex counterMutex;

10
11 void writer() {
12 for (int i = 0; i < 10; ++i) {
13 {
14 std::scoped_lock lock(counterMutex);
15 ++counter;
16 }
17 std::this_thread::sleep_for(std::chrono::milliseconds(100));
18 }
19 }
20
21 void reader() {
22 for (int i = 0; i < 100; ++i) {
23 int c;
24 {
25 std::shared_lock lock(counterMutex);
26 c = counter;
27 }
28 {
29 std::scoped_lock lock(coutMutex);
30 std::cout << std::this_thread::get_id() << ’ ’ << c << ’\n’;
31 }
32 std::this_thread::sleep_for(std::chrono::milliseconds(10));
33 }
34 }
35
36 int main() {
37 std::vector<std::thread> threads;
38 threads.emplace_back(writer);
39 for (int i = 0; i < 16; ++i) threads.emplace_back(reader);
40 for (auto& t : threads) t.join();
41 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1121

std::once_flag and std::call_once

� sometimes may want to perform action only once in code executed in
multiple threads

� can be achieved through use of std::once_flag type in conjunction with
std::call_once template function

� std::once_flag class represents flag used to track if action performed

� declaration of std::call_once:
template <class Callable, class... Args>
void call_once(std::once_flag& flag, Callable&& f,
Args&&... args);

� std::call_once invokes f only once based on value of flag object

� first invocation of f is guaranteed to complete before any threads return
from call_once

� useful for one-time initialization of dynamically generated objects

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1122

Example: One-Time Action

1 #include <iostream>
2 #include <vector>
3 #include <thread>
4 #include <mutex>
5

6 std::once_flag flag;
7

8 void worker(int id) {
9 std::call_once(flag, [id](){

10 // This code will be invoked only once.
11 std::cout << "first: " << id << ’\n’;
12 });
13 }
14

15 int main() {
16 std::vector<std::thread> threads;
17 for (int i = 0; i < 16; ++i) {
18 threads.emplace_back(worker, i);
19 }
20 for (auto& t : threads) {
21 t.join();
22 }
23 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1123

Example: One-Time Initialization

1 #include <vector>
2 #include <thread>
3 #include <mutex>
4 #include <cassert>
5 #include <memory>
6

7 std::unique_ptr<int> value;
8 std::once_flag initFlag;
9

10 void initValue() {value = std::make_unique<int>(42);}
11

12 const int& getValue() {
13 std::call_once(initFlag, initValue);
14 return *value.get();
15 }
16

17 void doWork() {
18 const int& v = getValue();
19 assert(v == 42);
20 // ...
21 }
22

23 int main() {
24 std::vector<std::thread> threads;
25 for (int i = 0; i < 4; ++i)
26 {threads.emplace_back(doWork);}
27 for (auto& t : threads) {t.join();}
28 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1124

Static Local Variable Initialization and Thread Safety

� initialization of static local object is thread safe
::::::
[C++17 9.7/4]

� object is initialized first time control passes through its declaration

� object deemed initialized upon completion of initialization

� if control enters declaration concurrently while object being initialized,
concurrent execution waits for completion of initialization

� code like following is thread safe:

const std::string& meaningOfLife() {
static const std::string x("42");
return x;

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1125

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/stmt.dcl#4

Section 3.9.7

Condition Variables

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1126

Condition Variables
� In concurrent programs, the need often arises for a thread to wait until a

particular event occurs (e.g., I/O has completed or data is available).
� Having a thread repeatedly check for the occurrence of an event can be

inefficient (i.e., can waste processor resources).
� It is often better to have the thread block and then only resume execution

after the event of interest has occurred.
� A condition variable is a synchronization primitive that allows threads to

wait (by blocking) until a particular condition occurs.
� A condition variable corresponds to some event of interest.
� A thread that wants to wait for an event, performs a wait operation on the

condition variable.
� A thread that wants to notify one or more waiting threads of an event

performs a signal operation on the condition variable.
� When a signalled thread resumes, however, the signalled condition is not

guaranteed to be true (and must be rechecked), since, for example,
another thread may have caused the condition to change or a spurious
awakening may have occurred.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1127

The std::condition_variable Class

� std::condition_variable class provides condition variable

� not movable and not copyable
� wait, wait_for, and wait_until member functions used to wait for

condition

� notify_one and notify_all used to signal waiting thread(s) of
condition

� must re-check condition when awaking from wait since:
2 spurious awakenings are permitted
2 between time thread is signalled and time it awakens and locks mutex,

another thread could cause condition to change

� concurrent invocation is allowed for notify_one, notify_all, wait,
wait_for, wait_until

:::::::
[C++17 33.5/2]

� each of wait, wait_for, and wait_until atomically releases mutex and
blocks

:::::::
[C++17 33.5/3]

:::::::::::
why atomic? (diagram)

� notify_one and notify_all are atomic
:::::::
[C++17 33.5/3]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1128

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/thread.condition#2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/thread.condition#3
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/thread.condition#3

std::condition_variable Members

Member Types
Name Description

native_handle_type system-dependent handle type for underlying con-
dition variable entity

Construction, Destruction, and Assignment
Name Description

constructor construct object
destructor destroy object
operator= [deleted] not movable or copyable

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1129

std::condition_variable Members (Continued)

Notification and Waiting Member Functions
Name Description

notify_one notify one waiting thread
notify_all notify all waiting threads
wait blocks current thread until notified
wait_for blocks current thread until notified or specified duration

passed
wait_until blocks current thread until notified or specified time point

reached

Native Handle Member Functions
Name Description

native_handle get native handle associated with condition vari-
able

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1130

Example: Condition Variable (IntStack)
1 #include <iostream>
2 #include <vector>
3 #include <thread>
4 #include <mutex>
5 #include <condition_variable>
6
7 class IntStack {
8 public:
9 IntStack() {};

10 IntStack(const IntStack&) = delete;
11 IntStack& operator=(const IntStack&) = delete;
12 int pop() {
13 std::unique_lock lock(m_);
14 c_.wait(lock, [this](){return !v_.empty();});
15 int x = v_.back();
16 v_.pop_back();
17 return x;
18 }
19 void push(int x) {
20 std::scoped_lock lock(m_);
21 v_.push_back(x);
22 c_.notify_one();
23 }
24 private:
25 std::vector<int> v_;
26 mutable std::mutex m_;
27 mutable std::condition_variable c_; // not empty
28 };
29
30 constexpr int numIters = 1000;
31 IntStack s;
32
33 int main() {
34 std::thread t1([](){
35 for (int i = 0; i < numIters; ++i) s.push(2 * i + 1);
36 });
37 std::thread t2([](){
38 for (int i = 0; i < numIters; ++i) std::cout << s.pop() << ’\n’;
39 });
40 t1.join(); t2.join();
41 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1131

Latches

� latch: basic one-time synchronization mechanism that allows threads to
block until particular event occurs certain number of times

� latch maintains count as state

� count is initialized to some nonzero value when latch created

� can decrement count

� can block until count reaches zero

� latch can only be used once (i.e., count cannot be reset after it reaches
zero)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Latch Example: User Code

1 #include <functional>
2 #include <thread>
3 #include <vector>
4 #include "latch_1.hpp"
5

6 void worker(latch& ready) {
7 // ... (perform very slow initialization)
8 // wait for all threads to complete initialization
9 ready.count_down_and_wait();

10 // ... (perform real work)
11 }
12

13 int main() {
14 constexpr int num_workers = 32;
15 std::vector<std::thread> workers;
16 latch ready(num_workers);
17 for (int i = 0; i < num_workers; ++i) {
18 workers.emplace_back(worker, std::ref(ready));
19 }
20 for (auto& i : workers) {i.join();}
21 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Latch Example: latch_1.hpp
1 #include <condition_variable>
2 #include <cstddef>
3 #include <mutex>
4
5 class latch {
6 public:
7 explicit latch(std::size_t count) : count_(count) {}
8 // ... (not movable, not copyable, destructor)
9 void count_down() {

10 std::scoped_lock<std::mutex> lock(mutex_);
11 if (!--count_) {ready_.notify_all();}
12 }
13 void wait() {
14 std::unique_lock<std::mutex> lock(mutex_);
15 ready_.wait(lock, [this](){return !count_;});
16 }
17 bool try_wait() {
18 std::scoped_lock<std::mutex> lock(mutex_);
19 return !count_;
20 }
21 void count_down_and_wait() {
22 std::unique_lock<std::mutex> lock(mutex_);
23 if (!--count_) {ready_.notify_all();}
24 else {ready_.wait(lock, [this](){return !count_;});}
25 }
26 private:
27 mutable std::mutex mutex_;
28 mutable std::condition_variable ready_; // count reached zero
29 std::size_t count_;
30 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

The std::condition_variable_any Class

� with std::condition_variable class,
std::unique_lock<std::mutex> class must be used for wait operation

� std::condition_variable_any class allows any mutex type (meeting
certain basic requirements) to be used

� interface of std::condition_variable_any class similar to that of
std::condition_variable class

� prefer condition_variable to condition_variable_any since former
may be more efficient

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1132

Thread Pools

� thread pool is collection of threads which stand ready to be given work
(i.e., tasks to execute)

� number of threads in thread pool may be fixed or dynamic, depending on
particular thread-pool variant

� each thread in thread pool can be either idle or executing task
� typically, tasks given to thread pool are placed on queue and then

assigned to threads as they become available
� after done executing task, thread returns to idle state, waiting to be

assigned another task
� thread pool allows overhead of many thread creation operations to be

avoided
� by using thread pool can also more easily control total number of threads

and number of running threads
� thread pool preferred over creating new threads for each task when there

is large number of short-running tasks (rather than small number of
long-running ones)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1133

Simple Thread Pool Interface Example
thread_pool_1_1.hpp

1 #include <functional>
2 #include <cstddef>
3
4 class thread_pool {
5 public:
6 using size_type = std::size_t;
7 thread_pool(size_type num_threads);
8 thread_pool(const thread_pool&) = delete;
9 thread_pool& operator=(const thread_pool&) = delete;

10 ~thread_pool();
11 size_type num_threads() const;
12 void schedule(std::function<void()>&& task);
13 void shutdown();
14 private:
15 // ...
16 };

app.cpp
1 #include <iostream>
2 #include "thread_pool_1_1.hpp"
3
4 int main() {
5 thread_pool tp(8);
6 for (int i = 0; i < 10’000; ++i) {
7 tp.schedule([](){std::cout << "Hello, World\n";});
8 }
9 tp.shutdown();

10 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1134NEXT SLIDE: exceptions and resource management

Section 3.9.8

Promises and Futures

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1135

Promises and Futures
� promise and future together form one-time communication channel for

passing result (i.e., value or exception) of computation from one thread to
same or another thread

� promise: object associated with promised result (i.e., value or exception)
to be produced

� future: object through which promised result later made available
� shared state: holds promised result for access through future object

(shared by promise object and corresponding future object)
� producer of result uses promise object to store result in shared state
� consumer uses future object (corresponding to promise) to retrieve result

from shared state

Promise Future

Producer Consumer

State
Shared

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1136

Promises and Futures (Continued)

� promises and futures useful in both single-threaded and multithreaded
programs

� in single-threaded programs, might be used to propagate exception to
another part of program

� in multithreaded program, often need arises to do some computation
asynchronously and then later get result when ready

� requires synchronization between threads producing and consuming
result

� thread consuming result must wait until result is available
� must avoid data races when accessing result shared between threads

� this type of synchronization can be accomplished via promise and future

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1137

The std::promise Template Class

� std::promise provides access to promise-future shared state for writing
result

� declaration:
template <class T> class promise;

� T is type of result associated with promise (which can be void)

� movable but not copyable
� set_value member function sets result to particular value

� set_exception member function sets result to exception

� can set result only once
� get_future member function retrieves future associated with promise

� get_future may be called only once
� if promise object is destroyed before its associated result is set,

std::future_error exception will be thrown if attempt made to retrieve
result from corresponding future object

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1138

std::promise Members

Construction, Destruction, and Assignment
Name Description

constructor construct object
destructor destroy object
operator= move assignment

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1139

std::promise Members (Continued)

Other Functions
Name Description

swap swap two promise objects
get_future get future associated with promised

result
set_value set result to specified value
set_value_at_thread_exit set result to specified value while de-

livering notification only at thread exit
set_exception set result to specified exception
set_exception_at_thread_exit set result to specified exception while

delivering notification only at thread
exit

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1140

The std::future Template Class

� std::future provides access to promise-future shared state for reading
result

� declaration:
template <class T> class future;

� T is type of result associated with future (which can be void)

� movable but not copyable
� get member function retrieves result, blocking if result not yet available

� get may be called only once
� wait member function waits for result to become available without

actually retrieving result

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1141

std::future Members

Construction, Destruction, and Assignment
Name Description

constructor construct object
destructor destroy object
operator= move assignment

Other Functions
Name Description

share transfer shared state to shared_future object
get get result
valid check if future object refers to shared state
wait wait for result to become available
wait_for wait for result to become available or time duration to expire
wait_until wait for result to become available or time point to be

reached

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1142

Example: Promises and Futures (Without std::async)

1 #include <future>
2 #include <thread>
3 #include <iostream>
4 #include <utility>
5

6 double computeValue() {
7 return 42.0;
8 }
9

10 void produce(std::promise<double> p) {
11 // write result to promise
12 p.set_value(computeValue());
13 }
14

15 int main() {
16 std::promise<double> p;
17 auto f = p.get_future(); // save future before move
18 std::thread producer(produce, std::move(p));
19 std::cout << f.get() << ’\n’;
20 producer.join();
21 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1143

The std::shared_future Template Class

� std::shared_future similar to future except object can be copied

� shared_future object can be obtained by using share member function
of future class to transfer contents of future object into
shared_future object

� shared_future is copyable (unlike future)

� allows multiple threads to wait for same result (associated with
shared_future object)

� get member can be called multiple times

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1144

Example: std::shared_future

1 #include <iostream>
2 #include <vector>
3 #include <thread>
4 #include <future>
5

6 void consume(std::shared_future<int> f) {
7 std::cout << f.get() << ’\n’;
8 }
9

10 int main() {
11 std::promise<int> p;
12 std::shared_future f = p.get_future().share();
13 std::vector<std::thread> consumers;
14 for (int i = 0; i < 16; ++i) {
15 consumers.emplace_back(consume, f);
16 }
17 p.set_value(42);
18 for (auto& i : consumers) {
19 i.join();
20 }
21 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1145

The std::async Template Function
� std::async template function used to launch callable entity (e.g.,

function or functor) asynchronously
� declaration (uses default launch policy):

template <class Func, class... Args>
future<typename result_of<typename decay<Func>::type(
typename decay<Args>::type...)>::type>
async(Func&& f, Args&&... args);

� declaration (with launch policy parameter):
template <class Func, class... Args>
future<typename result_of<typename decay<Func>::type(
typename decay<Args>::type...)>::type>
async(launch policy, Func&& f, Args&&... args);

� numerous launch policies supported via bitmask std::launch
� if async bit set, execute on new thread
� if deferred bit set, execute on calling thread when result needed
� if multiple bits set, implementation free to choose between them
� in asynchronous execution case, essentially creates promise to hold result

and returns associated future; launches thread to execute function/functor
and sets promise when function/functor returns

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1146

The std::async Template Function (Continued)

� future (i.e., future and shared_future) objects created by async
function have slightly different behavior than future objects created in
other ways

� in case of future object created by async function: if future object is last
future object referencing its shared state, destructor for future object will
block until result associated with future object becomes ready

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1147

Example: Promises and Futures (With std::async)

1 #include <future>
2 #include <iostream>
3

4 double computeValue() {
5 return 42.0;
6 }
7

8 int main() {
9 // invoke computeValue function asynchronously in

10 // separate thread
11 auto f = std::async(std::launch::async, computeValue);
12 std::cout << f.get() << ’\n’;
13 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1148

Example: Futures and Exceptions

1 #include <iostream>
2 #include <vector>
3 #include <cmath>
4 #include <future>
5 #include <stdexcept>
6

7 double squareRoot(double x) {
8 if (x < 0.0) {
9 throw std::domain_error(

10 "square root of negative number");
11 }
12 return std::sqrt(x);
13 }
14

15 int main() {
16 std::vector values{1.0, 2.0, -1.0};
17 std::vector<std::future<double>> results;
18 for (auto x : values) {
19 results.push_back(std::async(squareRoot, x));
20 }
21 for (auto& x : results) {
22 try {
23 std::cout << x.get() << ’\n’;
24 } catch (const std::domain_error&) {
25 std::cout << "error\n";
26 }
27 }
28 }
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1149

The std::packaged_task Template Class

� std::packaged_task template class provides wrapper for callable entity
(e.g., function or functor) that makes return value available via future

� declaration:
template <class R, class... Args>
class packaged_task<R(Args...)>;

� template parameters R and Args specify return type and arguments for
callable entity

� similar to std::function except return value of wrapped function made
available via future

� packaged task often used as thread function

� movable but not copyable
� get_future member retrieves future associated with packaged task

� get_future can be called only once

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1150

std::packaged_task Members

Construction, Destruction, and Assignment
Name Description

constructor construct object
destructor destroy object
operator= move assignment

Other Functions
Name Description

valid check if task object currently associated
with shared state

swap swap two task objects
get_future get future associated with promised result
operator() invoke function
make_ready_at_thread_exit invoke function ensuring result ready only

once current thread exits
reset reset shared state, abandoning any previ-

ously stored result

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1151

Example: Packaged Task

1 #include <iostream>
2 #include <thread>
3 #include <future>
4 #include <utility>
5 #include <chrono>
6

7 int getMeaningOfLife() {
8 // Let the suspense build before providing the answer.
9 std::this_thread::sleep_for(std::chrono::milliseconds(

10 1000));
11 // Return the answer.
12 return 42;
13 }
14

15 int main() {
16 std::packaged_task<int()> pt(getMeaningOfLife);
17 // Save the future.
18 auto f = pt.get_future();
19 // Start a thread running the task and detach the thread.
20 std::thread t(std::move(pt));
21 t.detach();
22 // Get the result via the future.
23 int result = f.get();
24 std::cout << "The meaning of life is " << result << ’\n’;
25 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1152

Example: Packaged Task With Arguments

1 #include <iostream>
2 #include <cmath>
3 #include <thread>
4 #include <future>
5

6 double power(double x, double y) {
7 return std::pow(x, y);
8 }
9

10 int main() {
11 // invoke task in main thread
12 std::packaged_task<double(double, double)> task(power);
13 task(0.5, 2.0);
14 std::cout << task.get_future().get() << ’\n’;
15 // reset shared state
16 task.reset();
17 // invoke task in new thread
18 auto f = task.get_future();
19 std::thread t(std::move(task), 2.0, 0.5);
20 t.detach();
21 std::cout << f.get() << ’\n’;
22 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1153

Section 3.9.9

Atomics

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1154

Atomics

� To avoid data races when sharing data between threads, it is often
necessary to employ synchronization (e.g., by using mutexes).

� Atomic types are another mechanism for providing synchronized access
to data.

� An operation that is indivisible is said to be atomic (i.e., no parts of any
other operations can interleave with any part of an atomic operation).

� Most processors support atomic memory operations via special machine
instructions.

� Atomic memory operations cannot result in torn reads or torn writes.
� The standard library offers the following types in order to provide support

for atomic memory operations:
2 std::atomic_flag
2 std::atomic

� These types provide a uniform interface for accessing the atomic memory
operations of the underlying hardware.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1155

Atomics (Continued)

� An atomic type provides guarantees regarding:
1 atomicity; and
2 ordering.

� An ordering guarantee specifies the manner in which memory operations
can become visible to threads.

� Several memory ordering schemes are supported by atomic types.

� The default memory order is sequentially consistent
(std::memory_order_seq_cst).

� Initially, only this default will be considered.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1156

The std::atomic_flag Class

� std::atomic_flag provides flag with basic atomic operations

� flag can be in one of two states: set (i.e., true) or clear (i.e., false)
� two operations for flag:

2 test and set: set state to true and query previous state
2 clear: set state to false

� default constructor initializes flag to unspecified state

� not movable and not copyable
� implementation-defined macro ATOMIC_FLAG_INIT can be used to set

flag to clear state in (static or automatic) initialization using statement of
the form “std::atomic_flag f = ATOMIC_FLAG_INIT;”

:::::::
[C++17 32.8/4]

� guaranteed to be lock free
� intended to be used as building block for higher-level synchronization

primitives, such as spinlock mutex

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1157

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/atomics.flag#4

std::atomic_flag Members

Member Functions
Member Name Description

constructor constructs object
clear atomically sets flag to false
test_and_set atomically sets flag to true and obtains its pre-

vious value

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1158

Example: Suboptimal Spinlock Mutex

1 #include <iostream>
2 #include <thread>
3 #include <atomic>
4 #include <mutex>
5
6 class SpinLockMutex {
7 public:
8 SpinLockMutex() {f_.clear();}
9 void lock() {while (f_.test_and_set()) {}}

10 void unlock() {f_.clear();}
11 private:
12 std::atomic_flag f_; // true if thread holds mutex
13 };
14
15 SpinLockMutex m;
16 unsigned long long counter = 0;
17
18 void doWork() {
19 for (unsigned long long i = 0; i < 100000ULL; ++i)
20 {std::scoped_lock lock(m); ++counter;}
21 }
22
23 int main() {
24 std::thread t1(doWork), t2(doWork);
25 t1.join(); t2.join();
26 std::cout << counter << ’\n’;
27 }

� default memory order is suboptimal (and will be revisited later)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1159

Example: One-Time Wait

1 #include <iostream>
2 #include <atomic>
3 #include <thread>
4 #include <chrono>
5

6 // notReady flag initially not set
7 std::atomic_flag notReady = ATOMIC_FLAG_INIT;
8 int result = 0;
9

10 int main() {
11 notReady.test_and_set(); // indicate result not ready
12 std::thread producer([](){
13 std::this_thread::sleep_for(std::chrono::seconds(1));
14 result = -42;
15 notReady.clear(); // indicate result ready
16 });
17 std::thread consumer([](){
18 // loop until result ready
19 while (notReady.test_and_set()) {}
20 std::cout << result << ’\n’;
21 });
22 producer.join();
23 consumer.join();
24 }

� This is not a particularly good use of atomic_flag.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1160

The std::atomic Template Class

� std::atomic class provides types with atomic operations

� declaration:
template <class T> struct atomic;

� provides object of type T with atomic operations

� has partial specializations for integral types and pointer types

� full specializations for all fundamental types

� in order to use class type for T, T must be trivially copyable
:::::::

[C++17 32.6/1] and
bitwise equality comparable

� not required to be lock free

� on most popular platforms atomic is lock free when T is built-in type

� not move constructible and not copy constructible
� assignable but assignment operator returns value not reference

� most operations have memory order argument

� default memory order is SC (std::memory_order_seq_cst)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1161

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/atomics.types.generic#1

std::atomic Members

Basic
Member Name Description

constructor constructs object
operator= atomically store value into atomic object
is_lock_free check if atomic object is lock free
store atomically replaces value of atomic object

with given value
load atomically reads value of atomic object
operator T obtain result of load
exchange atomically replaces value of atomic object

with given value and obtain value of previous
value

compare_exchange_weak similar to exchange_strong but may fail spu-
riously

compare_exchange_strong atomically compare value of atomic object to
given value and perform exchange if equal or
load otherwise

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1162

std::atomic Members (Continued 1)

Fetch
Member Name Description

fetch_add atomically adds given value to value stored in atomic object
and obtains value held previously

fetch_sub atomically subtracts given value from value stored in atomic
object and obtains value held previously

fetch_and atomically replaces value of atomic object with bitwise AND
of atomic object’s value and given value, and obtains value
held previously

fetch_or atomically replaces value of atomic object with bitwise OR
of atomic object’s value and given value, and obtains value
held previously

fetch_xor atomically replaces value of atomic object with bitwise XOR
of atomic object’s value and given value, and obtains value
held previously

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1163

std::atomic Members (Continued 2)

Increment and Decrement
Member Name Description

operator++ atomically increment the value of atomic object by one
and obtain value after incrementing

operator++(int) atomically increment the value of atomic object by one
and obtain value before incrementing

operator-- atomically decrement the value of atomic object by one
and obtain value after decrementing

operator--(int) atomically decrement the value of atomic object by one
and obtain value after decrementing

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1164

std::atomic Members (Continued 3)

Compound Assignment
Member Name Description

operator+= atomically adds given value to value stored in atomic
object

operator-= atomically subtracts given value from value stored in
atomic object

operator&= atomically performs bitwise AND of given value with
value stored in atomic object

operator|= atomically performs bitwise OR of given value with
value stored in atomic object

operator^= atomically performs bitwise XOR of given value with
value stored in atomic object

Constants
Member Name Description

is_always_lock_free indicates if type always lock free

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1165

Example: Atomic Counter

1 #include <iostream>
2 #include <vector>
3 #include <thread>
4 #include <atomic>
5

6 class AtomicCounter {
7 public:
8 AtomicCounter() : c_(0) {}
9 int operator++() {return ++c_;}

10 int get() const {return c_.load();}
11 private:
12 std::atomic<int> c_;
13 };
14

15 AtomicCounter counter;
16

17 void doWork() {
18 for (int i = 0; i < 10000; ++i) {++counter;}
19 }
20

21 int main() {
22 std::vector<std::thread> v;
23 for (int i = 0; i < 10; ++i)
24 {v.emplace_back(doWork);}
25 for (auto& t : v) {t.join();}
26 std::cout << counter.get() << ’\n’;
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1166

Example: Atomic Increment With Compare and Swap

1 #include <atomic>
2

3 template <class T>
4 void atomicIncrement(std::atomic<T>& x) {
5 T curValue = x;
6 while (!x.compare_exchange_weak(curValue,
7 curValue + 1)) {}
8 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1167

Example: Counting Contest

1 #include <iostream>
2 #include <vector>
3 #include <atomic>
4 #include <thread>
5

6 constexpr int numThreads = 10;
7 std::atomic ready(false);
8 std::atomic done(false);
9 std::atomic startCount(0);

10

11 void doCounting(int id) {
12 ++startCount;
13 while (!ready) {}
14 for (volatile int i = 0; i < 20000; i++) {}
15 bool expected = false;
16 if (done.compare_exchange_strong(expected, true))
17 {std::cout << "winner: " << id << ’\n’;}
18 }
19

20 int main() {
21 std::vector<std::thread> threads;
22 for (int i = 0; i < numThreads; ++i)
23 {threads.emplace_back(doCounting, i);}
24 while (startCount != numThreads) {}
25 ready = true;
26 for (auto& t : threads) {t.join();}
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1168

An Obligatory Note on volatile

� volatile qualifier not useful for multithreaded programming

� volatile qualifier makes no guarantee of atomicity
� can create object of volatile-qualified type whose size is sufficiently

large that no current processor can access object atomically

� some platforms may happen to guarantee memory operations on
(suitably-aligned) int object to be atomic, but in such cases this is
normally true even without volatile qualifier

� volatile qualifier does not adequately address issue of memory
consistency

� volatile qualifier does not imply use of memory barriers or other
mechanisms needed for memory consistency

� optimizer and hardware might reorder operations (on non-volatile
objects) across operations on volatile objects

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1169

Section 3.9.10

Atomics and the Memory Model

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1170

Semantics of Multithreaded Programs

� To be able to reason about the behavior of a program, we must know:
2 the order in which the operations of the program are performed; and
2 when the effects of each operation become visible to other operations in

the program, which may be performed in different threads.

� In a single-threaded program, the ordering of operations and when the
effects of operations become visible is quite intuitive.

� In a multi-threaded program, this matter becomes considerably more
complicated.

� In what follows, we examine the above matter more closely (which
essentially relates to the memory model).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1171

Happens-Before Relationships

� For two operations A and B performed in the same or different threads, A
is said to happen before B if the effects of A become visible to the thread
performing B before B is performed.

� The happens-before relationship is a much stronger condition than
“happens earlier in time”.

� If operation A happens earlier in time than operation B, this does not imply
that the effects of A must be visible to the thread performing B before B is
performed, due to the effects of caches, store buffers, and so on, which
delay the visibility of results.

� Happening earlier in time is only a necessary but not sufficient condition
for a happens-before relationship to exist.

� Happens-before relationships are not always transitive.
� In the absence of something known as a dependency-ordered-before

relationship (to be discussed later), which arise relatively less frequently,
happens-before relationships are transitive (i.e., if A happens before B
and B happens before C then A happens before C).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1172

“Earlier In Time” Versus Happens Before
� Consider the multithreaded program (with two threads) shown below,

where x and y are integer variables, initially zero.

Thread 1 Code
x = 1; // A

Thread 2 Code
y = x; // B

� Suppose that the run-time platform is such that memory operations on x
are atomic so the program is data-race free.

� Consider what happens when the program executes with the particular
timing shown below, where operation A occurs earlier in time than
operation B.

Time

y
Thread 1 (on Core 1) Thread 2 (on Core 2)

x = 1; //A

y = x; //B

� The value read for x in operation B will not necessarily be 1, since the
result of A may not yet be visible to thread 2 (e.g., due to caching).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1173

Sequenced-Before Relationships
� Given two operations A and B performed in the same thread, the

operation A is sequenced before B if A precedes B in program order (i.e.,
source-code order).

� Sequenced-before relationships are transitive (i.e., if A is sequenced
before B, and B is sequenced before C, then A is sequenced before C).

� Example: In the code below, statement A is sequenced before
statement B; B is sequenced before statement C; and, by transitivity, A is
sequenced before C.

x = 1; // A
y = 2; // B
z = x + 1; // C

� Example:
2 Consider the line of code below, which performs (in order) the following

operations: 1) multiplication, 2) addition, and 3) assignment.
y = a * x + b; // (y = ((a * x) + b);

2 Multiplication is sequenced before addition.
2 Addition is sequenced before assignment.
2 Thus, by transitivity, multiplication is sequenced before assignment.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1174

Sequenced-Before Relationships (Continued)

� For two operations A and B in the same thread, if A is sequenced before B
then A happens before B.

� In other words, program order establishes happens-before relationships
for operations within a single thread.

� A sequenced-before relationship is essentially an intra-thread
happens-before relationship. (Note that “intra” means “within”.)

� Example: In the code below, statement A is sequenced before
statement B. Therefore, A happens before B. Similarly, B happens before
statement C, and A happens before C.

x = 1; // A
y = 2; // B
z = x + 1; // C

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1175

Inter-Thread Happens-Before Relationships

� Establishing whether a happens-before relationship exists between
operations in different threads is somewhat more complicated than the
same-thread case.

� Inter-thread happens-before relationships establish happens-before
relationships for operations in different threads.

� For two operations A and B in different threads, if A inter-thread
happens before B then A happens before B.

� Inter-thread happens-before relationships are transitive (i.e., if A
inter-thread happens before B and B inter-thread happens before C then
A inter-thread happens before C).

� Some form of synchronization is required to establish an inter-thread
happens-before relationship.

� The various forms that this synchronization may take will be introduced on
later slides.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1176

Summary of Happens-Before Relationships

� For two operations A and B in either the same or different threads, A
happens before B if:

1 A and B are in the same thread and A is sequenced before (i.e., intra-thread
happens before) B; or

2 A and B are in different threads and A inter-thread happens before B.

� In other words, A happens before B if A either intra-thread happens before
or inter-thread happens before B.

� Intra-thread happens-before (i.e., sequenced-before) relationships are
transitive.

� Inter-thread happens-before relationships are transitive.

� Happens-before relationships are mostly but not always transitive.

� A happens-before relationship is important because it tells us if the result
of one operation can be seen by a thread performing another operation.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1177

Synchronizes-With Relationships
� A variety of relationships can imply an inter-thread happens-before

relationship, with one being the synchronizes-with relationship.
� For two operations A and B in different threads, if A synchronizes with B

then A inter-thread happens before B.
� Example:

2 Consider the two-threaded program shown below, with the shared variable
x of type int, where x is initially zero.

Thread 1 Code
1 x = 1;
2 // A (call of foo)
3 foo();

Thread 2 Code
1 bar();
2 // B (return from bar)
3 assert(x == 1);

2 Suppose that the foo and bar functions are such that:
1 any calls to bar will block until foo is called for the first time; and
2 if a call to foo is made prior to a call to bar returning, then the call to foo

synchronizes with the return of the call to bar.
2 In this example, the call to foo is always made prior to bar returning.
2 Consequently, A synchronizes with B, which implies that A must inter-thread

happen before B, which in turn implies that A happens before B.
2 Therefore, the assertion in thread 2 can never fail.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1178

Examples of Synchronizes-With Relationships

� Thread creation. The completion of the constructor for a thread object T
synchronizes with the start of the invocation of the thread function for T .

:::::::::
[C++17 33.3.2.2/6]

� Thread join. The completion of the execution of a thread function for a
thread object T synchronizes with (the return of) a join operation on T .

:::::::::
[C++17 33.3.2.5/4]

� Mutex unlock/lock. All prior unlock operations on a mutex M
synchronize with (the return of) a lock operation on M.

:::::::::
[C++17 33.4.3.2/11]

� Atomic. A suitably tagged atomic write operation W on a variable x
synchronizes with a suitably tagged atomic read operation on x that reads
the value stored by W (where the meaning of “suitably tagged” will be
discussed later).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1179

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/thread.thread.constr#6
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/thread.thread.member#4
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/thread.mutex.requirements.mutex#11

Synchronizes-With Relationship: Thread Create and Join

1 #include <thread>
2 #include <cassert>
3

4 int x = 0;
5

6 void doWork() {
7 // A1 (start of thread execution)
8 assert(x == 1); // OK: M1 synchronizes with A1
9 x = 2;

10 // A2 (end of thread execution)
11 }
12

13 int main() {
14 x = 1;
15 std::thread t(doWork); // M1 (completion of constructor)
16 t.join(); // M2 (return from join)
17 assert(x == 2); // OK: A2 synchronizes with M2
18 }

� since construction of thread (M1) synchronizes with start of thread function
execution (A1), M1 happens before A1 implying that assertion in doWork
cannot fail

� since completion of execution of thread function (A2) synchronizes with
join operation (M2), A2 happens before M2 implying that assertion in
main cannot fail

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1180NEXT SLIDE: shared data

Synchronizes-With Relationship: Mutex Lock/Unlock

Shared Data
std::mutex m;
int x = 0;
int y = 0;

Thread 1 Code
m.lock();
x = 1;
m.unlock();

Thread 2 Code
m.lock();
y = x;
m.unlock();

Execution

A

m.lock();

x = 1;

m.unlock();

m.lock();

y = x;

m.unlock();

synchronizes with

B

Thread 1 Execution Thread 2 Execution

� since unlock synchronizes with lock, A happens before B; thus, for timing
shown, B must see 1 for x

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1181NEXT SLIDE: std::scoped_lock

Memory Orders

� Most operations on atomic types allow a memory order to be specified.
� Example:

std::atomic<int> x = 0;
x.store(42, std::memory_order_seq_cst);
int y = x.load(std::memory_order_seq_cst);

� The following memory orders are supported:
2 sequentially consistent (std::memory_order_seq_cst)
2 acquire-release (std::memory_order_acq_rel)
2 acquire (std::memory_order_acquire)
2 release (std::memory_order_release)
2 consume (std::memory_order_consume)
2 relaxed (std::memory_order_relaxed)

� Read operations can use the orders:
2 sequentially consistent, acquire, consume, and relaxed.

� Write operations can use the orders:
2 sequentially consistent, release, and relaxed.

� Read-modify-write operations can use:
2 all of the orders allowed for read and write operations; and
2 acquire-release.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1182

Memory Models

� Although several memory orders can be employed for operations on
atomic types, these orders support four basic models:

1 sequentially consistent,
2 acquire release,
3 consume release, and
4 relaxed.

� These models differ in the guarantees that they make regarding:
2 whether all writes to all atomic objects become visible to all threads

simultaneously (i.e., total order for all writes to all atomic objects); and
2 whether operations on atomic objects in different threads can establish a

synchronization relationship (namely, a synchronizes-with or
dependency-ordered-before [discussed later] relationship).

� The models listed from strongest (i.e., makes the most guarantees) to
weakest (i.e., makes the least guarantees) are:

1 sequentially consistent,
2 acquire release,
3 consume release, and
4 relaxed.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1183

Memory Models (Continued 1)

� These models are hierarchical in the sense that each model makes at
least all of the same guarantees as its weaker counterparts.

� As we proceed from stronger to weaker models, more guarantees are lost.

� A stronger model may require additional synchronization by hardware,
which can degrade performance.

� A weaker model may not provide sufficient guarantees for the correct
functioning of code.

� Using a model that fails to provide sufficient guarantees for correct code
behavior will result in bugs.

� Also, as the model is weakened, it becomes more difficult to reason about
the behavior of code, leading to incomprehensible code and an increased
likelihood of (often very subtle) bugs.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1184

Modification Order

� All writes to a particular atomic object M (over its lifetime) occur in some
particular total order, called its modification order.

� Each atomic object has its own well-defined modification order.

� For a particular atomic object M, all threads in a program are guaranteed
to see M change in a manner consistent with its modification order.

� Essentially, this guarantee ensures that, once a given thread has seen a
particular value of an atomic object, a subsequent read by that thread
cannot retrieve an earlier value of the object.

� If such a guarantee were not made, the memory model would be so weak
as to be impractical to use.

� Modification order is primarily a conceptual tool that is useful for
describing memory-model behavior.

� In practice, a thread is unlikely to actually observe every change in the
modification order of an object.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1185

Modification Order (Continued)

� For each atomic object M, each thread has its own current position in
object’s modification order.

� A thread’s current position in the modification order of a particular atomic
object need not be the same for all threads.

� A read from an atomic object M by a thread T can optionally move T ’s
current position to a later position in the modification order of M and then
returns the value at the current position.

� A write to an atomic object M by a thread T appends the value to be
written to the modification order of M and updates T ’s current position in
the modification order of M to correspond to the value written.

� An read-modify-write operation A on an atomic object M reads the last
value in the modification order of M, modifies the value read appropriately,
appends the resulting value to the modification order of M, and updates
T ’s current position in the modification order of M to correspond to the
value written.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1186

Modification Order Example

� Consider an atomic object M with the modification sequence:
2 0, 1, 2, 3, 4, 5, 6, 7, 8.

� A thread could, for example, legitimately see M undergo any of the
following sequences of updates:

2 0, 4, 8
2 8
2 2, 7
2 0, 1, 2, 5, 7, 8
2 0, 1, 2, 3, 4, 5, 6, 7, 8

� A thread would, for example, be guaranteed never to see M undergo any
of the following sequences of updates, as all of these sequences are
inconsistent with the modification order of M:

2 1, 0
2 1, 2, 1
2 42
2 0, 1, 2, 3, 4, 5, 6, 7, 6, 8

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1187

Relative Ordering of Changes to Different Atomic Objects

� Although each atomic object has its own well-defined modification order, it
is not necessarily the case that the modification orders for individual
objects can be combined into a single total order over all atomic objects.

� Practically speaking, the reason for this is the delay in the visibility of
results introduced by store buffers, caches, and so on.

� If a single total order for writes to all atomic objects is not guaranteed, this
implies that the relative order of changes to different atomic objects need
not appear the same to different threads.

� Ensuring the existence of a single total order over all atomic objects would
require a significant amount of additional processor synchronization,
which can significantly degrade performance.

� Therefore, this guarantee is not required to be made in all cases, the idea
being that we only ask for the guarantee when it is needed for correct
code behavior.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1188

Modification Order Revisited

� Consider a program with two threads and two shared integer atomic
objects x and y, each having the modification order: 0, 1.

� Suppose that no requirement is imposed to guarantee the existence of a
single total order on writes to all atomic objects.

� Thread 1 could see x and y change in the following manner, consistent
with their stated modification order:

Variable Updates to Value Seen By Thread
x 0 1 .

y 0 . 1

� Thread 2 could see x and y change in the following manner, consistent
with their stated modification order:

Variable Updates to Value Seen By Thread
x 0 . 1

y 0 1 .

� Observe that thread 1 and thread 2 do not see x and y change in the
same order relative to one another (i.e., thread 1 sees x change before y,
while thread 2 sees y change before x).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1189

Sequentially-Consistent Model

� The sequentially-consistent model simply corresponds to the default
memory model for the language, namely, SC-DRF. (Since data races
cannot occur on atomic objects, SC-DRF degenerates into SC for such
objects.)

� For the sequentially-consistent model, all memory operations (i.e., read,
write, and read-modify-write) must use the sequentially-consistent
memory order (std::memory_order_seq_cst).

� A total ordering is guaranteed on all sequentially-consistent writes to all
atomic objects.

� All sequentially-consistent writes to atomic objects must become visible
to all threads simultaneously.

� A sequentially-consistent write operation W on an atomic object M (in one
thread) synchronizes with a sequentially-consistent operation on M (in
another thread) that reads the value written by W .

� This model allows for relatively easy reasoning about code behavior.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1190

Example: Sequentially-Consistent Model
� shared data:

x and y are of type std::atomic<int> and both are initially zero
� thread 1 code (writes x):

x.store(1, std::memory_order_seq_cst);
� thread 2 code (writes y):

y.store(1, std::memory_order_seq_cst);
� thread 3 code (reads x then y):

int x1 = x.load(std::memory_order_seq_cst);
int y1 = y.load(std::memory_order_seq_cst);

� thread 4 code (reads y then x):
int y2 = y.load(std::memory_order_seq_cst);
int x2 = x.load(std::memory_order_seq_cst);

� memory order guarantees total order for all writes to all atomic objects
� so, thread 3 and thread 4 must agree about order in which x and y are

modified
� not possible to see x1 == 1 and y1 == 0 in thread 3 (implying x

modified before y) and x2 == 0 and y2 == 1 in thread 4 (implying y
modified before x)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1191

Example: Sequentially-Consistent Model
1 #include <atomic>
2 #include <thread>
3 #include <cassert>
4
5 std::atomic<int> x, y, c;
6
7 void w_x() {x.store(1, std::memory_order_seq_cst);}
8
9 void w_y() {y.store(1, std::memory_order_seq_cst);}

10
11 void r_xy() {
12 while (!x.load(std::memory_order_seq_cst)) {}
13 if (y.load(std::memory_order_seq_cst)) {++c;}
14 }
15
16 void r_yx() {
17 while (!y.load(std::memory_order_seq_cst)) {}
18 if (x.load(std::memory_order_seq_cst)) {++c;}
19 }
20
21 int main() {
22 x = 0; y = 0; c = 0;
23 std::thread t1(w_x), t2(w_y), t3(r_xy), t4(r_yx);
24 t1.join(); t2.join(); t3.join(); t4.join();
25 assert(c != 0); // assertion cannot fail
26 }

� assertion cannot fail: when while loop in r_xy terminates, all threads
must see x as nonzero; when while loop in r_yx terminates, all threads
must see y as nonzero; at least one of these must happen before if
statements in both r_xy and r_yx executedCopyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1192

Acquire-Release Model
� For the acquire-release model, the memory order is chosen as follows:

2 a read operation uses the acquire order (std::memory_order_acquire)
2 a write operation uses the release order (std::memory_order_release)
2 a read-modify-write operation uses one of the orders allowed for read and

write operations, or the acquire-release order
(std::memory_order_acq_rel), which results in read acquire and write
release.

� No total ordering exists on all writes to all atomic objects (unlike in the
sequentially-consistent model).

� Consequently, threads do not necessarily have to agree on the relative
order in which different atomics objects are modified.

� A write-release operation W on an atomic object M synchronizes with a
read-acquire operation on M that reads the value written by W (or a value
written by the release sequence headed by W).

:::::::
[C++17 32.4/2]

� The acquire-release model is useful for situations that involve pairwise
synchronization of threads, such as with mutexes.

� With the acquire-release model, it is often still possible to reason about
code behavior without too much difficulty.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1193

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/atomics.order#2

Example: Acquire-Release Model
� shared data:

x and y are of type std::atomic<int> and both are initially zero
� thread 1 code (writes x):

x.store(1, std::memory_order_release);
� thread 2 code (writes y):

y.store(1, std::memory_order_release);
� thread 3 code (reads x then y):

int x1 = x.load(std::memory_order_acquire);
int y1 = y.load(std::memory_order_acquire);

� thread 4 code (reads y then x):
int y2 = y.load(std::memory_order_acquire);
int x2 = x.load(std::memory_order_acquire);

� no ordering relationship between stores to x and y
� so, thread 3 and thread 4 do not need to agree about order in which x and

y are modified
� possible to see x1 == 1 and y1 == 0 in thread 3 (i.e., thread 3 sees x

change before y) and x2 == 0 and y2 == 1 in thread 4 (i.e., thread 4
sees y change before x)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1194

Example: Acquire-Release Model
1 #include <atomic>
2 #include <thread>
3 #include <cassert>
4
5 std::atomic<int> x, y, c;
6
7 void w_x() {x.store(1, std::memory_order_release);}
8
9 void w_y() {y.store(1, std::memory_order_release);}

10
11 void r_xy() {
12 while (!x.load(std::memory_order_acquire)) {}
13 if (y.load(std::memory_order_acquire)) {++c;}
14 }
15
16 void r_yx() {
17 while (!y.load(std::memory_order_acquire)) {}
18 if (x.load(std::memory_order_acquire)) {++c;}
19 }
20
21 int main() {
22 x = 0; y = 0; c = 0;
23 std::thread t1(w_x), t2(w_y), t3(r_xy), t4(r_yx);
24 t1.join(); t2.join(); t3.join(); t4.join();
25 assert(c != 0); // assertion can fail
26 }

� assertion can fail: one thread seeing x or y being nonzero does not imply
other thread sees same

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1195

Example: Spinlock Mutex Using std::atomic_flag
1 #include <iostream>
2 #include <thread>
3 #include <atomic>
4
5 class SpinLockMutex {
6 public:
7 SpinLockMutex() {f_.clear();}
8 void lock() {
9 while (f_.test_and_set(std::memory_order_acquire)) {}

10 }
11 void unlock() {f_.clear(std::memory_order_release);}
12 private:
13 std::atomic_flag f_; // true if thread holds mutex
14 };
15
16 SpinLockMutex m;
17 unsigned long long counter = 0;
18
19 void doWork() {
20 for (unsigned long long i = 0; i < 100000ULL; ++i)
21 {m.lock(); ++counter; m.unlock();}
22 }
23
24 int main() {
25 std::thread t1(doWork), t2(doWork);
26 t1.join(); t2.join();
27 std::cout << counter << ’\n’;
28 }

� uses acquire-release model

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1196

Example: Spinlock Mutex and std::scoped_lock
1 #include <iostream>
2 #include <thread>
3 #include <atomic>
4 #include <mutex>
5

6 class SpinLockMutex {
7 public:
8 SpinLockMutex() {f_.clear();}
9 void lock() {

10 while (f_.test_and_set(std::memory_order_acquire)) {}
11 }
12 void unlock() {f_.clear(std::memory_order_release);}
13 private:
14 std::atomic_flag f_; // true if thread holds mutex
15 };
16

17 SpinLockMutex m;
18 unsigned long long counter = 0;
19

20 void doWork() {
21 for (unsigned long long i = 0; i < 100000ULL; ++i)
22 {std::scoped_lock lg(m); ++counter;}
23 }
24

25 int main() {
26 std::thread t1(doWork), t2(doWork);
27 t1.join(); t2.join();
28 std::cout << counter << ’\n’;
29 }
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1197

Carries-A-Dependency Relationships
� For two operations A and B performed in the same thread, A is said to

carry a dependency to B if the result of A is used as an operand for B
(ignoring some special cases).

::::::::
[C++17 4.7.1/7]

� Example: In the code below, statement A carries a dependency to
statement B but not statement C.

x = 42; // A
y = x + 1; // B
z = 0; // C

� Note that “carries a dependency to” is a subset of “is sequenced before”
(i.e., the former implies the latter).

::::::::
[C++17 4.7.1/7]

� The carries-a-dependency-to relationship is transitive (i.e., if A carries a
dependency to B and B carries a dependency to C then A carries a
dependency to C).

� Example: In the code below, statement A carries a dependency to
statement B; and B carries a dependency to statement C. Therefore,
transitively, A carries a dependency to C.

x = 42; // A
y = x + 1; // B
z = 2 * y; // C

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1198

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/intro.races#7
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/intro.races#7

Dependency-Ordered-Before Relationships

� Another type of synchronization relationship is known as a
dependency-ordered-before relationship.

� A write-release operation A is dependency ordered before a
read-consume operation B if B reads the value written by A (or any side
effect in the release sequence headed by A).

� For two operations A and B performed in different threads, if A is
dependency ordered before B then A inter-thread happens before B.

� Thus, dependency-ordered-before relationships can also establish
happens-before relationships.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1199

Inter-Thread Happens-Before Relationships Revisited

� The inter-thread happens before relation describes an arbitrary
concatenation of sequenced-before, synchronizes-with, and
dependency-ordered-before relations, with two exceptions:

::::::::
[C++17 4.7.1/9]

1 a concatenation is not permitted to end with dependency ordered before
followed by (one or more) sequenced before; and

2 a concatenation is not permitted to consist entirely of sequenced-before
relations.

� The first restriction is required since a dependency-ordered-before
relationship synchronizes only data dependencies.

� The second restriction is required since inter-thread happens-before
relationship must (by definition) involve operations in different threads.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1200

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/intro.races#9

Consume-Release Model

� For the consume-release model, the memory order is chosen as follows:
2 a write operation uses release order (std::memory_order_release)
2 a read operation uses the consume order (std::memory_order_consume)

� The consume-release model is identical to the acquire-release model with
one important difference, namely the type of synchronization relationship
established.

� A write-release operation W is dependency ordered before a
read-consume operation (in a different thread) that reads the value stored
by W (or any side effect in the release sequence headed by W).

� In other words, the consume-release model establishes a
dependency-ordered-before relationship, whereas the acquire-release
model establishes a synchronizes-with relationship.

� In this sense, the consume-release model is weaker than the
acquire-release model (i.e., less data is synchronized).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1201

Example: Consume-Release Model
1 #include <thread>
2 #include <atomic>
3 #include <cassert>
4
5 int x = 0;
6 std::atomic y(0);
7
8 void producer() {
9 x = 42;

10 y.store(1, std::memory_order_release);
11 }
12
13 void consumer() {
14 int a;
15 while (!(a = y.load(std::memory_order_consume))) {}
16 assert(x == 42); // data race
17 }
18
19 int main() {
20 std::thread t1(producer);
21 std::thread t2(consumer);
22 t1.join();
23 t2.join();
24 }

� program has data race on x; a does not carry dependency to x so x = 42
does not necessarily happen before x used in assertion

� if consume changed to acquire, no data race and assertion cannot fail

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1202

Example: Publishing Data Via Pointer
1 #include <thread>
2 #include <atomic>
3 #include <cassert>
4 #include <string>
5

6 std::atomic<std::string*> p(nullptr);
7 int x = 0;
8

9 void producer() {
10 std::string* s = new std::string("Hello");
11 x = 42;
12 p.store(s, std::memory_order_release);
13 }
14

15 void consumer() {
16 std::string* s;
17 while (!(s = p.load(std::memory_order_consume))) {}
18 assert(*s == "Hello");
19 // assert(x == 42); would result in data race
20 }
21

22 int main() {
23 std::thread t1(producer), t2(consumer);
24 t1.join(); t2.join();
25 }

� assertion cannot fail; store to p is dependency ordered before load and
load carries dependency to *s in assertion

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1203

Relaxed Model

� For the relaxed model, all memory operations use the relaxed order
(std::memory_order_relaxed).

� Like in the acquire-release model, no total order exists on updates to all
atomic objects (collectively).

� Operations on the same variable within a single thread satisfy a
happens-before relationship (i.e., within a single thread, accesses to a
single atomic variable must follow program order).

� Unlike in the acquire-release model, no inter-thread synchronization
relationship is established.

� No requirement exists on the ordering relative to other threads.

� The relaxed order is sometime suitable for updating counters (e.g., blind
event counters).

� Except in very trivial cases, it can be extremely difficult to reason about
the meaning and/or correctness of code that uses relaxed order.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1204

Behavior of Relaxed Model

� consider atomic memory operations with relaxed order
� for each individual atomic object, all threads have view of updates that is

consistent with single modification sequence
� read operation (e.g., load):

2 if current position not set, return any element in sequence and set current
position to that of returned element

2 otherwise, either leave current position unchanged or move later in
sequence and return value at current position

� write operation (e.g., store):
2 append value to end of sequence
2 set current position to correspond to appended value

� read-modify-write operation (e.g., increment, decrement, exchange,
compare_exchange):

2 read last value from sequence
2 modify read value as appropriate to obtain new value
2 append new value to end of sequence
2 set current position to correspond to that of appended value

� considerable flexibility in value returned by read
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1205

Example: Relaxed Model
1 #include <atomic>
2 #include <thread>
3 #include <cassert>
4
5 std::atomic<int> x, y, c;
6
7 void w_x() {x.store(1, std::memory_order_relaxed);}
8
9 void w_y() {y.store(1, std::memory_order_relaxed);}

10
11 void r_xy() {
12 while (!x.load(std::memory_order_relaxed)) {}
13 if (y.load(std::memory_order_relaxed)) {++c;}
14 }
15
16 void r_yx() {
17 while (!y.load(std::memory_order_relaxed)) {}
18 if (x.load(std::memory_order_relaxed)) {++c;}
19 }
20
21 int main() {
22 x = 0; y = 0; c = 0;
23 std::thread t1(w_x), t2(w_y), t3(r_xy), t4(r_yx);
24 t1.join(); t2.join(); t3.join(); t4.join();
25 assert(c != 0); // assertion can fail
26 }

� assertion can fail: one thread seeing x or y being nonzero does not imply
other thread sees same

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1206

Example: Blind Event Counters

1 #include <vector>
2 #include <iostream>
3 #include <thread>
4 #include <atomic>
5
6 std::atomic<unsigned long long> counter(0);
7
8 void doWork() {
9 for (long i = 0; i < 100’000L; ++i)

10 {counter.fetch_add(1, std::memory_order_relaxed);}
11 }
12
13 int main() {
14 std::vector<std::thread> workers;
15 for (int i = 0; i < 10; ++i) {workers.emplace_back(doWork);}
16 for (auto& t : workers) {t.join();}
17 std::cout << "counter " << counter << ’\n’;
18 }

� fetch_add can use relaxed order, since only incrementing counter
blindly (i.e., not taking action based on value of counter)

� thread join operations provide synchronization to ensure desired value
read for counter when output

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1207

Example: Done Flag
1 #include <atomic>
2 #include <chrono>
3 #include <thread>
4 #include <vector>
5
6 std::atomic<bool> done;
7
8 void doWork() {
9 while (!done.load(std::memory_order_relaxed)) {

10 // do something here
11 }
12 }
13
14 int main() {
15 std::vector<std::thread> workers;
16 done.store(false, std::memory_order_relaxed); // I hope? ;)
17 for (int i = 0; i < 16; ++i) {workers.emplace_back(doWork);}
18 std::this_thread::sleep_for(std::chrono::seconds(5));
19 done = true; // not relaxed
20 for (auto& t : workers) {t.join();}
21 }

� done.store can be relaxed due to synchronization from thread create
� done.load can be relaxed since order not important; different order as if

other threads ran at different speeds
� assign to done must be sequentially-consistent to prevent assign from

floating past join (due to single-thread optimization)
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1208

Example: std::shared_ptr Reference Counting

� The copy constructor for shared_ptr (which increments a reference
count) would look something like:

// ...
controlBlockPtr = other->controlBlockPtr;
controlBlockPtr->refCount.fetch_add(1,
std::memory_order_relaxed);

// ...

� The destructor for shared_ptr (which decrements a reference count)
would look something like:

// ...
if (!controlBlockPtr->refCount.fetch_sub(1,
std::memory_order_acq_rel)) {
delete controlBlockPtr;

}
// ...

� The increment operation can use relaxed order, since no action is taken
based on the reference count value.

� The decrement operation needs to use acquire-release order so that the
decrement cannot float and the correct view of the data is seen by the
thread doing the delete (all decrements form a synchronization chain).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1209

Release Semantics for Memory Operations

� Release semantics is a property that can only apply to operations that
write to memory (i.e., read-modify-write operations or plain writes).

� A write operation that has release semantics is called a write release.

� A write release operation W cannot be reordered with any read or write
operation that precedes W in program order (i.e., memory operations
cannot be moved from before W to after W).

� The term release semantics originates from mutexes.

� In the context of mutexes, the operations prior to a mutex release
operation, which correspond to operations in a critical section, must not be
moved after the mutex release operation, as operations after the mutex
release operation are not protected by the mutex.

Write Release

After

(In Program Order)
Before

(In Program Order)

Moving memory operations
across the write release

allowed
in this direction is

Moving memory operations
across the write release

not allowed
in this direction is

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1210

Acquire Semantics for Memory Operations

� Acquire semantics is a property that can only apply to operations that
read from memory (i.e., read-modify-write operations or plain reads).

� A read operation that has acquire semantics is called a read acquire.

� A read acquire operation R cannot be reordered with any read or write
operation that follows R in program order (i.e., memory operations cannot
be moved from after R to before R).

� The term acquire semantics originates from mutexes.

� In the context of mutexes, the operations following a mutex acquire
operation, which correspond to operations in a critical section, must not be
moved before the mutex acquire operation, as operations before the
mutex acquire operation are not protected by the mutex.

Read Acquire

After

(In Program Order)
Before

(In Program Order)

Moving memory operations
across the read acquire

not allowed
in this direction is

Moving memory operations
across the read acquire

allowed
in this direction is

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1211

Release Sequences

� A release sequence headed by a release operation A on an atomic object
M is a maximal contiguous subsequence of side effects in the
modification order of M, where the first operation is A, and every
subsequent operation

::::::::
[C++17 4.7.1/5]

2 is performed by the same thread that performed A, or
2 is an atomic read-modify-write operation.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1212

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/intro.races#5

Release Sequence Example

1 #include <thread>
2 #include <atomic>
3 #include <cassert>
4

5 int x = 0;
6 std::atomic y(0);
7

8 int main() {
9 std::thread t1([](){

10 x = 42;
11 y.store(1, std::memory_order_release); // A
12 y.store(2, std::memory_order_relaxed); // B
13 });
14 std::thread t2([](){
15 int r;
16 while ((r = y.load(std::memory_order_acquire)) // C
17 < 2) {}
18 assert(x == 42);
19 });
20 t1.join();
21 t2.join();
22 }

� stores to y in A and B constitute release sequence headed by store in A

� when while loop terminates, load in C will have read value written by store in B (not store in A)

� A synchronizes with C, since C reads value in release sequence headed by A

� assertion cannot fail, since A happens before C

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1213

Fences
� A memory fence (also known as a memory barrier) is an operation that

causes the processor and compiler to enforce an ordering constraint on
memory operations issued before and after the fence operation.

� Certain types of memory operations before a fence are guaranteed not to
be reordered with certain types of memory operations after the fence.

� A fence may also introduce synchronizes-with relationships under certain
circumstances.

� An acquire fence prevents the reordering of any read or write following
the fence (in program order) with any read prior to the fence (in program
order). (That is, a memory operation after the fence cannot be moved
before any read operation before the fence.)

� A release fence prevents the reordering of any read or write prior to the
fence (in program order) with any write following the fence (in program
order). (That is, a memory operation before the fence cannot be moved
after any write operation after the fence.)

� A fence is not a release or acquire operation. as it does not read/write
memory.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1214

std::atomic_thread_fence

� memory fences can be inserted via function
std::atomic_thread_fence

� declaration:
void atomic_thread_fence(std::memory_order order)
noexcept;

� no effect if order is std::memory_order_relaxed

� acquire fence if order is std::memory_order_acquire or
std::memory_order_consume

� release fence if order is std::memory_order_release

� both acquire and release fence if order is
std::memory_order_acq_rel

� sequentially consistent acquire and release fence if order is
std::memory_order_seq_cst

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1215

Fences and Synchronizes-With Relationships
� Release fence and acquire fence. A release fence A synchronizes with an

acquire fence B if there exist atomic operations X and Y , both operating
on some atomic object M, such that A is sequenced before X , X modifies
M, Y is sequenced before B, and Y reads the value written by X or a
value written by any side effect in the hypothetical release sequence X
would head if it were a release operation.

:::::::
[C++17 32.9/2]

� Release fence and acquire operation. A release fence A synchronizes
with an atomic operation B that performs an acquire operation on an
atomic object M if there exists an atomic operation X such that A is
sequenced before X , X modifies M, and B reads the value written by X or
a value written by any side effect in the hypothetical release sequence X
would head if it were a release operation.

:::::::
[C++17 32.9/3]

� Release operation and acquire fence. An atomic operation A that is a
release operation on an atomic object M synchronizes with an acquire
fence B if there exists some atomic operation X on M such that X is
sequenced before B and reads the value written by A or a value written by
any side effect in the release sequence headed by A.

:::::::
[C++17 32.9/4]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1216

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/atomics.fences#2
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/atomics.fences#3
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/atomics.fences#4

Example: Incorrect Code Without Fence

1 #include <thread>
2 #include <atomic>
3 #include <iostream>
4

5 std::atomic ready(false);
6 int data = 0;
7

8 void produce() {
9 data = 42; // write to data can move after store in A

10 // release fence needed here
11 ready.store(true, std::memory_order_relaxed); // A
12 }
13

14 void consume() {
15 while (!ready.load(std::memory_order_relaxed)) {} // B
16 // acquire fence needed here
17 std::cout << data << ’\n’;
18 // read of data can move before load in B
19 }
20

21 int main() {
22 std::thread t1(produce);
23 std::thread t2(consume);
24 t1.join(); t2.join();
25 }

� atomic store (to ready) does not synchronize with atomic load (of ready),
due to relaxed order; results in race on data

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1217

Example: Correct Code With Fence

1 #include <thread>
2 #include <atomic>
3 #include <iostream>
4

5 std::atomic ready(false);
6 int data = 0;
7

8 void produce() {
9 data = 42;

10 std::atomic_thread_fence(std::memory_order_release);
11 ready.store(true, std::memory_order_relaxed);
12 }
13

14 void consume() {
15 while (!ready.load(std::memory_order_relaxed)) {}
16 std::atomic_thread_fence(std::memory_order_acquire);
17 std::cout << data << ’\n’;
18 }
19

20 int main() {
21 std::thread t1(produce);
22 std::thread t2(consume);
23 t1.join(); t2.join();
24 }

� release fence synchronizes with acquire fence, due to atomic load (of
ready) reading from result of atomic store (to ready)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1218

Memory Orders: The Bottom Line

� Use sequentially-consistent order unless there is a compelling case to do
otherwise.

� In situations where semantics dictate a clear pairwise synchronization
between threads, consider the use of acquire-release order if it can be
easily seen to yield correct code.

� Only consider relaxed order in situations where the performance penalty
of using a stronger order would be unacceptable.

� Be very wary of using relaxed order. Even world experts on the C++
memory model acknowledge that this can be tricky.

� Always have any code using relaxed order thoroughly reviewed by people
who are extremely knowledgeable about memory models.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1219

Section 3.9.11

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1220

References I

1 A. Williams. C++ Concurrency in Action.
Manning Publications, Shelter Island, NY, USA, 2012.
This is a fairly comprehensive book on concurrency and multithreaded
programming in C++. It is arguably the best book available for those who want to
learn how to write multithreaded code using C++.

2 M. J. Batty. The C11 and C++11 Concurrency Model.
PhD thesis, University of Cambridge, Cambridge, UK, Nov. 2014.
This very well written Ph.D. thesis introduces the C++11/C11 memory model and
presents work in mathematically formalizing, refining, and validating this model.

3 M. Batty. Multicore Programming: C++0x.
University of Cambridge, Cambridge, UK, Nov. 2010.
This set of slides appear to have been used for part of a course on multicore
programming at the University of Cambridge.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1221

References II

4 M. Herlihy and N. Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann, Burlington, MA, USA, 2008.
A good reference for concurrent programming.

5 S. V. Adve and K. Gharachorloo. Shared memory consistency models: A
tutorial.
IEEE Computer, 29(12):66–76, Dec. 1996.

6 S. V. Adve and H.-J. Boehm. Memory models: A case for rethinking
parallel languages and hardware.
Communications of the ACM, 53(8):90–101, Aug. 2010.

7 H.-J. Boehm and S. V. Adve. You don’t know jack about shared variables
or memory models.
Communications of the ACM, 55(2):48–54, Feb. 2012.

8 H.-J. Boehm, Memory Model Rationale, ISO/IEC
JTC1/SC22/WG14/N1479, May 2010.
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1479.htm

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1222

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1479.htm

Talks I

1 Herb Sutter. atomic<> Weapons: The C++11 Memory Model and
Modern Hardware. C++ and Beyond, Asheville, NC, USA, Aug. 5–8, 2012.
Available online at https://channel9.msdn.com/Shows/Going+Deep
/Cpp-and-Beyond-2012-Herb-Sutter-atomic-Weapons-1-of-2
and https://channel9.msdn.com/Shows/Going+Deep/Cpp-and-Bey
ond-2012-Herb-Sutter-atomic-Weapons-2-of-2. (This talk is in two
parts.)

2 Herb Sutter. C++ Concurrency. C++ and Beyond, Asheville, NC, USA,
Aug. 5–8, 2012. Available online at
https://channel9.msdn.com/Shows/Going+Deep/C-and-Beyond-
2012-Herb-Sutter-Concurrency-and-Parallelism.

3 Herb Sutter. Lock-Free Programming (Or, Juggling Razor Blades).
CppCon, 2014. Available online at https://youtu.be/c1gO9aB9nbs
and https://youtu.be/CmxkPChOcvw. (This talk is in two parts.)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1223

https://channel9.msdn.com/Shows/Going+Deep/Cpp-and-Beyond-2012-Herb-Sutter-atomic-Weapons-1-of-2
https://channel9.msdn.com/Shows/Going+Deep/Cpp-and-Beyond-2012-Herb-Sutter-atomic-Weapons-1-of-2
https://channel9.msdn.com/Shows/Going+Deep/Cpp-and-Beyond-2012-Herb-Sutter-atomic-Weapons-2-of-2
https://channel9.msdn.com/Shows/Going+Deep/Cpp-and-Beyond-2012-Herb-Sutter-atomic-Weapons-2-of-2
https://channel9.msdn.com/Shows/Going+Deep/C-and-Beyond-2012-Herb-Sutter-Concurrency-and-Parallelism
https://channel9.msdn.com/Shows/Going+Deep/C-and-Beyond-2012-Herb-Sutter-Concurrency-and-Parallelism
https://youtu.be/c1gO9aB9nbs
https://youtu.be/CmxkPChOcvw

Talks II

4 Hans-J. Boehm. Threads and Shared Variables in C++11. Going Native,
Redmond, WA, USA, Feb. 2–3, 2012. Available online at
https://channel9.msdn.com/Events/GoingNative/GoingNative
-2012/Threads-and-Shared-Variables-in-C-11.

5 Mike Long. Introducing the C++ Memory Model. Norwegian Developers
Conference, Oslo, Norway, Jun. 15–19, 2014. Available online at
https://vimeo.com/97419179.

6 Herb Sutter. Machine Architecture and You: Things Your Programming
Language Never Told You. Northwest C++ Users’ Group, Redmond, WA,
USA, Sept. 19. 2007. Available online at
http://nwcpp.org/september-2007.html.

7 Pablo Halpern. Overview of Parallel Programming in C++. CppCon,
Bellevue, WA, USA, Sept. 8, 2014. Available online at
https://youtu.be/y0GSc5fKtl8.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1224

https://channel9.msdn.com/Events/GoingNative/GoingNative-2012/Threads-and-Shared-Variables-in-C-11
https://channel9.msdn.com/Events/GoingNative/GoingNative-2012/Threads-and-Shared-Variables-in-C-11
https://vimeo.com/97419179
http://nwcpp.org/september-2007.html
https://youtu.be/y0GSc5fKtl8

Talks III

8 Valentin Ziegler. C++ Memory Model. Meeting C++, Berlin, Germany,
Dec. 6, 2014. Available online at https://youtu.be/gpsz8sc6mNU.

9 Jeff Preshing. How Ubisoft Montreal Develops Games for Multicore —
Before and After C++11. CppCon, Bellevue, WA, USA, Sept. 11, 2014.
Available online at https://youtu.be/X1T3IQ4N-3g.

10 Sean Parent. Better Code: Concurrency. code::dive, Wrocław, Poland,
Nov. 15–16, 2016. Available online at
https://youtu.be/QIHy8pXbneI.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1225

https://youtu.be/gpsz8sc6mNU
https://youtu.be/X1T3IQ4N-3g
https://youtu.be/QIHy8pXbneI

Section 3.10

Compilers and Linkers

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1226

Application Binary Interfaces (ABIs)

� application binary interface (ABI) specifies how data structures or
subroutines accessed at machine-code level

� in other words, ABI is like API, but at level of machine code
� ABI typically covers details such as:

2 processor instruction set
2 sizes, layouts, and alignments of data types
2 calling conventions, which include details such as:

2 how parameters passed to functions
2 how return values passed back from functions
2 what state (e.g., registers) needs to be preserved by caller/callee

2 how exceptions handled
2 how source code identifiers should be mapped to identifiers in object code

(i.e., name mangling)
2 how calls made to operating system

� compilers need to adhere to ABI to allow object-code compatibility
between different compilers

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1227

Name Mangling
� name mangling is process that maps set of names to another set of

names
� typically name mangling used to map names in source code (which may

be overloaded) to names in object code
� to keep linkers from becoming overly complex, do not want linkers to have

to support overloaded identifiers
� thus, each overloaded function must have distinct name in object code
� unique names in object code obtained by applying name mangling to

names from source code
� name mangling rules not specified by C++ standard
� typically, name mangling rules addressed by ABI standard, such as

Itanium ABI
� some examples of name mangling results with Itanium ABI as follows:

Declaration Mangled Name

bool func(int) _Z4funci
bool func(double, double) _Z4funcdd

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1228

Section 3.10.1

Itanium C++ ABI

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1229

Itanium C++ ABI

� one ABI followed by number of popular C++ compilers is Itanium C++ ABI

� Itanium C++ ABI builds on various other ABI documents (some of which
are related to either System V or Intel Itanium architecture)

� amongst other things, Itanium C++ ABI specifies:
2 some implementation details for constructors and destructors
2 name mangling rules

� web site:
2 https://itanium-cxx-abi.github.io/cxx-abi/abi.html

� developed jointly by informal industry coalition consisting of
CodeSourcery, Compaq, EDG, HP, IBM, Intel, Red Hat, and SGI

� Itanium C++ ABI followed by GCC and Clang on most platforms (with
Microsoft Windows being notable exception)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1230

https://itanium-cxx-abi.github.io/cxx-abi/abi.html

Constructors

� each constructor written by programmer nominally results in compiler
emitting code for multiple functions, which together implement several
variations on construction

� each constructor for class T nominally associated with three functions:
1 base object constructor: function that creates non-virtual (direct) base

class objects and non-static data members of T and initializes T object itself
2 complete object constructor: function that creates all virtual base class

objects of T and then additionally performs all work of base object
constructor

3 allocating object constructor: function that performs all work of complete
object constructor after obtaining storage for new T object from allocation
function (i.e., operator new)

� if no virtual base classes, complete object constructor and base object
constructor are same (e.g., one function is alias for other)

� ABI specification seems to suggest that allocating constructor only
required if class has virtual destructor

� this said, however, GCC appears to never emit code for allocating object
constructor

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1231

Destructors

� each destructor written by programmer nominally results in compiler
emitting code for multiple functions, which together implement several
variations on destruction

� destructor for class T nominally associated with three functions:
1 base object destructor: function that performs any clean-up action for T

object itself and destroys non-static data members and non-virtual (direct)
base class objects of T

2 complete object destructor: function that, in addition to actions of base
object destructor, destroys all virtual base class objects of T

3 deleting destructor: function that, in addition to actions of complete object
destructor, invokes appropriate deallocation function for T

� complete object destructor in charge of destroying virtual base class
objects, whereas base object destructor is not

� if no virtual base classes, base object destructor and complete object
destructor are same (e.g., one is alias for other)

� deleting destructor must be emitted when T has virtual destructor;
otherwise, may be emitted but not required

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1232

Name Mangling

� many rules for name mangling; only a few mentioned here

� all mangled symbols begin with _Z

� nested name delimited by N and E

� St denotes std namespace; Sa denotes std::allocator

� template arguments delimited by I and E

� letter codes for some built-in types:
Letter Code Built-In Type

v void
b bool
c char
h unsigned char
i int

Letter Code Built-In Type

j unsigned int
l long
m unsigned long
f float
d double

� letter codes for cv-qualifiers:
Letter Code Qualifier

V volatile
K const

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1233

Name Mangling (Continued)

� letter codes for type qualifiers:
Letter Code Qualifier

P pointer
R lvalue reference
O rvalue reference

� codes for constructors and destructors:
Code Description

C1 complete object constructor
C2 base object constructor
C3 allocating constructor
D0 deleting destructor
D1 complete object destructor
D2 base object destructor

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1234

Name Mangling Examples

1 #include <iostream>
2 #include <vector>
3
4 struct Widget {
5 Widget();
6 Widget(int);
7 ~Widget();
8 int grog() const;
9 };

10 Widget::Widget() {}
11 // Widget::Widget() -> _ZN6WidgetC1Ev, _ZN6WidgetC2Ev
12 Widget::Widget(int i) {}
13 // Widget::Widget(int) -> _ZN6WidgetC1Ei, _ZN6WidgetC2Ei
14 Widget::~Widget() {}
15 // Widget::~Widget() -> _ZN6WidgetD1Ev, _ZN6WidgetD2Ev
16 int Widget::grog() const {return 42;}
17 // Widget::grog() const -> _ZNK6Widget4grogEv
18
19 namespace foo {
20 void func() {}
21 // foo::func() -> _ZN3foo4funcEv
22 }
23
24 void squander(const std::vector<int>& v) {}
25 // squander(const std::vector<int>& v) ->
26 // _Z8squanderRKSt6vectorIiSaIiEE
27
28 int main() {
29 std::cout << "Hello, World!\n"; // std::cout -> _ZSt4cout
30 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1235

Name-Demangling Tools

� C++Filt:
2 c++filt program, which is part of GNU Binary Utilities
2 filter that copies character stream from standard input to standard output

replacing any mangled names with their unmangled forms
2 web site: https://www.gnu.org/software/binutils

� LLVM Cxxfilt:
2 llvm-cxxfilt program, which is part of LLVM software
2 filter that copies character stream from standard input to standard output

replacing any mangled names with their unmangled forms (in similar
fashion as c++filt)

2 LLVM web site: https://llvm.org
� online name demangler:

2 http://demangler.com

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1236

https://www.gnu.org/software/binutils
https://llvm.org
http://demangler.com

Section 3.10.2

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1237

References I

1 J. R. Levine. Linker and Loaders.
Morgan Kaufmann, San Francisco, CA, USA, 2000.

2 W. von Hagen. The Definitive Guide to GCC.
Apress, 2nd edition, 2006.

3 R. M. Stallman and the GCC Developer Community, GNU Compiler
Collection Internals, Free Software Foundation, 2018. Available online at
https://gcc.gnu.org/onlinedocs (direct link:
https://gcc.gnu.org/onlinedocs/gccint.pdf).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1238

https://gcc.gnu.org/onlinedocs
https://gcc.gnu.org/onlinedocs/gccint.pdf

Talks I

1 Dave Watson. C++ Exceptions and Stack Unwinding. CppCon, Bellevue,
WA, USA, Sept. 24–29, 2017. Available online at
https://youtu.be/_Ivd3qzgT7U.

2 Peter Edwards. C++ Exception Handling: The Gory Details of an
Implementation. Dublin C/C++ Meetup, Feb. 2018. Available online at
https://youtu.be/XpRL7exdFL8.

3 Matt Godbolt. The Bits Between the Bits: How We Get to main(). CppCon,
Bellevue, WA, USA, Sept. 28, 2018. Available online at
https://youtu.be/dOfucXtyEsU.

4 Michael Spencer. My Little Object File: How Linkers Implement C++.
CppCon, Bellevue, WA, USA, Sept. 29, 2017. Available online at
https://youtu.be/a5L66zguFe4.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1239

https://youtu.be/_Ivd3qzgT7U
https://youtu.be/XpRL7exdFL8
https://youtu.be/dOfucXtyEsU
https://youtu.be/a5L66zguFe4

Part 4

Even More C++

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1240

Section 4.1

Undefined Behavior and Other Evil Stuff

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1241

Undefined, Unspecified, and Implementation-Defined
Behavior
� undefined behavior: behavior for which standard imposes no

requirements (i.e., anything could happen)
:::::::
[C++17 3.27]

� unspecified behavior: behavior, for a well-formed program construct and
correct data, that depends on the implementation; implementation is not
required to document which behavior occurs; range of possible behaviors
usually specified in standard

:::::::
[C++17 3.28]

� implementation-defined behavior: behavior, for a well-formed program
construct and correct data, that depends on the implementation and that
each implementation documents (i.e., only know what will happen for a
particular implementation)

:::::::
[C++17 3.12]

� always avoid undefined behavior and do not rely on unspecified
behavior; otherwise cannot guarantee correct behavior of program

� try to avoid relying on implementation-defined behavior; otherwise
cannot guarantee correct behavior of program across all language
implementations (i.e., code will not be portable)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1242

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/defns.undefined
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/defns.unspecified
http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/defns.impl.defined

Examples of Undefined Behavior

� dereferencing a null pointer; for example:
char* p = nullptr;
char c = *p; // undefined behavior

� attempting to modify a string literal or any other const object (excluding
mutable data members):

const int x = 0;
const_cast<int&>(x) = 42; // undefined behavior

� signed integer overflow

� evaluating an expression that is not mathematically defined; for example:
double z = 0.0;
double x = 1.0 / z; // undefined behavior

� not returning a value from a value-returning function (other than main)
int get_value() {

// undefined behavior
}

� multiple definitions of the same entity

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1243

Examples of Undefined Behavior (Continued)
� performing pointer arithmetic that yields a result before start of or after

end (i.e., one past last element) of an array; for example:
int v[10];
int* p = &v[0];
--p; // undefined behavior

� using pointers to objects whose lifetime has ended
� left-shifting values by a negative amount; for example:

int i = 1;
i <<= (-3); // undefined behavior

� shifting values by an amount greater than or equal to the number of bits in
the number; for example:

int i = 42;
i >>= 10000; // undefined behavior

� using an automatic variable whose value has not been initialized; for
example:

void func() {
int i;
++i; // undefined behavior

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1244

Examples of Unspecified Behavior

� order in which arguments to a function are evaluated; for example:
1 #include <iostream>
2

3 int count() {
4 static int c = 0;
5 return c++;
6 }
7

8 void func(int x, int y) {
9 std::cout << x << ’ ’ << y << ’\n’;

10 }
11

12 int main() {
13 func(count(), count());
14 // what values are passed to func?
15 // 0, 1; or 1, 0?
16 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1245

Examples of Implementation-Defined Behavior
� meaning of #pragma directive
� nesting limit for #include directives
� search locations for "" and <> headers
� sequence of places searched for header
� signedness of char
� sizeof built-in types other than char, signed char,
unsigned char

� type of size_t, ptrdiff_t
� parameters to main function
� alignment (i.e., restrictions on the addresses at which an object of a

particular type can be placed)
� result of right shift of negative value
� precise types used in various parts of C++ standard library (e.g., actual

type named by vector<T>::iterator
::::::::::
[C++17 26.3.11.1/2])

� meaning of asm declaration
� for more examples, see “Index of implementation-defined behavior”

section in C++11 standard
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1246

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/vector.overview#2

Private Member Access Without Friends (Legal But Evil)

1 #include <iostream>
2

3 template <typename Tag>
4 typename Tag::type saved_private_v;
5

6 template <typename Tag, typename Tag::type x>
7 bool save_private_v = (saved_private_v<Tag> = x);
8

9 class Widget {
10 public:
11 Widget(int i) : i_(i) {}
12 private:
13 int i_;
14 int f_() const {return i_;}
15 };
16

17 struct Widget_i_ {using type = int Widget::*;};
18 struct Widget_f_ {using type = int (Widget::*)() const;};
19

20 template bool save_private_v<Widget_i_, &Widget::i_>;
21 template bool save_private_v<Widget_f_, &Widget::f_>;
22

23 int main() {
24 Widget w(42);
25 std::cout << w.*saved_private_v<Widget_i_> << ’\n’;
26 std::cout << (w.*saved_private_v<Widget_f_>)() << ’\n’;
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1247

Section 4.2

C++ Compatibility

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1248

C++ Compatibility

� many changes have been made to C++ language and standard library
during evolution of C++ from C++98 to present

� some changes resulted in incompatibilities between different versions of
C++ standard

� subsequent slides list some reference material that discusses how C++
standard changed from one version to next

� knowing such changes helps to understand incompatibilities between
different versions

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1249

Talks I

1 Leor Zolman. An Overview of C++11/14. CppCon, Bellevue, WA, USA,
Sept 8, 2014. (This talk is in two parts.) Available online at
https://youtu.be/Gycxew-hztI and
https://youtu.be/pBI0tS2yfjw.

2 Alisdair Meredith. A Quick Tour of C++14. CppCon, Bellevue, WA, USA,
Sept. 11, 2014. Available online at https://youtu.be/fBU1R7jp_TE.

3 Alisdair Meredith. C++17 in Breadth. CppCon, Bellevue, WA, USA, Sept.
19, 2016. (This talk is in two parts.) Available online at
https://youtu.be/22jIHfvelZk and
https://youtu.be/-rIixnNJM4k.

4 Nicolai Josuttis. C++17: The Language Features. Norwegian Developers
Conference, London, UK, Jan. 16–20 2017. Available online at
https://youtu.be/pEzV32yRu4U.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1250

https://youtu.be/Gycxew-hztI
https://youtu.be/pBI0tS2yfjw
https://youtu.be/fBU1R7jp_TE
https://youtu.be/22jIHfvelZk
https://youtu.be/-rIixnNJM4k
https://youtu.be/pEzV32yRu4U

Talks II

5 Nicolai Josuttis. C++17: The Library Features. Norwegian Developers
Conference, London, UK, Jan. 16–20 2017. Available online at
https://youtu.be/ELwTKHiKZS4.

6 Bryce Lelbach. C++17 Features. C++Now, Aspen, CO, USA, May 16,
2017. Available online at https://youtu.be/LvwXJjRQfHk.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1251

https://youtu.be/ELwTKHiKZS4
https://youtu.be/LvwXJjRQfHk

Section 4.3

C Compatibility

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1252

C Compatibility

� Although C++ attempted to maintain compatibility with C where possible,
numerous incompatibilities between the languages exist.

� Unfortunately, as C++ and C continue to evolve, the number of
incompatibilities between these languages continues to grow.

� In practice, many C programs are valid C++ programs and can therefore
be compiled with a C++ compiler.

� Some C programs, however, may require a significant number of changes
to be valid C++.

� Moreover, in some cases, the semantics of the source code may change,
depending on whether it is interpreted as C++ or C.

� A few examples of incompatibilities between C++ and C are given on the
subsequent slides.

� More detailed information on incompatibilities between C++ and C can be
found at:

2 http://david.tribble.com/text/cdiffs.htm
2 https://en.wikipedia.org/wiki/Compatibility_of_C_and_C++

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1253

http://david.tribble.com/text/cdiffs.htm
https://en.wikipedia.org/wiki/Compatibility_of_C_and_C++

Conflicts with New Keywords

1 #include <stdio.h>
2 #include <unistd.h>
3

4 /* Delete a file. */
5 int delete(const char* filename) { /* note function name */
6 return unlink(filename);
7 }
8

9 int main(int argc, char** argv) {
10 if (argc >= 2) {
11 if (delete(argv[1])) {
12 printf("cannot delete file\n");
13 return 1;
14 }
15 }
16 return 0;
17 }

� C++ introduces many new keywords.

� Some C programs might use some of these keywords as identifiers (e.g.,
new, delete).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1254

Function Declarations Without Arguments

1 #include <stdio.h>
2

3 int plusOne(); /* no arguments specified */
4

5 int main(int argc, char** argv) {
6 printf("%d\n", plusOne(0));
7 return 0;
8 }
9

10 int plusOne(int i) {
11 return i + 1;
12 }

� In C, a function declaration without arguments implies that the arguments
are unspecified.

� In C++, a function declaration without arguments implies that the function
takes no arguments.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1255

Implicit Return Type

1 #include <stdio.h>
2

3 myfunc() { /* implicit return type */
4 return 3;
5 }
6

7 int main(int argc, char **argv) {
8 int i;
9 i = myfunc();

10 printf("%d\n", i);
11 return 0;
12 }

� In C, if the return type of a function is not specified, it is treated as int.

� In C++, the return type of a function must always be explicitly specified.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1256

More Restrictive Conversions Involving void*

1 int main(int argc, char** argv) {
2 int i;
3 int* ip;
4 void* vp;
5 ip = &i;
6 vp = ip;
7 ip = vp; /* problematic */
8 return 0;
9 }

� C provides an implicit conversion from void* to any pointer type, while
C++ does not.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1257

Scoping Rules for Nested Structs

1 struct outer {
2 struct inner {
3 int i;
4 };
5 int j;
6 };
7

8 struct inner a = {1}; /* inner vs. outer::inner */
9

10 int main(int argc, char** argv) {
11 return 0;
12 }

� C and C++ both allow nested struct types, but the scoping rules differ.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1258

Type of Character Literal

1 #include <stdio.h>
2

3 int main() {
4 printf("%d\n", sizeof(’a’));
5 }

� A character literal (such as ’A’) is of type char in C++, but type int in C.

� Consequently, the above program will print a value of 1 when compiled
as C++ and a value greater than 1 (namely, the value of sizeof(int))
when compiled as C.

� Thus, the same source code can have different semantics, depending on
whether it is interpreted as C++ or C.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1259

Part 5

Libraries

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1260

Section 5.1

Boost Libraries

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1261

Section 5.1.1

Introduction

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1262

Boost Libraries

� Boost libraries are collection of free peer-reviewed portable C++ source
libraries

� license encourages both commercial and non-commercial use

� often Boost libraries later adopted by C++ standard

� web site: http://www.boost.org

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1263

http://www.boost.org

Some Boost Libraries

Containers and Data Structures
Library Description

Bimap bidirectional maps (i.e., associative containers in which
both types stored in map can be used as key)

Container standard library containers and extensions
Heap priority queue data structures
Intrusive intrusive containers and algorithms
Multi-Array generic N-dimensional array
Multi-Index containers that maintain one or more indices with different

sorting and access semantics

Iterators
Library Description

Iterator concepts that extend C++ standard iterator requirements
and components for building iterators based on these con-
cepts; includes several iterator adaptors

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1264

Some Boost Libraries (Continued 1)

Math and Numerics
Library Description

Interval interval arithmetic
Math various numeric types and math functions
Multiprecision extended precision arithmetic types for floating-point, inte-

ger, and rational arithmetic
Rational rational number class

String and Text Processing
Library Description

Lexical Cast general literal text conversions, such as converting int to
std::string or vice versa

Tokenizer break a string or other character sequence into a series of
tokens

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1265

Some Boost Libraries (Continued 2)

Image and Geometry Processing
Library Description

Geometry geometric algorithms, primitives, and spatial index
GIL generic image library
Graph graph types and algorithms

Input/Output
Library Description

I/O State Savers classes for saving/restoring state associated with
I/O streams

Miscellaneous
Library Description

Program Options process program options via command line or con-
figuration file

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1266

Some Boost Libraries (Continued 3)

Concurrent Programming
Library Description

Fiber userland threads library
Compute parallel/GPU computing library
Lockfree lock-free containers (e.g., stacks and queues)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1267

Section 5.1.2

Boost Container Library

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1268

Boost Container Library

� Boost Container library provides support for numerous nonintrusive
containers

� containers provided by library include:
2 enhanced versions of several containers from standard library
2 several non-standard containers

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1269

Container Types

Standard Container Types
Type Description

vector similar to std::vector
list similar to std::list
deque similar to std::deque
set similar to std::set
multiset similar to std::multiset
map similar to std::map
multimap similar to std::multimap

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1270

Container Types (Continued)

Non-Standard Container Types
Type Description

stable_vector vector with non-contiguous elements and stable el-
ement references

flat_set set based on sorted vector
flat_multiset multiset based on sorted vector
flat_map map based on sorted vector
flat_multimap multimap based on sorted vector
slist singly-linked list
static_vector vector of bounded size with storage for elements

that is contiguous and statically allocated
small_vector vector-like container optimized for case of contain-

ing few elements

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1271

flat_set Example

1 #include <iostream>
2 #include <cassert>
3 #include <boost/container/flat_set.hpp>
4

5 int main() {
6 namespace bc = boost::container;
7 bc::flat_set<std::string> c;
8 c.reserve(4);
9 c.insert("hi");

10 c.insert("apple");
11 c.insert("bye");
12 c.insert("foo");
13 for (auto&& i : c) {
14 std::cout << i << ’\n’;
15 }
16 std::cout << ’\n’;
17 auto j = c.find("foo");
18 assert(j != c.end() && *j == "foo");
19 c.erase(j);
20 c.shrink_to_fit();
21 for (auto&& i : c) {
22 std::cout << i << ’\n’;
23 }
24 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1272

Section 5.1.3

Boost Intrusive Library

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1273

Boost Intrusive Library

� Boost Intrusive library provides support for numerous intrusive and
semi-intrusive containers

� containers provided by library include those based on:
2 linked lists
2 trees
2 hash tables

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1274

Container Types

Intrusive Container Types
Type Description

slist singly-linked list
list doubly-linked list
set set/map based on red-black tree
multiset multiset/multimap based on red-black tree
rbtree red-black tree
avl_set set/map based on AVL tree
avl_multiset multiset/multimap based on AVL tree
avltree AVL tree
splay_set set/map based on splay tree
splay_multiset multiset/multimap based on splay tree
splaytree splay tree
sg_set set/map based on scapegoat tree
sg_multiset multiset/multimap based on scapegoat tree
sgtree scapegoat tree

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1275

Container Types (Continued)

Semi-Intrusive Container Types
Type Description

unordered_set unordered set/map based on hash table
unordered_multiset unordered multiset/multimap based on hash table

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1276

Base and Member Hooks

� hook is class object that must be added to a user’s class in order for
user’s class to be usable with intrusive container

� hook used to encapsulate data used to manage nodes in container (e.g.,
successor and predecessor links for doubly-linked list)

� two kinds of hooks:
1 base hook
2 member hook

� base hook is included in user’s class as base class object using public
inheritance

� member hook included in user’s class as public data member

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1277

slist With Base Hook

1 #include <iostream>
2 #include <vector>
3 #include <boost/intrusive/slist.hpp>
4

5 namespace bi = boost::intrusive;
6

7 struct Widget : public bi::slist_base_hook<> {
8 Widget(int i_) : i(i_) {}
9 int i;

10 };
11

12 using WidgetList = bi::slist<Widget>;
13

14 int main() {
15 std::vector<Widget> buffer;
16 for (int i = 0; i < 10; ++i) {buffer.push_back(Widget(i));}
17 WidgetList a;
18 for (auto&& i : buffer) {a.push_front(i);}
19 for (auto i = a.begin(); i != a.end(); ++i) {
20 if (i != a.begin()) {std::cout << ’ ’;}
21 std::cout << i->i;
22 }
23 std::cout << ’\n’;
24 while (!a.empty()) {a.erase_after(a.before_begin());}
25 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1278

slist With Member Hook
1 #include <iostream>
2 #include <vector>
3 #include <boost/intrusive/slist.hpp>
4

5 namespace bi = boost::intrusive;
6

7 struct Widget {
8 Widget(int i_) : i(i_) {}
9 int i;

10 bi::slist_member_hook<> hook;
11 };
12

13 using WidgetList = bi::slist<Widget, bi::member_hook<Widget,
14 bi::slist_member_hook<>, &Widget::hook>>;
15

16 int main() {
17 std::vector<Widget> buffer;
18 for (int i = 0; i < 10; ++i) {buffer.push_back(Widget(i));}
19 WidgetList a;
20 for (auto&& i : buffer) {a.push_front(i);}
21 for (auto i = a.begin(); i != a.end(); ++i) {
22 if (i != a.begin()) {std::cout << ’ ’;}
23 std::cout << i->i;
24 }
25 std::cout << ’\n’;
26 while (!a.empty())
27 {a.erase_after(a.before_begin());}
28 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1279

list With Base Hook

1 #include <iostream>
2 #include <vector>
3 #include <boost/intrusive/list.hpp>
4

5 namespace bi = boost::intrusive;
6

7 struct Widget : public bi::list_base_hook<> {
8 Widget(int i_) : i(i_) {}
9 int i;

10 };
11

12 using WidgetList = bi::list<Widget>;
13

14 int main() {
15 std::vector<Widget> buffer;
16 for (int i = 0; i < 10; ++i) {buffer.push_back(Widget(i));}
17 WidgetList a;
18 for (auto&& i : buffer) {a.push_back(i);}
19 for (auto i = a.begin(); i != a.end(); ++i) {
20 if (i != a.begin()) {std::cout << ’ ’;}
21 std::cout << i->i;
22 }
23 std::cout << ’\n’;
24 while (!a.empty()) {a.erase(a.begin());}
25 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1280

list With Member Hook

1 #include <iostream>
2 #include <vector>
3 #include <boost/intrusive/list.hpp>
4

5 namespace bi = boost::intrusive;
6

7 struct Widget {
8 Widget(int i_) : i(i_) {}
9 int i;

10 bi::list_member_hook<> hook;
11 };
12

13 using WidgetList = bi::list<Widget, bi::member_hook<Widget,
14 bi::list_member_hook<>, &Widget::hook>>;
15

16 int main() {
17 std::vector<Widget> buffer;
18 for (int i = 0; i < 10; ++i) {buffer.push_back(Widget(i));}
19 WidgetList a;
20 for (auto&& i : buffer) {a.push_back(i);}
21 for (auto i = a.begin(); i != a.end(); ++i) {
22 if (i != a.begin()) {std::cout << ’ ’;}
23 std::cout << i->i;
24 }
25 std::cout << ’\n’;
26 while (!a.empty()) {a.erase(a.begin());}
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1281

list With Multiple Base Hooks

1 #include <iostream>
2 #include <vector>
3 #include <boost/intrusive/list.hpp>
4
5 namespace bi = boost::intrusive;
6
7 struct Alpha {};
8 struct Beta {};
9 struct Widget : public bi::list_base_hook<bi::tag<Alpha>>,

10 public bi::list_base_hook<bi::tag<Beta>> {
11 Widget(int i_) : i(i_) {}
12 int i;
13 };
14
15 int main() {
16 std::vector<Widget> buffer;
17 for (int i = 0; i < 10; ++i) {buffer.push_back(Widget(i));}
18 bi::list<Widget, bi::base_hook<bi::list_base_hook<bi::tag<Alpha>>>>
19 a;
20 bi::list<Widget, bi::base_hook<bi::list_base_hook<bi::tag<Beta>>>>
21 b;
22 for (auto&& i : buffer)
23 {a.push_back(i); b.push_front(i);}
24 for (auto&& w : a) {std::cout << w.i << ’\n’;}
25 std::cout << ’\n’;
26 for (auto&& w : b) {std::cout << w.i << ’\n’;}
27 while (!a.empty()) {a.erase(a.begin());}
28 while (!b.empty()) {b.erase(b.begin());}
29 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1282

set With Base Hook

1 #include <iostream>
2 #include <vector>
3 #include <boost/intrusive/set.hpp>
4

5 namespace bi = boost::intrusive;
6

7 struct Widget : public bi::set_base_hook<> {
8 Widget(int i_) : i(i_) {}
9 bool operator<(const Widget& other) const {return i < other.i;}

10 int i;
11 };
12

13 int main() {
14 int values[] = {1, 3, 5, 7, 9, 0, 2, 4, 6, 8};
15 std::vector<Widget> buffer;
16 for (auto i : values) {buffer.push_back(Widget(i));}
17 bi::set<Widget> a;
18 for (auto&& i : buffer) {a.insert(a.end(), i);}
19 for (auto&& w : a) {std::cout << w.i << ’\n’;}
20 if (a.find(7) != a.end()) {std::cout << "7 is in set\n";}
21 while (!a.empty())
22 {a.erase(a.begin());}
23 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1283

set and list With Base Hooks

1 #include <iostream>
2 #include <vector>
3 #include <boost/intrusive/set.hpp>
4 #include <boost/intrusive/list.hpp>
5
6 namespace bi = boost::intrusive;
7
8 struct Widget : public bi::set_base_hook<>,
9 public bi::list_base_hook<> {

10 Widget(int i_) : i(i_) {}
11 bool operator<(const Widget& other) const {return i < other.i;}
12 int i;
13 };
14
15 int main() {
16 int values[] = {1, 3, 5, 7, 9, 0, 2, 4, 6, 8};
17 std::vector<Widget> buffer;
18 for (auto i : values) {buffer.push_back(Widget(i));}
19 bi::set<Widget> a;
20 bi::list<Widget> b;
21 for (auto&& i : buffer)
22 {a.insert(a.end(), i); b.push_back(i);}
23 if (a.find(7) != a.end()) {std::cout << "found 7\n\n";}
24 for (auto&& w : a) {std::cout << w.i << ’\n’;}
25 std::cout << ’\n’;
26 for (auto&& w : b) {std::cout << w.i << ’\n’;}
27 while (!a.empty()) {a.erase(a.begin());}
28 while (!b.empty()) {b.erase(b.begin());}
29 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1284

Achieving Map Functionality With set

1 #include <iostream>
2 #include <vector>
3 #include <boost/intrusive/set.hpp>
4
5 namespace bi = boost::intrusive;
6
7 struct Widget : public bi::set_base_hook<> {
8 Widget(int i_, int j_) : i(i_), j(j_) {}
9 int i;

10 int j;
11 };
12
13 struct Is_key {
14 using type = int;
15 const type& operator()(const Widget& w) const
16 {return w.i;}
17 };
18
19 int main() {
20 int values[] = {1, 3, 5, 7, 9, 0, 2, 4, 6, 8};
21 std::vector<Widget> buffer;
22 for (auto i : values) {buffer.push_back(Widget(i, -i));}
23 bi::set<Widget, bi::key_of_value<Is_key>> a;
24 for (auto&& i : buffer) {a.insert(a.end(), i);}
25 for (auto&& w : a) {std::cout << w.i << ’ ’ << w.j << ’\n’;}
26 auto i = a.find(5);
27 std::cout << i->j << ’\n’;
28 while (!a.empty()) {a.erase(a.begin());}
29 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1285

unordered_set With Base Hook
1 #include <iostream>
2 #include <vector>
3 #include <boost/intrusive/unordered_set.hpp>
4
5 namespace bi = boost::intrusive;
6
7 class Widget : public bi::unordered_set_base_hook<> {
8 public:
9 Widget(int value = 0) : value_(value) {}

10 int get_value() const {return value_;}
11 private:
12 int value_;
13 };
14
15 bool operator==(const Widget& a, const Widget& b)
16 {return a.get_value() == b.get_value();}
17
18 std::size_t hash_value(const Widget& a) {return std::size_t(a.get_value());}
19
20 int main() {
21 std::vector<Widget> widgets;
22 for (int i = 0; i < 10; ++i) {widgets.push_back(Widget(i));}
23 using bucket_type = bi::unordered_set<Widget>::bucket_type;
24 using bucket_traits = bi::unordered_set<Widget>::bucket_traits;
25 bucket_type buckets[100];
26 bi::unordered_set<Widget> s(bucket_traits(buckets, 100));
27 for (auto&& w : widgets) {s.insert(w);}
28 for (auto&& i : s) {std::cout << i.get_value() << ’\n’;}
29 if (s.find(7) != s.end()) {std::cout << "found 7\n";}
30 return 0;
31 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1286

Section 5.1.4

Boost Iterator Library

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1287

Boost Iterator Library

� Boost iterator library consists of two parts:
1 system of concepts which extend C++ standard iterator requirements
2 framework of components for building iterators based on these concepts

� tricky to write standard-conforming iterators

� by using Boost Iterator library, can often significantly reduce amount of
code needed to implement standard-conforming iterators

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1288

Forward Iterator Example: Iterator Class Without Boost (1)

1 #include <type_traits>
2 #include <iterator>
3 #include <cstddef>
4
5 // singly-linked list node base (for intrusive container)
6 template <class T> struct slist_node_base {
7 slist_node_base(T* next_) : next(next_) {}
8 T* next; // pointer to next node in list
9 };

10
11 // single-linked list iterator (const and non-const)
12 template <class T> class slist_iter {
13 public:
14 using iterator_category = std::forward_iterator_tag;
15 using value_type = typename std::remove_const_t<T>;
16 using difference_type = std::ptrdiff_t;
17 using reference = T&;
18 using pointer = T*;
19 slist_iter(T* node = nullptr) : node_(node) {}
20 template <class OtherT, class =
21 std::enable_if_t<std::is_convertible_v<OtherT*, T*>>>
22 slist_iter(const slist_iter<OtherT>& other) : node_(other.node_) {}
23 reference operator*() {return *node_;}
24 pointer operator->() {return node_;}

[seeSFINAE]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1289

Forward Iterator Example: Iterator Class Without Boost (2)

25 slist_iter& operator++() {
26 node_ = node_->next;
27 return *this;
28 }
29 slist_iter operator++(int) {
30 slist_iter old(*this);
31 node_ = node_->next;
32 return old;
33 }
34 template <class OtherT> bool operator==(const slist_iter<OtherT>& other)
35 const {return node_ == other.node_;}
36 template <class OtherT> bool operator!=(const slist_iter<OtherT>& other)
37 const {return !(*this == other);}
38 private:
39 template <class> friend class slist_iter;
40 T* node_; // pointer to list node
41 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1290

Forward Iterator Example: Iterator Class With Boost

1 #include <type_traits>
2 #include <boost/iterator/iterator_facade.hpp>
3
4 template <class T> struct slist_node_base {
5 slist_node_base(T* next_) : next(next_) {}
6 T* next; // pointer to next node in list
7 };
8
9 template <class T> class slist_iter : public boost::iterator_facade<

10 slist_iter<T>, T, boost::forward_traversal_tag> {
11 public:
12 using base = typename boost::iterator_facade<slist_iter<T>, T,
13 boost::forward_traversal_tag>;
14 using typename base::reference;
15 using typename base::value_type;
16 slist_iter(T* node = nullptr) : node_(node) {}
17 template <class OtherT, class =
18 std::enable_if_t<std::is_convertible_v<OtherT*, T*>>>
19 slist_iter(const slist_iter<OtherT>& other) : node_(other.node_) {}
20 private:
21 reference dereference() const {return *node_;}
22 template <class OtherT> bool equal(const slist_iter<OtherT>& other) const
23 {return node_ == other.node_;}
24 void increment() {node_ = node_->next;}
25 template <class> friend class slist_iter;
26 friend class boost::iterator_core_access;
27 T* node_; // pointer to list node
28 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1291END SLIDE: tutorial

Forward Iterator Example: User Code

1 #include <iostream>
2 #include <vector>
3 #include "iterator_facade_2.hpp"
4
5 struct Node : public slist_node_base<Node> {
6 Node(Node* next_, int value_) : slist_node_base<Node>(next_),
7 value(value_) {}
8 int value;
9 };

10
11 int main() {
12 constexpr int num_nodes = 10;
13 std::vector<Node> nodes; nodes.reserve(num_nodes);
14 for (int i = 0; i < num_nodes - 1; ++i)
15 {nodes.push_back(Node(&nodes[i + 1], i));}
16 nodes.push_back(Node(nullptr, num_nodes - 1));
17 slist_iter<Node> begin(&nodes[0]);
18 slist_iter<Node> end;
19 slist_iter<const Node> cbegin(begin);
20 slist_iter<const Node> cend(end);
21 for (auto i = cbegin; i != cend; ++i) {std::cout << i->value << ’\n’;}
22 slist_iter<Node> i(begin);
23 slist_iter<const Node> ci(cbegin);
24 // slist_iter<Node> j(cbegin); // ERROR
25 i = begin;
26 // i = ci; // ERROR
27 ci = cbegin;
28 ci = i;
29 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1292

Random-Access Iterator Example: Iterator Class Without Boost (1)

1 #include <type_traits>
2 #include <iterator>
3
4 // array element iterator
5 template <class T> class array_iter {
6 public:
7 using iterator_category = typename std::random_access_iterator_tag;
8 using value_type = std::remove_const_t<T>;
9 using reference = T&;

10 using pointer = T*;
11 using difference_type = std::ptrdiff_t;
12 array_iter(T* ptr = nullptr) : ptr_(ptr) {}
13 template <class OtherT, class =
14 std::enable_if_t<std::is_convertible_v<OtherT*, T*>>>
15 array_iter(const array_iter<OtherT>& other) : ptr_(other.ptr_) {}
16 reference operator*() const {return *ptr_;}
17 pointer operator->() const {return ptr_;}
18 array_iter& operator++() {
19 ++ptr_;
20 return *this;
21 }
22 array_iter operator++(int) {
23 array_iter old(*this);
24 ++ptr_;
25 return old;
26 }
27 array_iter& operator--() {
28 --ptr_;
29 return *this;
30 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1293

Random-Access Iterator Example: Iterator Class Without Boost (2)

31 array_iter operator--(int) {
32 array_iter old(*this);
33 --ptr_;
34 return old;
35 }
36 array_iter& operator+=(difference_type n) {
37 ptr_ += n;
38 return *this;
39 }
40 array_iter& operator-=(difference_type n) {
41 ptr_ -= n;
42 return *this;
43 }
44 reference operator[](difference_type n) const {return ptr_[n];}
45 array_iter operator+(difference_type n) const
46 {return array_iter(ptr_ + n);}
47 difference_type operator-(const array_iter& other) const
48 {return ptr_ - other.ptr_;}
49 array_iter operator-(difference_type n) const
50 {return array_iter(ptr_ - n);}
51 template <class OtherT> bool operator==(const array_iter<OtherT>& other)
52 const {return ptr_ == other.ptr_;}
53 template <class OtherT> bool operator!=(const array_iter<OtherT>& other)
54 const {return ptr_ != other.ptr_;}
55 template <class OtherT> bool operator<(const array_iter<OtherT>& other)
56 const {return ptr_ < other.ptr_;}
57 template <class OtherT> bool operator>(const array_iter<OtherT>& other)
58 const {return ptr_ > other.ptr_;}
59 template <class OtherT> bool operator<=(const array_iter<OtherT>& other)
60 const {return ptr_ <= other.ptr_;}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1294

Random-Access Iterator Example: Iterator Class Without Boost (3)

61 template <class OtherT> bool operator>=(const array_iter<OtherT>& other)
62 const {return ptr_ >= other.ptr_;}
63 private:
64 template <class> friend class array_iter;
65 T* ptr_; // pointer to array element
66 };
67
68 template <class T>
69 array_iter<T> operator+(typename array_iter<T>::difference_type n,
70 const array_iter<T>& iter) {return array_iter<T>(iter) += n;}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1295

Random-Access Iterator Example: Iterator Class With Boost

1 #include <boost/iterator/iterator_facade.hpp>
2 #include <type_traits>
3
4 // array element iterator
5 template <class T> class array_iter : public boost::iterator_facade<
6 array_iter<T>, T, boost::random_access_traversal_tag> {
7 public:
8 using typename boost::iterator_facade<array_iter<T>, T,
9 boost::random_access_traversal_tag>::reference;

10 using typename boost::iterator_facade<array_iter<T>, T,
11 boost::random_access_traversal_tag>::difference_type;
12 array_iter(T* ptr = nullptr) : ptr_(ptr) {}
13 template <class OtherT, class =
14 std::enable_if_t<std::is_convertible_v<OtherT*, T*>>>
15 array_iter(const array_iter<OtherT>& other) : ptr_(other.ptr_) {}
16 private:
17 reference dereference() const {return *ptr_;}
18 template <class OtherT> bool equal(const array_iter<OtherT>& other) const
19 {return ptr_ == other.ptr_;}
20 void increment() {++ptr_;}
21 void decrement() {--ptr_;}
22 void advance(difference_type n) {ptr_ += n;}
23 difference_type distance_to(const array_iter& other) const
24 {return other.ptr_ - ptr_;}
25 template <class> friend class array_iter;
26 friend class boost::iterator_core_access;
27 T* ptr_; // pointer to array element
28 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1296

Random-Access Iterator Example: User Code

1 #include <iostream>
2 #include <cassert>
3 #include "iterator_facade_1.hpp"
4

5 int main() {
6 char buffer[] = "Hello, World!\n";
7 std::size_t length = sizeof(buffer) - 1;
8 array_iter<char> begin(buffer);
9 array_iter<char> end(buffer + length);

10 array_iter<const char> cbegin = begin;
11 array_iter<const char> cend = end;
12 assert(begin + length == end);
13 assert(cbegin + length == end);
14 for (auto i = cbegin; i != cend; ++i)
15 {std::cout << *i << ’\n’;}
16 array_iter<char> i(begin);
17 array_iter<const char> ci(cbegin);
18 // array_iter<char> j(cbegin); // ERROR
19 i = begin;
20 // i = ci; // ERROR
21 ci = cbegin;
22 ci = i;
23 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1297

Section 5.1.5

Miscellaneous Examples

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1298

Math Constants π and e

1 #include <iostream>
2 #include <limits>
3 #include <boost/math/constants/constants.hpp>
4

5 int main() {
6 namespace bmc = boost::math::constants;
7

8 std::cout.precision(std::numeric_limits<
9 long double>::max_digits10);

10

11 constexpr auto f_pi = bmc::pi<float>();
12 constexpr auto d_pi = bmc::pi<double>();
13 constexpr auto ld_pi = bmc::pi<long double>();
14

15 std::cout << f_pi << ’\n’;
16 std::cout << d_pi << ’\n’;
17 std::cout << ld_pi << ’\n’;
18

19 constexpr auto f_e = bmc::e<float>();
20 constexpr auto d_e = bmc::e<double>();
21 constexpr auto ld_e = bmc::e<long double>();
22

23 std::cout << f_e << ’\n’;
24 std::cout << d_e << ’\n’;
25 std::cout << ld_e << ’\n’;
26 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1299

Math Constant π

1 #include <iostream>
2 #include <boost/math/constants/constants.hpp>
3

4 template <class Real>
5 Real area_of_circle(Real r) {
6 namespace bmc = boost::math::constants;
7 return bmc::pi<Real>() * r * r;
8 }
9

10 int main() {
11 double r;
12 while (std::cin >> r) {
13 std::cout << area_of_circle(r) << ’\n’;
14 }
15 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1300

Computing Factorials With Arbitrary Precision

1 #include <cmath>
2 #include <boost/multiprecision/gmp.hpp>
3 #include <iostream>
4

5 using boost::multiprecision::mpz_int;
6

7 mpz_int factorial(const mpz_int& n) {
8 mpz_int result = 1;
9 for (mpz_int i = n; i >= 2; --i) {

10 result *= i;
11 }
12 return result;
13 }
14

15 int main() {
16 std::cout << factorial(200) << ’\n’;
17 }
18

19 /* Output:
20 788657867364790503552363213932185062295135977687173263294
21 742533244359449963403342920304284011984623904177212138919
22 638830257642790242637105061926624952829931113462857270763
23 317237396988943922445621451664240254033291864131227428294
24 853277524242407573903240321257405579568660226031904170324
25 062351700858796178922222789623703897374720000000000000000
26 000000000000000000000000000000000
27 */

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1301

multi_array Example
1 #include <boost/multi_array.hpp>
2 #include <iostream>
3 #include <iomanip>
4

5 int main() {
6 using Array2 = boost::multi_array<int, 2>;
7 int num_rows = 5;
8 int num_cols = 7;
9 Array2 a(boost::extents[num_rows][num_cols]);

10 for (int row = 0; row < num_rows; ++row) {
11 for (int col = 0; col < num_cols; ++col) {
12 a[row][col] = num_cols * row + col;
13 }
14 }
15 Array2 b(a);
16 assert(b.shape()[0] == num_rows && b.shape()[1] == num_cols);
17 Array2 c;
18 c.resize(boost::extents[b.shape()[0]][b.shape()[1]]);
19 c = b;
20 for (int row = 0; row < num_rows; ++row) {
21 for (int col = 0; col < num_cols; ++col) {
22 if (col) {std::cout << ’ ’;}
23 std::cout << std::setw(2) << c[row][col];
24 }
25 std::cout << ’\n’;
26 }
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1302

2-D Array Class With multi_array

1 #include <boost/multi_array.hpp>
2 #include <iostream>
3 #include <iomanip>
4
5 template <class T>
6 class array2 {
7 public:
8 using value_type = T;
9 array2(int num_rows = 0, int num_cols = 0) :

10 a_(boost::extents[num_rows][num_cols]) {}
11 array2(const array2& other) : a_(other.a_) {}
12 array2& operator=(const array2& other) {
13 if (this != &other) {
14 a_.resize(boost::extents[other.a_.shape()[0]][
15 other.a_.shape()[1]]);
16 a_ = other.a_;
17 }
18 return *this;
19 }
20 int num_rows() const {return a_.shape()[0];}
21 int num_cols() const {return a_.shape()[1];}
22 const value_type& operator()(int row, int col) const
23 {return a_[row][col];}
24 value_type& operator()(int row, int col) {return a_[row][col];}
25 private:
26 using array = boost::multi_array<T, 2>;
27 array a_;
28 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1303

2-D Array Class With multi_array (Continued)

30 template <class T>
31 std::ostream& operator<<(std::ostream& out, const array2<T>& a) {
32 auto width = out.width();
33 for (int row = 0; row < a.num_rows(); ++row) {
34 for (int col = 0; col < a.num_cols(); ++col) {
35 if (col) {out << ’ ’;}
36 out << std::setw(width) << a(row, col);
37 }
38 out << ’\n’;
39 }
40 return out;
41 }
42

43 int main() {
44 array2<int> a(5, 7);
45 for (int row = 0; row < a.num_rows(); ++row) {
46 for (int col = 0; col < a.num_cols(); ++col) {
47 a(row, col) = a.num_cols() * row + col;
48 }
49 }
50 array2<int> b(a);
51 std::cout << "a:\n" << std::setw(2) << a;
52 std::cout << "b:\n" << std::setw(2) << b;
53 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1304

multi_array Array Layout Example
1 #include <algorithm>
2 #include <iostream>
3 #include <boost/multi_array.hpp>
4
5 template <class T> std::ostream& operator<<(std::ostream& out,
6 const boost::multi_array_ref<T, 2>& x) {
7 const int m = x.shape()[0];
8 const int n = x.shape()[1];
9 for (int i = 0; i < m; ++i) {

10 for (int j = 0; j < n; ++j)
11 {out << ((j != 0) ? " " : "") << x[i][j];}
12 out << ’\n’;
13 }
14 return out;
15 }
16
17 int main() {
18 constexpr int n = 3;
19 float data[n * n] = {
20 1, 2, 3,
21 4, 5, 6,
22 7, 8, 9
23 };
24 int row_major[] = {1, 0};
25 bool ascending[] = {false, true};
26 // use column-major order
27 boost::multi_array_ref<float, 2> x(data, boost::extents[n][n],
28 boost::general_storage_order<2>(boost::fortran_storage_order()));
29 // use row-major order but with rows in reverse order
30 boost::multi_array_ref<float, 2> y(data, boost::extents[n][n],
31 boost::general_storage_order<2>(row_major, ascending));
32 // use row-major order
33 boost::multi_array<float, 2> z(boost::extents[n][n]);
34 std::copy_n(data, n * n, z.data());
35 std::cout << x << ’\n’ << y << ’\n’ << z << ’\n’;
36 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1305

Program Options Example

1 #include <iostream>
2 #include <string>
3 #include <boost/program_options.hpp>
4

5 int main(int argc, char** argv) {
6 namespace po = boost::program_options;
7 po::options_description desc("Allowed options");
8 desc.add_options()
9 ("help,h", "Print help information.")

10 ("count,c", po::value<int>()->default_value(1), "Specify count.")
11 ("file,f", po::value<std::string>(), "Specify file name.");
12 po::variables_map vm;
13 try {
14 po::store(po::parse_command_line(argc, argv, desc), vm);
15 po::notify(vm);
16 } catch (po::error& e) {
17 std::cerr << "usage:\n" << desc << ’\n’;
18 return 1;
19 }
20 if (vm.count("help")) {std::cout << desc << "\n"; return 1;}
21 if (vm.count("file")) {
22 std::cout << "file: " << vm["file"].as<std::string>() << ’\n’;
23 }
24 if (vm.count("count")) {
25 std::cout << "count: " << vm["count"].as<int>() << ’\n’;
26 }
27 return 0;
28 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1306

Rational Numbers Example

1 #include <iostream>
2 #include <cassert>
3 #include <boost/rational.hpp>
4 #include <exception>
5

6 int main() {
7 using boost::rational;
8 const rational<int> zero;
9 rational<int> three(3);

10 rational<int> ninth(1, 9);
11 rational<int> third(1, 3);
12 auto result = three * ninth;
13 assert(result == third);
14 try {
15 std::cout << three / zero << ’\n’;
16 } catch (const boost::bad_rational& e) {
17 std::cout << "bad rational " << e.what() << ’\n’;
18 }
19 // rational<int> x(1.5); // ERROR: no matching call
20 // result = 3.0; // ERROR: no matching call
21 result = 42;
22 assert(result == rational<int>(42));
23 std::cout << result << ’\n’;
24 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1307

Section 5.1.6

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1308

References I

1 Boost C++ Libraries Web Site, http://www.boost.org.

2 Boost Library Incubator Web Site, http://www.blincubator.com.

3 B. Schaling, The Boost C++ Libraries,
http://theboostcpplibraries.com. [This is an online version of
Schaling’s book on Boost.]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1309

http://www.boost.org
http://www.blincubator.com
http://theboostcpplibraries.com

Talks I

1 Boris Schaling. Containers in Boost. C++ Now, 2013. Available online at
https://youtu.be/FM-fUjhoCp0.

2 Boris Schaling. Boost.Graph for Beginners. C++ Now, 2013. Available
online at https://youtu.be/uYvBH7TZlFk.

3 Nat Goodspeed. The Fiber Library. C++ Now, 2016. Available online at
https://youtu.be/gcNphOWuUb0.

4 Kyle Lutz. Boost.Compute: A library for GPU/parallel computing. C++
Now, 2015. Available online at https://youtu.be/q7oCblCtTT8.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1310

https://youtu.be/FM-fUjhoCp0
https://youtu.be/uYvBH7TZlFk
https://youtu.be/gcNphOWuUb0
https://youtu.be/q7oCblCtTT8

Section 5.2

Computational Geometry Algorithms Library (CGAL)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1311

Computational Geometry Algorithms Library (CGAL)

� very powerful open-source C++ library for geometric computation
� used by many commercial organizations, such as: British Telecom,

Boeing, France Telecom, GE Health Care, The MathWorks
� very well documented (extensive manual, more than 4000 pages)
� provides data types for representing various geometric objects, such as:

2 points, lines, planes, polygons
2 Voronoi diagrams
2 2D, 3D and dD triangulations
2 polygon meshes
2 kinetic data structures

� provides algorithms for manipulating these data types
� available for Microsoft Windows and Unix/Linux platforms
� some Linux distributions already have packages for CGAL (e.g., Fedora

packages: CGAL, CGAL-devel, CGAL-demos-source)
� web site: http://www.cgal.org
� online manual (latest version): http://www.cgal.org/Manual/latest

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1312

http://www.cgal.org
http://www.cgal.org/Manual/latest

CGAL (Continued)

� provides support for polygon meshes

� can read/write polygon mesh data in various common formats

� built-in support for several subdivision schemes

� by using CGAL, can greatly simplify amount of effort required to
implement methods using subdivision surfaces or wavelet transforms for
polygon meshes

� in CGAL manual, most relevant material is that pertaining to:
2 2D and 3D linear geometry kernels
2 3D polyhedral surfaces
2 3D surface subdivision methods

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1313

Handles

� handle: object used to reference element stored in some data structure
(i.e., object can be dereferenced to obtain access to element)

� for data structure storing elements of type T, handle type might be:
2 simple pointer (i.e., T*)
2 smart pointer (i.e., user-defined type that behaves like pointer)

� examples of handle types:
2 types used to access vertices, facets, halfedges of polygon mesh

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1314

Linear Sequences Versus Circular Sequences

a b cd e fg h

Linear Sequence

a

d

g

be

h

c

f

Circular Sequence
� linear sequence:

2 has well defined first and last element
2 fits well with iterator model

� circular sequence:
2 does not have well defined first and last element
2 does not fit well with iterator model

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1315

Circulators

� iterators are very useful, but intended for use with linear sequences of
elements (i.e., sequences with well-defined first and last element)

� often want iterator-like functionality for circular sequences of elements

� circulator: object that allows iteration over elements in circular sequence
of elements

� examples of circulator types:
2 type to allow iteration over all halfedges incident on vertex in polygon mesh
2 type to allow iteration over all halfedges incident on facet in polygon mesh

� circulators come in const and mutable (i.e., non-const) forms

� mutable circulator can be used to modify referenced element, while const
circulator cannot

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1316

Section 5.2.1

Geometry Kernels

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1317

Real Number Types

� float: single-precision floating point type

� double: double-precision floating point type

� Interval_nt: interval-arithmetic type

� MP_Float: arbitrary-precision floating-point type

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1318

MP_Float Class

� MP_Float is arbitrary-precision floating-point type

� additions, subtractions, and multiplications computed exactly

� does not provide division or square root (which is not typically problematic
as division rarely needed and square root almost always avoided in
geometric computation)

� no roundoff error

� no overflow error unless astronomically large numbers involved (arbitrary
length mantissa; integral-valued double exponent can overflow, but
extremely unlikely)

� very slow, can require considerable memory (unbounded)

� default constructor does not initialize to particular value

� stream inserter (i.e., operator<<) for MP_Float first converts
MP_Float to double and then outputs result

� stream extractor (i.e., operator>>) for MP_Float first reads double
and then converts to MP_Float

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1319START SLIDE: tutorial

MP_Float Example

1 #include <iostream>
2 #include <CGAL/MP_Float.h>
3

4 int main() {
5 CGAL::MP_Float x;
6 CGAL::MP_Float y;
7 if (!(std::cin >> x >> y)) {return 1;}
8 if (x < y) {
9 std::cout << x << " is less than " << y << ’\n’;

10 }
11 CGAL::MP_Float z = -(x + y) * (x - y) + x;
12 std::cout << z << ’\n’;
13 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1320NEXT SLIDE: vertex members

Interval_nt Class
� declared as: template <bool M = true> Interval_nt<M>
� M indicates if safe rounding mode enabled
� if safe rounding mode enabled, rounding mode always restored to round

towards zero (required by C++); must be careful if safe rounding mode not
used

� when safe rounding mode not used, faster but need to worry about things
like compiler options like -frounding-math

� using Interval_nt_advanced = Interval_nt<false>; (i.e.,
Interval_nt_advanced is Interval_nt with safe rounding mode
disabled)

� interval-arithmetic number type (internally uses floating-point type)
� represents interval [a,b]
� every arithmetic operation performed twice, once while rounding towards
−∞ to produce result a′ and once while rounding towards +∞ to produce
result b′

� true answer must lie on interval [a′,b′]
� approximately twice of time cost of built-in floating-point type

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1321

Geometry Kernels

� represent geometric objects (e.g., point, line, line segment, ray, plane,
triangle, circle,)

� points in 2 or 3 dimensions

� provide operations on geometric objects (e.g., intersection, composition)

� allow certain conditions to be tested involving geometric objects (e.g.,
collinear, coplanar, equality)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1322

Point Representation

� Cartesian kernels: coordinates represented in Cartesian form

� homogeneous kernels: coordinates represented in homogeneous form

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1323

Simple_cartesian and Cartesian Classes

� geometry kernel that represents coordinates in Cartesian form

� declaration:
template <class F> Simple_cartesian<F>

� declaration:
template <class F> Cartesian<F>

� F field number type (used to represent coordinates)

� F often chosen as double

� Cartesian is reference counted version of Simple_cartesian, which
allows more efficient copying of objects

� Cartesian probably preferred if frequent copying occurs

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1324

Simple_homogeneous and Homogeneous Classes

� geometry kernel that represents coordinates in homogeneous form

� declaration:
template <class R> Simple_homogeneous<R>

� declaration:
template <class R> Homogeneous<R>

� R ring number type used for representing numerator and denominator of
rational coordinates

� Homogeneous is reference counted version of Simple_homogeneous,
which allows more efficient copying of objects

� Homogeneous probably preferred if frequent copying occurs

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1325

Constructions

� produces new geometric object from other objects

� result is not one of a small number of enumerable values

� result is numerical (e.g., involves real numbers)

� create line segment from two points

� create triangle from three points

� create plane from three (non-coplanar) points

� create circle from three (non-collinear) points

� find intersection of line and plane

� exact construction: any newly created geometric objects resulting from
construction are exactly represented (i.e., no roundoff/overflow error)

� inexact construction: newly created geometric objects are not guaranteed
to be exactly represented (e.g., due to roundoff error)

� extremely important to be aware of whether kernel being used provides
exact constructions; affects how you write code!!!

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1326

Predicates

� does not involve any newly computed numerical data

� result is one of very small set of values, such as boolean or enumerated
type

� typically used to make decisions (i.e., affect control flow)

� are three points collinear (true or false)

� are four points coplanar (true or false)

� what is position of point relative to oriented line (left of, right of, or on)

� what is position of point relative to oriented circle (inside, outside, or on)

� exact predicate: result of test is guaranteed to be correct (i.e., result
determined as if by exact computation)

� inexact predicate: result of test may be incorrect (e.g., due to
roundoff/overflow error)

� extremely important to be aware of whether kernel being used provides
exact predicates; affects how you write code!!!

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1327

Kernel Member Types: Basic Types

Member Type Description

FT field number type (e.g., double)
RT ring number type (e.g., int)
Boolean boolean type (bool or Uncertain<bool>)
Sign sign (Sign or Uncertain<Sign>)
Comparison_result comparison result (Comparison_result or

Uncertain<Comparison_result>)
Orientation orientation (Orientation or

Uncertain<Orientation>)
Oriented_side oriented side (Oriented_side or

Uncertain<Oriented_side>)
Bounded_side bounded side (Bounded_side or

Uncertain<Bounded_side>)
Angle angle (Angle or Uncertain<Angle>)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1328

Kernel Member Types: Geometric Objects in Two Dimensions

Member Type Description

Point_2 point in two dimensions
Vector_2 vector in two dimensions
Direction_2 direction in two dimensions
Line_2 line in two dimensions
Ray_2 ray in two dimensions
Segment_2 line segment in two dimensions
Triangle_2 triangle in two dimensions
Iso_rectangle_2 axis-aligned rectangle in two dimensions
Circle_2 circle in two dimensions

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1329

Kernel Member Types: Geometric Objects in Three Dimensions

Member Type Description

Point_3 point in three dimensions
Vector_3 vector in three dimensions
Direction_3 direction in three dimensions
Iso_cuboid_3 axis-aligned cuboid in three dimensions
Line_3 line in three dimensions
Ray_3 ray in three dimensions
Circle_3 circle in three dimensions
Sphere_3 sphere in three dimensions
Segment_3 line segment in three dimensions
Plane_3 plane in three dimensions
Triangle_3 triangle in three dimensions
Tetrahedron_3 tetrahedron in three dimensions

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1330

Kernel Selection

� coordinate representation

� exact or inexact constructions

� exact or inexact predicates

� in practice, almost always require exact predicates

� if code well designed, need for exact constructions can usually be avoided
� for T chosen as any numeric type that has roundoff/overflow error (e.g.,
float, double, long double), the following kernels do not provide
exact constructions or exact predicates:

Simple_cartesian<T>
Cartesian<T>
Simple_homogeneous<T>
Homogeneous<T>

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1331

Filtered_kernel Class

� class to convert kernel with inexact predicates into one with exact
predicates

� declared as:
template <class K> Filtered_kernel<K>

� K is kernel from which to make filtered kernel

� predicates of K replaced by predicates using numeric type Interval_nt

� if interval arithmetic can yield reliable answer, result used

� otherwise, exception thrown and caught by class and predicate using
MP_Float used

� for exact predicates with Simple_cartesian<double>, use:
Filtered_kernel<Simple_cartesian<double>> or equivalently
Exact_predicates_inexact_constructions_kernel

� Exact_predicates_inexact_constructions_kernel very commonly
used

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1332

Writing Custom Exact Predicates

� exact predicate cannot at any point rely on a computation that is not exact

� no floating point arithmetic (since it has roundoff error)

� no integer arithmetic that might overflow

� no inexact constructions

� no inexact predicates

� Filtered_predicate may be helpful

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1333

Filtered_predicate Class

� adapter for predicate functors for producing efficient exact predicates
� declared as:

template <class EP, class FP, class CE, class CF>
Filtered_predicate<EP, FP, CE, CF>

� EP is exact predicate (typically uses arbitrary-precision type such as
MP_Float)

� FP is filtering predicate (typically uses interval-arithmetic type like
Interval_nt)

� CE and CF are function objects for converting arguments of unfiltered
predicate to types used by exact and filtering predicates

� must be careful about operation used in unfiltered predicate being
plugged into Filtered_kernel

� for kernel ring number type RT, can safely use addition, subtraction,
multiplication

� can also safely use sign

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1334

Execution of Filtered Predicate

� execution of code for filtered predicate functor proceeds as follows:
1 invoke unfiltered (i.e., original) predicate functor for numeric type
CGAL::Interval_nt<false>
if any operation on interval arithmetic type yields uncertain result (e.g.,
CGAL::sign), exception is thrown, with thrown exception being caught by
filtered predicate functor

2 if no exception thrown (so that unfiltered functor returns normally), return
return value of unfiltered functor (and we are done); otherwise, continue

3 invoke unfiltered predicate functor for numeric type CGAL::MP_Float
4 return return value of unfiltered functor

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1335

Filtered Predicate Example
1 #include <CGAL/Cartesian.h>
2 #include <CGAL/MP_Float.h>
3 #include <CGAL/Interval_nt.h>
4 #include <CGAL/Filtered_predicate.h>
5 #include <CGAL/Cartesian_converter.h>
6
7 template <class K>
8 struct Test_orientation_2 {
9 using RT = typename K::RT;

10 using Point_2 = typename K::Point_2;
11 using result_type = typename K::Orientation;
12 result_type operator()(const Point_2& p, const Point_2& q,
13 const Point_2& r) const {
14 RT prx = p.x() - r.x();
15 RT pry = p.y() - r.y();
16 RT qrx = q.x() - r.x();
17 RT qry = q.y() - r.y();
18 return CGAL::sign(prx * qry - qrx * pry);
19 }
20 };
21
22 using Kernel = CGAL::Cartesian<double>;
23 using Ia_kernel = CGAL::Cartesian<CGAL::Interval_nt<false>>;
24 using Exact_kernel = CGAL::Cartesian<CGAL::MP_Float>;
25 using Test_orientation = CGAL::Filtered_predicate<
26 Test_orientation_2<Exact_kernel>,
27 Test_orientation_2<Ia_kernel>,
28 CGAL::Cartesian_converter<Kernel, Exact_kernel>,
29 CGAL::Cartesian_converter<Kernel, Ia_kernel>
30 >;
31
32 int main() {
33 double big = 1e50;
34 Kernel::Point_2 p(0.0, 0.0), q(1.0, 1.0), r(2.0 * big, 2.0 * big);
35 Test_orientation orientation;
36 std::cout << orientation(p, q, r) << "\n";
37 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1336

Filtered Predicate Example (Continued)

� for example on previous slide, execution of filtered predicate functor
proceeds as follows:

1 invoke
Test_orientation_2<Cartesian<CGAL::Interval_nt<false>>>
functor with points ([0,0], [0,0]), ([1,1], [1,1]),
([2 ·1050,2 ·1050], [2 ·1050,2 ·1050])

2 CGAL::sign called for [−1.55414 ·1085,1.55414 ·1085], which results in
exception being thrown

3 exception caught by filtered predicate code
4 invoke Test_orientation_2<Cartesian<CGAL::MP_Float>> functor

with points (0,0), (1,1), (2 ·1050,2 ·1050)
5 CGAL::sign called for 0, resulting in return value of 0
6 filtered predicate returns 0

� critically important that RT used for all arithmetic operations and not
double (or float); otherwise, arithmetic computation done using
wrong numeric type, which will prevent predicate from being correct (i.e.,
exact)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1337

Section 5.2.2

Polygon Meshes

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1338

Polyhedron_3 Class

� represents polyhedral surface (i.e., polygon mesh), which consists of
vertices, edges, and facets and incidence relationship amongst them

� each edge represented by pair of halfedges
� declaration for Polyhedron_3 class:

template <class Kernel,
class PolyhedronItems = CGAL::Polyhedron_items_3,
template <class T, class I>
class HalfedgeDS = CGAL::HalfedgeDS_default,

class Alloc = CGAL_ALLOCATOR(int)>
class Polyhedron_3;

� Kernel is geometry kernel, which specifies such things as how points are
represented and provides basic geometric operations/predicates (e.g.,
CGAL::Cartesian<double> and
CGAL::Filtered_kernel<CGAL::Cartesian<double>>)

� PolyhedronItems specifies data types for representing vertices and
facets (in many cases, default will suffice)

� HalfedgeDS specifies halfedge data structure for representing polygon
mesh and Alloc specifies allocator (defaults should suffice)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1339

Polyhedron_3 Type Members

Basic Types
Type Description

Vertex vertex type
Halfedge halfedge type
Facet facet type
Point_3 point type (for vertices)

Handles
Type Description

Vertex_const_handle const handle to vertex
Vertex_handle handle to vertex
Halfedge_const_handle const handle to halfedge
Halfedge_handle handle to halfedge
Facet_const_handle const handle to facet
Facet_handle handle to facet

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1340

Polyhedron_3 Type Members (Continued 1)

Iterators
Type Description

Vertex_const_iterator const iterator over all vertices
Vertex_iterator iterator over all vertices
Halfedge_const_iterator const iterator over all halfedges
Halfedge_iterator iterator over all halfedges
Facet_const_iterator const iterator over all facets
Facet_iterator iterator over all facets
Edge_const_iterator const iterator over all edges (ev-

ery other halfedge)
Edge_iterator iterator over all edges (every

other halfedge)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1341

Polyhedron_3 Type Members (Continued 2)

Circulators
Type Description

Halfedge_around_vertex_const_circulator const circulator of halfedges
around vertex (CW)

Halfedge_around_vertex_circulator circulator of halfedges
around vertex (CW)

Halfedge_around_facet_const_circulator const circulator of halfedges
around facet (CCW)

Halfedge_around_facet_circulator circulator of halfedges
around facet (CCW)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1342

Polyhedron_3 Function Members

Size
Name Description

size_of_vertices get number of vertices
size_of_halfedges get number of halfedges
size_of_facets get number of facets

Iterators
Name Description

vertices_begin iterator for first vertex in mesh
vertices_end past-the-end vertex iterator
halfedges_begin iterator for first halfedge in mesh
halfedges_end past-the-end halfedge iterator
facets_begin iterator for first facet in mesh
facets_end past-the-end facet iterator
edges_begin iterator for first edge in mesh
edges_end past-the-end edge iterator

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1343

Polyhedron_3 Function Members (Continued 1)

Combinatorial Predicates
Name Description

is_closed true if no border edges (no boundary)
is_pure_triangle true if all facets are triangles
is_pure_quad true if all facets are quadrilaterals

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1344

Polyhedron_3 Function Members (Continued 2)

Border Halfedges
Name Description

normalized_border_is_valid true if border is normalized
normalize_border sort halfedges such that non-

border edges precede border
edges (i.e., normalize border)

size_of_border_halfedges get number of border halfedges
(border must be normalized)

size_of_border_edges get number of border edges
(border must be normalized)

border_halfedges_begin halfedge iterator starting with
border edges (border must be
normalized)

border_edges_begin edge iterator starting with border
edges (border must be normal-
ized)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1345

Polyhedron_3::Facet

� Facet type represents facet (i.e., face) in polyhedral surface

� actual class type to which Facet corresponds depends on choice of
PolyhedronItems template parameter for Polyhedron_3 class

� depending on actual class type to which Facet refers, level of functionality
offered by Facet class may differ (e.g., available function members may
differ)

� Facet class may contain following optional information:
2 plane equation (corresponding to plane containing facet)
2 handle for halfedge that is incident on facet

� some member functions in Facet class provide access to
halfedge-around-facet circulator

� halfedge-around-facet circulator may be either forward or bidirectional

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1346

Facet Function Members

Operations Available If Facet Plane Supported
Name Description

plane get plane equation

Operations Available If Facet Halfedge Supported
Name Description

halfedge get halfedge incident on facet
facet_begin get circulator of halfedges around facet (CCW)
set_halfedge set incident halfedge
facet_degree get degree of facet (i.e., number of edges on

boundary of facet)
is_triangle true if facet is triangle
is_quad true if facet is quadrilateral

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1347

Polyhedron_3::Vertex

� Vertex type represents vertex in polyhedral surface

� actual class type to which Vertex corresponds depends on choice of
PolyhedronItems template parameter for Polyhedron_3 class

� depending on actual class type to which Vertex refers, level of
functionality offered by Vertex class may differ (e.g., available function
members may differ)

� Vertex class may contain following optional information:
2 point (corresponding to vertex position)
2 handle for halfedge that is incident on vertex

� some member functions in Vertex class provide access to
halfedge-around-vertex circulator

� halfedge-around-vertex circulator may be either forward or bidirectional

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1348

Vertex Function Members

Operations Available If Vertex Point Supported
Name Description

point get point associated with vertex

Operations Available If Vertex Halfedge Supported
Name Description

halfedge get halfedge incident on vertex
vertex_begin circulator of halfedges around vertex (CW)
set_halfedge set incident halfedge
vertex_degree get valence of vertex
is_bivalent true if vertex has valence two
is_trivalent true if vertex has valence three

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1349NEXT SLIDE: halfedge members

Polyhedron_3::Halfedge

� Halfedge type represents halfedge in polyhedral surface
� actual class type to which Halfedge corresponds depends on choice of

PolyhedronItems template parameter for Polyhedron_3 class
� depending on actual class type to which Halfedge refers, level of

functionality offered by Halfedge class may differ (e.g., available function
members may differ)

� each halfedge directly associated with one vertex and one facet, referred
to as incident vertex and incident facet, respectively

� incident vertex is vertex at terminal end of halfedge
� incident facet is facet to left of halfedge

vertex

halfedge

facet

Incident Vertex

Incident Facet

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1350

Polyhedron_3::Halfedge (Continued)

� halfedge contains:
2 handle for next halfedge around incident facet in CCW direction
2 handle for opposite halfedge

� together, these two handles allow for efficient iteration around:
2 halfedges incident on facet in CCW direction only; and
2 halfedges incident on vertex in CW direction only

� halfedge may optionally contain:
2 handle for previous halfedge around incident facet in CCW direction

� addition of this optional handle allows for efficient iteration around:
2 halfedges incident on facet in both (CW and CCW) directions; and
2 halfedges incident on vertex in both (CW and CCW) directions

� halfedge may also contain following optional information:
2 handle for incident vertex
2 handle for incident facet

� if halfedge class provides prev member function, halfedge-around-vertex
and halfedge-around-facet circulators are bidirectional; otherwise, they are
forward only

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1351

Halfedge Function Members

Adjacency Queries
Name Description

opposite get opposite halfedge
next get next halfedge incident on same facet in CCW order
prev get previous halfedge incident on same facet in CCW

order
next_on_vertex get next halfedge incident on same vertex in CW order
prev_on_vertex get previous halfedge incident on same vertex in CW

order

Circulators
Name Description

vertex_begin get halfedge-around-vertex circulator for incident vertex
(CW order)

facet_begin get halfedge-around-facet circulator for incident facet
(CCW order)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1352

Halfedge Function Members (Continued 1)

Border Queries
Name Description

is_border true if border halfedge
is_border_edge true if associated edge on border

Vertex Valence Queries
Name Description

vertex_degree get valence of incident vertex
is_bivalent true if incident vertex has valence two
is_trivalent true if incident vertex has valence three

Facet Degree Queries
Name Description

facet_degree get degree of incident facet
is_triangle true if incident facet is triangle
is_quad true if incident facet is quadrilateral

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1353

Halfedge Function Members (Continued 2)

Operations Available If Halfedge Vertex Supported
Name Description

vertex get handle for incident vertex of halfedge

Operations Available If Halfedge Facet Supported
Name Description

facet get handle for incident facet of halfedge

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1354

Adjacency Example

h->opposite()->

h->opposite()

h->vertex()

h->facet()

h

h->opposite()->
facet()

vertex()

h->next_on_vertex()

h->prev()

h->prev_on_vertex()

h->next()

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1355END SLIDE: tutorial

Polyhedron_3 I/O

� operator<< and operator>> are overloaded for I/O

� read and write polygon mesh data in OFF format

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1356

Polyhedron_3 Gotchas

� be mindful of operations on Polyhedron_3 that may invalidate handles,
iterators, or circulators

� halfedge-around-vertex circulators and halfedge-around-facet circulators
iterate in opposite directions (i.e., CCW versus CW)

� be careful about const correctness (e.g., const versus mutable
handles/iterators/circulators)

� some Polyhedron_3 operations only valid if border normalized (e.g.,
size_of_border_halfedges, size_of_border_edges)

� exactly one of two halfedges associated with border edge is border
halfedge

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1357

Section 5.2.3

Surface Subdivision Methods

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1358

Subdivision Methods

� several functions provided for performing subdivision of polygon meshes
(represented by Polyhedron_3)

� generic subdivision functions apply specific topologic refinement rule but
allow arbitrary geometric refinement rule

� specific subdivision functions apply specific subdivision method

� contained in CGAL::Subdivision_method_3 namespace

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1359

Subdivision Functions
Generic Subdivision Methods

Function Description

PQQ perform primal quadrilateral quadrisection with arbitrary
geometric refinement rule

PTQ perform primal triangle quadrisection with arbitrary geo-
metric refinement rule

DQQ perform dual quadrilateral quadrisection with arbitrary
geometric refinement rule

Sqrt3 perform
√

3 topologic refinement with arbitrary geometric
refinement rule

Specific Subdivision Methods
Function Description

CatmullClark_subdivision perform Catmull-Clark subdivision
Loop_subdivision perform Loop subdivision
DooSabin_subdivision perform Doo-Sabin subdivision
Sqrt3_subdivision perform Kobbelt

√
3 subdivision

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1360

Section 5.2.4

Example Programs

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1361

Mesh Generation Program: meshMake

� This program generates a simple triangle mesh corresponding to a
tetrahedron.

� First, a polygon mesh corresponding to a tetrahedron is constructed.

� Then, the resulting mesh is written to standard output in Object File
Format (OFF).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1362

Mesh Information Program: meshInfo

� This program extracts some basic information from a polygon mesh.

� First, a polygon mesh is read from standard input in Object File Format
(OFF).

� Then, various information is extracted from the mesh, including:
2 the type of mesh (e.g., triangle, quadrilateral, or general)
2 the number of vertices, edges, faces, and halfedges in the mesh
2 the minimum, maximum, and average valence of vertices in the mesh
2 the number of nonplanar faces in the mesh

� The above information is printed to standard output.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1363

Mesh Subdivision Program: meshSubdivide

� This program performs subdivision on a polygon mesh.

� First, a mesh is read from standard input in Object File Format (OFF).

� Next, the mesh is refined using the given number of iterations of the
specified subdivision method.

� Finally, the refined mesh is written to standard output in OFF.

� Several subdivision schemes are supported, including: Loop,
Catmull-Clark, Doo-Sabin, and Kobbelt

√
3.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1364

Section 5.3

OpenGL Utility Toolkit (GLUT)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1365

OpenGL Utility Toolkit (GLUT)

� simple windowing API for OpenGL
� intended to be used with small to medium sized OpenGL programs
� language binding for C
� window-system independent
� supports most mainstream operating systems (Microsoft Windows,

Linux/Unix)
� provides window management functionality (e.g., creating/destroying

windows, displaying/resizing windows, and querying/setting window
attributes)

� allows for user input (e.g., via keyboard, mouse)
� routines for drawing common wireframe/solid 3-D objects such as sphere,

torus, and well-known teapot model
� register callback functions to handle various types of events (e.g., display,

resize, keyboard, special keyboard, mouse, timer, idle) and then loop
processing events

� open-source implementation of GLUT called Freeglut is available from
http://sourceforge.net/projects/freeglut

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1366

http://sourceforge.net/projects/freeglut

Event-Driven Model

� event-driven model: flow of program determined by events (e.g., mouse
clicks, key presses)

� application making use of event-driven model performs some initialization
and then enters an event-processing loop for duration of execution

� each iteration of event-processing loop does following:
1 wait for event
2 process event

� many libraries for building graphical user interfaces (GUIs) employ
event-driven model

� GLUT uses event-driven model

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1367

Structure of GLUT Application

1 initialize GLUT library by calling glutInit

2 set display mode (via glutInitDisplay)
3 perform any additional initialization such as:

2 create windows (via glutCreateWindow)
2 register callback functions for handling various types of events (e.g., via

glutDisplayFunc, glutReshapeFunc, glutKeyboardFunc)
2 setup initial OpenGL state (e.g., depth buffering, shading, lighting, clear

color)

4 enter main event-processing loop by calling glutMainLoop [Note that
glutMainLoop never returns.]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1368

GLUT Header Files

� OpenGL and GLUT header files in GL (or GLUT) directory

� to use GLUT, need to include glut.h in GL (or GLUT) directory

� header file glut.h also includes all necessary OpenGL header files (e.g.,
gl.h, glu.h, glext.h)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1369

Event Types

Event Type Description

display window contents needs to be displayed
overlay display overlay plane contents needs to be displayed
reshape window has been resized
keyboard key has been pressed
mouse mouse button has been pressed or released
motion mouse moved within window while one or more

buttons pressed
passive motion mouse moved within window while no buttons

pressed
visibility visibility of window has changed (covered versus

uncovered)
entry mouse has left or entered window
special keyboard special key has been pressed (e.g., arrow keys,

function keys)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1370

Event Types (Continued)

Event Type Description

spaceball motion spaceball translation has occurred
spaceball rotate spaceball rotation has occurred
spaceball button spaceball button has been pressed or released
button box button box activity has occurred
dials dial activity has occurred
tablet motion tablet motion has occurred
tablet button table button has been pressed or released
menu status menu status change
idle no event activity has occurred
timer timer has expired

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1371

Functions

Initialization
Function Description

glutInit initialize GLUT library
glutInitWindowSize set initial window size for

glutCreateWindow
glutInitWindowPosition set initial window position for

glutCreateWindow
glutInitDisplayMode set initial display mode

Beginning Event Processing
Function Description

glutMainLoop enter GLUT event-processing loop

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1372

Functions (Continued 1)
Window Management

Function Description

glutCreateWindow create top-level window
glutCreateSubWindow create subwindow
glutSetWindow set current window
glutGetWindow get current window
glutDestroyWindow destroys specified window
glutPostRedisplay mark current window as needing to be redisplayed
glutSwapBuffers swaps buffers of current window if double buffered

(flushes graphics output via glFlush)
glutPositionWindow request change to position of current window
glutReshapeWindow request change to size of current window
glutFullScreen request current window to be made full screen
glutSetWindowTitle set title of current top-level window
glutSetIconTitle set title of icon for current top-level window
glutSetCursor set cursor image for current window

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1373

Functions (Continued 2)

Menu Management
Function Description
glutCreateMenu create new pop-up menu
glutSetMenu set current menu
glutGetMenu get current menu
glutDestroyMenu destroy specified menu
glutAddMenuEntry add menu entry to bottom of current menu
glutAddSubMenu add submenu trigger to bottom of current

menu
glutChangeToMenuEntry change specified menu item in current menu

into menu entry
glutChangeToSubMenu change specified menu item in current menu

into submenu trigger
glutRemoveMenuItem remove specified menu item
glutAttachMenu attach mouse button for current window to cur-

rent menu
glutDetachMenu detach attached mouse button from current

window

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1374

Functions (Continued 3)

Callback Registration
Function Description

glutDisplayFunc sets display callback for current window
glutReshapeFunc sets reshape callback for current window
glutKeyboardFunc sets keyboard callback for current window
glutMouseFunc sets mouse callback for current window
glutMotionFunc set motion callback for current window
glutPassiveMotionFunc set passive motion callback for current win-

dow
glutVisibilityFunc set visibility callback for current window
glutEntryFunc set mouse enter/leave callback for current

window
glutSpecialFunc sets special keyboard callback for current

window
glutIdleFunc set global idle callback
glutTimerFunc registers timer callback to be triggered in

specified number of milliseconds

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1375

Functions (Continued 4)

State Retrieval
Function Description

glutGet retrieves simple GLUT state (e.g., size or position
of current window)

glutDeviceGet retrieves GLUT device information (e.g., keyboard,
mouse, spaceball, tablet)

glutGetModifiers retrieve modifier key state when certain callbacks
generated (i.e., state of shift, control, and alt keys)

Font Rendering
Function Description

glutBitmapCharacter renders bitmap character using OpenGL
glutBitmapWidth get width of bitmap character
glutStrokeCharacter renders stroke character using OpenGL
glutStrokeWidth get width of stroke character

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1376

Functions (Continued 5)

Geometric Object Rendering
Function Description

glutSolidSphere render solid sphere
glutWireSphere render wireframe sphere
glutSolidCube render solid cube
glutWireCube render wireframe cube
glutSolidCone render solid cone
glutWireCone render wireframe cone
glutSolidTorus render solid torus
glutWireTorus render wireframe torus
glutSolidOctahedron render solid octahedron
glutWireOctahedron render wireframe octahedron
glutSolidTetrahedron render solid tetrahedron
glutWireTetrahedron render wireframe tetrahedron
glutSolidTeapot render solid teapot
glutWireTeapot render wireframe teapot

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1377

Minimalist GLUT Program

� minimalist program using GLUT

� create window that is cleared to particular color

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1378

Minimalist GLUT Program: Source Code

1 // Create a window that is cleared to a particular color
2 // when drawn.
3

4 #include <GL/glut.h>
5

6 void display() {
7 glClearColor(0.0, 1.0, 1.0, 0.0);
8 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
9 glutSwapBuffers();

10 }
11

12 int main(int argc, char** argv) {
13 glutInit(&argc, argv);
14 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
15 glutInitWindowSize(512, 512);
16 glutCreateWindow(argv[0]);
17 glutDisplayFunc(display);
18 glutMainLoop();
19 return 0;
20 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1379

GLUT References

1 M. J. Kilgard. The OpenGL Utility Toolkit (GLUT): Programming Interface
(API Version 3), Nov. 1996.
Available from http:
//www.opengl.org/resources/libraries/glut/glut-3.spec.pdf.

2 R. S. Wright, B. Lipchak, and N. Haemel. OpenGL SuperBible.
Addison-Wesley, Upper Saddle River, NJ, USA, 4th edition, 2007.

3 GLUT home page:
http://www.opengl.org/resources/libraries/glut

4 GLUT manual (HTML format):
http://www.opengl.org/resources/libraries/glut/spec3/
spec3.html

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1380

http://www.opengl.org/resources/libraries/glut/glut-3.spec.pdf
http://www.opengl.org/resources/libraries/glut/glut-3.spec.pdf
http://www.opengl.org/resources/libraries/glut
http://www.opengl.org/resources/libraries/glut/spec3/spec3.html
http://www.opengl.org/resources/libraries/glut/spec3/spec3.html

Section 5.4

OpenGL Framework (GLFW) Library

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1381

OpenGL Framework (GLFW) Library

� lightweight open-source windowing API for OpenGL, OpenGL ES, and
Vulkan

� language binding for C

� window-system independent

� supports most mainstream operating systems (e.g., Microsoft Windows,
OS X, and Linux/Unix)

� provides window management functionality (e.g., creating/destroying
windows, displaying/resizing windows, and querying/setting window
attributes)

� allows for user input (e.g., via keyboard, mouse, and joystick)

� allows application to register callback functions to handle various types of
events (e.g., window refresh, window resize, keyboard, and mouse) and
then loop processing events

� web site: http://www.glfw.org

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1382

http://www.glfw.org

GLFW Versus GLUT

� GLFW and modern GLUT (e.g., FreeGLUT) offer somewhat similar
functionality

� GLFW allows greater control over event processing loop

� GLFW has clipboard support

� GLFW supports dragging and dropping of files/directories in window

� GLUT has much longer history than GLFW (which can make code
examples and tutorials using GLUT relatively easier to find)

� GLUT has built-in support for rendering text and some basic geometric
objects

� GLUT has primitive support for menus

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1383

Event-Driven Model

� event-driven model: flow of program determined by events (e.g., mouse
clicks and key presses)

� application making use of event-driven model performs some initialization
and then enters event-processing loop for duration of execution

� each iteration of event-processing loop does following:
1 wait for event
2 process event

� many libraries for building graphical user interfaces (GUIs) employ
event-driven model

� GLFW uses event-driven model

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1384

Structure of GLFW Application

1 initialize GLFW library by calling glfwInit
2 perform any additional initialization such as:

2 select type of OpenGL (or OpenGL ES) context to be used for subsequently
created windows (via glfwWindowHint)

2 create windows (via glfwCreateWindow)
2 register callback functions for handling various types of events (e.g., via

glfwRefreshCallback, glfwSetWindowSizeCallback,
glfwSetCharCallback)

2 configure initial OpenGL state (e.g., depth buffering and clear color) and
shaders

3 enter main event-processing loop, which repeatedly calls
glfwWaitEvents, glfwPollEvents, or other similar functions

4 cleanup GLFW library by calling glfwTerminate

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1385

GLFW Header Files

� GLFW header files in directory GLFW

� to use GLFW, need to include glfw3.h:
#include <GLFW/glfw3.h>

� header file glfw3.h also includes all necessary OpenGL header files
(e.g., gl.h, glu.h, glext.h)

� if using OpenGL extension loading library (such as GLEW), header for this
library should be included before glfw3.h

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1386

Event Types

Keyboard, Mouse, and Joystick Events
Event Type Description

key key has been pressed, released, or repeated
character character has been typed without modifiers
character with modifiers character has been typed with modifiers
mouse button mouse button has been pressed or released
cursor position cursor has moved
cursor enter cursor has entered or left client area of win-

dow
scroll scrolling device has been used (e.g., mouse

wheel or touchpad scrolling area)
joystick joystick has been connected or disconnected
drop files/directories have been dropped on win-

dow

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1387

Event Types (Continued 1)

Framebuffer, Window, and Monitor Events
Event Type Description

framebuffer size framebuffer has been resized
window close window has been closed
window refresh window contents need to be redrawn
window size window size has changed
window position window position has changed
window iconify window has been iconified or deiconified
window focus window focus has changed (i.e., been gained

or lost)
monitor monitor has been connected or disconnected

Other Events
Event Type Description

error error has occurred in GLFW library

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1388

Functions

Initialization and Termination
Function Description

glfwInit initialize GLFW library
glfwTerminate cleanup GLFW library

Version
Function Description

glfwGetVersion get version of GLFW library
glfwGetVersionString get version string of GLFW library

Window Creation and Destruction
Function Description

glfwCreateWindow create window and its associated OpenGL or
OpenGL ES context

glfwDestroyWindow destroy window and its associated context
glfwDefaultWindowHints reset all window hints to their default values
glfwWindowHint set window hints for subsequently created win-

dows

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1389

Functions (Continued 1)

Setting and Querying Window Attributes
Function Description

glfwWindowShouldClose get close flag for specified window
glfwSetWindowShouldClose set close flag for specified window
glfwSetWindowTitle set title of specified window
glfwSetWindowIcon set icon for specified window
glfwGetWindowPos get position of client area of specified window
glfwSetWindowPos set position of client area of specified window
glfwGetWindowSize get size of client area of specified window
glfwSetWindowSize set size of client area of specified window
glfwSetWindowSizeLimits set size limits of client area of specified window
glfwSetWindowAspectRatio set required aspect ratio of client area of spec-

ified window

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1390

Functions (Continued 2)

Setting and Querying Window Attributes (Continued)
Function Description

glfwGetFramebufferSize get size of framebuffer of specified window
glfwGetWindowFrameSize get size of frame of window
glfwGetWindowMonitor get monitor that specified window uses for full-

screen mode
glfwSetWindowMonitor set monitor that specified window uses for full-

screen mode
glfwGetWindowAttrib get attribute of specified window
glfwGetWindowUserPointer get user pointer of specified window
glfwSetWindowUserPointer set user pointer of specified window

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1391

Functions (Continued 3)

Window Management
Function Description

glfwIconifyWindow iconifies specified window
glfwRestoreWindow restores (i.e., deiconifies) specified window
glfwMaximizeWindow maximizes specified window
glfwShowWindow make specified window visible
glfwHideWindow hide specified window
glfwFocusWindow bring specified window to front and give it input

focus
glfwSwapBuffers swap front and back buffers of specified win-

dow when rendering with OpenGL or OpenGL
ES

glfwSwapInterval set swap interval for current OpenGL or
OpenGL ES context

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1392

Functions (Continued 4)

Callback Registration
Function Description

glfwSetErrorCallback sets error callback function
glfwSetWindowPosCallback sets window-position callback function

for specified window
glfwSetWindowSizeCallback sets window-size callback function for

specified window
glfwSetWindowCloseCallback sets window-close callback function for

specified window
glfwSetWindowRefreshCallback sets window-refresh callback function

for specified window
glfwSetWindowFocusCallback sets window-focus callback function for

specified window

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1393

Functions (Continued 5)

Callback Registration (Continued 1)
Function Description

glfwSetWindowIconifyCallback sets window-iconify callback function
for specified window

glfwSetFramebufferSizeCallback sets callback function for framebuffer
size event

glfwSetKeyCallback sets (physical) key callback function for
specified window

glfwSetCharCallback sets character callback function for
specified window

glfwSetCharModsCallback sets character-with-modifiers callback
function for specified window

glfwSetMouseButtonCallback sets mouse-button callback function for
specified window

glfwGetMonitorCallback set monitor configuration callback func-
tion

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1394

Functions (Continued 6)

Callback Registration (Continued 2)
Function Description

glfwSetCursorPosCallback sets cursor-position callback function
for specified window

glfwSetCursorEnterCallback sets cursor-boundary-crossing callback
function for specified window

glfwSetScrollCallback sets scroll callback function for speci-
fied window

glfwSetDropCallback sets file-drop callback function for spec-
ified window

glfwSetJoystickCallback sets joystick-configuration callback
function

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1395

Functions (Continued 7)

Event Handling
Function Description

glfwPostEmptyEvent post empty event to event queue
glfwPollEvents process any pending events and return imme-

diately
glfwWaitEvents wait until at least one event is pending, then

process all pending events and return
glfwWaitEventsTimeout wait until at least one event pending or timeout

expires, then process any pending events and
return

Timing
Function Description

glfwGetTime get value of timer in seconds
glfwSetTime set value of timer
glfwGetTimerValue get value of timer in clock ticks
glfwGetTimerFrequency get frequency of clock tick

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1396

Functions (Continued 8)

Keyboard, Mouse, Joystick, and Cursor
Function Description

glfwGetInputMode get value of input option for specified window
(e.g., cursor, sticky keys/buttons)

glfwSetInputMode set input option for specified window
glfwGetKeyName get localized name of specified printable key
glfwGetKey get last reported state of keyboard key for

specified window
glfwGetMouseButton get last reported state of mouse button for

specified window
glfwGetCursorPos get position of cursor relative to client area of

specified window
glfwSetCursorPos set position of cursor relative to client area of

specified window

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1397

Functions (Continued 9)

Keyboard, Mouse, Joystick, and Cursor (Continued)
Function Description

glfwCreateCursor create custom cursor
glfwCreateStandardCursor creates cursor with standard shape
glfwDestroyCursor destroys cursor
glfwSetCursor set cursor for use in specified window
glfwJoystickPresent test if joystick is present
glfwGetJoystickAxes get values of all axes of specified joystick
glfwGetJoystickButtons get state of all buttons of specified joystick
glfwGetJoystickName get name of specified joystick

Clipboard
Function Description

glfwGetClipboardString gets contents of clipboard as string
glfwSetClipboardString sets clipboard to specified string

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1398

Functions (Continued 10)

Monitor Management
Function Description

glfwGetMonitors get currently connected monitors
glfwGetPrimaryMonitor get primary monitor
glfwGetMonitorPos get position of specified monitor’s viewport on

virtual screen
glfwGetMonitorPhysicalSize get physical size of specified monitor
glfwGetMonitorName get name of specified monitor
glfwGetVideoModes get available video modes for specified monitor
glfwGetVideoMode get current video mode of specified monitor
glfwSetGamma set gamma for specified monitor
glfwGetGammaRamp get current gamma ramp for specified monitor
glfwSetGammaRamp set current gamma ramp for specified monitor

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1399

Functions (Continued 11)

Contexts and Extensions
Function Description

glfwMakeContextCurrent make context of specified window current for
calling thread

glfwGetCurrentContext get window whose context is current on calling
thread

glfwExtensionSupported tests if specified API extension is supported by
current OpenGL or OpenGL ES context

glfwGetProcAddress get address of specified OpenGL or OpenGL
ES core or extension function (if supported) for
current context

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1400

Functions (Continued 12)

Vulkan
Function Description

glfwVulkanSupported tests if Vulkan loader has
been found

glfwGetRequiredInstanceExtensions get Vulkan instance exten-
sions required by GLFW

glfwGetInstanceProcAddress get address of specified
Vulkan instance function

glfwGetPhysicalDevicePresentationSupport test if specified queue fam-
ily can present images

glfwCreateWindowSurface create Vulkan surface for
specified Window

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1401

Minimalist GLFW Program

� minimalist program using GLFW

� create window that is cleared to particular color

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1402

Minimalist GLFW Program: Source Code

1 #include <cstdlib>
2 #include <GLFW/glfw3.h>
3

4 void display(GLFWwindow* window) {
5 glClearColor(0.0, 1.0, 1.0, 0.0);
6 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
7 glfwSwapBuffers(window);
8 }
9

10 int main(int argc, char** argv) {
11 if (!glfwInit()) {return EXIT_FAILURE;}
12 glfwSwapInterval(1);
13 GLFWwindow* window = glfwCreateWindow(512, 512, argv[0],
14 nullptr, nullptr);
15 if (!window) {
16 glfwTerminate();
17 return EXIT_FAILURE;
18 }
19 glfwMakeContextCurrent(window);
20 glfwSetWindowRefreshCallback(window, display);
21 while (!glfwWindowShouldClose(window)) {
22 glfwWaitEvents();
23 }
24 glfwTerminate();
25 return EXIT_SUCCESS;
26 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1403

GLFW References

1 GLFW Reference Manual, http://www.glfw.org/docs/latest

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1404

http://www.glfw.org/docs/latest

Section 5.5

OpenGL Mathematics (GLM) Library

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1405

OpenGL Mathematics (GLM) Library

� open-source mathematics library for graphics software based on OpenGL
Shading Language (GLSL)

� intended for use with OpenGL

� written in C++

� developed by Christophe Riccio

� provides classes and functions with similar naming conventions and
functionality as in GLSL

� web site: http://glm.g-truc.net

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1406

http://glm.g-truc.net

GLM Header Files

� library has numerous header files

� header files under glm directory

� all header files for core GLM functionality can be included by including
header file glm.hpp

� for matrix transformation functionality, include
gtc/matrix_transform.hpp

� for string conversion functionality, include gtx/string_cast.hpp

� for type value functionality, include gtc/type_ptr.hpp

� all identifiers placed in namespace glm

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1407

Types

� provides vector and matrix types similar to GLSL
� vector types:

2 vec2, vec3, vec4
2 bvec2, bvec3, bvec4
2 ivec2, ivec3, ivec4
2 uvec2, uvec3, uvec4
2 dvec2, dvec3, dvec4

� matrix types:
2 mat2x2, mat2x3, mat2x4, mat2,

mat3x2, mat3x3, mat3x4, mat3,
mat4x2, mat4x3, mat4x4, mat4

2 dmat2x2, dmat2x3, dmat2x4, dmat2,
dmat3x2, dmat3x3, dmat3x4, dmat3,
dmat4x2, dmat4x3, dmat4x4, dmat4

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1408

Functions

� provides GLSL functions (e.g., inverse and transpose)

� provides functions that offer functionality similar to legacy OpenGL/GLU
functions (e.g., rotate, scale, translate, frustum, ortho, lookAt,
perspective, pickMatrix, project, and unProject)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1409

Code Example: Basic Usage

1 #include <iostream>
2 #include <glm/glm.hpp>
3 #include <glm/gtc/matrix_transform.hpp>
4 #include <glm/gtx/string_cast.hpp>
5 #include <cmath>
6

7 int main() {
8 glm::mat4 mv(1.0f);
9 mv = mv * glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f),

10 glm::vec3(1.0f, 0.0f, 0.0f),
11 glm::vec3(0.0f, 0.0f, 1.0f));
12 mv = mv * glm::translate(mv, glm::vec3(1.0f, 1.0f, 1.0f));
13 mv = mv * glm::rotate(mv, glm::radians(90.0f),
14 glm::vec3(0.0f, 0.0f, 1.0f));
15 mv = mv * glm::scale(mv, glm::vec3(1.0f, 1.0f, 2.0f));
16 glm::mat4 p = glm::perspective(glm::radians(90.0f), 1.0f,
17 1.0f, 2.0f);
18 glm::mat4 mvp = p * mv;
19 glm::vec4 v(1.0f, -1.0f, -1.0f, 1.0f);
20 std::cout << glm::to_string(glm::vec3(mv * v)) << ’\n’;
21 std::cout << glm::to_string(glm::vec3(mvp * v)) << ’\n’;
22 std::cout << glm::radians(180.0f) << ’\n’;
23 std::cout << glm::degrees(M_PI) << ’\n’;
24 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1410

Code Example: value_ptr

1 #include <GL/glew.h>
2 #include <GL/gl.h>
3 #include <glm/glm.hpp>
4 #include <glm/gtc/type_ptr.hpp>
5

6 void setUniform(GLint loc) {
7 glm::mat4 m(1.0f);
8 // ...
9 glUniform4fv(loc, 4, glm::value_ptr(m));

10 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1411

Section 5.6

Open Graphics Library (OpenGL)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1412

Open Graphics Library (OpenGL)

� application programming interface (API) for high-performance high-quality
2-D and 3-D graphics rendering

� most widely adopted 2-D and 3-D graphics API in industry

� bindings for numerous programming languages (i.e., C, Java, and Fortran)

� focus exclusively on C language binding herein

� window-system and operating-system independent

� available on all mainstream systems (e.g., Microsoft Windows, OS X, and
Linux/Unix)

� vendor-neutral, controlled by independent consortium with many
organizations as members (including companies such as Intel, NVIDIA,
and AMD)

� official web site: http://www.opengl.org

� OpenGL ES provides (simplified) subset of OpenGL API for embedded
systems (e.g., mobile phones, game consoles, personal navigation
devices, personal media players, automotive systems, settop boxes)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1413

http://www.opengl.org

OpenGL Functionality

� geometric primitives include points, line segments, and triangles

� arrange geometric primitives in 3-D space and select desired vantage
point for viewing composed scene

� calculate colors of objects (e.g., by explicit assignment, lighting, texture
mapping, or combination thereof)

� convert mathematical description of objects to pixels on screen (i.e.,
rasterization)

� can eliminate hidden parts of objects (via depth buffering), perform
antialiasing, and so on

� some functionality relies on shaders provided by application program

� only concerned with rendering

� no mechanism provided for creating windows or obtaining user input (e.g.,
via mouse or keyboard)

� another library must be used in conjunction with OpenGL in order to
manage windows and handle user input

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1414

Modern OpenGL

Processor
(CPU)

Graphics
Processor

(GPU)
Framebuffer

CPU
Memory Memory

GPU

Output Device
(e.g., monitor)(e.g., keyboard

Input Devices

and mouse)

� main responsibility of application is to provide graphics data to GPU

� application program running on CPU sends graphics data to GPU

� programs running on GPU called shaders control rendering

� GPU performs all rendering

� high performance achieved by offloading rendering work to GPU, with
GPU being highly specialized for rendering

� image formed and stored in framebuffer

� shaders written in OpenGL Shading Language (GLSL)

� application program uses OpenGL to compile and link shader source code
to yield executable shader program that runs on GPU

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1415

OpenGL State Machine

� OpenGL is state machine
� OpenGL functions can be roughly classified into two categories:

1 primitive generation
2 state management

� primitive-generation functions:
2 produce graphics output if primitive is visible
2 how vertices are processed and appearance of primitive controlled by

OpenGL state
� state-management functions:

2 enabling/disabling OpenGL functionality (e.g., depth buffering)
2 configuring shader programs
2 setting/querying shader variables

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1416

Contexts and Profiles

� feature that may be removed in future version of OpenGL is said to be
deprecated

� profile defines subset of OpenGL functionality targeted to specific
application domains

� two profiles: core and compatibility

� core profile provides functionality mandated by particular version of
OpenGL (which does not include deprecated and removed features)

� compatibility profile restores support for all functionality that has been
removed from OpenGL

� all OpenGL implementations must support core profile, but are not
required to support compatibility profile

� for given profile, two types of contexts: full or forward compatible

� forward compatible context does not support deprecated features from
profile

� full context supports deprecated features from profile

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1417

Header Files

� header files for OpenGL located in GL (or OpenGL) directory

� definitions necessary for OpenGL can be found in header file gl.h

� above header file provides definitions of all constants and data types (e.g.,
GLint and GLfloat) and function declarations for OpenGL

� on some platforms, in order to access newer OpenGL functionality, may
need to include glew.h (typically in GL directory) before gl.h

� normally, OpenGL used in conjunction with another helper library such as
GLFW or GLUT

� other helper libraries also have header files of their own that must be
included

� often header files for helper libraries include gl.h

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1418

Types

Type Description

GLboolean boolean
GLbyte 8-bit signed two’s complement integer
GLubyte 8-bit unsigned integer
GLchar 8-bit character
GLshort 16-bit signed two’s complement integer
GLushort 16-bit unsigned integer
GLint 32-bit signed two’s complement integer
GLuint 32-bit unsigned integer
GLfloat single-precision floating-point value
GLdouble double-precision floating-point value

� OpenGL types do not necessarily correspond to similarly named C types
(e.g., GLint is not necessarily int)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1419

Function Naming Conventions

� all OpenGL functions begin with gl

� some OpenGL commands have numerous variants that differ in number
and type of parameters

� such commands are named using following pattern:
generic_name N T V

where generic_name is generic name of function, N is digit (i.e., 2, 3, 4)
indicating number of components, T is one or two letters indicating data
type of components, V is either nothing or letter v to indicate component
data specified as individual values or as vector (i.e., pointer to array),
respectively

Number N
2 (x,y)
3 (x,y,z)
4 (x,y,z,w)

Data Type T
b GLbyte ub GLubyte
s GLshort us GLushort
i GLint ui GLuint
f GLfloat d GLdouble

� glUniform3f: specific version of generic glUniform function that takes
data in form of three GLfloat parameters

� glUniform3fv: specific version of generic glUniform function that takes
data in form of pointer to array of triples of GLfloat values

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1420

Representing Geometric Objects

� geometric objects represented using vertices
� each vertex has variety of attributes, such as:

2 positional coordinates
2 color
2 texture coordinates
2 surface normal
2 any other data associated with point in space

� position represented using homogeneous coordinates

� vertex data must be stored in vertex buffer objects (VBOs)

� VBOs must be associated with vertex array objects (VAOs)

� VAOs/VBOs allow application program to transfer data to GPU once and
then select between different data on GPU by activating different
VAOs/VBOs

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1421

Geometric Primitives

v0 v1

v2v3

points

v2v3

v0 v1

lines

v3 v2

v1v0

line strip

v0 v1

v2v3

line loop

v0 v1

v2v4 v3

v5

triangles

v0

v3

v2v4

v5 v1

triangle strip v1,v6

v2

v3

v4

v5

v0

triangle fan

� all primitives specified by vertices

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1422

Provoking Vertex

� each primitive has provoking vertex

� one of two conventions can be used to determine provoking vertex: first
vertex or last vertex

� for example, with last vertex convention, provoking vertex for triangle is
third (i.e., last) vertex of triangle

� convention defaults to last vertex

� convention can be set with glProvokingVertex

� provoking vertex becomes important, for example, when using flat
interpolation

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1423

Vertex Array and Vertex Buffer Objects (VAOs and VBOs)

Vertex Attribute

Vertex Positions Vertex Normals

Vertex Attribute

Vertex Buffer
Object

Vertex Array
Object

� vertex buffer objects (VBOs) store vertex attributes (e.g., positions,
normals, colors, and texture coordinates)

� storage for VBOs resides in GPU memory
� vertex array objects (VAOs) allow data stored in VBOs to be associated

with vertex attributes for vertex shader
� VAOs specify layout (e.g., offset and stride) and format (e.g., type) of data

in VBOs
� to render primitives need VAO (which, in turn, is associated with one or

more VBOs)
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1424

Vertex Array Objects (VAOs)

� VAOs store data for geometric object

� VAO identified by name, which is integer of type GLuint

� create one or more VAOs by generating VAO names via
glGenVertexArrays

� VAO initialized as follows:
1 bind specific VAO for initialization via glBindVertexArray
2 update VBOs associated with VAO, and specify layout and format of VBO

data and its correspondence with vertex attributes for rendering via
glVertexAttribPointer

� data in VAO rendered as follows:
1 bind VAO for use in rendering via glBindVertexArray
2 draw content of currently enabled arrays via glDrawArrays

� only enabled attributes will be used for rendering (where attributes are
enabled with glEnableVertexAttribArray)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1425

Vertex Buffer Objects (VBOs)

� vertex buffer objects (VBOs) provide means to transfer data to GPU
memory

� vertex data must be stored in VBO associated with VAO

� each VBO associated with name, which is integer of type GLuint

� generate VBO names via glGenBuffers

� bind specific VBO for initialization via glBindBuffer (after first binding
associated VAO)

� allocate underlying storage for VBO (and optionally load data into VBO)
via glBufferData

� load data into VBO via glBufferSubData

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1426

Coordinate Systems

Modelling
Transformation Transformation

Viewing Projection
Transformation

Transformation
ViewportClipping and

Perspective
Division

Object
Coordinates

World
Coordinates

Eye
Coordinates

Clip
Coordinates

Coordinates
Device

Normalized

Coordinates
Window

� object coordinates: coordinates of object relative to its local origin
� world coordinates: coordinates of three-dimensional environment (i.e.,

world) being rendered
� eye coordinates: coordinates relative to camera from which world is being

viewed
� clip coordinates: coordinates normalized such that viewing volume falls

in [−1,1]× [−1,1]× [−1,1]
� normalized device coordinates: result of converting clip coordinates to

Cartesian coordinates by perspective division (i.e., dividing by w
coordinate)

� window coordinates: coordinates relative to graphics window
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1427

OpenGL Camera

� appearance of rendered scene determined by camera position,
orientation, and viewing volume

� camera positioned at origin

� camera oriented to point in negative z direction with positive y axis
pointing up

� orthographic projection in direction of z axis with clipping planes x =−1,
x = 1, y =−1, y = 1, z =−1, and z = 1

� viewing volume is [−1,1]× [−1,1]× [−1,1] (i.e., cube centered at origin
with sides of length 2)

� different camera position, orientation, and viewing volume can be
achieved by employing transformations

� perspective projection accomplished by applying transformation that
warps viewing volume into frustum

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1428

Transformations

Clipping and
Perspective

Division
Transformation

Viewport

Coordinates
Object

Coordinates Coordinates
ClipEye

pobj pclippeyeMmv

Modelview
Transformation

Projection
Transformation

Mp

Normalized
Device

Coordinates
Window

Coordinates

� often modelling and viewing transformations combined into single
transformation called modelview transformation

� peye = Mmvpobj
� pclip = Mppeye = MpMmvpobj
� clip coordinates and normalized device coordinates still retain depth (i.e.,

z) information in order to facilitate depth buffering

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1429

Transformations (Continued)

� viewport transformation determines drawable region within window

� viewport transformation set via glViewport

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1430

Depth Buffering

� in above figure, darker triangle is partially occluded by lighter triangle from
vantage point of camera

� in OpenGL, camera always pointing in direction of negative z axis

� therefore, z coordinate can be used to determine distance of fragment
from eye, with lesser value (i.e., closer to −∞) corresponding to greater
distance

� if depth buffering enabled, fragment not drawn if its z coordinate less than
z coordinate of previously drawn pixel

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1431

Face Culling

v0 v1

v2

Counterclockwise (CCW)
Winding Order

v2

v1 v0

Clockwise (CW)
Winding Order

� winding order used to distinguish front and back sides of triangles

� which winding order corresponds to front side of triangle specified via
glFrontFace

� which side (or sides) of triangle should be culled specified via
glCullFace

� if face culling enabled, culled side of triangles not rendered

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1432

State Management

� glEnable and glDisable used to enable and disable specific
functionality

Value Meaning

GL_CULL_FACE if enabled, cull polygons based on their winding in
window coordinates (e.g., do not render backs of faces)

GL_DEPTH_TEST if enabled, do depth comparisons and update
depth buffer

GL_LINE_SMOOTH if enabled, draw lines with antialiasing

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1433

Other Functions

Function Description

glClear clear buffer to preset values
glClearColor specify clear values for color buffers

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1434

Program Structure

� program typically consists of steps like following:
1 create window associated with OpenGL context
2 initialize shaders (e.g., compile and link) and other OpenGL state (e.g.,

depth buffering and clear color)
3 initialize data to be drawn
4 register callback functions to process events
5 enter main event-processing loop, which repeatedly waits for event of

interest and then handles it by invoking appropriate callback function
� events of interest typically include such things as:

2 request to redraw window
2 window-resize notification
2 keyboard input
2 mouse-button press/release

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1435

Section 5.6.1

Simple OpenGL Program

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1436

OpenGL Application Program Example

� consider very simple OpenGL application program (which utilizes GLFW)

� draws triangle in window

� rendered output shown below

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1437

Header Files

1 #include <cstdlib>
2 #include <string>
3 #include <GL/glew.h>
4 #include <GLFW/glfw3.h>

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1438

Main Function
6 GLuint vao = 0;

103 void fatalError() {
104 glfwTerminate();
105 std::exit(EXIT_FAILURE);
106 }

108 int main(int argc, char** argv) {
109 if (!glfwInit()) {return EXIT_FAILURE;}
110 GLFWwindow* window = makeWindow(512, 512, argv[0]);
111 if (!window) {fatalError();}
112 glfwMakeContextCurrent(window);
113 glewExperimental = GL_TRUE;
114 if (glewInit() != GLEW_OK) {fatalError();}
115 GLuint program = makeProgram(vShaderSource,
116 fShaderSource);
117 if (!program) {fatalError();}
118 glUseProgram(program);
119 glClearColor(0.0, 0.0, 0.0, 0.0);
120 GLuint vbo;
121 makeVao(program, vao, vbo);
122 glfwSetWindowRefreshCallback(window, refresh);
123 while (!glfwWindowShouldClose(window))
124 {glfwWaitEvents();}
125 glfwTerminate();
126 return EXIT_SUCCESS;
127 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1439

Make Window

84 GLFWwindow* makeWindow(int width, int height,
85 const std::string& title) {
86 glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
87 glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
88 glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
89 glfwWindowHint(GLFW_OPENGL_PROFILE,
90 GLFW_OPENGL_CORE_PROFILE);
91 GLFWwindow* window = glfwCreateWindow(width, height,
92 title.c_str(), nullptr, nullptr);
93 return window;
94 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1440

Vertex and Fragment Shaders

8 const std::basic_string<GLchar> vShaderSource = R"(
9 #version 330

10 in vec3 aPosition;
11 void main() {
12 gl_Position = vec4(aPosition, 1.0);
13 }
14)";
15

16 const std::basic_string<GLchar> fShaderSource = R"(
17 #version 330
18 out vec4 fColor;
19 void main() {
20 fColor = vec4(0.0, 1.0, 1.0, 1.0);
21 }
22)";

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1441

Compiling Shaders

24 GLuint compileShader(GLuint type,
25 const std::basic_string<GLchar>& source) {
26 GLuint shader = glCreateShader(type);
27 if (!shader) {return 0;}
28 const GLchar* cp = &source[0];
29 GLint len = source.size();
30 glShaderSource(shader, 1, &cp, &len);
31 glCompileShader(shader);
32 GLint status = GL_FALSE;
33 glGetShaderiv(shader, GL_COMPILE_STATUS, &status);
34 if (status != GL_TRUE)
35 {glDeleteShader(shader); return 0;}
36 return shader;
37 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1442

Linking Shader Program

39 GLuint makeProgram(
40 const std::basic_string<GLchar>& vShaderSource,
41 const std::basic_string<GLchar>& fShaderSource) {
42 GLuint vShader = compileShader(GL_VERTEX_SHADER,
43 vShaderSource);
44 if (!vShader) {return 0;}
45 GLuint fShader = compileShader(GL_FRAGMENT_SHADER,
46 fShaderSource);
47 if (!fShader) {glDeleteShader(vShader); return 0;}
48 GLuint program = glCreateProgram();
49 GLint status = GL_FALSE;
50 if (program) {
51 glAttachShader(program, vShader);
52 glAttachShader(program, fShader);
53 glLinkProgram(program);
54 glGetProgramiv(program, GL_LINK_STATUS, &status);
55 }
56 glDeleteShader(vShader);
57 glDeleteShader(fShader);
58 if (!program) {return 0;}
59 if (status != GL_TRUE)
60 {glDeleteProgram(program); return 0;}
61 return program;
62 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1443

Initialize Vertex Array Object (VAO)

64 void makeVao(GLuint program, GLuint& vao,
65 GLuint& vbo) {
66 static const GLfloat vertices[][3] = {
67 {-0.50, -0.50, 0.0},
68 { 0.50, -0.50, 0.0},
69 { 0.00, 0.50, 0.0}
70 };
71 glGenVertexArrays(1, &vao);
72 glGenBuffers(1, &vbo);
73 glBindVertexArray(vao);
74 glBindBuffer(GL_ARRAY_BUFFER, vbo);
75 glBufferData(GL_ARRAY_BUFFER, sizeof(vertices),
76 vertices, GL_STATIC_DRAW);
77 GLuint aPosition = glGetAttribLocation(program,
78 "aPosition");
79 glVertexAttribPointer(aPosition, 3, GL_FLOAT, GL_FALSE,
80 0, 0);
81 glEnableVertexAttribArray(aPosition);
82 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1444

Window Refresh Callback

6 GLuint vao = 0;

96 void refresh(GLFWwindow* window) {
97 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
98 glBindVertexArray(vao);
99 glDrawArrays(GL_TRIANGLES, 0, 3);

100 glfwSwapBuffers(window);
101 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1445

Section 5.6.2

Shaders

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1446

Shaders

� shader is user-defined program that runs on GPU and provides
functionality associated with some particular stage of rendering pipeline

� shaders written in OpenGL Shading Language (GLSL)

� as of OpenGL 3.1, application program must provide shaders as no
default shaders provided (in core profile)

� several types of shaders:
2 vertex shader
2 tessellation control shader
2 tessellation evaluation shader
2 geometry shader
2 fragment shader
2 compute shader

� each type of shader performs specific type of task on GPU

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1447

Rendering Pipeline and Shaders

Vertex
Processor

Clipper and
Primitive

Assembler
Rasterizer

Fragment
Processor

Vertices Pixels

GPU

� each type of shader performs distinct task within rendering pipeline

� vertex shader (which is associated with vertex processor block) provides
any last geometric transformation of vertices before being fed to
remainder of rendering pipeline

� geometry shader (which is associated with vertex processor block)
generates actual primitives to be rendered based on primitives received
from previous pipeline stage

� fragment shader (which is associated with fragment processor block)
provides color to each pixel in framebuffer

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1448

OpenGL Shader Language (GLSL)

� shaders written in GLSL

� GLSL is portable multiplatform C-like language

� GLSL borrows heavily from C syntax
� provides simplified subset of C language with numerous modifications:

2 adds new data types, such as matrix and vector types
2 adds overloaded operators and constructors

� supports C and C++ style comments

� GLSL keywords cannot be used as identifiers

� names beginning with “gl_” prefix reserved by GLSL

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1449

Reserved Keywords

attribute
const
uniform
varying
layout
centroid
flat
smooth
noperspective
break
continue
do
for
while
switch
case
default
if
else
in
out

inout
float
int
void
bool
true
false
invariant
discard
return
mat2
mat3
mat4
mat2x2
mat2x3
mat2x4
mat3x2
mat3x3
mat3x4
mat4x2
mat4x3

mat4x4
vec2
vec3
vec4
ivec2
ivec3
ivec4
bvec2
bvec3
bvec4
uint
uvec2
uvec3
uvec4
lowp
mediump
highp
precision
sampler1D
sampler2D
sampler3D

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1450

Reserved Keywords (Continued)

samplerCube
sampler1DShadow
sampler2DShadow
samplerCubeShadow
sampler1DArray
sampler2DArray
sampler1DArrayShadow
sampler2DArrayShadow
isampler1D
isampler2D
isampler3D
isamplerCube
isampler1DArray
isampler2DArray
usampler1D
usampler2D
usampler3D

usamplerCube
usampler1DArray
usampler2DArray
sampler2DRect
sampler2DRectShadow
isampler2DRect
usampler2DRect
samplerBuffer
isamplerBuffer
usamplerBuffer
sampler2DMS
isampler2DMS
usampler2DMS
sampler2DMSArray
isampler2DMSArray
usampler2DMSArray
struct

plus other keywords added since OpenGL 3.3

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1451

The #version Directive

� #version directive specifies which version of GLSL should be used to
compile/link shader

� if #version directive specified, must be first statement in source
� if no #version directive given, version 1.10 is assumed
� #version directive takes two parameters (with second being optional):

1 integer specifying GLSL version (scaled by a factor of 100)
2 profile name, which can be either core or compatibility with core being

default
� for OpenGL 3.3 and above, corresponding GLSL version matches

OpenGL version (e.g., OpenGL 4.1 uses GLSL 4.1); for earlier OpenGL
versions, relationship between OpenGL and GLSL versions as follows:

OpenGL Version GLSL Version
2.0 1.10
2.1 1.20
3.0 1.30
3.1 1.40
3.2 1.50

� for example, to specify use of GLSL 3.30 with core profile:
#version 330

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1452

Basic Types

Scalar and Void Types
Type Description
void dummy type for functions without return value
bool boolean type
int signed integer type
uint unsigned integer type
float single-precision floating-point type

Vector of float Types
Type Description
vec2 two-component vector of float
vec3 three-component vector of float
vec4 four-component vector of float

Vector of bool Types
Type Description
bvec2 two-component vector of bool
bvec3 three-component vector of bool
bvec4 four-component vector of bool

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1453

Basic Types (Continued 1)

Vector of int Types
Type Description
ivec2 two-component vector of int
ivec3 three-component vector of int
ivec4 four-component vector of int

Vector of uint Types
Type Description
uvec2 two-component vector of uint
uvec3 three-component vector of uint
uvec4 four-component vector of uint

Matrix of float Types
Type Description
mat2 2×2 matrix of float
mat3 3×3 matrix of float
mat4 4×4 matrix of float
mat2x2 same as mat2
mat2x3 2×3 matrix of float
mat2x4 2×4 matrix of float

Type Description
mat3x2 3×2 matrix of float
mat3x3 same as mat3
mat3x4 3×4 matrix of float
mat4x2 4×2 matrix of float
mat4x3 4×3 matrix of float
mat4x4 same as mat4

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1454

Basic Types (Continued 2)

� numerous sampler types

� numerous other types added since OpenGL 3.3

� matrix types stored in column-major order

� no pointer types

� const qualifier similar to C

� struct can be used to construct user-defined types

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1455

Operators

� standard C/C++ arithmetic and logical operators

� operators overloaded for matrix and vector types

� for two operands of vector type, multiplication operator performs
component-wise multiplication

� for two operands of matrix type or one operand of matrix type and one of
vector type, multiplication operator performs standard matrix/vector
multiplication

� example:
mat4 a; mat4 b; mat4 c;
vec4 u; vec4 v; vec4 w;
// ...
v = a * u; // standard matrix-vector multiplication
c = a * b; // standard matrix-vector multiplication
w = u * v; // component-wise multiplication

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1456

Operators (Continued 1)

� first, second, third, and fourth components of vector (if they exist) can be
selected by:

2 subscripting operator with subscripts 0, 1, 2, and 3, respectively; or
2 selection operator with x, y, z, and w, respectively; or
2 selection operator with r, g, b, and a, respectively; or
2 selection operator with s, t, p, and q, respectively

� example:
vec3 v;
// ...
float x = v.x;
float y = v.y;
float z = v.z;

� components of matrices can be accessed by subscripting operator
� single subscripting on matrix results in column of matrix
� double subscripting on matrix results in element of matrix
� example:

mat2 a;
// ...
vec2 v = a[0];
float f = a[0][0];

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1457

Operators (Continued 2)

� can also form vectors by selecting multiple elements from vector (e.g.,
swizzling and smearing)

� example:
vec4 v; vec4 u;
vec3 a;
// ...
u = v.wzyx; // vec4(v.w, v.z, v.y, v.x)
u = v.xxyy; // vec4(v.x, v.x, v.y, v.y)
a = v.xyz; // vec3(v.x, v.y, v.z)
u = a.xxxx; // vec4(a.x, a.x, a.x, a.x)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1458

Control Flow

� selection statements
2 if
2 if-else
2 ternary operator
2 switch

� looping statements
2 for
2 while
2 do-while

� also has break and continue

� no goto statement

� only in fragment shader: discard statement

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1459

Functions

� numerous built-in functions provided (e.g., abs, sin, cos, sqrt)

� user-defined functions are supported

� recursion not allowed

� function overloading supported (including for user-defined functions)

� return statement to return from function

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1460

Constructors

� constructor is function with same name as type

� used to create value of type named by function

� constructor parameters for matrix types specified in column-major order

� example:
vec3 v3 = vec3(1.0, 2.0, 3.0);
mat2 m2 = mat2(1.0, 2.0, 3.0, 4.0);
// first column of m2 is 1.0, 2.0
// second column of m2 is 3.0, 4.0

mat4 m4 = mat4(1.0); // identity matrix
vec4 v4 = vec4(0.0); // zero vector
const int lut[3] = int[3](1, 2, 4);
vec2 va[2] =
vec2[](vec2(1.0, 2.0), vec2(3.0, 4.0));

bool b = bool(1);

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1461

Conversions

� number of implicit conversions allowed, some of which identified below

� integer types (e.g., int and uint) can be implicitly converted to float

� each integer vector type (e.g., ivec4) can be implicitly converted to
floating-point vector type of same dimension (e.g., vec4)

� floating-point type cannot be implicitly converted to integer type

� unsigned integer type (e.g., uint) cannot be implicitly converted to
signed integer type (e.g., int)

� example:
int i; uint ui; float f; vec4 v4; ivec4 iv4;
// ...
f = i; // OK
// i = f; // ERROR: no implicit conversion
i = int(f); // OK
// iv4 = v4; // ERROR: no implicit conversion
iv4 = ivec4(v4); // OK
// i = 0u; // ERROR: no implicit conversion
// i = ui; // ERROR: no implicit conversion
i = int(ui); // OK

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1462

Built-In Functions

Angle and Trigonometric Functions
Function Description

radians convert from degrees to radians
degrees convert from radians to degrees
sin sine function
cos cosine function
tan tangent function
asin arcsine function
acos arccosine function
atan arctangent function

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1463

Built-In Functions (Continued 1)

Exponential Functions
Function Description

pow exponentiation function
exp base-e exponentiation function
log natural logarithm function
exp2 base-2 exponentiation function
log2 base-2 logarithm function
sqrt square-root function
inversesqrt reciprocal of square-root function

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1464

Built-In Functions (Continued 2)

Common Functions
Function Description

abs absolute-value function
sign signum function
floor floor function
ceil ceiling function
fract fractional-part function
mod modulo function
min minimum of two values
max maximum of two values
clamp clamp value to specified range
mix affine combination of two values
step step function
smoothstep smooth step function

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1465

Built-In Functions (Continued 3)

Geometric Functions
Function Description

length length of vector
distance distance between two points
dot dot product
cross cross product
normalize get vector of unit length
faceforward get vector that points in same direction as ref-

erence vector
reflect get vector that points in direction of reflection
refract get vector that points in direction of refraction

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1466

Built-In Functions (Continued 4)

Fragment Processing Functions
Function Description

dFdx partial derivative of argument with respect to x
dFdy partial derivative of argument with respect to y
fwidth sum of absolute value of derivatives in x and y

Matrix Functions
Function Description

matrixCompMult multiply matrices component-wise

Texture Lookup
Function Description

texture2D perform 2D texture lookup
textureCube perform cubemap texture lookup

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1467

Built-In Functions (Continued 5)

Vector Relational Functions
Function Description

lessThan component-wise less-than comparison
lessThanEqual component-wise less-than-or-equal compari-

son
greaterThan component-wise greater-than comparison
greaterThanEqual component-wise greater-than-or-equal com-

parison
equal component-wise equality comparison
notEqual component-wise inequality comparison
any any component is true
all all components are true
not component-wise logical complement operation

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1468

The in and out Qualifiers

� shader parameters (i.e., input and output variables of shaders) and
function parameters can be qualified with in and out qualifiers

� parameter declared in:
2 value given to parameter will be copied into parameter when function called
2 function may then modify parameter but changes will not affect caller
2 essentially pass-by-value semantics

� parameter declared out:
2 parameter will not have its value initialized by caller so initial value of

parameter at start of function is undefined
2 function must modify parameter
2 after function’s execution is complete, value of parameter will be copied into

variable that user specified when calling function

� default qualifier is in

� example:
float foo(float x, int i, out int n);
float calculate(in float x, in float y, in int n);

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1469

The in and out Qualifiers (Continued)

� example:
void calc(float x, int i, out float y, out int j) {

// at this point, y and j are undefined
y = ++x;
j = ++i;

}

void func() {
float a = 0.0;
int b = 0;
float c = 0.0;
int d = 0;
calc(a, b, c, d);
// a and b are unchanged by function call
// c is 1.0, d is 1

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1470

The uniform Qualifier

� global variables and interface blocks can be declared with uniform
qualifier

� uniform qualifier indicates that value of variable does not change
across multiple shader invocations during rendering of single primitive
(i.e., during glDraw* call)

� uniform variables form linkage between shader and application program
� used to declare variables shared between shader and application program

(e.g., projection matrix, light source position, material color)
� uniform variable cannot be modified in shader
� uniform variable can only be modified by application program
� uniform variable can be used in multiple shaders (e.g., vertex and

fragment shaders)
� if used in multiple shaders, must have identical declaration in each
� example:

uniform mat4 projectionMatrix;
uniform mat4 modelViewMatrix;

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1471

Interpolation Qualifiers

� outputs from and inputs to shader can be qualified with interpolation
qualifier

� interpolation qualifier controls how value of particular variable is
interpolated

� interpolation qualifiers: smooth, noperspective, flat

� smooth qualifier: perspective-correct interpolation is performed

� noperspective qualifier: linear interpolation is performed

� flat qualifier: no interpolation is performed (i.e., value taken from
provoking vertex of primitive)

� default qualifier is smooth

� example:
flat out vec4 color;

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1472

Interpolation Example

� single triangle rendered with vertices having color attributes of red, green,
and blue, with provoking vertex being last vertex

Without Interpolation (I.e., Flat) With Interpolation (E.g., Smooth)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1473

Layout Qualifiers

� layout qualifiers used to specify how storage for variable allocated
amongst other things

� layout qualifiers (e.g., location) provided by using layout keyword

� location layout qualifier can be used to specify location associated with
variable

� vertex shaders allow input layout qualifiers on input variable declarations

� example: following will establish vertex shader input vPosition to be
copied in from location number 1:

layout(location = 1) in vec4 vPosition;

� example: following will establish vertex shader input colors copied in
from location numbers 6, 7, and 8:

layout(location = 6) in vec4 colors[3];

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1474

Configuration with Vertex and Fragment Shaders

Output
Variables

Input
Variables

Input
Variables

Output
Variables

Fragments

Fragment ShaderVertex Shader

Variables
Uniform

Shader Program

Vertex
Attributes

Application Program

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1475

Various Configurations of Shaders

Vertex
Shader

Fragment
ShaderPrimitive

Assembly
and

Rasterization

Vertex and Fragment Shaders

Vertex
Shader Shader

Geometry Fragment
Shader

Primitive
Assembly

Primitive
Assembly

and
Rasterization

Vertex, Geometry, and Fragment Shaders

Tessellation

Shader
Control

Fragment
ShaderShader

GeometryTessellation

Shader
Evaluation

Vertex
Shader

Assembly
Primitive Tessellation

Primitive
Generator

Primitive
Assembly

Primitive
Assembly

and
Rasterization

Vertex, Tessellation, Geometry, and Fragment Shaders

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1476

Vertex Shaders

� vertex shader is programmable shader stage in rendering pipeline that
handles processing of individual vertices

� vertex shader provided with vertex attribute data (e.g., position, normal,
color, and texture coordinates) from VAO from drawing command

� for each vertex in input vertex stream, produces one vertex for output
vertex stream

� must be one to one correspondence between input vertices and output
vertices

� processes each vertex independently
� some uses of vertex shaders include:

2 vertex position transformation using modelview and projection matrices
2 normal transformation and (if needed) normalization
2 texture coordinate generation and transformation
2 per-vertex lighting
2 color computation

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1477

Vertex Shader Inputs and Outputs

� built-in input variables:
2 int gl_VertexID: index of vertex currently being processed
2 int gl_InstanceID: index of current instance when doing some form of

instanced rendering

� other inputs associated with vertex attributes from VAO/VBO
� built-in output variables:

2 vec4 gl_Position: clip-space output position of current vertex
2 float gl_PointSize: pixel width/height of point being rasterized; only

has meaning for point primitives
2 float gl_ClipDistance[]: distance from vertex to each user-defined

clipping half-space

� vertex shader must set gl_Position

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1478

Vertex Shader Example

1 // use version 3.30 of GLSL (core profile)
2 #version 330
3

4 // input attribute variable for vertex position
5 in vec4 aPosition;
6

7 // uniform variable for modelview-projection matrix
8 uniform mat4 uModelViewProjMatrix;
9

10 void main() {
11 // set output position for vertex
12 gl_Position = uModelViewProjMatrix * aPosition;
13 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1479

Fragment Shaders

� fragment shader is programmable shader stage that processes fragment
generated by rasterization into set of colors and single depth value

� for each sample of pixels covered by primitive, fragment is generated

� each fragment has window space position, some other values, and all of
interpolated per-vertex output values from last vertex processing stage

� takes single fragment as input and produces single fragment as output
� some uses of fragment shaders include:

2 per-fragment lighting
2 computing colors and texture coordinates per fragment
2 texture application (texture and bump mapping)
2 environment mapping
2 fog computation

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1480

Fragment Shader Inputs and Outputs

� built-in input variables:
2 vec4 gl_FragCoord: location of fragment in window space
2 bool gl_FrontFacing: indicates if fragment was generated by front face

of primitive (only triangles can have back face)
2 int vec2 gl_PointCoord: location within point primitive that defines

position of fragment relative to side of point

� other input variables correspond to outputs of previous shader stage
� built-in output variables:

2 float gl_fragDepth: depth of fragment which defaults to
gl_FragCoord.z

� vec4 output variable for fragment color

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1481

Fragment Shader Example

1 // use version 3.30 of GLSL (core profile)
2 #version 330
3

4 // output variable for color
5 out vec4 fColor;
6

7 void main() {
8 // set output color to white
9 fColor = vec4(1.0, 1.0, 1.0, 1.0);

10 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1482

Geometry Shaders

� controls processing of primitives between vertex shader (or optional
tessellation stage) and fixed-function vertex post-processing stage

� use of geometry shader optional

� takes single primitive as input and outputs zero or more primitives
� some uses of geometry shaders include:

2 layered rendering
2 transform feedback

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1483

Geometry Shader Inputs

� one input primitive per geometry shader invocation
� type of input primitives specified by layout qualifier, which is one of:

points, lines, lines_adjacency, triangles,
triangles_adjacency

� number of input vertices determined by input primitive type (e.g., three for
triangles)

� per-vertex inputs available as members of elements in array gl_in:
2 vec4 gl_Position: vertex position
2 float gl_PointSize: pixel width/height of point being rasterized; only

used for point primitive
2 float gl_ClipDistance[]: distance to clipping planes

� gl_in contains N elements (with indices starting from 0), where N is
number of vertices in input primitive

� each shader input produced by previous pipeline stage is always array
with one element per vertex

� per-primitive inputs:
2 gl_PrimitiveIDIn: current input primitive’s ID
2 gl_InvocationID: current instance

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1484

Geometry Shader Outputs
� type of output primitive generated specified by layout qualifier, which is

one of: points, line_strip, triangle_strip
� can generate zero or more output primitives
� maximum number of vertices that can be generated specified by

max_vertices layout qualifier
� per-vertex outputs:

2 vec4 gl_Position: vertex position
2 float gl_PointSize: pixel width/height of point being rasterized; only

used for point primitive
2 float gl_ClipDistance[]: distance to clipping planes

� per-primitive outputs:
2 vec4 gl_PrimitiveID: primitive ID to pass to fragment shader

� EmitVertex called to process vertex outputs after all per-vertex outputs
set

� after EmitVertex called, output variables have undefined values
� EndPrimitive called to signal end of primitive in order to start next

output primitive
� not required to call EndPrimitive after last output primitive

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1485

Geometry Shader Example (Passthrough)

1 // use version 3.30 of GLSL (core profile)
2 #version 330
3

4 // input primitives are triangles
5 layout(triangles) in;
6

7 // input variable for color
8 in vec3 vColor[];
9

10 // output primitives are triangle strips
11 // at most three vertices will be generated
12 layout(triangle_strip, max_vertices = 3) out;
13

14 // output variable for color
15 out vec3 gColor;
16

17 void main() {
18 // for each vertex of input triangle...
19 for (int i = 0; i < 3; ++i) {
20 // set position and color of output vertex
21 gl_Position = gl_in[i].gl_Position;
22 gColor = vColor[i];
23 // mark vertex as finished
24 EmitVertex();
25 }
26 EndPrimitive(); // optional
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1486

Using Shader Programs

� shaders need to be compiled and linked to yield executable shader
program

� OpenGL provides compiler and linker

� normally, program should have vertex and fragment shaders
� to generate executable shader program:

1 create program via glCreateProgram
2 for each shader in program:

1 create shader via glCreateShader
2 load shader source via glShaderSource
3 compile shader source to object code via glCompileShader and check

status of compile via glGetShaderiv
4 attach shader object code to program via glAttachShader

3 link program glLinkProgram and check status of link via glGetProgramiv

� shader program currently in use selected via glUseProgram

� shader and program can be deleted when no longer needed via
glDeleteShader and glDeleteProgram

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1487

Identifying Shader Variables in Application

� application program needs means to refer to attribute and uniform
variables in shaders (e.g., in order to associate data with such variables)

� each attribute and uniform variable has integer identifier known as
location

� location used as means to unambiguously name shader variable

� GLSL provides mechanism to force variable to have particular location via
location layout qualifier

� location of variable can be queried by name (which is most useful when
location layout qualifier not employed)

� can force attribute variable to use particular location via
glBindAttribLocation prior to linking shader program

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1488

Identifying Shader Variables in Application (Continued)

� get location of shader variable via glGetAttribLocation

� example: query location of attribute variable aPosition:

GLuint program; // shader program ID
// ...
GLint loc = glGetAttribLocation(program,
"aPosition");

� get location of uniform variable via glGetUniformLocation

� example: query location of uniform variable uModelViewProjMatrix:

GLuint program; // shader program ID
// ...
GLint loc = glGetUniformLocation(program,
"uModelViewProjMatrix");

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1489

Associating Data in VAO with Attribute Variable

� application program needs to be able to associate shader attribute
variable with data source (namely, data in VBO of VAO)

� to associate data in (VBO of) VAO with attribute variable in vertex shader,
call glVertexAttribPointer when VAO/VBO containing attribute data
is bound

� invocation of glVertexAttribPointer specifies:
2 location of vertex attribute variable
2 number of components per vertex attribute (e.g., 1, 2, 3, or 4)
2 type of each component (e.g., GL_FLOAT or GL_DOUBLE)
2 whether fixed-point values should be normalized (e.g., to [−1,1] for signed

values and [0,1] for unsigned values)
2 stride (i.e., byte offset) between consecutive vertex attributes in array
2 offset of first component of first vertex attribute in array

� to enable use of attribute data associated with VAO, call
glEnableVertexAttribArray when VAO containing attribute data is
bound

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1490

Example: Associating Data in VAO with Attribute Variable

Part of Vertex Shader
1 in vec3 aPosition;

Part of Application Program
1 GLuint program; // program ID
2 GLuint vao; // VAO ID
3 GLuint vbo; // VBO ID
4 GLuint offset; // offset of data in VBO
5 GLsizei stride; // stride of data in VBO
6 // ...
7 GLint loc = glGetAttribLocation(program,
8 "aPosition");
9 glBindVertexArray(vao);

10 glBindBuffer(GL_ARRAY_BUFFER, vbo);
11 glVertexAttribPointer(loc, 3, GL_FLOAT, GL_FALSE,
12 stride, reinterpret_cast<GLvoid*>(offset));
13 glEnableVertexAttribArray(loc);

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1491

Accessing Uniform Variables from Application Program

� application program needs to be able to access uniform variables in
shader

� application can only write to uniform variables since data flows in one
direction only (i.e., from application to shader)

� uniform variable identified by location

� to modify uniform variable, must know its location

� modify uniform variable via glUniform* (which identifies variable to
change by its location)

� example:

Part of Shader
uniform float uTime;

Part of Application Program
GLuint program; // shader program ID
// ...
GLint loc = glGetUniformLocation(program, "uTime");
glUniform1f(loc, 1.5f);

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1492

Section 5.6.3

Shader Examples

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1493

Simple: Shader Example

� vertex shader provided with two attributes per vertex (position and color)

� want smooth interpolation of color across faces

� rending output shown below for mesh consisting of single triangle

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1494

Simple: Vertex and Fragment Shaders
Vertex Shader

1 #version 330
2

3 in vec4 aPosition; // input vertex position attribute
4 in vec4 aColor; // input vertex color attribute
5

6 out vec4 vColor; // output vertex color (interpolated)
7

8 // uniform variable for modelview-projection
9 // matrix product

10 uniform mat4 uModelViewProjMatrix;
11

12 void main() {
13 vColor = aColor;
14 gl_Position = uModelViewProjMatrix * aPosition;
15 }

Fragment Shader
1 #version 330
2

3 in vec4 vColor; // input color (interpolated)
4

5 out vec4 fColor; // output fragment color
6

7 void main() {
8 fColor = vColor;
9 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1495

Mandelbrot: Shader Example

� render triangles to cover entire drawing area and texture map Mandelbrot
set onto triangles using fragment shader

� some examples of rendering results shown below

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1496

Mandelbrot: Background

� Mandelbrot set: set of all complex numbers c such that sequence
z0,z1,z2, . . . does not tend toward infinity, where

zn =

{
z2

n−1 + c if n≥ 1
c if n = 0

� associate rectangular region in complex plane with graphics viewport

� for point corresponding to each pixel in viewport, determine number of
steps in above iterative process for which result does not become too
large (i.e., tending towards infinity)

� assign color to each pixel depending on obtained iteration count

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1497

Mandelbrot: Application Program

v1 = (1,−1)v0 = (−1,−1)
t0 = (− 1

2 ,−
1
2) t1 = (1

2 ,−
1
2)

t3 = (− 1
2 ,

1
2)

v3 = (−1,1)
t2 = (1

2 ,
1
2)

v2 = (1,1)

scale/2scale/2

scale/2

scale/2

center

� application program simply renders two triangles that cover full extent of
viewport ({vk} are positional coordinates; {tk} are texture coordinates)

� texture coordinate region [−1
2 ,

1
2]× [−1

2 ,
1
2] corresponds to full viewport

� square region in complex plane of width/height scale centered at point
center is mapped onto region [−1

2 ,
1
2]× [−1

2 ,
1
2] in texture coordinates

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1498

Mandelbrot: Vertex Shader

1 #version 330
2

3 in vec3 aPosition; // position vertex attribute
4 in vec3 aTexCoord; // texture-coordinate vertex attribute
5

6 out vec3 vTexCoord; // texture coordinate (interpolated)
7

8 void main() {
9 vTexCoord = aTexCoord;

10 gl_Position = vec4(aPosition, 1.0);
11 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1499

Mandelbrot: Fragment Shader

1 #version 330
2

3 in vec3 vTexCoord; // texture coordinates
4

5 out vec4 fColor; // vertex color
6

7 uniform vec2 center; // center of viewing region
8 uniform float scale; // width/height of viewing region
9 uniform int maxIters; // maximum iteration count

10

11 int mandelbrot(vec2 c) {
12 vec2 z = vec2(0.0, 0.0);
13 int i;
14 for (i = 0; i < maxIters; ++i) {
15 z = vec2(z.x * z.x - z.y * z.y + c.x, 2.0 * z.x * z.y + c.y);
16 if (length(z) > 2.0) {break;}
17 }
18 return i;
19 }
20

21 float lookup(float x, float c) {return c * mod(x, 1.0 / c);}
22

23 void main() {
24 int i = mandelbrot(vec2(scale * vTexCoord.x + center.x,
25 scale * vTexCoord.y + center.y));
26 float t = float(i) / maxIters;
27 fColor = vec4(lookup(t, 2.0), lookup(t, 4.0), lookup(t, 8.0), 1.0);
28 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1500

ShrinkFace: Shader Example

� use geometry shader to shrink triangles sent to rendering pipeline

� triangles contracted towards their centroid so that triangles that were
originally touching now have gap between them

� example rendering results are shown below

Rendered Normally Rendered with Shrunk Faces

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1501

ShrinkFace: Triangle Shrinking

v1

c

v′1

v′0v′2

v2 v0

� each vertex vk moved in direction of centroid c to new position
v′k =

1
2(vk + c) (i.e., midpoint of vk and c)

� gap formed by shrinking of triangle is filled with new triangles drawn in
black

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1502

ShrinkFace: Gap Filling

v1

c

v′1

v′0v′2

v2 v0

� gap can be filled with triangle strip with vertices: v2, v′2, v1, v′1, v0, v′0, v2, v′2

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1503

ShrinkFace: Vertex Shader

1 #version 330
2

3 in vec3 aPosition; // position vertex attribute
4 in vec3 aColor; // color vertex attribute
5

6 out vec3 vColor; // color (interpolated)
7

8 void main() {
9 gl_Position = vec4(aPosition, 1.0);

10 vColor = aColor;
11 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1504

ShrinkFace: Geometry Shader

1 #version 330
2

3 layout(triangles) in; // triangle primitives as input
4 in vec3 vColor[]; // input vertex colors
5

6 layout(triangle_strip, max_vertices=11) out;
7 // triangle strips as output; at most 11 vertices
8 out vec3 gColor; // output color (interpolated)
9

10 uniform mat4 uModelViewProjMatrix;
11 // modelview-projection matrix product

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1505

ShrinkFace: Geometry Shader (Continued)

13 void main() {
14 vec3 v[6];
15 for (int i = 0; i < 3; ++i) {v[i] = gl_in[i].gl_Position.xyz;}
16

17 // compute centroid of triangle
18 vec3 c = (v[0] + v[1] + v[2]) / 3.0;
19

20 // compute vertices of shrunk triangle and generate
21 // triangle strip consisting only of shrunk triangle
22 for (int i = 0; i < 3; ++i) {
23 v[i + 3] = c + 0.5 * (v[i] - c);
24 gl_Position = uModelViewProjMatrix * vec4(v[i + 3], 1.0);
25 gColor = vColor[i];
26 EmitVertex();
27 }
28 EndPrimitive();
29

30 // generate triangle strip to fill gap between triangles
31 // introduced by shrinking
32 const int lut[] = int[](2, 5, 1, 4, 0, 3, 2, 5);
33 for (int i = 0; i < 8; ++i) {
34 gl_Position = uModelViewProjMatrix * vec4(v[lut[i]], 1.0);
35 gColor = vec3(0.0, 0.0, 0.0);
36 EmitVertex();
37 }
38 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1506

ShrinkFace: Fragment Shader

1 #version 330
2

3 in vec3 gColor; // input color
4

5 out vec4 fColor; // output color
6

7 void main() {
8 fColor = vec4(gColor, 1.0);
9 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1507

Wireframe: Shader Example

� use geometry shader to assist in superimposing wireframe on rendered
surface

� example rendering output shown below

Without Edges Shown Edges Shown Using Shader

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1508

Wireframe: General Approach

p0
1
2 p0 +

1
2 p1 +0p2 p1

1p0 +0p1 +0p2

≡ (1,0,0)
0p0 +1p1 +0p2

≡ (0,1,0)

1
3 p0 +

1
3 p1 +

1
3 p2

≡ (1
3 ,

1
3 ,

1
3)

≡ (1
2 ,0,

1
2)

1
2 p0 +0p1 +

1
2 p2

≡ (0,0,1)
0p0 +0p1 +1p2

p2

≡ (1
2 ,

1
2 ,0)

0p0 +
1
2 p1 +

1
2 p2

≡ (0, 1
2 ,

1
2)

� points on edge of triangle must have exactly one or two barycentric
coordinates equal to zero, while points in the interior must have three
nonzero coordinates

� if at least one of barycentric coordinates is small, must be in vicinity of
edge

� if in vicinity of edge, use different color

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1509

Wireframe: Vertex Shader

1 #version 330
2

3 in vec3 aPosition; // position vertex attribute
4 in vec3 aColor; // color vertex attribute
5

6 out vec3 vColor; // output color (interpolated)
7

8 uniform mat4 uModelViewProjMatrix;
9 // modelview-projection matrix product

10

11 void main() {
12 gl_Position = uModelViewProjMatrix * vec4(aPosition, 1.0);
13 vColor = aColor;
14 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1510

Wireframe: Geometry Shader

1 #version 330
2

3 layout(triangles) in; // triangles as input
4 in vec3 vColor[]; // vertex colors
5

6 layout(triangle_strip, max_vertices=3) out;
7 // triangle strips as output; at most 3 vertices
8 out vec3 gColor; // output color
9 noperspective out vec3 gBaryCoord;

10 // output barycentric coordinates (interpolated)
11

12 void main() {
13 const vec3 lut[3] = vec3[3](
14 vec3(1.0, 0.0, 0.0),
15 vec3(0.0, 1.0, 0.0),
16 vec3(0.0, 0.0, 1.0));
17 for (int i = 0; i < 3; ++i) {
18 gl_Position = gl_in[i].gl_Position;
19 gBaryCoord = lut[i];
20 gColor = vColor[i];
21 EmitVertex();
22 }
23 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1511

Wireframe: Fragment Shader
1 #version 330
2

3 in vec3 gColor; // input color
4 noperspective in vec3 gBaryCoord;
5 // input barycentric coordinates
6

7 out vec4 fColor; // output color
8

9 void main() {
10 const vec3 edgeColor = vec3(0.0, 0.0, 0.0);
11 const float edgeWidth = 1.0;
12 vec3 d = fwidth(gBaryCoord);
13 vec3 a3 = smoothstep(vec3(0.0), d * edgeWidth, gBaryCoord);
14 float v = min(min(a3.x, a3.y), a3.z);
15 fColor = vec4(mix(edgeColor, gColor, v), 1.0);
16 }

� upper threshold for smoothstep chosen relative to approximate gradient
magnitude so thickness of edges in wireframe same regardless of triangle
size

� simpler code for calculating a3 shown below would cause thickness of
edges in wireframe to depend on triangle size, which would be less
aesthetically pleasing:

vec3 a3 = smoothstep(vec3(0.0), vec3(0.02), gBaryCoord);

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1512

Ambient-Diffuse-Specular (ADS) Lighting Model

� light properties:
2 `a: ambient component of light source
2 `d : diffuse component of light source
2 `s: specular component of light source

� material properties:
2 ka: ambient reflection constant
2 kd : diffuse reflection constant
2 ks: specular reflection constant
2 α: shininess constant

� vectors:
2 `: unit vector vector in direction from point on surface to light source
2 n: unit normal at point on surface
2 v: unit vector in direction from point on surface to viewer
2 r: unit vector in direction that perfectly reflected light ray would take from

this point on surface (i.e., r = 2(l ·n)n− `)
� illumination i of point on surface given by:

i = ka`a +max{(` ·n),0}kd`d +max{(r · v)α,0}u(` ·n)ks`s

where u is unit-step function
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1513

ADS Lighting Model: Diagram

θ θ

r
Eye

Light Source

−`

n

v

Surface

� `: unit vector vector in direction from point on surface to light source

� n: unit normal at point on surface

� v: unit vector in direction from point on surface to viewer

� r: unit vector in direction that perfectly reflected light ray would take from
this point on surface

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1514

Per-Vertex Lighting: Shader Example

� per-vertex lighting using ambient-diffuse-specular (ADS) model

� example rendering result shown below

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1515

Per-Vertex Lighting: Vertex Shader

1 #version 330
2

3 in vec3 aPosition; // position vertex attribute
4 in vec3 aNormal; // normal vertex attribute
5

6 out vec3 vColor; // output color (interpolated)
7

8 uniform mat4 uModelViewMatrix; // modelview matrix
9 uniform mat3 uNormalMatrix; // normal transformation matrix

10 uniform mat4 uModelViewProjMatrix;
11 // modelview-projection matrix product
12

13 struct LightSourceParams {
14 vec4 position; // position
15 vec3 ambient; // ambient component
16 vec3 diffuse; // diffuse component
17 vec3 specular; // specular component
18 };
19 uniform LightSourceParams uLight; // light parameters
20

21 struct MaterialParams {
22 vec3 ambient; // ambient reflectance
23 vec3 diffuse; // diffuse reflectance
24 vec3 specular; // specular reflectance
25 float shininess; // specular exponent
26 };
27 uniform MaterialParams uMaterial; // material parameters

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1516

Per-Vertex Lighting: Vertex Shader (Continued)

29 vec3 ads(vec4 position, vec3 normal) {
30 vec3 s = normalize(vec3(uLight.position - position));
31 vec3 v = normalize(-position.xyz);
32 vec3 r = reflect(-s, normal);
33 float sn = dot(s, normal);
34 vec3 ambient = uLight.ambient * uMaterial.ambient;
35 vec3 diffuse = uLight.diffuse * uMaterial.diffuse *
36 max(sn, 0.0);
37 diffuse = clamp(diffuse, 0.0, 1.0);
38 vec3 specular = (sn > 0.0) ? (uLight.specular *
39 uMaterial.specular * pow(max(dot(r, v), 0.0),
40 uMaterial.shininess)) : vec3(0.0);
41 specular = clamp(specular, 0.0, 1.0);
42 return clamp(ambient + diffuse + specular, 0.0, 1.0);
43 }
44

45 void main() {
46 vec3 eyeNorm = normalize(uNormalMatrix * aNormal);
47 vec4 eyePos = uModelViewMatrix * vec4(aPosition, 1.0);
48 vColor = ads(eyePos, eyeNorm);
49 gl_Position = uModelViewProjMatrix *
50 vec4(aPosition, 1.0);
51 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1517

Per-Vertex Lighting: Fragment Shader

1 #version 330
2

3 in vec3 vColor; // input color
4

5 out vec4 fColor; // output color
6

7 void main() {
8 fColor = vec4(vColor, 1.0);
9 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1518

Per-Fragment Lighting: Shader Example

� per-fragment lighting using ambient-diffuse-specular (ADS) model

� example rendering result shown along with per-vertex lighting result for
comparison

Per-Vertex Lighting Per-Fragment Lighting

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1519

Per-Fragment Lighting: Vertex Shader

1 #version 330
2

3 in vec3 aPosition; // position vertex attribute
4 in vec3 aNormal; // normal vertex attribute
5

6 out vec3 vPosition; // output position (interpolated)
7 out vec3 vNormal; // output normal (interpolated)
8

9 uniform mat4 uModelViewMatrix; // modelview matrix
10 uniform mat3 uNormalMatrix; // normal transformation matrix
11 uniform mat4 uModelViewProjMatrix;
12 // modelview-projection matrix product
13

14 void main() {
15 vNormal = normalize(uNormalMatrix * aNormal);
16 vPosition = vec3(uModelViewMatrix * vec4(aPosition, 1.0));
17 gl_Position = uModelViewProjMatrix * vec4(aPosition, 1.0);
18 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1520

Per-Fragment Lighting: Fragment Shader

1 #version 330
2

3 in vec3 vNormal; // input normal
4 in vec3 vPosition; // input position
5

6 out vec4 fColor; // output color
7

8 struct LightSourceParams {
9 vec4 position; // position

10 vec3 ambient; // ambient component
11 vec3 diffuse; // diffuse component
12 vec3 specular; // specular component
13 };
14 uniform LightSourceParams uLight; // light parameters
15

16 struct MaterialParams {
17 vec3 ambient; // ambient reflectance
18 vec3 diffuse; // diffuse reflectance
19 vec3 specular; // specular reflectance
20 float shininess; // specular exponent
21 };
22 uniform MaterialParams uMaterial; // material parameters

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1521

Per-Fragment Lighting: Fragment Shader (Continued)

24 vec3 ads(vec4 position, vec3 normal) {
25 vec3 s = normalize(vec3(uLight.position - position));
26 vec3 v = normalize(-position.xyz);
27 vec3 r = reflect(-s, normal);
28 float sn = dot(s, normal);
29 vec3 ambient = uLight.ambient * uMaterial.ambient;
30 vec3 diffuse = uLight.diffuse * uMaterial.diffuse *
31 max(sn, 0.0);
32 diffuse = clamp(diffuse, 0.0, 1.0);
33 vec3 specular = (sn > 0.0) ? uLight.specular *
34 uMaterial.specular * pow(max(dot(r, v), 0.0),
35 uMaterial.shininess) : vec3(0.0);
36 specular = clamp(specular, 0.0, 1.0);
37 return clamp(ambient + diffuse + specular, 0.0, 1.0);
38 }
39

40 void main() {
41 fColor = vec4(ads(vec4(vPosition, 1.0), vNormal), 1.0);
42 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1522

Section 5.6.4

OpenGL Example Programs

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1523

OpenGL Example Program: simple_2d

� simple 2-D graphics

� draws points, lines, triangle, and quadrilateral

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1524

OpenGL Example Program: simple_3d

� simple 3-D graphics

� draws and animates several simple polyhedra

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1525

OpenGL Example Program: cube

� 3-D graphics with lighting

� draws cube with lighting

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1526

OpenGL/CGAL Example Program: wireframe

� wireframe mesh viewer

� allows polygon mesh to viewed as wireframe

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1527

Section 5.6.5

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1528

References I

1 D. Shreiner, G. Sellers, J. Kessenich, and B. Licea-Kane. OpenGL
Programming Guide.
Addison-Wesley, Upper Saddle River, NJ, USA, 8th edition, 2013.

2 R. S. Wright Jr., N. Haemel, G. Sellers, and B. Lipchak. OpenGL
Superbible.
Addison-Wesley, Upper Saddle River, NJ, USA, 5th edition, 2011.

3 E. Angel and D. Shreiner. Interactive Compute Graphics — A Top-Down
Approach with Shader-Based OpenGL.
Addison-Wesley, Boston, MA, USA, 6th edition, 2012.

4 M. Bailey and S. Cunningham. Graphics Shaders — Theory and Practice.
CRC Press, Boca Raton, FL, USA, 2nd edition, 2012.

5 R. J. Rost. OpenGL Shading Language.
Addison-Wesley, Boston, MA, USA, 2nd edition, 2006.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1529

References II

6 D. Wolff. OpenGL 4.0 Shading Language Cookbook.
Packt Publishing, Birmingham, UK, 2011.

7 The OpenGL graphics system: A specification (version 4.4 (core profile)),
Mar. 2014.

8 The OpenGL shading language — language version 4.40, June 2014.

9 OpenGL Web Site, http://www.opengl.org.

10 OpenGL Software Development Kit (SDK),
https://www.opengl.org/sdk (full documentation on each OpenGL
function can be found at http://www.opengl.org/sdk/docs/man).

11 Khronos Group on YouTube,
https://www.youtube.com/user/khronosgroup.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1530

http://www.opengl.org
https://www.opengl.org/sdk
http://www.opengl.org/sdk/docs/man
https://www.youtube.com/user/khronosgroup

Talks I

1 Ed Angel and Dave Shreiner. An Introduction to OpenGL Programming.
SIGGRAPH 2013, Available online at https://youtu.be/6-9XFm7XAT8.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1531

https://youtu.be/6-9XFm7XAT8

Software

� OpenGL Extension Wrangler Library (GLEW)
http://glew.sourceforge.net
http://www.opengl.org/sdk/libs/GLEW

� OpenGL FrameWork (GLFW) Library
http://www.glfw.org

� OpenGL Utility Toolkit (GLUT) Library
http://sourceforge.net/projects/freeglut

� OpenGL Mathematics (GLM) Library
http://glm.g-truc.net

� Qt Library
http://www.qt.io
http://www.qt.io/developers

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1532

http://glew.sourceforge.net
http://www.opengl.org/sdk/libs/GLEW
http://www.glfw.org
http://sourceforge.net/projects/freeglut
http://glm.g-truc.net
http://www.qt.io
http://www.qt.io/developers

Section 5.7

Other Libraries

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1533

Numerical Libraries I

� Eigen
2 C++ library for linear algebra
2 web site: http://eigen.tuxfamily.org

� Lapack++
2 C++ library for high-performance linear-algebra computations
2 C++ wrapper for LAPACK and BLAS
2 web site: http://lapackpp.sourceforge.net

� Armadillo
2 C++ library for linear algebra
2 web site: http://arma.sourceforge.net

� GNU Scientific Library
2 C library for numerical analysis
2 web site: http://www.gnu.org/software/gsl

� GNU Multiprecision Library
2 C library for arbitrary-precision arithmetic
2 web site: http://gmplib.org

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1534

http://eigen.tuxfamily.org
http://lapackpp.sourceforge.net
http://arma.sourceforge.net
http://www.gnu.org/software/gsl
http://gmplib.org

Numerical Libraries II

� Boost.uBLAS
2 C++ library for numerical computation
2 web site:

http://www.boost.org/doc/libs/release/libs/numeric/ublas

� Boost.Rational
2 C++ rational number library
2 web site: www.boost.org/doc/libs/release/libs/rational

� Boost.Interval
2 C++ interval arithmetic library
2 web site: www.boost.org/doc/libs/release/libs/numeric/

interval/doc/interval.htm

� Boost.Math
2 C++ library
2 provides math constants, GCD, LCM, quaternions, and more
2 web site: http://www.boost.org/doc/libs/release/libs/math

� Linear Algebra Package (LAPACK)
2 Fortran library for numerical computing

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1535

http://www.boost.org/doc/libs/release/libs/numeric/ublas
www.boost.org/doc/libs/release/libs/rational
www.boost.org/doc/libs/release/libs/numeric/interval/doc/interval.htm
www.boost.org/doc/libs/release/libs/numeric/interval/doc/interval.htm
http://www.boost.org/doc/libs/release/libs/math

Numerical Libraries III

2 web site: http://www.netlib.org/lapack

� Basic Linear Algebra Subprograms (BLAS)
2 de facto API for publishing libraries to perform basic linear algebra

operations
2 written in Fortran
2 web site: http://www.netlib.org/blas

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1536

http://www.netlib.org/lapack
http://www.netlib.org/blas

Part 6

Programming

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1537

Section 6.1

Good Programming Practices

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1538

Formatting, Naming, Documenting

� Be consistent with the formatting of the source code (e.g., indentation
strategy, tabs versus spaces, spacing, brackets/parentheses).

� Avoid a formatting style that runs against common practices.

� Be consistent in the naming conventions used for identifiers (e.g., names
of objects, functions, namespaces, types) and files.

� Avoid bizarre naming conventions that run against common practices.

� Comment your code. If code is well documented, it should be possible to
quickly ascertain what the code is doing without any prior knowledge of
the code.

� Use meaningful names for identifiers (e.g., names of objects, functions,
types, etc.). This improves the readability of code.

� Avoid magic literal constants. Define a constant object and give it a
meaningful name.

constexpr double miles_per_kilometer = 0.621371;

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1539

Error Handling

� If a program requires that certain constraints on user input be satisfied in
order to work correctly, do not assume that these constraints will be
satisfied. Instead, always check them.

� Always handle errors gracefully.

� Provide useful error messages.

� Always check return codes. Even if the operation/function theoretically
cannot fail (under the assumption of bug-free code), in practice it may fail
due to a bug.

� If an operation is performed that can fail, check the status of the operation
to ensure that it did not fail (even if you think that it should not fail). For
example, check for error conditions on streams.

� If a function can fail, always check its return value.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1540

Simplicity

� Do not unnecessarily complicate code. Use the simplest solution that will
meet the needs of the problem at hand.

� Do not impose bogus limitations. If a more general case can be handled
without complicating the code and this more general case is likely to be
helpful to handle, then handle this case.

� Do not unnecessarily optimize code. Highly optimized code is often much
less readable. Also, highly optimized code is often more difficult to write
correctly (i.e., without bugs). Do not write grossly inefficient code that is
obviously going to cause performance problems, but do not optimize
things beyond avoiding gross inefficiencies that you know will cause
performance problems.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1541

Code Duplication

� Avoid duplication of code. If similar code is needed is more than place,
put the code in a function. Also, utilize templates to avoid code duplication.

� The avoidance of code duplication has many advantages.
1 It simplifies code understanding. (Understand once, instead of n times.)
2 It simplifies testing. (Test once, instead of n times.)
3 It simplifies debugging. (Fix bugs in one place, instead of n places.)
4 It simplifies code maintenance. (Change code in one place, instead of n

places.)

� Make good use of the available libraries. Do not reinvent the wheel. If a
library provides code with the needed functionality, use the code in the
library.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1542

Miscellany

� Avoid multiple returns paths (i.e., multiple points of exit) in functions
when they serve to complicate (rather than simplify) code structure.

� Whenever possible, avoid the use of global state (i.e., global variables).

� Ensure that the code is const correct.
� If an object does not need to change, make it const (or constexpr). This

improves the readability of code. This also helps to ensure const
correctness of code.

� Whenever possible, avoid placing identifiers (such as the names of
variables, functions, and types) in the global namespace.

� Avoid bringing many unknown identifiers into scope. For example, avoid
constructs like:

using namespace std;

Only bring identifiers into scope if they are truly needed.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1543

Miscellany

� Whenever possible, avoid relying on behavior that is not promised by the
language, as this can lead to brittle code. Avoid invoking undefined
behavior. Whenever possible, avoid relying on unspecified or
implementation-defined behavior.

� Whenever possible, avoid relying on undocumented features of libraries,
as this can lead to brittle code.

� Enable compiler warning messages. Pay attention to warning messages
issued by the compiler.

� Learn how to use a source-level debugger. There will be times when you
will absolutely need it.

� Be careful to avoid using references, pointers, iterators that do not
reference valid data. Always be clear about which operations invalidate
references, pointers, and iterators.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1544

Testing: Preconditions and Postconditions

� precondition: condition that must be true before function is called

� for example, precondition for function that computes square root of x:
x≥ 0

� postcondition: condition that must be true after function is called

� for example, postcondition for function that removes entry from table of
size n: new size of table n−1

� whenever feasible, check for violations of preconditions and
postconditions for functions

� if precondition or postcondition is violated at run time, terminate program
immediately in order to help in localizing bug (e.g., by using assert or
calling std::abort or std::terminate)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1545

Testing

� The single most important thing when writing code is that it does the job it
was intended to do correctly. That is, there should not be any bugs.

� Test your code. If you do not spend as much time testing your code as you
do writing it, you are likely not doing enough testing.

� Tests should exercise as much of the code as possible (i.e., provide good
code coverage).

� Design and structure your code so that it is easy to test. In other words,
testing should be considered during design.

� Your code will have bugs. Design your code so that it will help you to
isolate bugs. Use assertions. Use preconditions and postconditions.

� Design your code so that is modular and can be written and tested in
pieces. The first testing of the software should never be testing the entire
software as a whole.

� Often in order to adequately test code, one has to write separate
specialized test code.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1546

Code Examples
� subscripting operator for 1-D array class:

template <class T>
const T& Array_1<T>::operator[](int i) const {

// Precondition: index is in allowable range
assert(i >= 0 && i < data_.size());
return data_[i];

}

� function taking pointer parameter:
int stringLength(const char* ptr) {

// Precondition: pointer is not null
assert(ptr);
// Code to compute and return string length.
// ...

}

� function that modifies highly complicated data structure:
void modifyDataStructure(Type& dataStructure) {

// Precondition: data structure is in valid state
assert(isDataStructureValid(dataStructure));
// Complicated code to update data structure.
// ...
// Postcondition: data structure is in valid state
assert(isDataStructureValid(dataStructure));

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1547

Section 6.2

Algorithms

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1548

Software Performance
� two most basic performance measures, which are often of most interest:

1 time complexity
2 space complexity

� time complexity: amount of time required to execute code
� space complexity: amount of memory needed for code execution
� normally must consider both time and space complexities, since one type

of complexity can often be traded off for other
� from practical standpoint, real-world time and memory usage are what

matter most (as opposed to some approximate theoretical measures of
code complexity)

� need techniques that can provide guidance when designing software so
that more likely that later implementation (of design) will have acceptable
performance

� many factors can potentially impact performance, including:
2 CPU instruction count
2 cache efficiency
2 degree of parallelism and concurrency
2 resource utilization (e.g., memory, disk, and network)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1549

Random-Access Machine (RAM) Model

� algorithms can be measured in machine-independent way using
random-access machine (RAM) model

� model assumes single processor
� instructions executed sequentially with no concurrent operations
� elementary types: integer and floating point numbers
� each elementary operation takes one time unit
� elementary operations include:

2 arithmetic operations (e.g., addition, subtraction, multiplication, division) on
elementary types

2 loads and stores of elementary types
2 branch operations (e.g., conditional branch, jump)
2 subroutine call

� loops and subroutines are not considered elementary operations, but
rather as composition of numerous elementary operations

� each memory access takes one time unit
� unbounded amount of memory available

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1550

Worst-Case, Average, and Amortized Complexity

� complexity expressed as function of input problem size
� worst-case complexity: gives upper bound on complexity of algorithm for

any input of given size
� average complexity: gives average complexity of algorithm in statistical

sense if probability measure assigned to all inputs of given size
� often algorithm may only approach worst-case complexity for very small

fraction of possible inputs, in which case average complexity might be
more practically useful than worst-case complexity

� sometimes algorithm may be invoked many times and cost of single
invocation difficult to determine in isolation (e.g., time complexity of
push_back member function of std::vector)

� amortized complexity: complexity per invocation of algorithm evaluated
over sequence of invocations

� amortized complexity makes guarantee about total expense of sequence
of invocations of algorithm, rather than single invocation (e.g., push_back
member function of std::vector takes amortized constant time)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1551

Asymptotic Analysis of Algorithms

� asymptotic analysis deals with behavior of algorithm as problem size
becomes arbitrarily large

� asymptotic complexity: complexity of algorithm in limit as problem size
becomes arbitrarily large

� often interested in:
2 asymptotic time complexity
2 asymptotic space complexity

� asymptotic time and space complexities of algorithm often much easier to
determine than exact running time and memory usage

� often (but not always!) algorithm that is asymptotically more efficient will
be best choice for all but very small inputs

� asymptotic notation (to be discussed next) provides way to describe
functions that is very useful for asymptotic analysis

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1552

Big-Theta (Θ) Notation

� big-theta (Θ) notation: for function g, Θ(g) denotes set of all functions f
for which positive constants c1, c2, and n0 exist such that

0≤ c1g(n)≤ f (n)≤ c2g(n) for all n≥ n0

� functions in Θ(g) grow asymptotically at same rate as g (to within constant
factor)

� effectively, f (n) is sandwiched between c1g(n) and c2g(n) for sufficiently
large n (i.e., n≥ n0)

� used to provide (asymptotic) lower and upper bounds on function, each
to within constant factor (provides asymptotically tight bound)

� if f ∈Θ(g), then for sufficiently large n, f (n) equals g(n) to within
constant factor

� examples:
2 f (n) = an2 +bn+ c where a,b,c are constants and a > 0;

f ∈Θ(n2) but f 6∈Θ(n) and f 6∈Θ(n3)
2 f (n) = ∑

d
i=0 aini where {ai} are constants and ad > 0;

f ∈Θ(nd) but f 6∈Θ(nd+1) and f 6∈Θ(nd−1)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1553

Big-Theta (Θ) Notation (Continued)

n0

c2g(n)

c1g(n)

n

f (n)

� f ∈Θ(g)
� for n≥ n0, f (n) is lower bounded by c1g(n) and upper bounded by

c2g(n)
� asymptotically, f grows at same rate as g to within constant factor

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1554

Big-Oh (O) Notation

� big-oh (O) notation: for function g, O(g) denotes set of all functions f for
which positive constants c and n0 exist such that

0≤ f (n)≤ cg(n) for all n≥ n0

� functions in O(g) grow asymptotically at rate at most that of g (to within
constant factor)

� used to provide (asymptotic) upper bound on function to within constant
factor

� if f ∈ O(g), then for sufficiently large n, f (n) is less than or equal to g(n)
to within constant factor

� since Θ(g(n))⊂ O(g(n)), f (n) ∈Θ(g(n)) implies f (n) ∈ O(g(n))
� often used to bound worst-case running time of algorithm
� examples:

2 f (n) = 3n2 +2n+1; f ∈ O(n2) and f ∈ O(n3) but f 6∈ O(n)
2 f (n) = 5n+42; f ∈ O(n) and f ∈ O(n2) but f 6∈ O(1)
2 f (n) = ∑

d
i=0 aini where {ai} are constants and ad > 0;

f ∈ O(nd) and f ∈ O(nd+1) but f 6∈ O(nd−1)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1555

Big-Oh (O) Notation (Continued)

n0

cg(n)

n

f (n)

� f ∈ O(g)
� for n≥ n0, f (n) is upper bounded by cg(n)
� asymptotically, f grows at rate no greater than that of g to within constant

factor

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1556

Big-Omega (Ω) Notation

� big-omega (Ω) notation: for function g, Ω(g) denotes set of all functions
f for which positive constants c and n0 exist such that

0≤ cg(n)≤ f (n) for all n≥ n0

� functions in Ω(g) grow asymptotically at rate at least that of g (to within
constant factor)

� used to provide (asymptotic) lower bound on function to within constant
factor

� if f ∈Ω(g), then for sufficiently large n, f (n) is greater than or equal to
g(n) to within constant factor

� since Θ(g(n))⊂Ω(g(n)), f (n) ∈Θ(g(n)) implies f (n) ∈Ω(g(n))
� examples:

2 f (n) = 5n3 +n; f ∈Ω(n3) and f ∈Ω(n2) but f 6∈Ω(n4)
2 f (n) = an2 +bn+ c where a,b,c are constants and a > 0;

f ∈Ω(n2) and f ∈Ω(n) but f 6∈Ω(n3)
2 f (n) = ∑

d
i=0 aini where {ai} are constants and ad > 0;

f ∈Ω(nd) and f ∈Ω(nd−1) but f 6∈Ω(nd+1)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1557

Big-Omega (Ω) Notation (Continued)

n

f (n)

n0

cg(n)

� f ∈Ω(g)
� for n≥ n0, f (n) lower bounded by cg(n)
� asymptotically, f grows at rate no less than that of g to within constant

factor

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1558

Small-Oh (o) Notation

� small-oh (o) notation: for function g, o(g) denotes set of all functions f
such that, for any positive constant c, positive constant n0 exists such that

0≤ f (n)< cg(n) for all n≥ n0

� functions in o(g) grow asymptotically at strictly lesser rate than g (to
within constant factor)

� used to provide upper bound on function that is not asymptotically tight
� f ∈ o(g) implies that f (n) becomes insignificant relative to g(n) as n

becomes arbitrarily large (i.e., limn→∞
f (n)
g(n) = 0)

� examples:
2 f (n) = 3n3 +2n+1; f ∈ o(n5) and f ∈ o(n4) but f 6∈ o(n3)
2 f (n) = 2n2; f 6∈ o(n2) but f ∈ O(n2)
2 f (n) = ∑

d
i=0 aini where {ai} are constants and ad > 0;

f ∈ o(nd+1) and f ∈ o(nd+2) but f 6∈ o(nd) and f 6∈ o(nd−1)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1559

SKIP SLIDE

Small-Omega (ω) Notation

� small-omega (ω) notation: for function g, ω(g) denotes set of all
functions f such that, for any positive constant c, positive constant n0
exists such that

0≤ cg(n)< f (n) for all n≥ n0

� functions in ω(g) grow asymptotically at strictly greater rate than g (to
within constant factor)

� used to provide lower bound on function that is not asymptotically tight
� f ∈ ω(g) implies that f (n) becomes arbitrarily large relative to g(n) as n

becomes arbitrarily large (i.e., limn→∞
f (n)
g(n) = ∞)

� examples:
2 f (n) = 3n2; f ∈ ω(n) but f 6∈ ω(n2)
2 f (n) = an2 +bn+ c where a,b,c are constants and a > 0;

f ∈ ω(n) and f ∈ ω(1) but f 6∈ ω(n2) and f 6∈ ω(n3)
2 f (n) = ∑

d
i=0 aini where {ai} are constants and ad > 0;

f ∈ ω(nd−1) but f 6∈ ω(nd) and f 6∈ ω(nd+1)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1560

SKIP SLIDE

Asymptotic Notation in Equations and Inequalities

� when asymptotic notation stands alone on right-hand side of equation,
equal sign means set membership

� for example:
2 f (n) = Θ(g(n)) means f (n) ∈Θ(g(n))

� more generally, when asymptotic notation appears in formula, interpreted
as placeholder for some anonymous function

� for example:
2 3n2 +2n+1 = 3n2 +Θ(n) means 3n2 +2n+1 = 3n2 + f (n) where f (n) is

some function in Θ(n) (i.e., f (n) = 2n+1 ∈Θ(n))

� using asymptotic notation in this way can help to reduce clutter in formulas

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1561

Properties of Θ, O, and Ω

� sum of functions:
2 if f1 ∈Θ(g) and f2 ∈Θ(g), then f1 + f2 ∈Θ(g)
2 if f1 ∈ O(g) and f2 ∈ O(g), then f1 + f2 ∈ O(g)
2 if f1 ∈Ω(g) and f2 ∈Ω(g), then f1 + f2 ∈Ω(g)

� multiplication by constant:
2 for all positive functions f and all positive constants a, a f ∈Θ(f),

a f ∈ O(f), and a f ∈Ω(f)
� product of functions:

2 for all positive functions f1, f2,g1,g2, if f1 ∈Θ(g1) and f2 ∈Θ(g2), then
f1 f2 ∈Θ(g1g2)

2 for all positive functions f1, f2,g1,g2, if f1 ∈ O(g1) and f2 ∈ O(g2), then
f1 f2 ∈ O(g1g2)

2 for all positive functions f1, f2,g1,g2, if f1 ∈Ω(g1) and f2 ∈Ω(g2), then
f1 f2 ∈Ω(g1g2)

� examples:
2 if f ∈Θ(n), then n f (n) ∈Θ(n2)
2 if f and g are positive functions in Θ(1), then f +g ∈Θ(1)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1562

Additional Remarks

� log2 n ∈Θ(logb n) for all b > 1 (i.e., base of logarithm does not impact
asymptotic analysis)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1563

Remarks on Asymptotic Complexity

� one must be careful in interpreting results of asymptotic complexity
analysis

� asymptotic complexity only considers algorithm behavior when problem
size becomes arbitrarily large

� for example: for problems of size n < 1010, algorithm A with time
complexity f (n) =

(1
1010

)
n2 will take less time than Algorithm B with time

complexity g(n) = n, in spite of fact that f (n) = Θ(n2) and g(n) = Θ(n)
(i.e., algorithm A has greater asymptotic complexity than algorithm B)

� asymptotic complexity hides constant factors
� for example: for problems of size n, algorithm A with time complexity

f (n) = n is clearly preferable to algorithm B with time complexity
g(n) = 1000n, but both f and g are in Θ(n) (i.e., both algorithms have
same asymptotic complexity)

� asymptotic complexities can be used for guidance but should not be
followed blindly

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1564

Some Common Complexities

Name Complexity

constant O(1)
logarithmic O(logn)
fractional power O(nc), c ∈ (0,1)
linear O(n)
log-linear O(n logn)
quadratic O(n2)

cubic O(n3)

exponential O(an)

factorial O(n!)
double exponential O(abn

)

� above complexities listed in order of increasing (asymptotic) growth rate

� that is, for sufficiently large n,
1 < logn <

√
n < n < n logn < n2 < n3 < .. . < 2n < n! < 22n

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1565

Recurrence Relations

� recurrence relation is equation that implicitly defines sequence in terms
of itself

� for example, Fibonacci number sequence f is solution to recurrence
relation:

f (n) =
{

f (n−1)+ f (n−2) n≥ 2
1 n ∈ {0,1}

� recurrence relations often arise when trying to determine complexity of
algorithm that employs recursion

� for example, consider time complexity of recursive Fibonacci algorithm:
1 unsigned long long fibonacci(unsigned int n) {
2 if (n <= 2) {
3 return 1;
4 } else {
5 return fibonacci(n - 1) + fibonacci(n - 2);
6 }
7 }

� time complexity T of above algorithm leads to recurrence relation
T (n) = c+T (n−1)+T (n−2)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1566

Solving Recurrence Relations

� no known general technique for solving recurrence relations
� solving recurrence relations somewhat of an art
� linear constant coefficient difference equations can be solved using z

transform
� Master theorem can be used to solve some recurrence relations of form:

f (n) = g(n)+a f (n/b)
� Akra-Bazzi theorem can be used to solve some recurrence relations of

form:
f (n) = g(n)+∑

L−1
i=0 ai f (bin+hi(n))

� need to be careful about non-integer sequence indices arising in
recurrence relations like:

T (n) = ∑
L−1
i=0 aiT (n/bi)+ f (n)

� preceding formula does not make sense if n/bi is not integer
� in many cases, if this issue ignored, correct asymptotic bound still

obtained, although without being correctly justified
� numerous software tools available for solving recurrence relations, such

as WolframAlpha and PURRS
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1567

Solutions for Some Common Recurrence Relations

Recurrence Relation Solution

f (n) =
{

b+ f (n−1) n≥ 2
a n = 1 f (n) = b(n−1)+a ∈Θ(n)

f (n) =
{

bn+ f (n−1) n≥ 2
a n = 1 f (n) = 1

2 bn(n+1)+b−a ∈Θ(n2)

f (n) =
{

b+ f (bn/2c) n≥ 2
a n = 1 f (n) ∈Θ(logn)

f (n) =
{

b+ f (dn/2e) n≥ 2
a n = 1 f (n) ∈Θ(logn)

f (n) =
{

b+ f (bn/2c)+ f (dn/2e) n≥ 2
a n = 1 f (n) ∈Θ(n)

f (n) =
{

bn+ f (bn/2c)+ f (dn/2e) n≥ 2
a n = 1 f (n) ∈Θ(n logn)

f (n) =

{
c+ f (n−1)+ f (n−2) n≥ 3
b n = 2
a n = 1

f ∈Θ(2n)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1568

Matrix Multiplication Algorithm: Time Complexity
� consider algorithm for multiplying m×n matrix by n× p matrix:

1 template <class T, int m, int n, int p>
2 void multiply(const T (&a)[m][n], const T (&b)[n][p],
3 T (&c)[m][p]) {
4 for (int i = 0; i < m; ++i) {
5 for (int j = 0; j < p; ++j) {
6 T sum = T(0);
7 for (int k = 0; k < n; ++k) {
8 sum += a[i][k] * b[k][j];
9 }

10 c[i][j] = sum;
11 }
12 }
13 }

� total time cost per line (assuming basic operations on T are O(1)):
Line Total Time Cost
4 c4,1m+ c4,2
5 m(c5,1 p+ c5,2)
6 mp(c6)
7 mp(c7,1n+ c7,2)
8 mpn(c8)
10 mp(c10)

� asymptotic time complexity is a1mnp+a2mp+a3m+a4 = Θ(mnp)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1569

SKIP SLIDE

Matrix Multiplication Algorithm: Space Complexity

� again, consider algorithm for multiplying m×n matrix by n× p matrix:
1 template <class T, int m, int n, int p>
2 void multiply(const T (&a)[m][n], const T (&b)[n][p],
3 T (&c)[m][p]) {
4 for (int i = 0; i < m; ++i) {
5 for (int j = 0; j < p; ++j) {
6 T sum = T(0);
7 for (int k = 0; k < n; ++k) {
8 sum += a[i][k] * b[k][j];
9 }

10 c[i][j] = sum;
11 }
12 }
13 }

� a, b, and c are references and each effectively incur memory cost of
pointer

� m, n, and p are constant expressions are require no storage

� assuming object of type T requires O(1) space, each of a, b, c, i, j, k,
and sum, requires Θ(1) space

� asymptotic space complexity is Θ(1)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1570

SKIP SLIDE

Iterative Fibonacci Algorithm: Time Complexity

� consider iterative algorithm for computing nth Fibonacci number:
1 unsigned long long fibonacci(unsigned int n) {
2 unsigned long long a[3] = {1, 1, 1};
3 for (int i = 3; i <= n; ++i) {
4 a[0] = a[1];
5 a[1] = a[2];
6 a[2] = a[0] + a[1];
7 }
8 return a[2];
9 }

� total time cost per line (assuming n≥ 2):
Line Total Time Cost
2 c1
3 (n−2)c3,1 + c3,2
4 (n−2)c4
5 (n−2)c5
6 (n−2)c6
8 c8

� asymptotic time complexity is
(c3,1 + c4 + c5 + c6)n+(c1−2c3,1 + c3,2−2c4−2c5−2c6 + c8) =
a1n+a2 = Θ(n)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1571

Iterative Fibonacci Algorithm: Space Complexity

� again, consider iterative algorithm for computing nth Fibonacci number:
1 unsigned long long fibonacci(unsigned int n) {
2 unsigned long long a[3] = {1, 1, 1};
3 for (int i = 3; i <= n; ++i) {
4 a[0] = a[1];
5 a[1] = a[2];
6 a[2] = a[0] + a[1];
7 }
8 return a[2];
9 }

� storage cost per variable:
Variable Storage Cost
n c1
a c2
i c3

� asymptotic space complexity is c1 + c2 + c3 = a1 = Θ(1)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1572

Recursive Fibonacci Algorithm: Time Complexity

� consider recursive algorithm for computing nth Fibonacci number:
1 unsigned long long fibonacci(unsigned int n) {
2 if (n <= 2) {
3 return 1;
4 } else {
5 return fibonacci(n - 1) + fibonacci(n - 2);
6 }
7 }

� time cost T (n) satisfies recurrence relation:

T (n) =

{
T (n−1)+T (n−2)+ c1 n≥ 3
c2 n ∈ {1,2}

� asymptotic time complexity is Θ(2n)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1573

Recursive Fibonacci Algorithm: Space Complexity

� again, consider recursive algorithm for computing nth Fibonacci number:
1 unsigned long long fibonacci(unsigned int n) {
2 if (n <= 2) {
3 return 1;
4 } else {
5 return fibonacci(n - 1) + fibonacci(n - 2);
6 }
7 }

� during recursion, function calls nest to depth of at most n−2 = Θ(n)
� each invocation of function incurs memory cost for local variable n

� each function call also incurs space on stack for return address and
possibly other saved state

� asymptotic space complexity is (n−2)c1 + c0 = a1n+a0 = Θ(n)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1574

Amdahl’s Law

� may want to determine overall speedup that can be achieved by
introducing speedup into some part of task

� overall speedup so of whole task given by

so =
1

(1− fe)+
fe
se

,

where se is speedup of part of task that benefits from enhancement and fe
is fraction of time consumed by part of task benefitting from enhancement

� preceding result known as Amdahl’s law
� overall speedup is limited by fraction of time that enhancement can be

exploited:

so ≤
1

1− fe
and lim

se→∞
so =

1
1− fe

� for example, if fe = 25% and se = 2, then so = 1.1429

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1575NEXT SLIDE: Data Structures

Section 6.2.1

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1576

References I

1 WolframAlpha Recurrence Relation Solver,
https://www.wolframalpha.com/examples/Recurrences.html.

2 Parma University’s Recurrence Relation Solver (PURRS),
http://www.cs.unipr.it/purrs.

3 T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms.
MIT Press, Cambridge, MA, USA, 3rd edition, 2009.

4 A. Levitin. Introduction to the Design and Analysis of Algorithms.
Pearson, Boston, MA, USA, 3rd edition, 2012.

5 J. Erickson. Algorithms, Jan. 2015.
Available online from
http://www.cs.illinois.edu/~jeffe/teaching/algorithms/.

6 M. Akra and L. Bazzi. On the solution of linear recurrence equations.
Computational Optimization and Applications, 10(2):195–210, May 1998.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1577

https://www.wolframalpha.com/examples/Recurrences.html
http://www.cs.unipr.it/purrs
http://www.cs.illinois.edu/~jeffe/teaching/algorithms/

References II

7 M. Drmota and W. Szpankowski. A master theorem for discrete divide and
conquer recurrences.
In Proc. of ACM-SIAM Symposium on Discrete Algorithms, pages
342–361, 2011.

8 S. Roura. Improved master theorems for divide-and-conquer recurrences.
Communications of the ACM, 48(2):170–205, Mar. 2001.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1578

Section 6.3

Data Structures

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1579

Abstract Data Types (ADTs)

� abstract data type (ADT) is model for data type where behavior
specified from point of view of user of type (i.e., with implementation
details hidden)

� ADT specifies:
2 general nature of entity represented by type
2 set of allowable states/values that type can assume
2 set of operations that can be performed on type
2 any preconditions or postconditions for operations

� often, ADT also provides complexity guarantees (e.g., time or space
complexity guarantees for various operations)

� for example, (generic) integer type is ADT:
2 can assume integer values
2 provides basic arithmetic operations, relational operations, and so on
2 particular representation used for integers not specified by ADT

� in contrast to ADT, concrete (i.e., non-abstract) data type provides very
specific details as to how type is implemented

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1580

Container ADTs

� container ADT (also called collection ADT): stores collection of objects,
organized in way that follows some specific access rules

� operations for container ADT often include:
2 clear: remove all elements from container
2 is empty: test if container is empty (i.e., contains no elements)
2 size: query number of elements in container
2 insert: insert element in container
2 remove: remove element from container
2 find: locate element in container if present

� often container ADT provides means to traverse elements in container
(e.g., via iterator ADT)

� if elements in container consist of key-value pairs where key used to find
corresponding value in container, container said to be associative

� if elements in container have well-defined order, container said to be
ordered; otherwise, unordered

� if all elements stored in container of same type, container said to be
homogeneous; otherwise, heterogeneous

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1581

Container ADTs (Continued)

� examples of realizations of container ADTs:
2 std::array, std::vector, std::list, std::forward_list
2 std::set, std::multiset, std::map, std::multimap
2 std::unordered_set, std::unordered_multiset,

std::unordered_map, std::unordered_multimap
2 boost::intrusive::slist, boost::intrusive::list

� container ADTs can differ in many ways:
2 number of elements container can store (e.g., one versus multiple)
2 whether values stored by container must be unique
2 associative versus non-associative
2 ordered versus unordered
2 homogeneous versus heterogeneous
2 intrusive versus nonintrusive
2 concurrency properties (e.g., not thread safe, thread safe, lock free)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1582

Iterator ADTs

� iterator ADT is ADT used to traverse collection of elements, which are
often stored in container

� typically iterator ADT provided as part of container ADT
� operations provided by iterator ADT may include:

2 dereference: access element to which iterator refers
2 next: go to next element
2 previous: go to previous element
2 advance: advance by n elements (where n can be negative for backwards

direction)
� iterator specifies order in which elements can be accessed; for example:

2 forward, bidirectional (i.e., forward and backward), random access
� iterator may only permit certain types of element access; for example:

2 read only (const), read and write (non-const), write only (output)
2 one dereference per element or multiple dereferences per element

� examples of realizations of iterator ADT:
2 iterator and const_iterator types in numerous C++ standard library

containers, such as std::vector and std::set

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1583

Container and Iterator Considerations

� are elements in container stored contiguously in memory?

� what is fixed storage overhead of container (if any)?

� what is per-element storage overhead of container (if any)?

� is container limited in size (e.g., container based on fixed size array)?

� is container dynamic (i.e., can it be changed once created) or static?

� can element be inserted at start, end, or arbitrary position in container in
worst-case or amortized O(1) time?

� can element be removed at start, end, or arbitrary position in container in
O(1) time?

� can element be accessed at start, end, or arbitrary position in O(1) time?

� can element be located in container efficiently (e.g., O(logn) time or
better)?

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1584

Container and Iterator Considerations (Continued)

� can container be traversed (e.g., via iterator) efficiently?

� what is storage cost of iterator (e.g., 1 pointer)?

� in what order can iterator access elements (e.g., forward, bidirectional,
random access)?

� what circumstances result in element references being invalidated?

� what circumstances result in iterators being invalidated?

� what is per-element and amortized time cost of traversing elements in
container?

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1585

Section 6.3.1

Lists, Stacks, and Queues

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1586

List ADT

� list ADT is ADT that stores countable number of ordered values, where
same value may occur more than once

� operations for list ADT include:
2 clear: remove all elements from list
2 is empty: test if list empty
2 size: query number of elements in list
2 insert: insert element in list
2 remove: remove element from list

� operations for traversing elements in list (which are often provided via
iterator ADT) include:

2 successor: get next element in list
2 predecessor (optional): get previous element in list

� examples of realizations of list ADT:
2 std::vector, std::forward_list, and std::list
2 boost::intrusive::slist and boost::intrusive::list

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1587

Array-Based Lists

� can represent list with array

� code example:
1 template <class T> class Iterator {
2 // ...
3 T* ptr_; // pointer to referenced element
4 };
5

6 template <class T> class List {
7 // ...
8 T* start_; // pointer to start of element data
9 T* finish_; // pointer to end of element data

10 T* end_; // pointer to end of allocated storage
11 };

� array capacity (i.e., allocated size) is end_ - start_

� array size (i.e., number of elements) is finish_ - start_

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1588

Array-Based Lists: Diagram

end_

finish_

start_

List

ptr_

Iterator

...

...

Array of T

x1

x0

xn−1

xn

xn+1

xm−1

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1589

Remarks on Array-Based Lists

� advantages:
2 elements stored contiguously in memory (which is cache friendly)
2 no per-element storage overhead
2 can insert at end of list in amortized O(1) time
2 can remove at end of list in O(1) time
2 can access element in any position in O(1) time
2 (random-access) iterator has storage cost of one pointer

� disadvantages:
2 cannot insert or remove at start or arbitrary position in O(1) time
2 if capacity of array exceeded, memory reallocation and copying required
2 if array can be reallocated, insert at end can only at best guarantee

amortized (not worst-case) O(1) time
2 if array reallocated, element references invalidated

� useful when insertion and removal only performed at end of list and stable
references to elements not needed

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1590

Singly-Linked Lists

� singly-linked list is node-based implementation of list where each node
tracks its successor (but not predecessor)

� null pointer used as sentinel value to denote “no such node”; for example,
null pointer used to indicate:

2 no successor node for last node in list
2 no head (i.e., first) node for empty list

� for singly-linked list, insertion and removal normally defined to take place
at position after that specified by iterator

� to specify insertion or removal at start of list requires “before-begin”
iterator

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1591

Singly-Linked Lists: Code
1 // list node
2 template <class T> struct Node {
3 Node* next_; // pointer to next node in list
4 T elem_; // element data
5 };
6

7 // list
8 template <class T> class List {
9 // ...

10 Node<T>* head_; // pointer to first node in list
11 std::size_t size_; // number of elements in list
12 };
13

14 // iterator
15 template <class T> class Iterator {
16 // ...
17 Node<T>* node_; // pointer to node with referenced element
18 Node<T>** head_; // pointer to list head pointer
19 // one of three possibilities:
20 // 1) iterator refers to before-begin position:
21 // head_ points to list head pointer and node_ is null
22 // 2) iterator refers to end position:
23 // head_ and node_ both null
24 // 3) iterator refers to element in list:
25 // head_ is null and node_ points to referenced node
26 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1592

Singly-Linked List: Diagram

head_ next_ next_

List Node Node Node

next_

elem_ elem_ elem_size_

(element)

node_

head_

(before-begin position)

head_

node_ 0

0

(end position)

node_

head_

0

0

Iterator Iterator Iterator

3

0

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1593

Remarks on Singly-Linked Lists

� advantages:
2 can insert element after (but not before) particular position in O(1) time
2 can remove element at start of list in O(1) time
2 no capacity exceeded problem like with array
2 reduced memory cost relative to doubly-linked list as consequence of node

not tracking predecessor
2 element references are stable
2 can find successor in list in O(1) time

� disadvantages:
2 element data not contiguous in memory
2 has per-element storage overhead (1 pointer for successor)
2 cannot insert element before particular position in O(1) time
2 cannot remove element at arbitrary position in O(1) time
2 cannot efficiently iterate backwards over elements in list
2 cannot find predecessor in list in O(1) time
2 (forward) iterator requires two pointers for state (due to need for

“before-begin” iterator)
� typically useful when insertions and removals always performed at start of

list
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1594

Singly-Linked List With Header Node

� singly-linked list with header node is node-based implementation of list
where each node tracks its successor (but not predecessor)

� null pointer used as sentinel value to denote “no such node”; for example,
null pointer used to indicate:

2 no successor for last node in list
2 no head node for empty list

� header node used as placeholder for one-before start of list (i.e.,
“before-begin” position)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1595

Singly-Linked List With Header Node: Code
1 // list node base class
2 struct node_base {
3 // ...
4 node_base* next_;
5 };
6
7 // list node derived class (with list element)
8 template <class T> struct node : public node_base {
9 T elem_;

10 };
11
12 // list iterator class
13 template <class T> class slist_iter {
14 // ...
15 node_base* node_;
16 // one of three possibilities:
17 // 1) iterator refers to before-begin position:
18 // node_ points to header node
19 // 2) iterator refers to end position:
20 // node_ is null
21 // 3) iterator refers to element in list:
22 // node_ points to referenced element’s node
23 };
24
25 // list class
26 template <class T> class list {
27 // ...
28 node_base node_;
29 std::size_t size_;
30 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1596

Singly-Linked List With Header Node: Diagram

next_

List Node Node Node

next_next_
next_

size_

node_

elem_ elem_ elem_

node_

(before-begin position)

node_

(element)

node_

(end position)

0

Iterator Iterator Iterator

3

0

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1597

Remarks on Singly-Linked List With Header Node

� advantages and disadvantages mostly similar to those of classic
singly-linked list

� effectively no memory cost for header node over standard singly-linked list

� in absence of header node, special representation of before-begin iterator
needed, which causes problems for efficient implementation of forward
iterator

� use of header node facilitates more efficient iterator type
� (forward) iterator can be implemented with single pointer as state

� typically, singly-linked list with header node used to implement
std::forward_list

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1598

Doubly-Linked Lists

� doubly-linked list: node-based implementation of list where each node
tracks both its successor and predecessor

� null pointer used as sentinel value to indicate “no such node”; for example,
null pointer used to indicate:

2 no successor for last node in list
2 no predecessor for first node in list
2 no head or tail node for empty list

� normally, for doubly-linked list, insertion defined to take place at position
before that specified by iterator and removal defined to take place at
position specified by iterator

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1599

Doubly-Linked Lists: Code
1 // list node class
2 template <class T> struct Node {
3 Node* next_; // pointer to next node in list
4 Node* prev_; // pointer to previous node in list
5 T elem_; // element
6 };
7

8 // iterator class
9 template <class T> class Iterator {

10 // ...
11 Node<T>* node_; // node of referenced element
12 Node<T>** tail_; // pointer to tail pointer of list
13 // tail_ always points to tail_ pointer in list object
14 // one of two possibilities:
15 // 1) iterator refers to end position:
16 // node_ is null
17 // 2) iterator refers to element in list:
18 // node_ points to referenced element’s node
19 };
20

21 // list class
22 template <class T> class List {
23 // ...
24 Node<T>* head__; // pointer to first node in list
25 Node<T>* tail_; // pointer to last node in list
26 std::size_t size_; // number of elements in list
27 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1600

Doubly-Linked List: Diagram

(end position)

node_

tail_

Iterator

head_

tail_

next_

elem_

next_

prev_

elem_

List Node

prev_

Node Node

size_

next_

prev_

elem_

(element)

node_

tail_

Iterator

0

0

0

3

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1601

Remarks on Doubly-Linked Lists

� advantages:
2 no capacity-exceeded problem like in array case
2 stable references to elements
2 can insert or remove at arbitrary position in O(1) time
2 can find successor and predecessor in O(1) time
2 can efficiently iterate both forwards and backwards over elements in list

� disadvantages:
2 elements not stored contiguously in memory
2 per-element storage overhead (2 pointers)
2 relative to singly-linked list, has greater per-element storage overhead

(1 additional pointer for predecessor)
2 iterator storage cost is more than single pointer (i.e., 2 pointers)

� most useful for lists where insertion and removal can happen anywhere in
list

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1602

Doubly-Linked List With Sentinel Node
� list has one dummy node called sentinel node and zero or more regular

(i.e., non-sentinel) nodes
� list object itself has sentinel node as member
� each regular node is associated with list element
� sentinel node is not associated with any list element
� each (regular and sentinel) node has pointer to its successor and

predecessor
� if list not empty, successor of sentinel node is node corresponding to first

element in list; otherwise, successor is sentinel node itself
� if list not empty, predecessor of sentinel node is node corresponding to

last element in list; otherwise, predecessor is sentinel node itself
� thus, sentinel and regular nodes effectively form augmented list that is

circular
� augmented list never empty, since always contains sentinel node
� augmented list has no beginning or end, since circular
� using sentinel node eliminates many special cases for insertion and

removal, which leads to simpler and more efficient code
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1603

Doubly-Linked List With Sentinel Node: Code
1 // list node base class (which does not have element data)
2 struct Node_base {
3 Node_base* next_; // pointer to next node in list
4 Node_base* prev_; // pointer to previous node in list
5 };
6

7 // list node (which has element data)
8 template <class T> struct Node : public Node_base {
9 T elem_; // element data

10 };
11

12 // list
13 template <class T> class List {
14 // ...
15 Node_base node_; // sentinel node
16 };
17

18 // list iterator
19 template <class T> class Iterator {
20 // ...
21 Node_base* node_; // pointer to referenced node
22 // one of two possibilities:
23 // 1) iterator refers to end position:
24 // node_ points to sentinel node
25 // 2) iterator refers to element in list:
26 // node_ points to referenced element’s node
27 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1604

Doubly-Linked List With Sentinel Node: Diagram

(end position)

node_

Iterator
(element)

node_

Iterator

next_

prev_

elem_

List Node Node Node

next_

prev_

elem_

next_

elem_

prev_
prev_

next_
node_

size_ 3

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1605

Remarks on Doubly-Linked Lists With Sentinel Node

� advantages and disadvantages mostly similar to those of classic
doubly-linked list

� effectively no memory cost for sentinel node over standard doubly-linked
list

� sentinel node effectively makes list circular and always nonempty

� sentinel node eliminates special cases caused by empty list and insertion
and removal at start and end of list (simplifying code)

� in absence of sentinel node, special representation needed for end
iterator, which causes problems for efficient implementation of
bidirectional iterator (namely, consider predecessor operation for iterator
that refers to end of list)

� use of sentinel node facilitates more efficient iterator type
� (bidirectional) iterator can be implemented with single pointer as state

� typically, doubly-linked list with sentinel node used to implement
std::list

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1606

Stack ADT

� stack ADT is ADT for container where elements can only be inserted or
removed in last-in first-out (LIFO) order

� can only insert and remove elements at top of stack
� operations provided by stack ADT:

2 clear: remove all elements from stack
2 is empty: test if stack is empty
2 top: access element at top of stack (without removing)
2 push: add element to top of stack
2 pop: remove element from top of stack

� stack overflow: attempting to perform push operation when insufficient
space available for element being added

� stack underflow: attempting to perform pop operation when stack empty
� example realizations of stack ADT:

2 std::stack
2 boost::lockfree::stack

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1607

Array Implementation of Stack

� stack can be efficiently implemented using array
� code example:

1 template <class T> class Stack {
2 // ...
3 T* start_; // pointer to start of element storage
4 T* end_; // pointer to end of element storage
5 T* ptr_; // pointer to next free slot on stack
6 };

� stack empty if ptr_ equals start_
� stack has reached capacity if ptr_ equals end_
� push operation stores element at *ptr_ and then increments ptr_
� pop operation decrements ptr_
� top operation provides access to ptr_[-1]
� due to possibility of exceeding array capacity, cannot guarantee each

push operation takes constant time; can only hope for amortized (not
worst-case) O(1) time

� memory efficient: only per-element storage cost is element data itself
� cache-efficient: element data is contiguous in memory

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1608

Array Implementation of Stack: Diagram

...

Array of T

start_

Stack

end_

ptr_

...

x1

x0

xn−1

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1609

Remarks on Array Implementation of Stack

� advantages:
2 elements stored contiguously in memory
2 no per-element storage overhead

� disadvantages:
2 if capacity of array exceeded, must reallocate and copy
2 if array grown, can only guarantee amortized (not worst-case) O(1) time for

push
2 if array reallocated, elements references are invalidated

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1610

Node-Based Implementation of Stack

� stack can be efficiently implemented using node-based singly-linked list

� code example:
1 // stack node
2 template <class T> struct Node {
3 Node* next_; // pointer to next node in stack
4 T elem_; // element data
5 };
6

7 // stack
8 template <class T> class Stack {
9 // ...

10 Node<T>* top_; // pointer to node at top of stack
11 };

� only need list to be singly linked (as opposed to doubly linked), since all
insertions and removals performed at start of list (i.e., top of stack)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1611

Node-Based Implementation of Stack: Diagram

top_ next_ next_

Stack Node Node Node

next_

elem_ elem_ elem_size_

0

3

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1612

Remarks on Node-Based Implementation of Stack

� advantages:
2 no capacity-exceeded problem as in array case
2 can perform push operation in O(1) time in worst case
2 element references are stable

� disadvantages:
2 element data not contiguous in memory
2 has per-element storage overhead (i.e., 1 pointer for successor)
2 relative to array-based implementation, requires more space

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1613

Queue ADT

� queue ADT is container where elements can only be inserted and
removed in first-in first-out (FIFO) order

� elements removed from front (a.k.a. head) of queue

� elements inserted at back (a.k.a. tail) of queue
� operations for queue ADT include:

2 clear: remove all elements from queue
2 is empty: test if queue is empty
2 front: access element at front of queue (without removing)
2 enqueue: insert element at back of queue
2 dequeue: remove element from front of queue

� examples of realizations of queue ADT:
2 std::queue
2 boost::lockfree::queue

� double-ended queue ADT is similar to queue ADT except allows elements
to be inserted or removed at either front or back

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1614

Array Implementation of Queue

� array implementation of bounded queue
� code example:

1 // bounded queue
2 template <class T> Queue {
3 // ...
4 T* start_; // start of array for queue elements
5 T* end_; // end of array for queue elements
6 T* head_; // pointer to element at front of queue
7 T* tail_; // pointer to back of queue
8 std::size_t size_; // number of entries in queue
9 };

� array used in circular fashion
� queue is empty if size_ is zero
� queue is full if size_ equals max_size

� if queue not full, enqueue operation places element at tail_ and then
increments tail_ with wraparound and increments size_

� if queue not empty, dequeue operation increments head_ with
wraparound and decrements size_

� front operation provides access to *head_

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1615

Array Implementation of Queue: Diagram

...

...

Array of T

head_

end_

start_

Queue

tail_

xn−1

nsize_

...

x0

x1

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1616

Remarks on Array Implementation of Queue

� although only consider queue of bounded size, could extend to
unbounded case by using dynamically-resizable array

� advantages:
2 elements stored in contiguous buffer, occupying at most two contiguous

regions of memory (i.e., contiguous region with potential hole in middle)
2 can insert and remove in O(1) time
2 can access front element in O(1) time

� disadvantages:
2 queue must be of bounded size
2 relaxing restriction of bounded size raises other issues associated with

reallocation of array when capacity exceeded (e.g., worst case enqueue
time not O(1), element references not stable)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1617

Array of Arrays Implementation of Queue

� array of arrays can be used to implement (unbounded) queue

� code example:
1 // how many Ts held in each block?
2 template <class T> constexpr std::size_t block_size
3 = sizeof(T) < 512 ? 512 / sizeof(T) : 1;
4

5 template <class T> class Iterator {
6 // ...
7 T* cur_; // pointer to referenced element
8 T* first_; // pointer to first element in block
9 T* last_; // pointer to end element in block

10 T** node_; // pointer to current block
11 };
12

13 template <class T> class Queue {
14 // ...
15 T** map_; // array of block pointers
16 std::size_t size_; // size of map array
17 Iterator start_; // iterator for first element in queue
18 Iterator finish_; // iterator for end element in queue
19 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1618

Array of Arrays Implementation of Queue: Diagram

Block

x5

x4

x2
x3

Map

0
0

0

map_

size_ 6

cur_

first_

last_

block_

cur_

first_

last_

block_

start_

finish_

Queue Block

x1

x0

Block

x6
x7

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1619

Remarks on Array of Arrays Implementation of Queue

� advantages:
2 elements never change their location so pointers and references to

elements are stable
� disadvantages:

2 although each individual block holding element data is contiguous, blocks
not contiguous

2 although elements are never relocated by insertions and removals, iterators
can be invalidated

� similar data structure used in some implementations of std::deque

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1620

Node-Based Implementation of Queue

� doubly-linked list implementation of queue

� code example:
1 // queue node
2 template <class T> struct Node {
3 Node* next_; // pointer to next entry in queue
4 Node* prev_; // pointer to previous entry in queue
5 T elem_; // element data
6 };
7

8 template <class T> class Queue {
9 // ...

10 Node<T>* first_; // first entry in queue
11 Node<T>* last_; // last entry in queue
12 std::size_t size_; // number of queued elements
13 };

� enqueue operation uses insert operation of linked list to insert element at
end of list

� dequeue operation uses remove operation of linked list to remove element
at head of list

� front operation provides access to element at head of list

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1621

Node-Based Implementation of Queue: Diagram

head_

tail_

next_

elem_

next_

prev_

elem_

Queue Node

Iterator

node_

prev_

Node Node

tail_

size_

next_

prev_

elem_

0

0

3

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1622

Remarks on Node-Based Implementation of Queue

� advantages:
2 enqueue and dequeue operations can be performed in O(1) time
2 stable element references

� disadvantages:
2 elements not stored contiguously in memory

� could use doubly-linked list with sentinel node in order to facilitate more
efficient iterator

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1623

Section 6.3.2

Multiway and Binary Trees

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1624

Trees

� tree is non-linear hierarchical data type
� tree consists of zero or more nodes
� except root, each node has parent
� each node has zero or more children
� tree containing no nodes is empty
� node q said to be parent of node n if n is child of q
� root node: node in tree with no parent
� node q said to be sibling of node n if q and n have same parent
� tree said to be ordered if linear ordering of children of each node

� example:

D

HF

B

A

C

GE

2 A is root node

2 B is child of A

2 A is parent of B

2 C and D are siblings of B

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1625

Tree Terminology

� path of length k in tree is sequence of k+1 nodes n0,n1, . . . ,nk where ni

is parent of ni+1

� node q said to be ancestor of node n if q is on path from root node to n
� node q is said to be descendant of node n if q on path from n to leaf

� every node is both ancestor and descendant of itself

� node q said to be proper ancestor of n if ancestor of, and distinct from, n
� node q is said to be proper descendant of n if q is descendant of, and

distinct from, n

� example:

D

HF

B

A

C

GE

2 A,B,F is path of length 2

2 A and B are proper ancestors of E

2 E and F are proper descendants of B

2 B is ancestor and descendant of B

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1626

SKIP SLIDE

Tree Terminology (Continued 1)

� subtree rooted at node n is tree that consists of n and all of its
descendants (e.g., subtree of root is entire tree)

� degree of node is number of its children

� degree of tree is maximum node degree taken over all nodes in tree

� internal node is node that has at least one child

� external node (also called leaf node) is node that does not have any
children

� example:

D

HF

B

A

C

GE

2 tree consisting of nodes B, E, and F
is subtree associated with node B

2 degree of node B is 2

2 degree of tree is 3

2 A, B, and D are internal nodes

2 C, E, F , G, and H are leaf nodes

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1627

Tree Terminology (Continued 2)

� depth of node (also called level) is length of path from root to node (or
equivalently, number of proper ancestors of node) (e.g., root node has
depth of zero)

� dth level of tree is all nodes at depth d in tree

� height of node is length of longest path from node to any leaf (e.g., leaf
node has height of zero)

� height of tree is maximum node height taken over all nodes in tree (i.e.,
height of root) if tree is nonempty; otherwise, defined to be −1

� example:

D

HF

B

A

C

GE

2 depths of nodes C and E are 1 and 2,
respectively

2 nodes B, C, and D are at level 1

2 height of node D is 1

2 height of tree is 2

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1628NEXT SLIDE: Binary Trees

Tree Terminology (Continued 3)

� weight of node n is number of descendant leaf nodes possessed by n
� weight of tree is number of leaf nodes in tree (i.e., weight of root node)

� example:

D

HF

B

A

C

GE

2 weights of nodes B and C are 2 and
0, respectively

2 weight of tree is 5

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1629

Tree Traversal

� preorder traversal: node visited before its descendants (i.e., parent
before children)

� postorder traversal: node visited after its descendants (i.e., children
before parent)

� preorder traversal might be used, for example, to print hierarchical
document, where nodes correspond to sections in document

� postorder traversal might be used, for example, to compute space used by
files in directory and its subdirectories

� example:

D

HF

B

A

C

GE

2 preorder traversal visits nodes in
order: A, B, E, F , C, D, G, H

2 postorder traversal visits nodes in
order: E, F , B, C, G, H, D, A

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1630

Applications of Trees

� representing directory tree in hierarchical file system
2 each internal node corresponds to directory
2 each leaf node corresponds to file (or empty directory)

� representing arithmetic expressions
2 each internal node corresponds to operator
2 each leaf node corresponds to operand

� representing decision-making process
2 each internal node corresponds to question with yes/no answer
2 each leaf node corresponds to final outcome of decision-making process

� searching for elements in collection
2 nodes correspond to elements in collection
2 nodes positioned in tree based on element keys

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1631

Tree ADT

� tree ADT provides abstraction of tree data type
� operations provides by tree ADT include:

2 clear: remove all nodes from tree
2 size: get number of nodes in tree
2 is empty: test if tree is empty (i.e., contains no nodes)
2 root: get root node of tree
2 parent: get parent of node (which is not root)
2 children: get children of node
2 is internal: test if node is internal node
2 is external: test if node is external node
2 is root: test if node is root
2 replace: replace element in node

� may provide iterator ADT for traversing tree

� often tree ADT by itself is not particularly useful

� instead, tree ADT typically used to build other more task-specific ADTs
(e.g., set ADT, multiset ADT, and so on)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1632

Node-Based Tree Implementation

� node-based implementation of tree

� each node has pointer to first child and next sibling

� subsequent children can be accessed by following sibling pointers from
first child

� allows size of node data structure to be constant (i.e., independent of
maximum number of children)

� code example:
1 template <class T> struct Node {
2 Node* parent_; // pointer to parent
3 Node* child_; // pointer to first child
4 Node *sibling_; // pointer to next sibling
5 T elem_;
6 };
7

8 template <class T> class Tree {
9 // ...

10 Node<T>* root_; // pointer to root node
11 std::size_t size_; // number of nodes in tree
12 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1633

Node-Based Tree Implementation: Diagram

elem_

sibling_

child_

parent_

Node

sibling_

child_

parent_

Node

elem_

sibling_

child_

parent_

Node

elem_

sibling_

child_

parent_

Node

elem_

sibling_

child_

parent_

Node

elem_

root_

size_

Tree

sibling_

child_

parent_

Node

elem_

0

6

0

0

0

0

0

0

0

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1634

Binary Trees

� each internal node has at most two children

� each node, excluding root node, labelled as either left or right child

� left subtree is tree rooted at left child

� right subtree is tree rooted at right child

� example:

A

B C

D E F

2 root node is A

2 left child of A is B

2 right child of A is C

2 left subtree of A is tree consisting of nodes B, D, and E

2 right subtree of A is tree consisting of nodes C and F

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1635

Perfect and Complete Trees

� binary tree said to be perfect (or full) if each internal node has exactly
two children (which results in all leaves being at same level)

� binary tree said to be complete if perfect except possibly for deepest level
which must be filled from left to right

� perfect implies complete

Perfect Complete

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1636

Balanced Binary Trees

� binary tree said to be perfectly balanced if left and right subtrees of each
(interior) node contain same number of nodes (i.e., perfect tree)

� binary tree said to be strictly balanced if can be formed by discarding
zero or more leaf nodes from perfect tree

� binary tree said to be height balanced if height of left and right subtrees
of each (interior) node differ by at most one

� perfectly balanced implies strictly balanced (but converse does not hold)

� strictly balanced implies height balanced (but converse does not hold)

Perfectly Balanced
Strictly Balanced Height Balanced

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1637NEXT SLIDE: Node-Based Binary Trees

Binary Tree Traversal

� preorder traversal: visit node, then left subtree, then right subtree

� postorder traversal: visit left subtree, then right subtree, then node

� level-order traversal: visit nodes from left to right within level from top
downwards

� one additional traversal order for binary trees: in order

� in-order traversal: visit left subtree, then node, then right subtree

� example:
A

B C

D E F

2 preorder traversal order: A, B, D, E, C, F

2 postorder traversal order: D, E, B, F , C, A

2 inorder traversal order: D, B, E, A, C, F

2 level order traversal order: A, B, C, D, E, F

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1638

Binary Tree ADT

� binary tree ADT provides abstraction of binary tree
� operations provided by binary tree ADT that are common to general (i.e.,

m-ary) tree ADT include:
2 create: make empty tree
2 root: get root node
2 parent: get parent of node
2 is internal: test if node is internal (i.e., non-leaf)
2 is external: test if node is external (i.e., leaf)
2 is root: test if node is root of tree
2 is empty: test if binary tree is empty (i.e., contains no nodes)
2 size: get number of nodes in tree
2 clear: remove all nodes from tree
2 replace: replace element in node
2 add root: add root node (to empty tree)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1639

Binary Tree ADT (Continued)

� other operations provided by binary tree ADT include:
2 left child: get left child of node
2 right child: get right child of node
2 has left child: test if node has left child
2 has right child: test if node has right child
2 insert left: insert node as left child of node (which must be leaf)
2 insert right: insert node as right child of node (which must be leaf)
2 remove: remove node (which must be leaf)

� may provide iterator ADT for traversing tree

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1640

Node-Based Binary Tree

� node-based implementation of binary tree

� node data structure and tree data structure

� null pointer used as sentinel to indicate “no such node” (e.g., child of leaf,
parent of root, etc.)

� code example:
1 template <class T> struct Node {
2 Node* parent_; // pointer to parent
3 Node* left_; // pointer to left child
4 Node* right_; // pointer to right child
5 T elem_; // element data
6 };
7

8 template <class T> class Tree {
9 // ...

10 Node<T>* root_; // pointer to root node
11 std::size_t size_; // number of nodes in tree
12 };

� node-based implementation preferred for trees that are not complete

� in practice, sentinel node often preferred when iterator functionality must
be provided

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1641

Node-Based Binary Tree: Diagram
Node

elem_

right_

left_

parent_

Node

elem_

right_

left_

parent_

Node

elem_

right_

left_

parent_

Node

elem_

right_

left_

parent_

Node

elem_

right_

left_

parent_

root_

size_

Tree

5

0

0

0

0

0

0

0

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1642

Remarks on Node-Based Binary Tree

� advantages:
2 can handle case of tree that is not complete without gross memory

inefficiency
2 can provide stable element references

� disadvantages:
2 has per-element storage overhead (3 pointers: 1 for parent, 1 for first child,

and 1 for second child or next sibling)
2 element data not contiguous

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1643

Array-Based Binary Tree

� complete binary tree can be implemented using array

� position in array determines position in tree

� let index(n) denote index of node n
� let parent(n), left(n), and right(n) denote parent, left child, and right child

of node n
� root node has index 0; and

index(left(n)) = 2index(n)+1
index(right(n)) = 2index(n)+2

index(parent(n)) = b(index(n)−1)/2c
� code example:

1 template <class T> class Tree {
2 // ...
3 T* start_; // start of element data
4 T* end_; // end of element data
5 std::size_t size_; // allocated size of data
6 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1644

Array-Based Binary Tree: Diagram

� example of complete tree with nodes labelled with corresponding array
indices:

A

B C

D

H J

E F G

I

0

1 2

6543

7 8 9

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1645

Remarks on Array-Based Binary Tree

� advantages:
2 memory efficient: no per-element storage overhead (i.e., no memory cost

for representing connectivity of nodes in tree)
2 cache efficient: element data stored contiguously in memory

� disadvantages:
2 can only handle complete trees
2 although could generalize this approach to handle non-complete tree, would

be grossly inefficient in terms of memory usage
2 if array capacity exceeded, costly reallocation and copy required
2 if array reallocation occurs, cannot provide stable references to elements

� array implementation should be preferred for complete trees (unless
inability to guarantee stable element references is problematic)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1646

Binary Search Trees

� binary tree is said to have binary search tree property if, for each node
node n with key k, following holds:

2 every key in left subtree of n is less than or equal to k; and
2 every key in right subtree of n is greater than or equal to k

� for tree of height h, can find element in O(h) time

� example of binary search tree:

5

10

20

40

30

25 35 45

50

60

80

70

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1647

Heaps

� tree said to have heap property if, for each node n in tree, following
holds:

2 key of n is greater than or equal to key of each descendant of n

� heap is tree that satisfies heap property

� inserting or removing node can be done in O(logn) time without breaking
heap property (but may need rearrangement of some nodes)

� example of heap:
80

70

55

16

35

60

10 20 30 15

45 42

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1648NEXT SLIDE: Set and Multiset ADTs

Section 6.3.3

Hash Tables

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1649

Basic Idea Behind Hash Tables

� rather than navigating through search tree comparing search key to
element key, hashing tries to reference element directly in table based on
key

� effectively, hashing transforms key into address in table
� basic operations provided by hash table:

2 insert: add element to hash table
2 remove: remove element from hash table
2 find: search for element in hash table based on key

� want above operations to take O(1) time on average

� order of elements in table unimportant

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1650

Hash Tables

� hash table of size m consists of m slots (also called buckets) numbered
from 0 to m−1 (inclusive)

� each element stored in hash table has key and possibly some associated
value

� each slot can be empty or contain element data

� slot in which element stored determined by applying hash function to key

� load factor is ratio of number of elements in hash table to hash table size

� collision said to occur when two distinct keys map to same index in hash
table

� often, choosing table size as prime number helps to ensure more uniform
distribution of elements over slots

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1651

Hash Table Example

� collection of 10-digit employee numbers

� employee number is key

� hash function yields last four digits of employee number

0000
0001

0002

0003

9997

9998

9999

Index

1122339999

1212009997

...

5919870002

0019910001

Slot

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1652

Hash Functions

� hash function: maps key k of given type to integer in {0,1, . . . ,m−1}
� hash function usually specified as composition of two functions:

1 hash code map
2 compression map

� hash code map: maps key to integer

� compression map: maps integer to integer in {0,1, . . . ,m−1}
� first hash-code map h1 applied to key k and then compression map h2

applied to result to yield hash function h(k) = h2(h1(k))
� hash function is typically many-to-one mapping (which can therefore result

in collisions)

� goal of hash function is to distribute keys uniformly across elements of
{0,1, . . . ,m−1}, which will reduce likelihood of collisions

� hash function should be fast to compute

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1653

Remarks on Hash-Code Maps

� various strategies can be used to generate hash-code map
� integer cast:

2 reinterpret bits of key as integer
� component sum:

2 partition key into integers of fixed size
2 then, sum these integers ignoring overflow

� polynomial accumulation:
2 partition bits of key into sequence of components of fixed length

a0,a1, . . . ,an−1
2 then, evaluate polynomial p(z) = ∑

n−1
i=0 aizi

i for some fixed value of z,
ignoring overflow

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1654

Remarks on Compression Maps

� various strategies can be used to generate compression map

� let m denote size of hash table

� m usually chosen to be prime in order to better distribute keys over hash
values

� division:
2 h2(i) = i mod m

� multiply, add, and divide:
2 h2(i) = (ai+b) mod m, where a and b nonnegative integers and

a mod m 6= 0

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1655

Collision Resolution by Chaining

� chaining also called closed addressing

� with chaining, collisions handled by allowing multiple elements to be
placed in single slot

� elements in slot stored in linked list

� simple uniform hashing: keys equally likely to hash into any of slots

� for load factor α, successful and unsuccessful searches take
average-case time Θ(1+α) under assumption of simple uniform hashing

� if insertion of elements already in hash table not allowed, insert operation
has worst-case O(1) time

� removal of element has worst-case O(1) time

� can support insert, remove, and search all in O(1) time on average (under
assumption of simple uniform hashing)

� hash table cannot fill since each slot can potentially hold any number of
elements

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1656

Collision Resolution by Open Addressing

� with open addressing, only one element allowed to be stored per slot in
table so in case of collision alternate choice must be made for slot to store
element

� sequence of indices to consider (in order) when inserting (or searching
for) element with given key called probe sequence

� examine table at each position in probe sequence until slot for element is
found (e.g., empty slot for insertion)

� for each possible key k, probe sequence should be permutation of
{0,1, . . . ,m−1} so that all slots are reachable

� many possible choices for probe sequence (e.g., linear, quadratic, double
hashing, and random hashing)

� load factor α must satisfy α≤ 1 (since only one element stored per slot)
� uniform hashing: probe sequence of each key equally likely to be any of

m! permutations of {0,1, . . . ,m−1}
� number of probes in unsuccessful search is at most 1

1−α
, assuming

uniform hashing
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1657

Linear Probing

� with linear probing, probe sequence starts at hash value of key and then
proceeds as necessary sequentially, wrapping around to beginning of
table when end of table reached

� ith value in probe sequence for key k given by h(k, i) = (h′(k)+ i) mod m,
where h′ is hash function

� suffers from primary clustering, where colliding elements clump together
causing future collisions to generate longer sequence of probes

� expected number of probes for insertion or unsuccessful search is
1
2

(
1+ 1

(1−α)2

)
� expected number of probes for successful search is 1

2

(
1+ 1

1−α

)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1658

Linear Probing Example

� integer key; hash function h(k) = k mod 13
� insert 18, 15, 23, 31, 44, and 9 (in order):

0 4 5 7 8 9 10 11 12
15

1 2 3 6

0 4 5 7 8 9 10 11 12
1815 23

1 2 3 6

0 4 5 7 8 9 10 11 12
1815 2331

1 2 3 6

0 4 5 7 8 9 10 11 12
1815 2331 44

1 2 3 6

0 4 5 7 8 9 10 11 12
1815 2331 44 9

1 2 3 6

0 4 5 7 8 9 10 11 12
18

1 2 3 6

18

k h(k)
18 5
15 2
23 10
31 5
44 5
9 9

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1659

Quadratic Probing

� with quadratic probing, distance between probes is determined by
quadratic polynomial

� ith value in probe sequence for key k given by
h(k, i) = (h′(k)+ c1i+ c2i2) mod m, where h′ is hash function and c1 and
c2 are nonnegative integer constants

� c1, c2, and m must be carefully chosen to guarantee successful insertion
is possible

� most often c1 = 0 and c2 = 1 and m prime

� must ensure that loading factor α≤ 1
2 in order to guarantee successful

insertion

� eliminates primary clustering, but suffers from secondary clustering

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1660

Quadratic Probing Example

� integer key; hash function h(k) = k mod 13; c1 = 0 and c2 = 1
� insert 18, 15, 23, 31, 44, and 9 (in order):

0 4 5 7 8 9 10 11 12
15

1 2 3 6

0 4 5 7 8 9 10 11 12
1815 23

1 2 3 6

0 4 5 7 8 9 10 11 12
1815 2331

1 2 3 6

0 4 5 7 8 9 10 11 12
1815 2331

1 2 3 6

0 4 5 7 8 9 10 11 12
1815 2331

1 2 3 6

0 4 5 7 8 9 10 11 12
18

1 2 3 6

18

44

9 44

k h(k)
18 5
15 2
23 10
31 5
44 5
9 9

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1661

Double Hashing

� with double hashing, distance between successive probes determined by
secondary hash function

� ith value in probe sequence for key k given by
h(k, i) = (h1(k)+ ih2(k)) mod m, where h1 is (primary) hash function and
h2 is secondary hash function

� h2 must never be zero

� h2 must be coprime with m for entire hash table to be searched

� for example, could let m be prime and have h2 always yield strictly positive
integer less than m

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1662

Double Hashing Example

� integer key; hash function h(k) = k mod 13; secondary hash function
d(k) = 7− k mod 7

� insert 18, 15, 23, 31, 44, and 9 (in order):

0 4 5 7 8 9 10 11 12
15

1 2 3 6

0 4 5 7 8 9 10 11 12
1815 23

1 2 3 6

0 4 5 7 8 9 10 11 12
1815 23

1 2 3 6

0 4 5 7 8 9 10 11 12
1815 2344

1 2 3 6

0 4 5 7 8 9 10 11 12
1815 2344

1 2 3 6

0 4 5 7 8 9 10 11 12
18

1 2 3 6

18

31

31

9 31

k h(k) d(k)
18 5 3
15 2 6
23 10 5
31 5 4
44 5 5
9 9 5

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1663

Random Hashing

� with random hashing, probe sequence generated by output of
pseudorandom number generator seeded by key

� random number generation is relatively expensive

� in practice, double hashing tends to work about as well

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1664

Open Addressing: Insertion, Removal, and Search

� with open addressing, removal of elements can be problematic; in earlier
linear probing example, consider removal of element with key 31 followed
by search for element with key 44

� simplest solution is to distinguish between slot that has always been
empty and slot from which element was deleted

� to perform search:
2 probe until:

2 element with query key is found; or
2 empty slot is found; or
2 all slots have been unsuccessfully probed

� to insert element (assuming not already in table):
2 examine successive slots in probe sequence until

2 slot found that is empty or “deleted”
2 if all slots have been unsuccessfully probed, error
2 store element in located slot

� to remove element:
2 remove element and mark occupied slot with special “deleted” marker

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1665

Rehashing

� if keep adding elements to hash table, eventually size of table will need to
be increased, due to loading factor becoming too large (for good
performance or correct behavior)

� rehashing: rebuilding hash table with different number of slots
� typical threshold for load factor α for rehashing:

2 1 for chaining
2 1

2 for open addressing

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1666

Some Applications of Hash Tables

� dictionary searches (e.g., spelling checkers, natural language
understanding)

� accessing tree or graph nodes by name (e.g., city names on geographical
maps)

� symbol tables in compilers

� transposition tables used in some games (e.g., chess)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1667

Section 6.3.4

Sets, Multisets, Maps, and Multimaps

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1668

Set and Multiset ADTs

� set ADT is container that stores collection of unique values

� set can be ordered (i.e., elements have well-defined order) or unordered
� operations provided by set ADT include:

2 clear: remove all elements from set
2 is empty: test if set is empty
2 size: query cardinality of set (i.e., number of elements in set)
2 insert: insert value in set
2 remove: remove value from set
2 find: locate value in set if present (i.e., for testing set membership)

� multiset ADT similar to set ADT except that duplicate values allowed
� example realizations of set/multiset ADT:

2 std::set and std::multiset
2 std::unordered_set and std::unordered_multiset
2 boost::intrusive::unordered_set and

boost::intrusive::unordered_multiset
2 boost::intrusive::set and boost::intrusive::multiset

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1669

Map and Multimap ADTs

� map (or associative array) ADT is container that stores pairs each
consisting of key and value, where keys are unique

� each element in map consists of key and value
� operations provided by map ADT include:

2 clear: remove all elements from map
2 is empty: test if map is empty
2 size: query number of elements in map
2 insert: insert element in map
2 remove: remove element from map
2 find: locate element in map if present based on its key

� multimap ADT similar to map ADT except that keys need not be unique
� example realizations of map/multimap ADT:

2 std::map and std::multimap
2 std::unordered_map and std::unordered_multimap
2 boost::intrusive::set and boost::intrusive::multiset

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1670

Remarks on Implementation of Sets and Maps

� ordered sets, multisets, maps, and multimaps typically implemented using
balanced binary search tree [see .binary search trees]

� unordered sets, multisets, maps, and multimaps typically implemented
using hash table

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1671NEXT SLIDE: Priority Queue ADT

Red-Black Trees

� red-black trees first proposed by Bayer (1972)
� red-black tree is approximately height-balanced binary search tree
� requires one additional field per node, namely, color (i.e., red or black)
� binary search tree with following invariants:

2 each node is either red or black
2 root node is black
2 if node is red, then both of its children are black
2 every path from given node to any of its descendant nil nodes (i.e., null

pointer) contains same number of black nodes

� invariants guarantee approximate height balancing
� path from root to farthest leaf no more than twice as long as path from root

to nearest leaf
� height h of tree with n nodes is bounded by h≤ 2log2(n+1)
� invariants maintained by rotation and color flipping operations
� memory cost only 1 additional bit per node (for color), relative to classic

binary tree
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1672

Red-Black Trees (Continued)

� some C++ standard library implementations use red-black trees for types
that provide binary search tree functionality (e.g., std::set and
std::map)

� example realizations of red-black trees:
2 boost::intrusive::rbtree, boost::intrusive::set, and

boost::intrusive::multiset

� example of red-black tree (where red nodes are shaded gray):

40

20

10 30

48

555

60

50 70

756545

42

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1673

AVL Trees

� AVL trees first proposed by Adelson-Velsky and Landis (1962)
� AVL tree is height-balanced binary search tree
� balance factor b of node n is defined as b = r− `, where ` and r are

heights of left and right subtrees of n, respectively
� AVL tree is binary search tree such that, for every node n, balance factor b

of n satisfies b ∈ {−1,0,1} (i.e., for each node in tree, height of left and
right subtrees differ by at most one)

� need to store balance factor in each node
� AVL trees more rigidly balanced than red-black trees
� height h of tree with n nodes is bounded by

h≤ c log2(n+d)+b≈ 1.440log2(n+1.065)−0.328,

where c = 1
log2 ϕ

, b = c
2 log2 5−2, d = 1+ 1

ϕ4
√

5
, and ϕ = 1+

√
5

2

� memory cost is 2 bits per node (for balance factor), relative to classic
binary tree

� rebalancing achieved by rotation operations
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1674

AVL Trees (Continued)

� since AVL trees more rigidly balanced than red-black trees, search
operations typically faster in AVL tree

� insertion and removal operations typically slower in AVL tree than in
red-black tree, due to more work being required for tree re-balancing

� example realizations of AVL trees:
2 boost::intrusive::avltree, boost::intrusive::avl_set, and

boost::intrusive::avl_multiset

� example of AVL tree:
40

(+1)

20

10

5

30

(−1)

(−1)

(0)

(0)

60

50

45

70

65 75

6662

(+1)

(−1)

(0)

(0) (0)

(0)

(−1)

(0)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1675

Treaps

� treap is combination of binary search tree and heap

� each node has key and priority

� nodes arranged to form binary search tree with respect to key

� nodes also arranged to form heap with respect to priority

� if priorities chosen randomly, tree will be well balanced with high
probability

� treaps provide benefits of balanced search trees, but rebalancing (which is
driven by heap property) is less complicated than with some other types of
balanced search trees

� example realizations of treaps:
2 boost::intrusive::treap, boost::intrusive::treap_set, and

boost::intrusive::treap_multiset

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1676

Splay Trees

� splay tree is self-adjusting binary search tree with property that searches
for more frequently accessed elements can be performed more quickly

� splay tree keeps more recently accessed elements closer to root

� caching effect comes at cost of tree rebalancing being required each time
search is performed

� significant disadvantage of splay tree is that height of tree can become
linear in number of elements

� in worst case, insertion, removal, and search operations take amortized
O(logn) time

� example realizations of splay trees:
2 boost::intrusive::splay_tree, boost::intrusive::splay_set,

and boost::intrusive::splay_multiset

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1677

Scapegoat Trees

� scapegoat tree is self-balancing binary search tree

� provides worst-case O(logn) search time

� provides insertion and removal in amortized O(logn) time

� unlike other self-balancing binary search trees that provide worst-case
O(logn) search time, scapegoat trees have no additional per-node
overhead compared to regular binary search tree

� rebalancing can potentially be very expensive, although only infrequently

� consequently, insertion and removal operations have worst-case O(n)
time

� example realizations of scapegoat trees:
2 boost::intrusive::sgtree, boost::intrusive::sg_set, and

boost::intrusive::sg_multiset

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1678

Section 6.3.5

Priority Queues

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1679

Priority Queue ADT

� priority queue ADT is ADT similar to queue except that each element on
queue also has corresponding priority

� element at front of queue is always element with highest priority
� operations provided by priority queue ADT include:

2 front: access element at front of queue (i.e., element with highest priority)
2 insert: insert element in queue with specified priority
2 remove: remove element from front of queue (i.e.. element with highest

priority)
2 update priority (optional): update priority of element in queue

� if priority queue has stability property, elements with equal priority will
be removed in FIFO order

� examples of realization of priority queue ADT:
2 std::priority_queue,
2 boost::heap::priority_queue and boost::heap::fibonacci_heap

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1680

Remarks on Priority Queue Implementations

� priority queues typically implemented with heaps [seeheaps]

� heaps can always be constructed to be complete trees

� consequently, can reasonably choose to implement priority queue with
either array-based or node-based tree

� in practice, stability often ensured by augmenting priority with integer
sequence number, which is incremented with each insertion

� array-based implementation more memory efficient but does not have
stable element references (if underlying array can be reallocated)

� node-based implementation can offer stable element references

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1681NEXT SLIDE: C++ Basics

Section 6.3.6

Graphs

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1682

Graphs

� graph is concept from discrete mathematics

� collection of nodes and edges

� nodes can be connected by edges

� directed graph: edges are directed (i.e., have direction)

� undirected graph: edges are undirected

� examples of graphs:

C

E

B D

A

Undirected

C

E

B D

A

Directed

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1683

Graph ADTs

� graph ADT is abstraction of mathematical notion of graph
� operations for graph ADT include:

2 adjacent: tests if edge from one vertex to another
2 neighbours: list all vertices that have edge to another vertex
2 insert vertex: add vertex to graph
2 remove vertex: remove vertex from graph
2 insert edge: add edge from one vertex to another
2 remove edge: remove edge from one vertex to another
2 get vertex value: get value associated with vertex
2 set vertex value: set value associated with vertex
2 get edge value: get value associated with edge
2 set edge value: set value associated with edge

� examples of realization of graph ADT:
2 boost::adjacency_list and boost::adjacency_matrix

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1684

Adjacency Matrix Implementation of Graph

� adjacency (i.e., connectivity) of n nodes can be represented using n×n
binary matrix called adjacency matrix

� (i, j)th element of adjacency matrix is 1 if graph has edge from node i to
node j and 0 otherwise

� if graph is undirected, adjacency matrix is symmetric and only lower
triangular part of matrix need be stored

� if graph is directed, adjacency matrix is not necessarily symmetric, and
entire matrix must be stored

� can test adjacency of two nodes (which requires examining element in
matrix) in O(1) time

� identifying all neighbours of given node takes O(n) time

� iterating over all edges is slow

� storage cost of adjacency matrix is Θ(n2)

� high storage cost easier to justify if graph has large number of edges

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1685

Adjacency List Implementation of Graph

� adjacency (i.e., connectivity) of v nodes can be represented using v linked
lists

� ith list contains node j if and only if graph has edge from node i to node j
� can test adjacency of two nodes (which requires traversing linked list) in

worst-case O(d) time, where d is largest valence of nodes in graph

� identifying all neighbours of given node very cheap

� storage cost of adjacency list is O(v+ e), where v and e is number of
node and edges, respectively

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1686

Section 6.3.7

Data Structures and File Formats for Polygon Meshes

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1687

Naive Triangle-Mesh Data Structure

struct Face {
int vertexIndexes[3]; // indexes of vertices of triangle

};

Vertex vertices[numVertices]; // vertex array
Face triangles[numTriangles]; // triangle array

� edges not explicitly represented

� some adjacency information not readily accessible

� to find neighboring face, must scan through face array looking for face with
two vertices in common, which takes O(n) time (where n is number of
vertices)

� need data structures that allow efficient access to adjacency information

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1688

Naive Triangle-Mesh Data Structure Example

v0 v1

= (−1,1,−1)

= (1,−1,−1)= (−1,−1,1)

v2

= (1,1,1)
v3f2

f0

f1

Vertices
Array Array
Index Element

0 (-1,-1,1)
1 (1,-1,-1)
2 (-1,1,-1)
3 (1,1,1)

Faces
Array Array
Index Element

0 0, 1, 3
1 1, 2, 3
2 0, 3, 2

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1689

Half-Edge Data Structure

� described in:

K. Weiler. Edge-based data structures for solid modeling in curved-surface
environments.
IEEE Computer Graphics and Applications, 5(1):21–40, Jan. 1985.

� every edge represented as pair of directed edges, each called half-edge
� 6 pointers plus 2 bits (i.e., 2 one-bit integers) per edge

� used in Computational Geometry Algorithms Library (CGAL)

� representing edges in terms of directed line segments often
advantageous in algorithms

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1690

Half-Edge Data Structure (Continued)

vertex

edge

face

e[0]

e[1]

e[0].left

e[1].left

e[1].next

e[0].next

e[1].term

e[0].term

struct HalfEdge {
int index; // index of half-edge in parent edge
HalfEdge* next; // next CCW half-edge around left face
Vertex* term; // terminal vertex
Face* left; // left face

};

struct Edge {
HalfEdge e[2]; // pair of symmetric half-edges

};

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1691

Quad-Edge Data Structure

� proposed in:

L. Guibas and J. Stolfi. Primitives for the manipulation of general
subdivisions and the computation of Voronoi diagrams.
ACM Transactions on Graphics, 4(2):74–123, Apr. 1985.

� simultaneously represents graph and its dual
� each edge belongs to four circular singly-linked lists corresponding to two

vertices and two faces incident to edge

� vertex/face represented by ring of quad-edges

� 8 pointers plus 4 two-bit integers per edge

� used in various research software available on Internet (e.g., Scape
terrain-simplification software, Dani Lischinski’s constrained DT software)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1692

SKIP SLIDE

Quad-Edge Data Structure (Continued)

e[1]

e[3]

e[2]

e[0]

e[3].next

e[0].next

e[2].next

e[0].data

e[3].data

e[1].next

e[1].data

e[2].data

edge

vertex

face

struct QuadEdge {
int index; // index of quad-edge in parent edge
QuadEdge* next; // next CCW quad-edge with same origin
void* data; // face or vertex

};

struct Edge {
QuadEdge* e[4]; // four quad-edges of edge

};

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1693

SKIP SLIDE

Object File Format (OFF)

� simple scheme for encoding the geometry and topology of a polygon
mesh

� also has provisions for including color and normal information

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1694

OFF Example (Triangle Mesh)

= (−1,1,0)
v3

v4
= (0,0,1)

v0
= (−1,−1,0)

v1
= (1,−1,0)

= (1,1,0)
v2

Mesh

OFF
5 4 0
-1 -1 0
1 -1 0
1 1 0
-1 1 0
0 0 1
3 0 1 4
3 1 2 4
3 2 3 4
3 0 4 3

Corresponding
OFF File

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1695NEXT SLIDE: Memory Management

OFF Example (Quad Mesh)

v1
= (0,−1,0)

v5
= (0,1,0)

v6
= (−1,1,−1)

v4
= (1,1,−1)

v2
= (1,−1,−1)= (−1,−1,−1)

v0

v7
= (−1,0,0)

v3
= (1,0,0)

= (0,0,1)
v8

Mesh

OFF
9 4 0
-1 -1 -1
0 -1 0
1 -1 -1
1 0 0
1 1 -1
0 1 0
-1 1 -1
-1 0 0
0 0 1
4 0 1 8 7
4 1 2 3 8
4 8 3 4 5
4 7 8 5 6

Corresponding
OFF File

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1696

SKIP SLIDE

Section 6.3.8

Intrusive Containers

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1697

Intrusive Containers

� container said to be intrusive if it requires help from elements it intends to
store in order to store them

� intrusive container directly places user’s objects in container (not copies
of user’s objects)

� node pointers exposed to user of container, which allows some operations
to be performed more efficiently

� intrusive container does not own elements it stores

� lifetime of stored object not bound to or managed by container (i.e.,
lifetime of stored objects managed by user)

� can store element in multiple intrusive containers simultaneously (which is
not possible with nonintrusive containers)

� more coupling between code for container and code using container

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1698

Shortcomings of Non-Intrusive Containers

� object can only belong to one container

� only copies of objects stored in nonintrusive containers

� creating copies of values can become bottleneck (due to memory
allocation and copying)

� noncopyable and nonmovable objects cannot be stored in nonintrusive
containers (unless objects can be directly constructed inside container
and are guaranteed not to be copied/moved subsequently)

� cannot store derived object in nonintrusive container and retain original
type (i.e., copying derived object into container would result in slicing)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1699

Advantages of Intrusive Containers

� same object can be placed in multiple intrusive containers simultaneously

� intrusive containers do not invoke memory management operations since
do not own stored elements

� complexity of inserting and removing elements in intrusive containers
more predictable since no memory allocation involved

� intrusive containers tend to allow stronger complexity guarantees (since
no memory allocation or copying performed)

� intrusive containers offer better exception safety guarantees (since do not
need to make copy of element to place in container)

� for intrusive container, computation of iterator from pointer or reference to
element is O(1) time operation, which is often not true for nonintrusive
containers (e.g., for nonintrusive list std::list, this operation takes O(n)
time)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1700

Disadvantages of Intrusive Containers

� in order to use type with intrusive container, must change definition of type
� each type stored in intrusive container needs additional memory to hold

information for container
� intrusive containers unavoidably expose some implementation details of

container to user
� since some implementation details are exposed, easier to break invariants

of container; for example:
2 changing key of element in map
2 corrupting pointers used to link nodes in container

� user must assume responsibility for memory management (since
container does not)

� user must manage lifetime of objects placed in container independent
from lifetime of container itself, which can be error prone:

2 when destroying container before object, must be careful to avoid resource
leaks

2 destroying object while in container, likely to be disastrous since container
uses part of object to implement container

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1701

Disadvantages of Intrusive Containers (Continued)

� typically, intrusive containers not copyable (and often not movable as well)
since such containers do not directly perform memory allocation

� analyzing thread safety of program using intrusive containers often more
difficult since container contents can be modified without going through
container interface

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1702NEXT SLIDE: go to pointers to members

Intrusive Doubly-Linked List

� node-based implementation of list where each node tracks both its
successor and predecessor

� value type (which stores user data) and node type (which is used to
maintain list) are same

� null pointer used as sentinel value to indicate “no such node” (e.g., no
successor/predecessor node or no head/tail node)

� in order for elements of type T to be used with container, T must include
special type as data member (which encapsulates next/previous pointers
for linked list)

� uses pointer to member to identify member that holds list node state [see

. .pointers to members]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1703

SKIP SLIDE

Intrusive Doubly-Linked List: Code

1 // type encapsulating links for list
2 // (i.e., part of list node)
3 template <class T> struct list_hook {
4 // ...
5 T* next_; // pointer to next node in list
6 T* prev_; // pointer to previous node in list
7 };
8

9 // iterator class
10 // (constness of T determines if const_iterator)
11 template <class T, list_hook<T> T::* P> class list_iterator {
12 // ...
13 // node_ptr is T* (where T may be const qualified)
14 node_ptr node_; // pointer to node of referenced element
15 node_ptr const* tail_; // pointer to list tail node pointer
16 };
17

18 template <class T, list_hook<T> T::* P> class list {
19 // ...
20 T* head_; // pointer to first node in list
21 T* tail_; // pointer to last node in list
22 std::size_t size_; // number of elements in list
23 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1704

SKIP SLIDE

Intrusive Doubly-Linked List: Code (Continued)
1 // list node with user data
2 struct Widget {
3 // ...
4 list_hook<Widget> hook; // public
5 // ...
6 };
7

8 // type for list of Widget objects
9 using Widget_list = list<Widget, &Widget::hook>;

1 // list node with user data
2 // (which can be placed on two lists simultaneously)
3 struct Gadget {
4 // ...
5 list_hook<Gadget> first_hook; // public
6 list_hook<Gadget> second_hook; // public
7 // ...
8 };
9

10 // type for list of Gadget objects using first_hook
11 using First_gadget_list = list<Gadget, &Gadget::first_hook>;
12

13 // type for list of Gadget objects using second_hook
14 using Second_gadget_list = list<Gadget, &Gadget::second_hook>;

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1705

SKIP SLIDE

Intrusive Doubly-Linked List: Diagram

head_

tail_

List

size_

Widget

hook

prev_

next_

...

...

Widget

hook

prev_

next_

...

...

Widget

hook

prev_

next_

...

...

Iterator

node_

tail_

3
0

0

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1706

SKIP SLIDE

Remarks on Intrusive Doubly-Linked List

� node pointer and value pointer are equivalent (i.e., pointers to next and
previous nodes have type T*)

� storage cost of iterator is two pointers (but one pointer would be more
desirable)

� iterator state requires pointer to list tail pointer in order to handle case of
decrementing end iterator (which has null node pointer)

� implementation does not require any non-portable constructs

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1707

SKIP SLIDE

Intrusive Doubly-Linked List With Sentinel Node

� intrusive doubly-linked list with sentinel node is circular doubly-linked
list with dummy node that serves as sentinel (instead of using null pointer)

� value type (which stores user data) and node type (which is used to
maintain list) are distinct

� in particular, value type contains node type as data member

� effectively sentinel node makes list circular

� in order for elements of type T to be used with container, T must include
special type as data member (which encapsulates next/previous pointers
for linked list)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1708

Intrusive Doubly-Linked List With Sentinel Node: Code
1 // list node class
2 struct list_hook {
3 // ...
4 list_hook* next_; // pointer to next node in list
5 list_hook* prev_; // pointer to previous node in list
6 };
7

8 // list traits class (no data members)
9 template <class T, list_hook<T> T::* P> class list_traits {

10 // functions for mapping between object and node pointers
11 };
12

13 // list iterator class
14 // (constness of T determines if const_iterator)
15 template <class T, list_hook<T> T::* P> class list_iterator :
16 list_traits<T, P>{
17 // ...
18 list_hook* node_; // pointer to node of referenced element
19 };
20

21 // list
22 template <class T, list_hook<T> T::* P> class list :
23 list_traits<T, P> {
24 // ...
25 list_hook node_; // sentinel node
26 std::size_t size_; // number of elements in list
27 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1709. .nonintrusive case

Intrusive Doubly-Linked List With Sentinel Node: Code (Continued)

1 // list node with user data
2 struct Widget {
3 // ...
4 list_hook hook; // public
5 // ...
6 };
7

8 // type for list of Widget objects
9 using Widget_list = list<Widget, &Widget::hook>;

1 // list node with user data
2 // (which can be placed on two lists simultaneously)
3 struct Gadget {
4 // ...
5 list_hook first_hook; // public
6 list_hook second_hook; // public
7 // ...
8 };
9

10 // type for list of Gadget objects using first_hook
11 using First_gadget_list = list<Gadget, &Gadget::first_hook>;
12

13 // type for list of Gadget objects using second_hook
14 using Second_gadget_list = list<Gadget, &Gadget::second_hook>;

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1710

Intrusive Doubly-Linked List With Sentinel Node: Diagram

Iterator

node_

List

prev_

next_
node_

size_

Widget

...

...

prev_

next_

hook

Widget

...

...

prev_

next_

hook

Widget

...

...

prev_

next_

hook

3

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1711. .nonintrusive case

Remarks on Intrusive Doubly-Linked List With Sentinel Node

� circular list avoids many special cases in implementation of list class
(since circular list never empty and list has no beginning or end)

� node and value types are distinct (i.e., node pointers are of type
list_hook, not T)

� storage cost of iterator is one pointer

� implementation requires non-portable construct to determine value pointer
from node pointer

� determining value pointer from node pointer cannot work in all cases (in
particular, if value type uses virtual inheritance)

� limitations on what types can be placed in container

� another variation on this intrusive list approach can be obtained by using
inheritance to add required list state to user’s type (instead of adding by
data members), which has some advantages

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1712

Examples of Intrusive Containers

� as of C++17, all container classes in standard library are nonintrusive
� Boost library has good selection of intrusive containers, which includes

(amongst others):
2 boost::intrusive::slist (intrusive singly-linked list)
2 boost::intrusive::list (intrusive doubly-linked list)
2 boost::intrusive::set (intrusive set/map)
2 boost::intrusive::multiset (intrusive multiset/multimap)
2 boost::intrusive::unordered_set (intrusive unordered set/map)
2 boost::intrusive::unordered_multiset (intrusive unordered

multiset/multimap)
2 boost::intrusive_ptr (intrusive reference-counted smart pointer)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1713NEXT SLIDE: Cache-Efficient Coding

Section 6.3.9

Miscellany

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1714

Memory Management for Containers

� for reasons of efficiency or functionality (or even correctness), often
necessary to:

2 separate memory allocation from construction
2 separate memory deallocation from destruction

� operator new can be used to perform only memory allocation (without
construction)

� placement new can be used to perform only construction (without memory
allocation)

� operator delete can be used to perform only memory deallocation (without
destruction)

� direct invocation of destructor can be used to perform only destruction
(without memory deallocation)

� allocator type provides interface that decouples allocation/deallocation
and construction/destruction

� numerous convenience functions provided by standard library for dealing
with uninitialized storage

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1715

Row-Major Versus Column-Major Order

2

0

1

2

10 M−1

N−1

...
...

...
. . .

· · ·

...

· · ·

· · ·
· · ·

Row-Major Order

2

0

1

2

10 M−1

N−1

...
...

...
. . .

· · ·

...

· · ·

· · ·
· · ·

Column-Major Order

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1716NEXT SLIDE: return to cache material

Section 6.3.10

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1717

References I

1 T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms.
MIT Press, Cambridge, MA, USA, 3rd edition, 2009.

2 N. Dale. C++ Plus Data Structures.
Jones and Bartlett, Sudbury, MA, USA, 3rd edition, 2003.

3 M. A. Weiss. Data Structures and Algorithm Analysis in C++.
Pearson, Boston, MA, USA, 4th edition, 2014.

4 F. M. Carrano and J. J. Prichard. Data Abstraction and Problem Solving
With C++: Walls and Mirrors.
Addison Wesley, 3rd edition, 2001.

5 A. Drozdek. Data Structures and Algorithms in C++.
Brooks/Cole, Pacific Grove, CA, USA, 2nd edition, 2001.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1718

References II

6 G. Adelson-Velskii and E. M. Landis. An algorithm for the organization of
information.
Proc. of the USSR Academy of Sciences, 146:263–266, 1962.
In Russian.

7 R. Bayer. Symmetric binary B-trees: Data structure and maintenance
algorithms.
Acta Informatica, 1(4):290–306, 1972.

8 Boost C++ Libraries Web Site, http://www.boost.org.

9 M. Austern, The Standard Librarian: Defining Iterators and Const
Iterators, Dr. Dobb’s Journal, Jan. 2001, Available online at
http://www.drdobbs.com/
the-standard-librarian-defining-iterato/184401331.

10 R. Mattethat, Implementing Splay Trees in C++, Dr. Dobb’s Journal,
Sept. 2005, Available online at http://www.drdobbs.com/cpp/
implementing-splay-trees-in-c/184402007.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1719

http://www.boost.org
http://www.drdobbs.com/the-standard-librarian-defining-iterato/184401331
http://www.drdobbs.com/the-standard-librarian-defining-iterato/184401331
http://www.drdobbs.com/cpp/implementing-splay-trees-in-c/184402007
http://www.drdobbs.com/cpp/implementing-splay-trees-in-c/184402007

Section 6.4

Finite-Precision Arithmetic

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1720

Code Example

� What do each of the following functions output when executed?
void func1() {

double x = 0.1;
double y = 0.3;
double z = 0.4;
if (x + y == z)

{std::cout << "true\n";}
else

{std::cout << "false\n";}
}

void func2() {
double x = 1e50;
double y = -1e50;
double z = 1.0;
if (x + y + z == z + y + x)

{std::cout << "true\n";}
else

{std::cout << "false\n";}
}

void func3() {
for (double x = 0.0; x != 1.0; x += 0.1)

{std::cout << "hello\n";}
}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1721START SLIDE: tutorial NEXT SLIDE: output precision

Example: Controlling Precision of Output

1 #include <iostream>
2 #include <iomanip>
3 #include <limits>
4 #include <boost/io/ios_state.hpp>
5

6 template <class T> void func(T x) {
7 boost::io::ios_flags_saver saver(std::cout);
8 std::cout << x << ’ ’ <<
9 std::setprecision(std::numeric_limits<T>::digits10) << x << ’ ’ <<

10 std::setprecision(std::numeric_limits<T>::max_digits10) << x << ’ ’ <<
11 std::hexfloat << x << ’\n’;
12 }
13

14 int main() {
15 func(0.1f);
16 func(0.1);
17 func(0.1L);
18 }
19
20 /* example output:
21 0.1 0.1 0.100000001 0x1.99999ap-4
22 0.1 0.1 0.10000000000000001 0x1.999999999999ap-4
23 0.1 0.1 0.100000000000000000001 0xc.ccccccccccccccdp-7
24 */

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Example: Determining Next/Previous Representable Value

1 #include <cmath>
2 #include <iostream>
3 #include <limits>
4 #include <boost/io/ios_state.hpp>
5

6 template <class T> void func(T x) {
7 boost::io::ios_flags_saver saver(std::cout);
8 T prev = std::nextafter(x, -INFINITY);
9 T next = std::nextafter(x, INFINITY);

10 std::cout.precision(std::numeric_limits<T>::max_digits10);
11 std::cout << prev << ’ ’ << x << ’ ’ << next << ’\n’;
12 std::cout << std::hexfloat;
13 std::cout << prev << ’ ’ << x << ’ ’ << next << ’\n’;
14 }
15

16 int main() {
17 func(0.0f);
18 func(0.0);
19 func(0.0L);
20 }
21
22 /* example output:
23 -1.40129846e-45 0 1.40129846e-45
24 -0x1p-149 0x0p+0 0x1p-149
25 -4.9406564584124654e-324 0 4.9406564584124654e-324
26 -0x0.0000000000001p-1022 0x0p+0 0x0.0000000000001p-1022
27 -3.64519953188247460253e-4951 0 3.64519953188247460253e-4951
28 -0x0.000000000000001p-16385 0x0p+0 0x0.000000000000001p-16385
29 */

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475END SLIDE: tutorial

Number Representations Using Different Radixes

� Note: All numbers are base 10, unless explicitly indicated otherwise.

� What is the representation of 1
3 in base 3?

1
3 = 0.3 = 0.13

� What is the representation of 1
10 in base 2?

1
10 = 0.1 = 0.000112

� A number may have a representation with a finite number of non-zero
digits in one particular number base but not in another.

� Therefore, when a value must be represented with a limited number of
significant digits, the number base matters (i.e., affects the approximation
error).

� For example, in base 2, 1
10 cannot be represented exactly using only a

finite number of significant digits.
0.000112 = 0.09375
0.0001100112 = 0.099609375
. . .

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1722

Finite-Precision Number Representations

� finite-precision number representation only capable of representing small
fixed number of digits

� due to limited number of digits, many values cannot be represented
exactly

� in cases that desired value cannot be represented exactly, choose nearest
representable value (i.e., round to nearest representable value)

� finite-precision representations can suffer from error due to roundoff,
underflow, and overflow

� two general classes of finite-precision representations:
1 fixed-point representations
2 floating-point representations

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1723

Fixed-Point Number Representations

� fixed-point representation: radix point remains fixed at same position in
number

� if radix point fixed to right of least significant digit position, integer format
results

Integer Format an−1 an−2 · · · a1 a0.
� if radix point fixed to left of most significant digit position, purely fractional

format results

Fractional Format .an−1 an−2 · · · a1 a0

� fixed-point representations quite limited in range of values that can be
represented

� numbers that vary greatly in magnitude cannot be represented easily
using fixed-point representations

� one solution to range problem would be for programmer to maintain
scaling factor for each fixed-point number, but this is clumsy and error
prone

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1724

Floating-Point Number Representations

� floating-point representation: radix point is not fixed at particular
position within number; instead radix point allowed to move and scaling
factor automatically maintained to track position of radix point

� in general, floating-point value represents number x of form

x = sre,

� s is signed integer with fixed number of digits, and called significand
� e is signed integer with fixed number of digits, and called exponent
� r is integer satisfying r ≥ 2, and called radix
� in practice, r typically 2
� for fixed r, representation of particular x not unique if no constraints

placed on s and e (e.g., 5 ·100 = 0.5 ·101 = 0.05 ·102)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1725

Floating-Point Number Representations (Continued)

� to maximize number of significant digits in significand, s and e usually
chosen such that first nonzero digit in significand is to immediate left of
radix point (i.e., 1≤ |s|< r); number in this form called normalized;
otherwise called denormalized

� other definitions of normalized/denormalized sometimes used but above
one consistent with IEEE 754 standard

� Example:

0.75 = 0.112 = 1.12 ·2−1

1.25 = 1.012 = 1.012 ·20

−0.5 =−0.12 =−1.02 ·2−1

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1726

IEEE 754 Standard (IEEE Std. 754-1985)

� most widely used standard for (binary) floating-point arithmetic
� specifies four floating-point formats: single, double, single extended, and

double extended
� single and double formats called basic formats
� radix 2
� three integer parameters determine values representable in given format:

2 number p of significand bits (i.e., precision)
2 maximum exponent Emax

2 minimum exponent Emin

� parameters for four formats are as follows:

Parameter Single Single Double Double
Extended Extended

p 24 ≥ 32 53 ≥ 64
Emax 127 > 1023 1023 ≥ 16383
Emin −126 ≤−1022 −1022 ≤−16382
Exponent bias 127 unspecified 1023 unspecified

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1727

IEEE 754 Standard (Continued)

� with each format, numbers of following form can be represented

(−1)s2E(b0.b1b2 · · ·bp−1)

where s ∈ {0,1}, E is integer satisfying Emin ≤ E ≤ Emax, and bi ∈ {0,1}
� in addition, can represent four special values: +∞, −∞, signaling NaN,

and quiet NaN
� NaNs produced by:

2 operations with at least one NaN operand
2 operations yielding indeterminate forms, such as 0/0, (±∞)/(±∞),

0 · (±∞), (±∞) ·0, (+∞)+(−∞), and (−∞)+(∞)
2 real operations that yield complex results, such as square root of negative

number, logarithm of negative number, inverse sine/cosine of number that
lies outside [−1,1]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1728

IEEE 754 Basic Formats
� always represent number in normalized form whenever possible; in such

cases, b0 = 1 and b0 need not be stored explicitly as part of significand
� bit patterns with reserved exponent values (i.e., exponent values that lie

outside the range Emin ≤ E ≤ Emax) used to represent ±0, ±∞,
denormalized numbers, and NaNs

� each of (basic) formats consist of three fields:
2 a sign bit, s
2 a biased exponent, e = E+ bias
2 a fraction, f = .b1b2 · · ·bp−1

� only difference between formats is size of biased exponent and fraction
fields

� value represented by basic format number related to its sign, exponent,
and fraction field, but relationship is complicated by the presence of zeros,
infinities, and NaNs

� “strange” combination of biased and sign-magnitude formats used to
encode floating-point value chosen so that nonnegative floating-point
values ordered in same way as integers, allowing integer comparison to
compare floating-point numbers

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1729

IEEE 754 Basic Formats (Continued)

� single format:

1 8 23

s e f
MSB LSB MSB LSB

� double format:
1 11 52

s e f
MSB LSB MSB LSB

� summary of encodings:

Case Exponent Fraction Value
Normal Emin ≤ E ≤ Emax — (−1)s2E(1+ f)

Denormal E = Emin−1 f 6= 0 (−1)s2Emin f
Zero E = Emin−1 f = 0 (−1)s0

Infinity E = Emax+1 f = 0 (−1)s∞

NaN E = Emax+1 f 6= 0 NaN

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1730

IEEE 754 Encoding Examples

� How would the number 5.2510 be represented in single format?

� 5.2510 = 101.012 ·20 = 1.01012 ·22

� Therefore, s = 0, e = 210 +12710 = 12910 = 100000012, and
f = 0101000 · · ·0, resulting in the word:

0 10000001 01010000000000000000000
s e f

� How would the number −9.12510 be represented in double format?

� −9.12510 =−1001.0012 ·20 =−1.0010012 ·23

� Therefore, s = 1, e = 310 +102310 = 102610 = 100000000102, and
f = 001001000 · · ·0, resulting in the word:

1 10000000010 00100100
s e f

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1731

Finite-Precision Arithmetic

� Understand the impact of using finite-precision arithmetic.

� Do not make invalid assumptions about the set of values that can be
represented by a particular fixed-point or floating-point type.

� Integer arithmetic can overflow. Be careful to avoid overflow.

� Floating-point arithmetic can overflow and underflow.

� Perhaps, more importantly, however, floating-point arithmetic has
roundoff error. If you are not deeply troubled by the presence of roundoff
error, you should be as it can cause major problems in many situations.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1732

References I

1 D. Goldberg. What every computer scientist should know about
floating-point arithmetic.
ACM Computing Surveys, 23(1):5–48, Mar. 1991

2 IEEE Std. 754-1985 — IEEE standard for binary floating-point arithmetic,
1985

3 IEEE Std. 754-2008 — IEEE standard for floating-point arithmetic, 2008

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1733

Talks I

1 John Farrier. Demystifying Floating Point. CppCon, Bellevue, WA, USA,
Sept. 24, 2015. Available online at https://youtu.be/k12BJGSc2Nc.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1734

https://youtu.be/k12BJGSc2Nc

Section 6.5

Interval Arithmetic

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1735

Interval Arithmetic

� interval arithmetic is technique for placing bounds on error in numerical
computation

� often values provided as input to numerical computation not known
exactly, rather only known to within certain tolerance

� uncertainty may be due to measurement error or other factors

� consider numerous measured quantities that are provided as input to
some numerical computation

� since measured quantity never known exactly (as measurement always
introduces uncertainty), more natural to represent quantity by range

� therefore, would be convenient to have form of arithmetic that operates on
values that correspond to ranges

� this is essentially what interval arithmetic does

� interval arithmetic represents each value as range of possibilities and
defines set of rules for performing arithmetic on these ranges

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1736

Applications of Interval Arithmetic

� rounding error analysis in numerical algorithms

� filtered robust geometric predicates

� robustly finding intersection of curves and surfaces

� more robust root finding in ray tracing

� computing optimal solutions to geometric matching problems under
bounded error

� finding polygonal approximations of implicit curves

� computer-assisted mathematical proofs

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1737

Real Interval Arithmetic

� in real interval arithmetic, each value is represented as real interval:

[a1,a2] = {x ∈ R | a1 ≤ x≤ a2}
� addition, subtraction, and multiplication defined as:

A+B = {a+b | a ∈ A∧b ∈ B}
A−B = {a−b | a ∈ A∧b ∈ B}
A ·B = {a ·b | a ∈ A∧b ∈ B}

� assuming division by interval containing 0 is not allowed, division defined
as:

A/B = {a/b | a ∈ A∧b ∈ B}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1738

Addition and Subtraction

� addition:

A+B = [a1,a2]+ [b1,b2] = [a1 +b1,a2 +b2]

� negation:

−B =−[b1,b2] = [−b2,−b1]

� formula for negation follows from fact that:
2 x≥ b1⇒−x≤−b1 and
2 x≤ b2⇒−x≥−b2

� subtraction:

A−B = [a1,a2]− [b1,b2] = [a1−b2,a2−b1]

� formula for subtraction follows from combining addition and negation

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1739

Multiplication and Division

� multiplication:

A ·B = [a1,a2] · [b1,b2] =[min{a1b1,a1b2,a2b1,a2b2},
max{a1b1,a1b2,a2b1,a2b2}]

(e.g., [a1,a2] · [b1,b2] = [a1b1,a2b2] if 0≤ a1 ≤ a2 and 0≤ b1 ≤ b2)
� reciprocal (assuming division by interval containing 0 not allowed):

1/B = 1/[b1,b2] = [1/b2,1/b1]

� formula for reciprocal follows from fact that, since 0 6∈ [b1,b2],
x ∈ [b1,b2],b1,b2 all have same sign (implying b1x > 0 and b2x > 0) and
consequently:

2 x≥ b1⇒ x
b1x ≥

b1
b1x ⇒ 1/b1 ≥ 1/x⇒ 1/x≤ 1/b1

2 x≤ b2⇒ x
b2x ≤

b2
b2x ⇒ 1/b2 ≤ 1/x⇒ 1/x≥ 1/b2

� division (assuming division by interval containing 0 not allowed):

A/B = [a1,a2]/[b1,b2] =[min{a1/b1,a1/b2,a2/b1,a2/b2},
max{a1/b1,a1/b2,a2/b1,a2/b2}]

� formula for division follows from fact that division is simply multiplication by
reciprocal

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1740

Allowing Division By Interval Containing Zero

� consider implications of allowing division by interval containing zero

� reciprocal, if 0 ∈ [b1,b2]:

1/B = 1/[b1,b2] =


(−∞,1/b1] b1 6= 0,b2 = 0
[1/b2,+∞) b1 = 0,b2 6= 0
(−∞,1/b1]∪ [1/b2,+∞) b1 6= 0,b2 6= 0
/0 b1 = b2 = 0

� thus, if division by interval containing 0 is allowed, result cannot always be
represented by interval of form

[a1,a2] = {x ∈ R | a1 ≤ x≤ a2}
� in particular, arithmetic can yield result that corresponds to:

2 interval unbounded at one end
2 empty set
2 union of two separate intervals

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1741

Allowing Division By Interval Containing Zero (Continued)

� to accommodate division by interval containing zero, represent sets of
following forms:

[a1,a2] = {x ∈ R | a1 ≤ x≤ a2}
[a1,+∞) = {x ∈ R | x≥ a1}
(−∞,a2] = {x ∈ R | x≤ a2}

(−∞,+∞)
/0

� for sake of simplicity, result of form (−∞,β1]∪ [β2,+∞) (where β1 < β2) is
mapped to (−∞,+∞)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1742

Floating-Point Interval Arithmetic

� in case of floating-point interval arithmetic, interval bounds are
floating-point values

� that is, represent intervals of following form, where F is set of
machine-representable real numbers:

[a1,a2] = {x ∈ F | a1 ≤ x≤ a2}
� since floating-point value can only represent finite number of real

numbers, some real numbers cannot be represented exactly

� when arithmetic operation performed, result must always be rounded to
machine-representable value

� processor typically allows for control over how rounding performed by
supporting several rounding modes, such as:

2 round to nearest
2 round towards zero (i.e., truncate)
2 round upwards (i.e., towards +∞)
2 round downwards (i.e., towards −∞)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1743

Floating-Point Interval Arithmetic (Continued)

� must ensure that rounding does not cause interval to no longer bracket
result that would be obtained by (exact) real interval arithmetic

� need to select shortest interval that contains result that would be obtained
from (exact) real interval arithmetic

� lower bound of result must be computed with rounding downwards

� upper bound of result must be computed with rounding upwards

� using rounding in this way ensures that resulting interval will bracket
idealized (exact real) interval

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1744

Floating-Point Interval Arithmetic Operations

A+B = [a1,a2]+ [b1,b2] = [a1
+ b1,a2 + b2]

A−B = [a1,a2]− [b1,b2] = [a1
− b2,a2 − b1]

A ·B = [a1,a2] · [b1,b2]

b2 ≤ 0 b1 < 0 < b2 b1 ≥ 0
a2 ≤ 0 [a2

∗ b2,a1 ∗ b1] [a1
∗ b2,a1 ∗ b1] [a1

∗ b2,a2 ∗ b1]

a1 < 0 < a2 [a2
∗ b1,a1 ∗ b1] [min{a1

∗ b2,a2
∗ b1},

max{a1 ∗ b1,a2 ∗ b2]}
[a1

∗ b2,a2 ∗ b2]

a1 ≥ 0 [a2
∗ b1,a1 ∗ b2] [a2

∗ b1,a2 ∗ b2] [a1
∗ b1,a2 ∗ b2]

A/B = [a1,a2]/[b1,b2] where 0 6∈ [b1,b2]

b2 < 0 b1 > 0

a2 ≤ 0 [a2
/

b1,a1 / b2] [a1
/

b1,a2 / b2]

a1 < 0 < a2 [a2
/

b2,a1 / b2] [a1
/

b1,a2 / b1]

a1 ≥ 0 [a2
/

b2,a1 / b1] [a1
/

b2,a2 / b1]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1745

Allowing Division by Intervals Containing Zero

� to accommodate division by intervals containing zero, represent intervals
of form

[a1,a2] = {x ∈ R | a1 ≤ x≤ a2}
[a1,+∞) = {x ∈ R | x≥ a1}
(−∞,a2] = {x ∈ R | x≤ a2}

(−∞,+∞)
/0

� arithmetic operations as defined on subsequent slides

� if any operand is /0, result of operation is also /0

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1746

SKIP SLIDE

Addition and Subtraction

A+B
(−∞,b2] [b1,b2] [b1,+∞) (−∞,+∞)

(−∞,a2] (−∞,a2 + b2] (−∞,a2 + b2] (−∞,+∞) (−∞,+∞)

[a1,a2] (−∞,a2 + b2] [a1
+ b1,a2 + b2] [a1

+ b1,+∞) (−∞,+∞)

[a1,+∞) (−∞,+∞) [a1
+ b1,+∞) [a1

+ b1,+∞) (−∞,+∞)

(−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

A−B
(−∞,b2] [b1,b2] [b1,+∞) (−∞,+∞)

(−∞,a2] (−∞,+∞) (−∞,a2 − b1] (−∞,a2 − b1] (−∞,+∞)

[a1,a2] [a1
− b2,+∞) [a1

− b2,a2 − b1] (−∞,a2 − b1] (−∞,+∞)

[a1,+∞) [a1
− b2,+∞) [a1

− b2,+∞) (−∞,+∞) (−∞,+∞)

(−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1747

SKIP SLIDE

Multiplication

A ·B
[b1,b2]
b2 ≤ 0

[b1,b2]
b1 < 0 < b2

[b1,b2]
b1 ≥ 0

[0,0]

[a1,a2]
a2 ≤ 0

[a2
∗ b2,a1 ∗ b1] [a1

∗ b2,a1 ∗ b1] [a1
∗ b2,a2 ∗ b1] [0,0]

[a1,a2]
a1 < 0 < a2

[a2
∗ b1,a1 ∗ b1]

[min{a1
∗ b2,a2

∗ b1},
max{a1 ∗ b1,a2 ∗ b2}]

[a1
∗ b2,a2 ∗ b2] [0,0]

[a1,a2]
a1 ≥ 0

[a2
∗ b1,a1 ∗ b2] [a2

∗ b1,a2 ∗ b2] [a1
∗ b1,a2 ∗ b2] [0,0]

[0,0] [0,0] [0,0] [0,0] [0,0]
(−∞,a2]
a2 ≤ 0

[a2
∗ b2,+∞) (−∞,+∞) (−∞,a2 ∗ b1] [0,0]

(−∞,a2]
a2 ≥ 0

[a2
∗ b1,+∞) (−∞,+∞) (−∞,a2 ∗ b2] [0,0]

[a1,+∞)
a1 ≤ 0

(−∞,a1 ∗ b1] (−∞,+∞) [a1
∗ b2,+∞) [0,0]

[a1,+∞)
a1 ≥ 0

(−∞,a1 ∗ b2] (−∞,+∞) [a1
∗ b1,+∞) [0,0]

(−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) [0,0]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1748

SKIP SLIDE

Multiplication (Continued)

A ·B
(−∞,b2]
b2 ≤ 0

(−∞,b2]
b2 ≥ 0

[b1,+∞)
b1 ≤ 0

[b1,+∞)
b1 ≥ 0

(−∞,+∞)

[a1,a2]
a2 ≤ 0

[a2
∗ b2,+∞) [a1

∗ b2,+∞) (−∞,a1 ∗ b1] (−∞,a2 ∗ b1] (−∞,+∞)

[a1,a2]
a1 < 0 < a2

(−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

[a1,a2]
a1 ≥ 0

(−∞,a1 ∗ b2] (−∞,a2 ∗ b2] [a2
∗ b1,+∞) [a1

∗ b1,+∞) (−∞,+∞)

[0,0] [0,0] [0,0] [0,0] [0,0] [0,0]
(−∞,a2]
a2 ≤ 0

[a2
∗ b2,+∞) (−∞,+∞) (−∞,+∞) (−∞,a2 ∗ b1] (−∞,+∞)

(−∞,a2]
a2 ≥ 0

(−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

[a1,+∞)
a1 ≤ 0

(−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

[a1,+∞)
a1 ≥ 0

(−∞,a1 ∗ b2] (−∞,+∞) (−∞,+∞) [a1
∗ b1,+∞) (−∞,+∞)

(−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1749

SKIP SLIDE

Division

A/B, 0 6∈ B
[b1,b2]
b2 < 0

[b1,b2]
b1 > 0

(−∞,b2]
b2 < 0

[b1,+∞)
b1 > 0

[a1,a2]
a2 ≤ 0

[a2
/

b1,a1 / b2] [a2
/

b1,a2 / b2] [0,a1 / b2] [a1
/

b1,0]

[a1,a2]
a1 < 0 < a2

[a2
/

b2,a1 / b2] [a1
/

b1,a2 / b1] [a2
/

b2,a1 / b2] [a1
/

b1,a2 / b1]

[a1,a2]
a1 ≥ 0

[a2
/

b2,a1 / b1] [a1
/

b2,a2 / b1] [a2
/

b2,0] [0,a2 / b1]

[0,0] [0,0] [0,0] [0,0] [0,0]
(−∞,a2]
a2 ≤ 0

[a2
/

b1,+∞) (−∞,a2 / b2] [0,+∞) (−∞,0]

(−∞,a2]
a2 ≥ 0

[a2
/

b2,+∞) (−∞,a2 / b1] [a2
/

b2,+∞) (−∞,a2 / b1]

[a1,+∞)
a1 ≤ 0

(−∞,a1 / b2] [a1
/

b1,+∞) (−∞,a1 / b2] [a1
/

b1,+∞)

[a1,+∞)
a1 ≥ 0

(−∞,a1 / b1] (a1
/

b2,+∞) (−∞,0] [0,+∞)

(−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1750

SKIP SLIDE

Division (Continued)

A/B, 0 ∈ B

[0,0]
[b1,b2]
b1 < b2 = 0

[b1,b2]
0 = b1 < b2

(−∞,b2]
b2 = 0

[b1,+∞)
b1 = 0

(−∞,+∞)

[a1,a2]
a2 < 0

/0 [a2
/

b1,+∞) (−∞,a2 / b2] [0,+∞) (−∞,0] (−∞,+∞)

[a1,a2]
a1 ≤ 0≤ a2

(−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

[a1,a2]
a1 > 0

/0 (−∞,a1 / b1] [a1
/

b2,+∞) (−∞,0] [0,+∞) (−∞,+∞)

(−∞,a2]
a2 < 0

/0 [a2
/

b1,+∞) (−∞,a2 / b2] [0,+∞) (−∞,0] (−∞,+∞)

(−∞,a2]
a2 > 0

(−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

[a1,+∞)
a1 < 0

(−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

(a1,+∞)
a1 > 0

/0 (−∞,a1 / b1] [a1
/

b2,+∞) (−∞,0] [0,+∞) (−∞,+∞)

(−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1751

SKIP SLIDE

Comparisons

� definition of comparison operations introduces some complications

� many ways in which comparison operations might be defined
� for comparison operator ◦ (i.e., equality, inequality, less than, greater than,

less than or equal, greater than or equal), one possible way to define
[a1,a2]◦ [b1,b2] would be as follows:

2 yields true if x◦ y is satisfied for all x ∈ [a1,a2] and all y ∈ [b1,b2],
2 yields false if x◦ y is violated for all x ∈ [a1,a2] and all y ∈ [b1,b2],
2 yields indeterminate (or throws exception) otherwise

� for example, with preceding definition:
2 [0,1]≤ [1,2] would be true
2 [0,1]≤ [−2,−1] would be false
2 [0,2]≤ [1,3] would be indeterminate
2 [0,1] = [0,0] would be indeterminate

� above definition of comparison operations is particularly useful in number
applications

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1752

Setting and Querying Rounding Mode

� header file cfenv contains various information relevant to floating-point
environment

� defines macros (which expand to nonnegative integral constants) for
following rounding modes:

2 FE_TOWARDZERO: round towards zero
2 FE_TONEAREST: round to nearest representable value
2 FE_UPWARD: round towards positive infinity
2 FE_DOWNWARD: round towards negative infinity

� current rounding mode can be set with std::fesetround
� int fesetround(int round)

2 attempts to set current rounding mode to round
2 returns 0 upon success non-zero value otherwise

� current rounding mode can be queried with std::fegetround
� int fegetround()

2 returns value of current rounding mode

� floating-point environment access and modification only meaningful when
#pragma STDC FENV_ACCESS is supported and set to ON

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1753

Impact of Current Rounding Mode

� current rounding mode affects:
2 results of floating-point arithmetic operations outside of constant

expressions
2 results of standard library mathematical functions (e.g., sin, cos, tan, exp,

log, and sqrt)
2 floating-point to floating-point implicit conversion and casts
2 string conversions (e.g., strtod)
2 library rounding functions nearbyint, rint, and lrint

� current rounding mode does not affect:
2 floating-point to integer implicit conversions and casts (which are always

towards zero)
2 results of floating-point arithmetic operations in constant expressions (which

are always to nearest)
2 library functions round, lround, ceil, floor, and trunc

� behavior of many things affected by current rounding mode

� since some algorithms may rely on use of particular rounding mode, one
must be careful to always restore previous rounding mode

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1754

Rounding Mode Example

1 #include <iostream>
2 #include <cmath>
3 #include <cfenv>
4 #include <limits>
5

6 #pragma STDC FENV_ACCESS ON
7

8 int main() {
9 std::cout.precision(std::numeric_limits<double>::max_digits10);

10 int old_mode = std::fegetround();
11 int modes[] = {FE_TONEAREST, FE_TOWARDZERO, FE_UPWARD, FE_DOWNWARD};
12 for (auto mode : modes) {
13 if (std::fesetround(mode)) {abort();}
14 std::cout << std::sqrt(2.0) << ’\n’;
15 }
16 if (std::fesetround(old_mode)) {abort();}
17 std::cout << std::sqrt(2.0) << ’\n’;
18 }
19

20 /* Example output:
21 1.4142135623730951
22 1.4142135623730951
23 1.4142135623730952
24 1.4142135623730951
25 1.4142135623730951
26 */

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1755

Section 6.5.1

Applications in Geometry Processing

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1756

Geometric Predicates

� interval arithmetic frequently employed in geometry processing

� one application of interval arithmetic is for efficient implementation of
exact geometric predicates

� geometric predicate tests for one of small number of possibilities involving
geometric objects such as points, lines, and planes

� some basic geometric predicates include tests for such things as:
2 on which side of oriented line point located (i.e., 2-dimensional orientation

test)
2 on which side of oriented plane point located (i.e., 3-dimensional orientation

test)
2 on which side of circle point located (i.e., in-circle test)
2 on which side of sphere point located (i.e., in-sphere test)

� geometric predicates like those above essential in many geometric
algorithms

� exact predicate is one that must always yield correct result

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1757

Filtered Geometric Predicates

� determining result of geometric predicate involves arithmetic computation

� if arithmetic used for computation not exact, predicate may yield incorrect
result

� vast majority of algorithms cannot tolerate incorrect results from
predicates

� unfortunately, using exact arithmetic extremely costly

� use interval arithmetic to quickly determine bound on numerical results of
interest

� if bound obtained from interval arithmetic sufficient to make determination
of predicate result, high cost of using exact arithmetic avoided

� only if bound insufficient, recompute result using exact arithmetic

� in practice, interval arithmetic often sufficient to determine predicate
result, leading to great increase in efficiency

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1758

Two-Dimensional Orientation Test

a

b

c

� given three points a = (ax,ay), b = (bx,by), and c = (cx,cy) in R2,
determine to which side of directed line through a and b point c lies

� can be determined from sign of determinant of 2×2 matrix

� orient2d(a,b,c) = det
[

ax bx cx
ay by cy
1 1 1

]
= det

[
ax− cx bx− cx
ay− cy by− cy

]
� if orient2d(a,b,c) is positive, negative, or zero, then c is respectively to

left of, to right of, or collinear with directed line through a and b

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1759

Example: Two-Dimensional Orientation Test

a
= (0,0)

= (0,2)
e b

= (2,2)

d
= (1,1)

= (2,0)
c

� orient2d(a,b,c) = det
[

0 2 2
0 2 0
1 1 1

]
= det

[−2 0
0 2

]
=−4 < 0; c is right of oriented

line through a and b

� orient2d(a,b,d) = det
[

0 2 1
0 2 1
1 1 1

]
= det

[−1 1
−1 1

]
= 0; d is on oriented line

through a and b

� orient2d(a,b,e) = det
[

0 2 0
0 2 2
1 1 1

]
= det

[
0 2
−2 0

]
= 4 > 0; e is left of oriented

line through a and b

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1760

SKIP SLIDE

Convex Polygons

Strictly Convex

Convex But Not Strictly
Convex

Nonconvex

� A polygon is said to be convex if every line segment between two points
on the polygon’s boundary is contained strictly inside or on the boundary
of the polygon.

� A polygon is said to be strictly convex if it is convex and all of its interior
angles are strictly less than 180 degrees.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Polygon Convexity Test

a
b

c
c b a

ab
c

� let a, b, and c be three consecutive vertices of polygon in
counterclockwise (CCW) order

� polygon is strictly convex if and only if, for every choice of a,b,c, c is to
left of directed line through ab (i.e., orient2d(a,b,c)> 0)

� polygon is convex if and only if, for every choice of a, b, and c, c is to left
of or collinear with directed line through ab (i.e., orient2d(a,b,c)≥ 0)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1761

Three-Dimensional Orientation Test

a

b

c

d

� given four points a = (ax,ay,az), b = (bx,by,bz), c = (cx,cy,cz), and
d = (dx,dy,dz) in R3, determine to which side of oriented plane through
a, b, and c point d lies; above side of oriented plane is side from which a,
b, and c appear in CCW order

� can be determined from sign of determinant of 3×3 matrix

� orient3d(a,b,c,d) = det

[
ax bx cx dx
ay by cy dy
az bz cz dz
1 1 1 1

]
= det

ax−dx bx−dx cx−dx
ay−dy by−dy cy−dy
az−dz bz−dz cz−dz


� if orient3d(a,b,c,d) is positive, negative, or zero, then d is respectively

below, above, or on oriented plane through a, b, and c

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1762

Example: Three-Dimensional Orientation Test

a
= (0,0,0)

b
= (2,0,0)

e
= (1,1,0)

= (2,2,0)
c

d
= (1,1,2)

f
= (1,1,−2)

� orient3d(a,b,c,d) = det
[0 2 2 1

0 0 2 1
0 0 0 2
1 1 1 1

]
= det

[−1 1 1
−1 −1 1
−2 −2 −2

]
=−8 < 0; d above

oriented plane through a, b, and c

� orient3d(a,b,c,e) = det
[0 2 2 1

0 0 2 1
0 0 0 0
1 1 1 1

]
= det

[−1 1 1
−1 −1 1
0 0 0

]
= 0; e lies in oriented

plane through a, b, and c

� orient3d(a,b,c, f) = det
[0 2 2 1

0 0 2 1
0 0 0 −2
1 1 1 1

]
= det

[−1 1 1
−1 −1 1
2 2 2

]
= 8 > 0; f below

oriented plane through a, b, and c
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1763

SKIP SLIDE

Side-of-Oriented-Circle Test

b

c

d

a
side

positive
side

negative

� given four points a = (ax,ay), b = (bx,by), c = (cx,cy), and d = (dx,dy)
in R2, determine whether d is on positive side, negative side, or boundary
of oriented circle through a, b, and c; positive side is side to left of oriented
path through a, b, and c

� can be determined from result of 3-dimensional orientation test
� project a, b, c, and d (in third dimension) onto paraboloid f (x,y) = x2 + y2

and perform orientation test on resulting four points
� inCircle(a,b,c,d) = orient3d(a′,b′,c′,d′), where a′ = (ax,ay,a2

x+a2
y),

b′ = (bx,by,b2
x+b2

y), c′ = (cx,cy,c2
x+ c2

y), and d′ = (dx,dy,d2
x +d2

y)

� if inCircle(a,b,c,d) is positive, negative, or zero, then d lies respectively
on positive side, negative side, or boundary of oriented circle through a, b,
and c

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1764

Example: Side-of-Oriented-Circle Test

= (1,1)
d

a
= (0,0)

b
= (2,0)

= (3,3)
f

= (0,2)
c e

= (2,2)

� inCircle(a,b,c,d) = det
[0 2 0 1

0 0 2 1
02+02 22+02 02+22 12+12

1 1 1 1

]
= 8 > 0; d on positive

side of oriented circle through a, b, and c (i.e., d inside circle)

� inCircle(a,b,c,e) = det
[0 2 0 2

0 0 2 2
02+02 22+02 02+22 22+22

1 1 1 1

]
= 0; e on oriented circle

through a, b, and c

� inCircle(a,b,c, f) = det
[0 2 0 3

0 0 2 3
02+02 22+02 02+22 32+32

1 1 1 1

]
=−24 < 0; f on

negative side of oriented circle through a, b, and c (i.e., f outside circle)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1765

SKIP SLIDE

Preferred-Direction Test

c

d

b

a

v

� given two line segments ab and cd and vector v, determine if, compared
to orientation of cd, orientation of ab is more close, less close, or equally
close to the orientation of v

� can be determined from result of computation involving dot products

� prefDir(a,b,c,d,v) = |d− c|2 ((b−a) · v)2−|b−a|2 ((d− c) · v)2

� if prefDir(a,b,c,d,v) is positive, negative, or zero, then compared to
orientation of cd, orientation of ab is more close, less close, or equally
close to orientation of v, respectively

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1766

Example: Preferred-Direction Test

= (0,2)

a
= (0,0)

d
= (2,2)

b

= (2,0)
c = (1,0)

v

u
= (2,1)

w
= (−1,2)

� prefDir(a,b,c,d,u) =
|(−2,2)|2 [(2,2) · (2,1)]2−|(2,2)|2 [(−2,2) · (2,1)]2 = 256 > 0; ab closer
than cd to direction of u

� prefDir(a,b,c,d,v) =
|(−2,2)|2 [(2,2) · (1,0)]2−|(2,2)|2 [(−2,2) · (1,0)]2 = 0; ab and cd
equally close to direction of v

� prefDir(a,b,c,d,w) =
|(−2,2)|2 [(2,2) · (−1,2)]2−|(2,2)|2 [(−2,2) · (−1,2)]2 =−256 < 0; cd
closer than ab to direction of w

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1767

SKIP SLIDE

Triangulations

� A triangulation of a set V of vertices is a set T of triangles such that:
2 the union of the vertices of all triangles in T is V ;
2 the interiors of any two triangles in T are disjoint; and
2 the union of the triangles in T is the convex hull of V .

Triangulation
Triangulation

Invalid Triangulation

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1768

Delaunay Triangulations

� A triangulation is said to be Delaunay if each triangle in the triangulation
is such that the interior of its circumcircle contains no vertices.

Delaunay
Triangulation

Delaunay Triangulation
Showing Circumcircles

Non-Delaunay
Triangulation Showing

Violation of Circumcircle
Condition

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1769

Nonuniqueness of Delaunay Triangulations

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Comments on Delaunay Triangulations

� Delaunay triangulation maximizes minimum interior angle of all triangles in
triangulation

� avoids long-thin triangles to whatever extent is possible

� long-thin triangles often undesirable for interpolation purposes; can lead
to large discretization error and large errors in derivatives

� Delaunay triangulation only guaranteed to be unique if no four points are
cocircular

� when not unique, schemes exist for making unique choice from set of all
possible Delaunay triangulations, such as one proposed in:

C. Dyken and M. S. Floater. Preferred directions for resolving the
non-uniqueness of Delaunay triangulations.
Computational Geometry—Theory and Applications, 34:96–101, 2006.

� dual graph of Delaunay triangulation is Voronoi diagram (circumcircle
centers become vertices, original vertices become faces)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1770

Edge Flips

� edge e in triangulation said to be flippable if e has two incident faces (i.e.,
is not on triangulation boundary) and union of these two faces is strictly
convex quadrilateral q.

� if e is flippable, valid triangulation obtained if e deleted from triangulation
and replaced by other diagonal e′ of quadrilateral q

� such transformation known as edge flip
� edge-flip example:

e

vi

vk

v` v j −→ e′

vi

vk

v` v j

� number of different triangulations of n vertices upper bounded by(n
2

)
= n2−n

2 , which is O(n2)

� all triangulations of set of vertices have same number of edges

� every triangulation reachable from every other triangulation by edge flips

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1771

Locally-Delaunay Test

a

c

b

d

e

� given flippable edge e in triangulation with incident faces abc and acd
whose vertices are specified in CCW order (and whose union is strictly
convex quadrilateral), determine if e is locally Delaunay

� result can be determined using side-of-oriented-circle test

� localDelaunay(a,b,c,d) =

{
1 inCircle(a,b,c,d)≤ 0
0 inCircle(a,b,c,d)> 0

� if localDelaunay(a,b,c,d) 6= 0, edge e is locally Delaunay

� if every flippable edge in triangulation is locally Delaunay, triangulation is
Delaunay

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1772

Locally Preferred-Directions Delaunay Test

a

b

d

e v

u

c

� given flippable edge e in triangulation with incident faces abc and acd
whose vertices are specified in CCW order (and whose union is strictly
convex quadrilateral), determine if e is locally preferred-directions
Delaunay with first and second direction vectors u and v, respectively
(where u and v are nonzero and neither parallel nor orthogonal)

� result can be determined using side-of-oriented-circle and
preferred-direction tests

� α(a,b,c,d,u,v)

=

1 prefDir(a,c,b,d,u)> 0
1 prefDir(a,c,b,d,u) = 0 and prefDir(a,c,b,d,v)> 0
0 otherwise

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1773

Locally Preferred-Directions Delaunay Test (Continued)

� localPrefDirDelaunay(a,b,c,d,u,v)

=


1 inCircle(a,b,c,d)< 0
0 inCircle(a,b,c,d)> 0
α(a,b,c,d,u,v) otherwise

� if (and only if) localPrefDirDelaunay(a,b,c,d,u,v) 6= 0, edge e is locally
preferred-directions Delaunay with first and second direction vectors u and
v, respectively

� if every flippable edge in triangulation is locally preferred-directions
Delaunay, triangulation is preferred-directions Delaunay

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1774

Lawson Local Optimization Procedure (LOP)

� Lawson local optimization procedure (LOP) finds optimal triangulation of
set of points via edge flips

� flippable edge said to be optimal if:
1 it is not flippable; or
2 it is flippable and satisfies some optimality criterion, such as the

locally-Delaunay or preferred-directions locally-Delaunay condition

� edge said to be suspect if its optimality is currently uncertain

� initially, all flippable edges are marked as suspect
� while at least one suspect edge remains, perform following:

2 select suspect edge e
2 if edge e is optimal, mark e as not suspect; otherwise, flip e to obtain edge

e′, mark e′ as not suspect, and mark any edges whose optimality might be
affected by flip of e as suspect

� essentially, LOP simply keeps flipping (flippable) edges that are not
optimal until all edges are optimal

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1775

Finding Delaunay Triangulations with Lawson LOP
� given any triangulation of set P of points, can compute Delaunay

triangulation of P using Lawson LOP
� select optimality criterion as locally-Delaunay or preferred-directions

locally-Delaunay condition
� when edge flipped, which edges can have their optimality affected?
� let e denote edge being flipped
� let q denote quadrilateral formed by union of two faces incident on e
� let e′ denote edge obtained by applying edge flip to e
� edges that should be marked as suspect are all flippable edges belonging

to q
� for example, if edge e′ was produced by flipping edge e, would need to

mark all edges drawn with thicker line (as shown below) as suspect

e −→ e′

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1776NEXT SLIDE: triangulation/mesh data structures

Preferred-Directions Delaunay Triangulation Example

2 3
0

1

2

3

10

y

x

Point Set

2 3
0

1

2

3

10
x

y

Non-Delaunay Triangulation

2 3
0

1

2

3

10
x

y

d1 = (1,1)

d0 = (1,0)

Delaunay Triangulation With
Preferred Directions (1,0) and (1,1)

2 3
0

1

2

3

10
x

y

d0 = (0,1)

d1 = (1,−1)

Delaunay Triangulation With Preferred
Directions (0,1) and (1,−1)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

SKIP SLIDE

Section 6.5.2

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1777

References I

1 U. W. Kulisch. Complete interval arithmetic and its implementation on the
computer.
In A. Cuyt, W. Kramer, W. Luther, and P. Markstein, editors, Numerical
Validation in Current Hardware Architectures, pages 7–26.
Springer-Verlag, Berlin, Germany, 2009.

2 G. Bohlender, U. Kulisch, and R. Lohner. Definition of the arithmetic
operations and comparison relations for an interval arithmetic standard,
Nov. 2008.

3 IEEE Std. 1788-2015 — IEEE standard for interval arithmetic, 2015.

4 H. Bronnimann, C. Burnikel, and S. Pion. Interval arithmetic yields efficient
dynamic filters for computational geometry.
Discrete Applied Mathematics, 109:25–47, 2001.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1778

References II

5 C. Dyken and M. S. Floater. Preferred directions for resolving the
non-uniqueness of Delaunay triangulations.
Computational Geometry—Theory and Applications, 34:96–101, 2006.

6 C. L. Lawson. Software for C1 surface interpolation.
In J. R. Rice, editor, Mathematical Software III, pages 161–194. Academic
Press, New York, NY, USA, 1977.

7 B. Delaunay. Sur la sphere vide.
Bulletin of the Academy of Sciences of the USSR, Classe des Sciences
Mathematiques et Naturelle, 7(6):793–800, 1934.

8 J. R. Shewchuk. Adaptive precision floating-point arithmetic and fast
robust geometric predicates.
Discrete & Computational Geometry, 18:305–363, 1997.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1779

References III

9 S. Fortune and C. J. Van Wyk. Efficient exact arithmetic for computational
geometry.
In Proc. of Symposium on Computational Geometry, pages 163–172,
1993.

10 V. Lefevre. Correctly rounded arbitrary-precision floating-point summation.
IEEE Trans. on Computers, 2017.
To appear.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1780

Section 6.6

Cache-Efficient Code

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1781

The Memory Latency Problem

� over time, processors have continued to become faster

� speed improvements in memory, however, have not kept pace with
processors

� compared to speed of processor, main memory is very slow
� consequently, bottlenecks in algorithms can often be due to memory

speed

� very substantial amount of complexity in modern processors devoted to
reducing impact of memory latency

� particularly important feature for hiding memory latency is cache

� effective utilization of cache often critical to writing high-performance code

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1782

Section 6.6.1

Memory Hierarchy and Caches

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1783

Principle of Locality

� locality of reference: programs do not access all code or data uniformly
� two basic types of locality:

1 temporal
2 spatial

� temporal locality: tendency to reuse same information stored in memory
within relatively small time interval (e.g., code in loops, top of stack)

� example (where accesses to i and sum have good temporal locality, due
to their repeated use in loop):

int func(int);
int sum = 0;
for (int i = 0; i < 10000; ++i) {sum += func(i);}

� spatial locality: tendency to use information stored in nearby locations in
memory together (e.g., sequential code, neighbouring elements in array)

� example (where accesses to neighbouring elements of a have good
spatial locality):

int a[1024];
// ...
a[42] = a[43] * a[44] + a[45];

� to exploit locality, memory hierarchy is employed
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1784

Memory Hierarchy

Cache

(E.g., DRAM)
Memory

(E.g., Disk)
Secondary Storage

(E.g., Tape)
Tertiary Storage

(E.g., L1, L2, L3)

Registers

Decreasing Cost Per Byte

Increasing Capacity

Increasing Latency

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1785

Caches

� cache: fast (but relatively small) memory
� data cache (a.k.a. D cache): cache that holds only data
� instruction cache (a.k.a., I cache): cache that holds only instructions
� unified cache: cache that holds both instructions and data
� translation lookaside buffer (TLB): memory cache that stores recent

translations of virtual to physical addresses
� may be several levels to cache hierarchy
� level-1 (L1) cache closest to processor, while last-level (LL) cache

farthest
� when processor needs to read or write location, checks cache
� when data needed is available in cache, cache hit said to occur
� when data needed cannot be supplied by cache, cache miss said to occur
� cache may be local to single core or shared between multiple cores
� L1 cache usually on core and local to core, while higher-level caches often

shared between some or all cores
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1786

Memory and Cache

N−1

b3 b3

b0

b5

b0
b5

(M−1)B M−1

7
6
5
4
3
2
1
00B

1B
2B
3B
4B
5B
6B
7B

B bytes
Number
Block

Address

Memory Cache

B bytes

0
1
2
3

...

...

Block
Number

Memory

� memory partitioned into blocks of B bytes (where B is typically power of
two)

� memory comprised of M blocks for total memory size of BM bytes
� cache can hold N blocks for total cache size of BN bytes
� size of cache much less than size of memory (i.e., BN� BM)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1787

Block Placement

� block placement policy: strategy used to determine where block can be
placed in cache

� three basic block placement polices:
1 direct mapped
2 set associative
3 fully associative

� direct mapped: each block has only one place it can appear in cache
� typically, memory block i mapped to cache block mod(i,n), where n is

number of blocks in cache
� set associative: block can be placed in restricted number of places in

cache; block first mapped to group of blocks in cache called set, and then
block can be placed anywhere within that set

� typically, memory block i can be placed in any cache block in set
mod(i,S), where S is number of sets in cache

� if each set contains k blocks, called k-way set associative
� fully associative: block can be placed anywhere in cache

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1788

Block Placement (Continued)

� strictly speaking, set associative includes direct mapped and fully
associative as special cases

� direct mapped equivalent to 1-way set associative

� fully associative equivalent to N-way set associative, where N is total
number of blocks in cache

� block placement policies typically employ expressions of form mod(n,m)
where m = 2k, since result is simply given by k least significant bits (LSBs)
of n

� for example:
2 mod(10,4) = mod(10102,22) = 102 = 2
2 mod(42,16) = mod(1010102,24) = 10102 = 10

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1789

Direct-Mapped Cache Example

B bytes

Memory

Block
Number

0
1
2
3
4
5
6
7
8
9

10
11

...
M−1

Cache

B bytes

0
1
2
3

Block
Number

4
5
6
7

� memory block i can only be placed in cache block mod(i,N), where N is
number of blocks in cache

� for example, if N = 8 (as above), memory block 10 can only be placed in
cache block mod(10,8) = 2 [recall: mod(10102,23) = 0102 = 2]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1790

K-Way Set-Associative Cache Example

B bytes

Memory

Block
Number

0
1
2
3
4
5
6
7
8
9

10
11

...
M−1

Cache

B bytes

0
1
2
3

Block
Number

4
5
6
7

Set 0

Set 1

Set 2

Set 3

� memory block i can be placed in any of K cache blocks in set mod(i,S),
where S is number of sets

� for example, if S = 4 and K = 2 (as above), memory block 10 can be
placed in any of cache blocks in set mod(10,4) = 2 [recall:
mod(10102,22) = 102 = 2]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1791

Fully-Associative Cache Example

B bytes

Memory

Block
Number

0
1
2
3
4
5
6
7
8
9

10
11

...
M−1

Cache

B bytes

0
1
2
3

Block
Number

4
5
6
7

� any memory block can be placed in any cache block

� for example, memory block 10 could be placed in any cache block

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1792

Block Identification

� block identification strategy: method used to find block if in cache

� when address is referenced, need to determine if associated data in
cache, and if it is, find it

� without loss of generality, we can consider case of K-way set associative
cache

� memory block i can be mapped to any block in set s = mod(i,S), where S
is number of sets in cache

� each cache entry is associated with one particular set in cache and
contains:

2 valid bit to indicate if cache entry in use
2 tag to identify which block is in cache entry (if block is valid)
2 data for block (if block is valid)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1793

Decomposition of Memory Address

Memory Address

ηA bits

log2 B bits

Block OffsetBlock Address

ηBA bits

log2 S bitsηT bits

Tag Index

� B is cache block size, N is number of blocks in cache, K is cache
associativity, and S is number of sets (where S = N/K)

� memory address decomposed into block address and block offset

� block address then decomposed into tag and index

� in fully associative case (i.e., S = 1), index not present

� index s identifies set in which block i can be placed (i.e., s = mod(i,S))

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1794.cache.1

Block Identification

Cache Entries for ith Set (for K-Way Set Associative Cache)

...

vi,1 ti,1

ti,K−1

ti,0vi,0

Valid

...

vi,K−1

Tag Data

di,0

di,1
...

di,K−1

� need to determine if any entry matches tag and (if not fully associative)
index

� first determine set in which block can be placed:
2 if not fully associative, determined by index
2 otherwise, cache only has one set

� then look in this set for matching tag

� if match found, cache hit; otherwise, cache miss

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1795.cache.2

Block Replacement
� block replacement policy: strategy used to determine which block

should be replaced (i.e., evicted) upon miss when no unused cache entry
available

� in case of direct mapped cache, only one choice for block to replace so no
freedom in choice of replacement policy

� in case of set-associative or fully-associative cache, have some choice in
block to replace

� some commonly-used replacement policies include:
1 random
2 least recently used (LRU)
3 first-in first-out (FIFO)
4 approximate LRU

� random: block to be replaced is randomly chosen (often using
pseudorandom number generator)

� least-recently used (LRU): block that has not been used for longest time
is replaced

� first-in first-out (FIFO): block that has been in cache longest is replaced
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1796

Write Policy

� write policy: strategy used to handle writes to memory
� two aspects to write policy:

1 cache-hit policy (i.e., how to handle cache hit)
2 cache-miss policy (i.e., how to handle cache miss)

� two basic write-hit policies:
1 write through: information written to both block in cache and block in

lower-level memory
2 write back: information written only to block in cache; modified cache block

written to main memory only when replaced
� two basic write-miss policies:

1 write allocate (a.k.a. fetch on write): write miss brings block into cache,
followed by write-hit action

2 no write allocate (a.k.a. write around): write miss only updates lower-level
memory, leaving cache unchanged

� usually, write through used with no write allocate, and write back used with
write allocate

� write through always combined with write buffer to avoid always having to
wait for lower-level memory

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1797

Cache Misses

� compulsory miss (a.k.a. cold miss): miss due to address being accessed
for first time (impossible to avoid; misses even with infinite sized cache)

� capacity miss: miss due to cache not being large enough (i.e., program
working set is much larger than cache capacity resulting in block being
evicted from cache and later accessed again)

� conflict miss: miss due to limited associativity (i.e., miss that would have
been avoided with fully associative cache); occurs when too many blocks
mapped to same set resulting in memory locations being mapped to same
cache entry

� coherence miss: miss due to cache flushes to keep multiple caches
consistent (i.e., coherent) in multiprocessor system

� true sharing miss: coherence miss that is due to multiple threads sharing
same data in cache block

� false sharing miss: coherence miss that is due to threads accessing
different data that happens to reside in same cache block (i.e., cache
block is shared between threads but not data within cache block)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1798

Virtual Memory

� virtual memory is memory management technique that maps addresses
called virtual address into physical addresses in computer memory

� allows amount of memory used by system to exceed that which is
physically available

� allows processes to share memory

� provides memory protection

� each process has its own virtual address space

� programs access memory using virtual addresses

� memory management unit (MMU) translates virtual addresses to physical
addresses

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1799

Virtual Address Space

(M−1)P M−1

7
6
5
4
3
2
1
00P

1P
2P
3P
4P
5P
6P
7P

P bytes
Number
Physical Page

Address

Address Space

...

Physical

Address Space

P bytesVirtual
Address

...

Virtual Page
Number

0P
1P
2P
3P
4P
5P
6P
7P

0
1
2
3
4
5
6
7

N−1(N−1)P

Physical Virtual

� memory partitioned into pages of size P bytes (where P is typically power
of two)

� physical address space comprised of M pages
� virtual address space comprised of N pages
� virtual address space typically at least as large as physical address space

(i.e., PN ≥ PM)
� can arbitrarily map pages in virtual address space to physical pages

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1800

Address Translation

log2 P bits

Page OffsetPhysical Page Number

Virtual Page Number Page Offset

log2 P bits

ηPPN bits

ηV PN bits

Physical Address

Virtual Address

� P is page size

� virtual address and physical address both decomposed into page number
and page offset

� address translation only changes page number part of address

� when virtual address translated to physical address, page offset does not
change

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1801.cache.3cache.4cache.5

Translation Lookaside Buffer (TLB)

� address translation is slow process

� to reduce translation time, use cache called translation lookaside buffer
(TLB)

� TLB caches information for address-translation mappings

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1802

Virtual and Physical Caches
� if virtual memory employed, question arises as to whether memory

caches should use virtual or physical addressing
� cache that employs physical addressing called physical cache (or

physically-addressed cache)
� cache that employs virtual addressing called virtual cache (or

virtually-addressed cache)
� key difference between use of virtual and physical cache is where address

translation takes place:

CPU MemoryTLB Physical
Cache

Address
Virtual

Address
Physical

CPU Virtual
Cache

TLB Memory
Address
Virtual

Address
Physical

� in case of accessing physical cache, always require address translation
� in case of accessing virtual cache, only need address translation on cache

miss
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1803

Virtual Versus Physical Caches

� virtual cache has advantage of eliminating address translation time for
cache hit

� virtual cache has disadvantage of introducing numerous complications:
2 same virtual address (in different processes) can refer to distinct physical

addresses (which is typically resolved by adding process ID to virtual
address instead of flushing cache on each context switch)

2 two distinct virtual addresses can refer to same physical address, which is
called aliasing (aliasing typically resolved, in case of direct-mapped cache,
by restricting address mapping such that aliases map to same cache set)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1804

Virtually-Indexed Physically-Tagged (VIPT) Caches

� cache accesses require tag and index

� in case of virtually-indexed physically-tagged cache, index derived from
virtual address and tag derived from physical address

� virtually-indexed physically-tagged cache tries to achieve simplicity of
physical cache with speed closer to that of virtual cache

� recall that page offset is unaffected by address translation

� use page offset part of virtual address (which is unaffected by address
translation) to determine index for cache (i.e., select set in cache)

� doing this allow us to overlap reading of tags and performing address
translation

� this approach faster, but imposes some restrictions on cache parameters

� in particular, number of sets in cache cannot exceed number of cache
blocks per page (without additional complications)

� L1 cache often virtually indexed and physically tagged

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1805

VIPT Cache Example

Virtual Page Number (36 bits)

Cache Tag (36 bits) Cache Block Offset (6 bits)Cache Index (6 bits)

Virtual Page Offset (12 bits)

Virtual Address (48 bits)

TLB

Physical Page Number (24 bit) Physical Page Offset (12 bits) Cache

Cache Tag Comparison

Cache Result

Cache Tags

� 48-bit virtual address, 36-bit physical address

� 64-byte cache block

� 4 KB page size

� L1 data cache: 32 KB, 8-way set associative, 64 entries per set

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1806

Cache Performance

� hit rate: fraction of memory access that hit in cache

� miss rate: fraction of memory access that miss in cache (1 - hit rate)

� miss penalty: time to replace block from lower level in memory hierarchy
to cache

� hit time: time to access cache memory (including tag comparison)
� average memory access time (AMAT):

2 AMAT = hit time + miss rate · miss penalty

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1807

Intel Core i7
� 64-bit processor, x86-64 instruction set
� 36-bit physical addresses and 48-bit virtual addresses
� three-level cache hierarchy; all levels use 64-byte block size; two-level TLB
� L1 cache:

2 I cache: 32 KB 4-way set associative; D cache: 32 KB 8-way set
associative; per core, pseudo LRU replacement, virtually indexed and
physically tagged

� L2 cache:
2 256 KB, 8-way set associative, per core, pseudo-LRU replacement,

physically indexed (and tagged)
� L3 cache:

2 2 MB per core, 16-way set associative, pseudo-LRU replacement (with
ordered selection algorithm), physically indexed (and tagged)

� first-level TLB:
2 I TLB: 128 entries, 4-way set associative, pseudo-LRU replacement; D TLB:

64 entries, 4-way set associative, pseudo-LRU replacement
� second-level TLB:

2 512 entries, 4-way set associative, pseudo-LRU replacement, 4 KB page
size

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1808

ARM Cortex A8

� 32-bit processor, ARM v7 instruction set

� 32-bit physical and virtual addresses

� two-level cache hierarchy; both levels use 64-byte block size
� L1 cache:

2 separate I and D caches; 16 KB or 32 KB 4-way set associative using way
prediction and random replacement; virtually indexed and physically tagged

� optional L2 cache:
2 8-way set associative, 128 KB to 1 MB; physically indexed and physically

tagged
� TLB:

2 pair of TLBs (I and D), each of which fully associative with 32 entries and
variable page size (4 KB, 16 KB, 64 KB, 1 MB, 16 MB); replacements done
by round robin

2 TLB misses handled in hardware, which walks page table structure in
memory

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1809

Section 6.6.2

Cache-Efficient Algorithms

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1810

Cache-Efficient Algorithms

� to effectively exploit cache, need to maximize locality

� various transformations can be applied to code in order to increase locality

� algorithm may be either cache aware or cache oblivious

� cache aware: has knowledge of memory hierarchy such as cache
parameters (e.g., cache size, cache block size)

� cache oblivious: has no knowledge of particulars of memory hierarchy

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1811

Code Transformations to Improve Cache Efficiency

� numerous transformations can be applied to code in order to improve
spatial and/or temporal locality

� merging arrays: improve spatial locality by using array of aggregate type
instead of multiple arrays

� loop interchange: change nesting of loops to access data in order stored
in memory

� loop fusion: combine two or more independent loops that have same
looping and some variables overlap

� blocking: improve temporal locality by accessing blocks of data
repeatedly

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1812NEXT SLIDE: go to row/column-major order

Array Merging Example

� before array merging:
constexpr int num_points = 32’768;
static double x[num_points]; // x coordinates
static double y[num_points]; // y coordinates
static double z[num_points]; // z coordinates

� after array merging:
constexpr int num_points = 32’768;
struct Point {

double x; // x coordinate
double y; // y coordinate
double z; // z coordinate

};
static Point p[num_points];

� x, y, and z coordinates of particular point likely to be accessed together

� use array of aggregate type instead of three separate arrays in order to
improve spatial locality and reduce potential conflicts

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1813

Loop Interchange Example

� before loop interchange:
constexpr int n = 2’048;
static double a[n][n];
// ...
for (int j = 0; j < n; ++j) {

for (int i = 0; i < n; ++i) {
a[i][j] *= 2.0;

}
}

� after loop interchange:
constexpr int n = 2’048;
static double a[n][n];
// ...
for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {
a[i][j] *= 2.0;

}
}

� interchange loops so that array elements accessed consecutively instead
of with large stride in order to improve locality and reduce potential
conflicts

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1814

Loop Fusion Example

� before loop fusion:
constexpr int n = 2’048;
static float a[n][n], b[n][n], c[n][n], d[n][n];
// ...
for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j)
{a[i][j] = b[i][j] * c[i][j];}

}
for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j)
{d[i][j] = a[i][j] + c[i][j];}

}

� after loop fusion:
constexpr int n = 2’048;
static float a[n][n], b[n][n], c[n][n], d[n][n];
// ...
for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {
a[i][j] = b[i][j] * c[i][j];
d[i][j] = a[i][j] + c[i][j];

}
}

� merge loops in order to improve temporal locality (due to reuse of
a[i][j] and c[i][j] in each innermost loop iteration)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1815

Blocking Example

� before blocking:
1 // compute c := c + a b, where a, b, c are N-by-N
2 // matrices
3 template <class T, int N>
4 void naive_multiply(const T (&a)[N][N], const T (&b)[N][N],
5 T (&c)[N][N]) {
6 for (int i = 0; i < N; ++i) {
7 for (int j = 0; j < N; ++j) {
8 double s = 0;
9 for (int k = 0; k < N; ++k)

10 {s += a[i][k] * b[k][j];}
11 c[i][j] += s;
12 }
13 }
14 }

� want to partition computation into blocks of size B×B, where B chosen so
that each block fits in cache

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1816

Blocking Example (Continued 0.5)

j

ki

k

j

i

a b c

N N N

N N N

for each row of a, update elements in c in
left-to-right top-to-bottom orderuse each of N columns of b(once for each column of b)

use each row of a N times

in succession

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

Blocking Example (Continued 1)
� after blocking (with blocking factor B):

1 // compute c := c + a b, where a, b, c are N-by-N
2 // matrices
3 template <int B, class T, int N>
4 void blocked_multiply(const T (&a)[N][N], const T (&b)[N][N],
5 T (&c)[N][N]) {
6 for (int kk = 0; kk < N; kk += B) {
7 for (int jj = 0; jj < N; jj += B) {
8 for (int i = 0; i < N; ++i) {
9 for (int j = jj; j < std::min(jj + B, N); ++j) {

10 double s = 0;
11 for (int k = kk; k < std::min(kk + B, N); ++k)
12 {s += a[i][k] * b[k][j];}
13 c[i][j] += s;
14 }
15 }
16 }
17 }
18 }

� performing computation using blocking significantly improves locality
� potentially many fewer cache misses
� unfortunately, code using blocking much less readable (i.e., more difficult

to understand)
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1817

Blocking Example (Continued 2)

kki

B

i

B

B

kk jj jj

cba

1 1
B

use 1 × B row sliver
B times

update successive elements of
1 × B row sliver

use B × B block
N times in succession

� key idea is that block of b brought into cache, fully utilized, then discarded
� innermost loop pair (i.e., for j and k) multiplies 1 × B sliver of a by B × B

block of b and accumulates result in 1 × B sliver of c
� references to a have: good spatial locality, since elements accessed

consecutively in loop for k; and good temporal locality, since each sliver
accessed B times in succession in loop for j

� references to b have good temporal locality, since entire block accessed N
times in succession in loop for i

� references to c have good spatial locality since each element of sliver
written in succession in loop for j

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1818

Cache-Aware Versus Cache-Oblivious Algorithms

� cache-aware approaches require knowledge of memory hierarchy and
caches (e.g., cache size and cache block size for each level of cache) in
order to choose key tuning parameters

� often, such knowledge of memory hierarchy difficult to obtain in reliable
manner

� furthermore, effective cache size may differ significantly from true cache
size, if multiple threads using cache (which reduces effective cache size)

� if tuning parameters not well chosen, performance can potentially be very
poor

� in contrast, cache oblivious approaches:
2 require no knowledge of memory hierarchy and caches
2 require no “magical” tuning parameters
2 effectively autotune
2 handle multilevel caches automatically
2 well accommodate multiprogrammed environments

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1819

Section 6.6.3

Cache-Oblivious Algorithms

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1820

Tall Caches
� suppose that cache has size M with block size B and N = M/B entries
� cache is said to be tall if N > c′B for some sufficiently large constant

c′ ≥ 1; otherwise, said to be short
� essentially, tall property ensures that N exceeds B by large enough

margin that any (possibly non-contiguous) data of size D is guaranteed to
fit in cache if D≤M

� that is, if size of some data does not exceed cache size, then that data
must fit in cache

� this is not the case for short caches
� for example, n×n block of elements inside larger array stored in

.row-major order with n2 < M will not necessarily fit in cache if cache is
short

n

n
N

B

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1821::::
diagram

Idealized Cache Model

� idealized cache model employs two-level memory hierarchy (i.e., cache
and main memory)

� assumptions of idealized cache model:
2 fully associative
2 optimal replacement policy (i.e., evict cache block whose next access will

be furthest in future)
2 tall cache

� idealized model only crude approximation to real-world caches

� real-world caches usually not fully associative and never employ optimal
replacement policy (which requires noncausal hardware)

� real-world caches, however, usually tend to be tall

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1822

Remarks on Assumption of Optimal-Replacement Policy

� reasonable to question validity of assumption of optimal-replacement
policy in idealized cache model

� Sleator and Tarjan (1985) have shown that amortized cost of LRU
replacement policy within constant factor of optimal replacement policy

� suppose that algorithm that incurs Q cache misses on ideal cache of size
M

� then, on fully-associative cache of size 2M that uses LRU replacement
policy, at most 2Q cache misses

� therefore, to within constant factor, LRU replacement as good as
optimal replacement (for fully-associative cache)

� implication is that for asymptotic analysis can assume optimal or LRU
replacement as convenient

� in this sense, assumption of optimal-replacement policy is quite
reasonable

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1823

Cache-Oblivious Algorithms

� when analyzing algorithms with respect to idealized cache model typically
we are interested in

2 amount of work W (ordinary running time)
2 number of cache misses Q

� cache oblivious algorithms often based on divide and conquer

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1824

Scanning

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

B B B

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

B BB B
� cache block holds B array elements
� consider scanning N elements of array in order (e.g., to compute sum or

minimum/maximum)
� requires Θ(N) work (assuming work per element is O(1))
� scanning N elements stored contiguously in memory incurs either
dN/Be+1 or dN/Be cache misses (i.e., Θ(N/B) cache misses)

� may require one more than dN/Be cache misses due to arbitrary
alignment

� cache oblivious and optimal (i.e., incurs only minimum number of cache
misses)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1825

Array Reversal

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

B B

1 2 3 54

B B
� cache block holds B array elements

� consider reversing elements of N-element array a
� use two parallel scans, one from each end of array, and each step swaps

two corresponding elements

� for i in 0,1, . . . ,bN/2c−1, swap a[i] and a[N−1− i]
� requires Θ(N) work (i.e., bN/2c swap operations)

� assuming at least two blocks fit in cache, incurs either dN/Be+1 or
dN/Be cache misses (i.e., Θ(N/B) cache misses)

� cache oblivious and optimal

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1826

Naive Matrix Transposition

� naive matrix transpose code has following form:

1 template <class T, int m, int n>
2 void transpose(const T (&a)[m][n], T (&b)[n][m]) {
3 for (int i = 0; i < m; ++i) {
4 for (int j = 0; j < n; ++j) {
5 b[j][i] = a[i][j];
6 }
7 }
8 }

� arrays stored inrow-major order

� although data in a being accessed sequentially, data in b being accessed
with large stride

� many unnecessary cache misses on accesses to b if number of rows in b
sufficiently large

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1827

Naive Matrix Transposition: Performance

i

i

j

j

a b

m n

n m

� cache block holds L matrix elements
� requires Θ(mn) work (which is optimal)
� in innermost loop, accesses to b use potentially large stride
� strided access to b can potentially result in large number of cache misses
� if all blocks for entire column of b cannot be kept resident in cache

simultaneously, every access to b will miss
� in this case, at most dmn/Le+1+mn cache misses
� any matrix-transpose algorithm must access all mn elements of a and all

mn elements of b, which incurs at most 2(dmn/Le+1) cache misses
� naive approach incurs about

(L−1
L

)
mn more cache misses than this

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1828

Cache-Oblivious Matrix Transposition

� consider Rec-Transpose algorithm for matrix transposition from page 4:7
of:

M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran.

Cache-oblivious algorithms.
ACM Transactions on Algorithms, 8(1):4:1–4:22, Jan. 2012.

� given m×n matrix A and n×m matrix B, place AT into B
� A and B assumed to correspond to distinct objects (i.e., not in-place

transposition)

� based on divide and conquer strategy

� algorithm halves largest of dimensions m and n, and recurs

� two cases to consider (i.e., m or n largest)

� if more than one case applies (i.e., m = n), choose one case arbitrarily

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1829

Cache-Oblivious Matrix Transposition (Continued)

� case 1. if n = max{m,n} (i.e., number of columns in A and rows in B
largest):

2 decompose problem as follows:

let A =
[
A1 A2

]
and B =

[
B1
B2

]
; so

[
B1
B2

]
=
[
AT

1 AT
2
]

2 recurse to solve B1 = AT
1 and B2 = AT

2
� case 2. if m = max{m,n} (i.e., number of rows in A and columns in B

largest):
2 decompose problem as follows:

let A =

[
A1
A2

]
and B =

[
B1 B2

]
; so

[
B1 B2

]
=

[
AT

1
AT

2

]
2 recurse to solve B1 = AT

1 and B2 = AT
2

� conceptually, base case for recursion occurs when m = n = 1
� in practice, stop recursion earlier

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1830

Cache-Oblivious Matrix Transposition Example 1A

[
b11 b12

b21 b22

]
=

[
a11 a12
a21 a22

]T

[
b11 b12

]
=

[
a11

a21

]T

[
b11
]
=
[
a11
]T [

b12
]
=
[
a21
]T

[
b21 b22

]
=

[
a12

a22

]T

[
b21
]
=
[
a12
]T [

b22
]
=
[
a22
]T

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1831::::::
pseudocode

:::::::::
matrix description

Cache-Oblivious Matrix Transposition Example 1B

[
b11 b12
b21 b22

]
=

[
a11 a12

a21 a22

]T

[
b11

b21

]
=
[
a11 a12

]T

[
b11
]
=
[
a11
]T [

b21
]
=
[
a12
]T

[
b12

b22

]
=
[
a21 a22

]T

[
b12
]
=
[
a21
]T [

b22
]
=
[
a22
]T

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1832

SKIP SLIDE

Cache-Oblivious Matrix Transposition Example 2

b11 b12
b21 b22

b31 b32

=

[
a11 a12 a13
a21 a22 a23

]T

[
b11 b12

b21 b22

]
=

[
a11 a12
a21 a22

]T

[
b11 b12

]
=

[
a11

a21

]T

[
b11
]
=
[
a11
]T [

b12
]
=
[
a21
]T

[
b21 b22

]
=

[
a12

a22

]T

[
b21
]
=
[
a12
]T [

b22
]
=
[
a22
]T

[
b31 b32

]
=

[
a13

a23

]T

[
b31
]
=
[
a13
]T [

b32
]
=
[
a23
]T

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1833

Cache-Oblivious Matrix Transposition: Performance

� let L denote number of array elements per cache block
� for m×n matrix, cache-oblivious matrix-transposition algorithm:

2 requires Θ(mn) work
2 incurs Θ(1+mn/L) cache misses, assuming idealized cache model

� any matrix-transposition algorithm must write to mn distinct elements,
which occupy at least dmn/Le= Ω(1+mn/L) cache lines

� therefore, cache-oblivious algorithm is asymptotically optimal

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1834

Naive Matrix Multiplication

� naive matrix multiply code has following form:
1 template <class T, int m, int n, int p>
2 void multiply(const T (&a)[m][n], const T (&b)[n][p],
3 T (&c)[m][p]) {
4 for (int i = 0; i < m; ++i) {
5 for (int j = 0; j < p; ++j) {
6 T sum = T(0);
7 for (int k = 0; k < n; ++k) {
8 sum += a[i][k] * b[k][j];
9 }

10 c[i][j] = sum;
11 }
12 }
13 }

� arrays stored inrow-major order

� in innermost loop, b accessed with potentially large stride, which is
problematic

� in second innermost loop, row of a is accessed p times in succession,
which is problematic if row does not fit in cache

� many unnecessary cache misses likely to result in case of larger matrices

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1835

Naive Matrix Multiplication: Performance
j

ki

k

j

i

a b c

m n m

n p p

� cache block holds L matrix elements
� innermost loop (in which k varies) computes dot product of ith row of a

with kth column of b to yield (i, j)th element of c
� second innermost loop (over j) changes column of b to use in dot product

with ith row of a (reusing ith row of a p times)
� requires Θ(mnp) work, which is Θ(n3) in case of square matrices
� assuming that row of a and column of b do not fit in cache simultaneously,

algorithm incurs Θ(mnp/L+mnp+mp/L) cache misses, which is Θ(n3)
in case of square matrices

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1836

Cache-Oblivious Matrix Multiplication

� consider Rec-Mult algorithm for matrix multiplication from pages 4:4–4:5
of:

M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran.

Cache-oblivious algorithms.
ACM Transactions on Algorithms, 8(1):4:1–4:22, Jan. 2012.

� given m×n matrix A and n× p matrix B, compute m× p matrix C, where
C :=C+AB

� if C initialized to 0, computation C :=C+AB yields C = AB
� based on divide and conquer strategy

� algorithm halves largest of three dimensions m, n, and p, and recurs

� three cases to consider (i.e., m, n, or p largest)

� if more than one of three cases applies (e.g., if m = n = p), choose one
case arbitrarily

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1837

Cache-Oblivious Matrix Multiplication (Continued 1)

� case 1. if m = max{m,n, p} (i.e., number of rows in A and C largest):
2 decompose problem as follows:

let C =

[
C1
C2

]
and A =

[
A1
A2

]
; so AB =

[
A1
A2

]
B =

[
A1B
A2B

]
2 recurse to compute C1 :=C1 +A1B and C2 :=C2 +A2B

� case 2. if n = max{m,n, p} (i.e., number of columns in A and rows in B
largest):

2 decompose problem as follows:

let A =
[
A1 A2

]
and B =

[
B1
B2

]
; so AB =

[
A1 A2

][B1
B2

]
= A1B1 +A2B2

2 recurse to compute C :=C+A1B1 and then C :=C+A2B2
� case 3. if p = max{m,n, p} (i.e., number of columns in B and C largest):

2 decompose problem as follows:

let C =
[
C1 C2

]
and B =

[
B1 B2

]
; so AB = A

[
B1 B2

]
=
[
AB1 AB2

]
2 recurse to compute C1 :=C1 +AB1 and C2 :=C2 +AB2

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1838

Cache-Oblivious Matrix Multiplication (Continued 2)

� conceptually, base case for recursion occurs when m = n = p = 1, in
which case two elements multiplied and added into result matrix

� in practice, however, stop recursion earlier

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1839

Cache-Oblivious Matrix Multiplication Example 1

[
c11 c12
c21 c22

]
+=

[
a11 a12
a21 a22

][
b11 b12
b21 b22

]

[
c11 c12

]
+=
[
a11 a12

][b11 b12
b21 b22

]

[c11]+=
[
a11 a12

][b11
b21

]

[c11] +=
[a11][b11]

[c11] +=
[a12][b21]

[c12]+=
[
a11 a12

][b12
b22

]

[c12] +=
[a11][b12]

[c12] +=
[a12][b22]

[
c21 c22

]
+=
[
a21 a22

][b11 b12
b21 b22

]

[c21]+=
[
a21 a22

][b11
b21

]

[c21] +=
[a21][b11]

[c21] +=
[a22][b21]

[c22]+=
[
a21 a22

][b12
b22

]

[c22] +=
[a21][b12]

[c22] +=
[a22][b22]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1840::::::
pseudocode

Cache-Oblivious Matrix Multiplication Example 2

[
c11 c12
c21 c22

]
+=

[
a11 a12 a13
a21 a22 a23

]b11 b12
b21 b22
b31 b32


[

c11 c12
c21 c22

]
+=

[
a11 a12
a21 a22

][
b11 b12
b21 b22

]

[
c11 c12

]
+=[

a11 a12
][b11 b12

b21 b22

]
[
c11
]
+=[

a11 a12
][b11

b21

]

[
c11
]
+=[

a11
][

b11
] [

c11
]
+=[

a12
][

b21
]

[
c12
]
+=[

a11 a12
][b12

b22

]

[
c12
]
+=[

a11
][

b12
] [

c12
]
+=[

a12
][

b22
]

[
c21 c22

]
+=[

a21 a22
][b11 b12

b21 b22

]
[
c21
]
+=[

a21 a22
][b11

b21

]

[
c21
]
+=[

a21
][

b11
] [

c21
]
+=[

a22
][

b21
]

[
c22
]
+=[

a21 a22
][b12

b22

]

[
c22
]
+=[

a21
][

b12
] [

c22
]
+=[

a22
][

b22
]

[
c11 c12
c21 c22

]
+=

[
a13
a23

][
b31 b32

]

[
c11 c12

]
+=[

a13
][

b31 b32
]

[
c11
]
+=[

a13
][

b31
] [

c12
]
+=[

a13
][

b32
]

[
c21 c22

]
+=[

a23
][

b31 b32
]

[
c21
]
+=[

a23
][

b31
] [

c22
]
+=[

a23
][

b32
]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1841

SKIP SLIDE

Cache-Oblivious Matrix Multiplication: Performance

� cache block holds L matrix elements

� cache size M (in matrix elements)
� to multiply m×n matrix by n× p matrix:

2 requires Θ(mnp) work
2 incurs Θ

(
m+n+ p+ 1

L (mn+np+mp)+ 1
LM1/2 mnp

)
cache misses,

assuming idealized cache model
� to multiply two square matrices (i.e., m = n = p):

2 requires Θ(n3) work
2 incurs Θ

(
1

LM1/2 n3
)

cache misses, assuming idealized cache model

� Hong and Kung (1981) have shown this to be optimal bound for cache
misses for matrix multiplication

� therefore, cache-oblivious algorithm is optimal

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1842

Cache-Oblivious Matrix Multiplication Revisited

� strictly speaking, Rec-Mult algorithm performs matrix multiply and
accumulate

� can zero matrix that holds result to achieve effect of matrix multiply alone

� alternatively, can use additional state during recursion to handle whether
accumulation done

� add accumulate flag to recursion

� when accumulate flag is set, result is added to destination; otherwise,
result overwrites destination

� always perform call for left child in recursion tree first; then perform call for
right child

� at start of recursion, accumulate flag set to false

� for cases 1 and 3, accumulate flag passed unmodified in call for both
children in recursion tree

� for case 2, accumulate flag passed unmodified in call for left child in
recursion tree and set to true in call for right child in recursion tree

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1843

Cache-Oblivious Matrix Multiplication Revisited Example 1

[
c11 c12
c21 c22

]
=

[
a11 a12
a21 a22

][
b11 b12
b21 b22

]

[
c11 c12

]
=
[
a11 a12

][b11 b12
b21 b22

]

[c11]=
[
a11 a12

][b11
b21

]

[c11] =
[a11][b11]

[c11] +=
[a12][b21]

[c12]=
[
a11 a12

][b12
b22

]

[c12] =
[a11][b12]

[c12] +=
[a12][b22]

[
c21 c22

]
=
[
a21 a22

][b11 b12
b21 b22

]

[c21]=
[
a21 a22

][b11
b21

]

[c21] =
[a21][b11]

[c21] +=
[a22][b21]

[c22]=
[
a21 a22

][b12
b22

]

[c22] =
[a21][b12]

[c22] +=
[a22][b22]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1844

SKIP SLIDE

:::::
annotated

Cache-Oblivious Matrix Multiplication Revisited Example 2

[
c11 c12
c21 c22

]
=

[
a11 a12 a13
a21 a22 a23

]b11 b12
b21 b22
b31 b32


[

c11 c12
c21 c22

]
=

[
a11 a12
a21 a22

][
b11 b12
b21 b22

]

[
c11 c12

]
=[

a11 a12
][b11 b12

b21 b22

]
[
c11
]
=[

a11 a12
][b11

b21

]

[
c11
]
=[

a11
][

b11
] [

c11
]
+=[

a12
][

b21
]

[
c12
]
=[

a11 a12
][b12

b22

]

[
c12
]
=[

a11
][

b12
] [

c12
]
+=[

a12
][

b22
]

[
c21 c22

]
=[

a21 a22
][b11 b12

b21 b22

]
[
c21
]
=[

a21 a22
][b11

b21

]

[
c21
]
=[

a21
][

b11
] [

c21
]
+=[

a22
][

b21
]

[
c22
]
=[

a21 a22
][b12

b22

]

[
c22
]
=[

a21
][

b12
] [

c22
]
+=[

a22
][

b22
]

[
c11 c12
c21 c22

]
+=

[
a13
a23

][
b31 b32

]

[
c11 c12

]
+=[

a13
][

b31 b32
]

[
c11
]
+=[

a13
][

b31
] [

c12
]
+=[

a13
][

b32
]

[
c21 c22

]
+=[

a23
][

b31 b32
]

[
c21
]
+=[

a23
][

b31
] [

c22
]
+=[

a23
][

b32
]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1845:::::
annotated

Strassen’s Algorithm for Matrix Multiplication
� given two n×n matrices A and B where n is power of two, compute

C = AB
� approach based on divide and conquer
� partition A, B, and C into equally sized block matrices:

A =

[
A1,1 A1,2
A2,1 A2,2

]
, B =

[
B1,1 B1,2
B2,1 B2,2

]
, C =

[
C1,1 C1,2
C2,1 C2,2

]
� define (using only 7 matrix multiplications instead of 8):

M1 =(A1,1 +A2,2)(B1,1 +B2,2), M2 =(A2,1 +A2,2)B1,1,
M3 =A1,1(B1,2−B2,2), M4 =A2,2(B2,1−B1,1),
M5 =(A1,1 +A1,2)B2,2, M6 =(A2,1−A1,1)(B1,1 +B1,2),
M7 =(A1,2−A2,2)(B2,1 +B2,2)

� can compute C as follows:

C1,1 = M1 +M4−M5 +M7, C1,2 = M3 +M5,
C2,1 = M2 +M4, C2,2 = M1−M2 +M3 +M6

� Strassen’s matrix multiplication algorithm optimal in cache-oblivious sense

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1846

SKIP SLIDE

Discrete Fourier Transform (DFT)

� discrete Fourier transform (DFT) of vector x of n complex numbers is
vector y (of n complex numbers) given by

y(i) =
n−1

∑
j=0

x(j)ω−i j
n where ωn = e2π

√
−1/n

� for any factorization n = n1n2 of n, we have

y(i1 + i2n1) =
n2−1

∑
j2=0

[(
n1−1

∑
j1=0

x(j1n2 + j2)ω−i1 j1
n1

)
ω
−i1 j2
n

]
ω
−i2 j2
n2

� in preceding equation, inner and outer summations are DFTs
� operationally, computation specified in above equation can be performed

by:
1 computing n2 DFTs of size n1 (i.e., inner summation)
2 multiplying result by factors ω

−i1 j2
n (called twiddle factors)

3 computing n1 DFTs of size n2 (i.e., outer summation)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1847

Cache-Oblivious Fast Fourier Transform (FFT)

� “six-step” variant of Cooley-Tukey FFT algorithm

� want to compute (one-dimensional) FFT of n element array x, where n is
composite and preferably power of two

� FFT is computed in place (i.e., output in x)
� algorithm consists of following steps (in order):

1 factor n as n = n1n2, where n1 is as close to
√

n as possible
2 treat input vector x as row-major n1×n2 matrix A, and use cache-oblivious

transpose algorithm to transpose A in place (by writing transpose of A to
auxiliary array B and then copying B back to A)

3 for each of n2 rows of A, replace row with its n1-point DFT, where each DFT
is computed recursively

4 multiply A by twiddle factors
5 transpose A in place (so that inputs to next stage placed in contiguous

locations)
6 for each of n1 rows of A, replace row with its n2-point DFT, where each DFT

is computed recursively
7 transpose A in place to yield output array x with elements in correct order

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1848::::
diagram

Example: Four-Point DFT

� Note: The DFT of
[
x0 x1

]
is easily shown to be

[
x0 + x1 x0− x1

]
.

� Consider computing the DFT of the following sequence of length n = 4:[
x0 x1 x2 x3

]
.

� Factor n as n1n2, where n1 = n2 = 2.
� Treat the one-dimensional array of size 4 as the following 2×2 array

stored in row-major order: [
x0 x1
x2 x3

]
.

� Transpose the matrix to obtain: [
x0 x2
x1 x3

]
.

� Replace each row of the matrix by its two-point DFT to yield:[
x0 + x2 x0− x2
x1 + x3 x1− x3

]
.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1849

Example: Four-Point DFT (Continued 1)

� Apply the twiddle factors to the matrix to obtain (where
ω4 = e2π

√
−1/4 =

√
−1):[

ω
−(0·0)
4 (x0 + x2) ω

−(1·0)
4 (x0− x2)

ω
−(0·1)
4 (x1 + x3) ω

−(1·1)
4 (x1− x3)

]
=

[
x0 + x2 x0− x2
x1 + x3

√
−1(−x1 + x3)

]
.

� Transpose the matrix to yield:[
x0 + x2 x1 + x3
x0− x2

√
−1(−x1 + x3)

]
.

� Replace each row of the matrix by its two-point DFT to yield:[
x0 + x1 + x2 + x3 x0− x1 + x2− x3

x0− x2 +
√
−1(−x1 + x3) x0− x2 +

√
−1(x1− x3)

]
.

� Transpose the matrix to obtain:[
x0 + x1 + x2 + x3 x0− x2 +

√
−1(−x1 + x3)

x0− x1 + x2− x3 x0− x2 +
√
−1(x1− x3)

]
.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1850

Example: Four-Point DFT (Continued 2)

� Treat the 2×2 matrix stored in row-major order as a one-dimensional
array to yield: 

x0 + x1 + x2 + x3
x0− x2 +

√
−1(−x1 + x3)

x0− x1 + x2− x3
x0− x2 +

√
−1(x1− x3)


T

.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1851

Cache-Oblivious FFT: Performance

� can be proven by induction that algorithm requires O(n log2 n) work

� cache block holds L elements of array

� Z cache size in units of array element size

� can be shown that algorithm incurs O(1+(n/L)(1+ logZ n)) cache
misses

� preceding cache miss result asymptotically optimal for Cooley-Tukey
algorithm, matching lower bound by Hong and Kung when n is exact
power of two

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1852NEXT SLIDE: Concurrency

Section 6.6.4

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1853

References I

1 H. Prokop. Cache-oblivious algorithms.
Master’s thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, MA, USA,
June 1999.

2 E. D. Demaine. Cache-oblivious algorithms and data structures.
In Lecture Notes from the EEF Summer School on Massive Data Sets,
BRICS, University of Aarhus, Denmark, June 2002.

3 M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran.

Cache-oblivious algorithms.
ACM Transactions on Algorithms, 8(1):4:1–4:22, Jan. 2012.

4 J. Hennessy and D. A. Patterson. Computer Architecture — A Quantitative
Approach.
Morgan-Kaufmann, San Francisco, CA, USA, 4th edition, 2007.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1854

References II

5 D. H. Bailey. FFTs in external or hierarchical memory.
Journal of Supercomputing, 4:23–35, 1990.

6 J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory, II:
Hierarchical multilevel memories.
Algorithmica, 12:148–169, 1994.

7 P. Kumar. Cache-oblivious algorithms.
In Algorithms for Memory Hierarchies, pages 192–212. Springer Verlag,
2003.

8 V. Strassen. Gaussian elimination is not optimal.
Numerische Mathematik, 13(4):354–356, Aug. 1969.

9 D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and
paging rules.
Communications of the ACM, 28(2):202–208, Feb. 1985.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1855

References III

10 J.-W. Hong and H. T. Kung. I/O complexity: the red-blue pebbling game.
In Proc. of ACM Symposium on Theory of Computing, pages 326–333,
Milwaukee, WI, USA, 1981.

11 B. Jacob and T. Mudge. Virtual memory in contemporary
microprocessors.
IEEE Micro, 18(4):60–75, July 1998.

12 S. Chatterjee and S. Sen. Cache-efficient matrix transposition.
In Proc. of IEEE International Symposium on High-Performance Computer
Architecture, Toulouse, France, 2000.

13 J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of
complex Fourier series.
Mathematics of Computation, 19:297–301, 1965.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1856

Section 6.7

Vectorization

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1857

Section 6.7.1

Vector Processing

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1858

Vector Processing

� vector processor has instruction set that can operate on one-dimensional
arrays of data called vectors

� vector processing has its roots in early supercomputers

� approach has been refined significantly over the years

� attempts to exploit data-level parallelism

� most modern processors provide some level of vector processing
functionality

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1859

Scalar Versus Vector Instructions

second
operand

operand
first

result result

operand
second

operand
first

aL−1 op bL−1· · ·a1 op b1a0 op b0

op

bL−1

aL−1· · ·

· · ·b0

a0

b1

a1a

op

b

a op b

Scalar Operation Vector Operation
With Two OperandsWith Two Operands

� each operand of scalar instruction is single value

� each operand of vector instruction is set of L values known as vector
� L called vector length
� same operation applied to each of L elements of vector

� operation might, for example, be: load/store, arithmetic operation, logical
operation, comparison, conversion operation, or shuffle operation

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1860

Vector-Memory and Vector-Register Architectures

� two basic approaches to vector processing:
1 vector-memory architecture
2 vector-register architecture

� vector-memory architecture:
2 for all vector operations, operands fetched from main memory and results

written back to main memory
2 includes early vector machines through mid 1980s
2 no longer used much (if at all) in modern processors
2 large startup time for vector operations

� vector-register architecture:
2 for all vector operations except loads and stores, operands read from and

written to vector registers
2 used by most modern processors that support vector operations

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1861

Vector-Register Architectures

� vector register is collection of N elements of same type, where each
element is M bits in size

� N called vector length

� vector register size NM typically 128 to 512
� advantages of vector processing:

2 potential speedup by factor of N
2 often more energy efficient relative to other approaches for increasing

performance (such as wider superscalar or higher clock rate)
2 potentially smaller code size, since single instruction can perform multiple

operations

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1862

Vector Extensions

� modern high-performance CPU architectures have specialized
instructions to exploit parallelism in loops

� commonly referred as single-instruction multiple-data (SIMD) extensions

� operate on multiple elements of wide vector register simultaneously

� reduces runtime trip count of loop by vectorization factor

� requires sophisticated analysis and heuristics in order to make good
decisions about vectorization safety and profitability

� widen each operation in loop from scalar type to vector type

� applies same operation in parallel to number of data items packed into
large register (e.g., 64, 128, 256, 512 bits)

� particularly useful for algorithms with high degree of data-level parallelism,
such as those often found in multimedia systems, graphics, and
image/video/audio processing

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1863

Intel x86/x86-64 Streaming SIMD Extensions (SSE)

� Streaming SIMD Extensions (SSE) is family of vector extensions to Intel
x86/x86-64 instruction set architecture (namely, SSE, SSE2, SSE3,
SSSE3, SSE4.1, and SSE 4.2)

� collectively, SSE family added:
2 in case of x86: 8 128-bit vector registers, known as XMM0 to XMM7
2 in case of x86-64: 16 128-bit vector registers, known as XMM0 through

XMM15
� each vector register can be used to hold:

2 16 8-bit bytes
2 8 16-bit integers
2 4 32-bit integers
2 2 64-bit integers
2 4 32-bit single-precision floating-point numbers
2 2 64-bit double-precision floating-point numbers

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1864

Intel x86/x86-64 Advanced Vector Extensions (AVX)

� Advanced Vector Extensions (AVX) is family of vector extensions to Intel
x86/x86-64 instruction set architecture (namely, AVX, AVX2, and
AVX-512) that builds upon SSE

� AVX extends 16 vector registers of SSE from 128 to 256 bits
� renames vector registers as YMM0 to YMM7 for x86 and YMM0 to

YMM15 for x86-64
� each 256-bit vector register can be used to hold:

2 32 8-bit bytes
2 16 16-bit integers
2 8 32-bit integers
2 4 64-bit integers
2 8 32-bit single-precision floating-point numbers
2 4 64-bit double-precision floating-point numbers
2 8 32-bit single-precision floating-point numbers
2 4 64-bit double-precision floating-point numbers

� AVX-512 extends vector registers to 512 bits

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1865

ARM NEON

� NEON is vector extension to ARM Cortex-A series and Cortex-R52
processors

� 16 128-bit vector registers
� NEON instructions perform same operations in all lanes of vectors
� vector registers can hold:

2 16 8-bit character
2 8 16-bit integer
2 4 32-bit integer
2 2 64-bit integer
2 8 16-bit floating-point (only in Armv8.2-A)
2 4 32-bit floating-point
2 2 64-bit floating-point (only in Armv8-A/R)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1866

Checking for Processor Vector Support on Linux

� on Linux systems, information on processor can be found in
/proc/cpuinfo

� level of processor support for vector operations can be determined by
checking for various processor flags/features in this file

� on Intel x86/x86-64 systems, look for flags/features:
2 mmx, sse, sse2, ssse3, sse4_1, sse4_2, avx, avx2

� on ARM systems, look for flags/features:
2 neon

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1867

Section 6.7.2

Code Vectorization

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1868

Vectorization

� consider loop in function:
void axpy(float a, float* x, float y, int n) {

for (int i = 0; i < n; ++i) {
x[i] = a * x[i] + y;

}
}

� loop vectorization: scalar computations in body of above loop could be
grouped to allow use of vector operations

� consider code in basic block:
a = b + c * d;
e = f + g * h;
i = j + k * l;
m = n + o * p;

� basic-block vectorization: four statements in preceding code follow similar
pattern and could be grouped together to allow vector operations to be
used

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1869

Conceptualizing Loop Vectorization
� can think of loop vectorization in terms of loop unrolling
� consider following loop where, for simplicity, we assume n multiple of 4:

for (int i = 0; i < n; ++i) {c[i] = a[i] + b[i];}

� can partially unroll loop to obtain following, where each iteration of new
loop corresponds to 4 iterations of original loop:

for (int i = 0; i < n; i += 4) {
c[i + 0] = a[i + 0] + b[i + 0]; // iteration i
c[i + 1] = a[i + 1] + b[i + 1]; // iteration i + 1
c[i + 2] = a[i + 2] + b[i + 2]; // iteration i + 2
c[i + 3] = a[i + 3] + b[i + 3]; // iteration i + 3

}
� code in body of new loop can be mapped to vector operations of length 4

on vector registers v0, v1, and v2:
1 load a[i] to a[i + 3] into v0
2 load b[i] to b[i + 3] into v1
3 add v0 and v1, writing result into v2
4 store v2 into c[i] to c[i + 3]

� using non-standard C++ syntax, vectorized loop can be expressed as:
for (int i = 0; i < n; i += 4)
{c[i : i + 3] = a[i : i + 3] + b[i : i + 3];}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1870

Approaches to Vectorization
� several approaches to vectorization can be taken:

1 auto-vectorization
2 compiler automatically vectorizes code when deemed both safe and profitable

2 auto-vectorization with compiler hints
2 annotations added to source code to guide auto-vectorization

3 explicit directives
2 special directives added to source code to exercise control over vectorization

(e.g., OpenMP, Cilk Plus)
4 computation using vector data types

2 use special vector types provided by compiler (e.g., __m128 for GCC on x86,
int8x8_t for GCC on ARM, __m128 for MSVC on x86)

5 compiler intrinsics
2 use special low-level functions provided by compiler (e.g., _mm_add_epi16 for

GCC on x86, vaddq_s16 for GCC on ARM, _arm_sadd16 for MSVC on ARM)
6 inline assembly language

2 use SIMD instructions directly by using assembly language

� above approaches listed in order of decreasing ease of use and
increasing degree of programmer control

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1871

Auto-Vectorization

� easiest way to vectorize code is to have compiler do this automatically

� called auto-vectorization

� most compilers have support for auto-vectorization
� advantages of auto-vectorization:

2 easy to use
2 less error prone (no bugs, unless compiler has bug)
2 sometimes compiler may be able to make better judgement as to whether

vectorization would be beneficial

� compiler, however, must be very conservative when vectorizing code

� compiler cannot transform code in way that changes its behavior

� unfortunately, compiler often does not have sufficient knowledge of code
behavior to perform vectorization well (or at all)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1872

GCC Compiler and Vectorization

� GCC supports auto-vectorization
� GCC has two vectorizers:

1 loop vectorizer
2 basic-block vectorizer

� both vectorizers enabled by default for optimization level of at least 3
(where optimization level specified with -O option)

� GCC fully supports OpenMP 4.5 for C/C++ (but not Fortran) as of GCC
6.1 and fully supports OpenMP 4.0 as of GCC 4.9.1

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1873

GCC Compiler Options Related to Vectorization

� -ftree-vectorize and -fno-tree-vectorize
2 enable and disable all vectorization, respectively

� -ftree-loop-vectorize and -fno-tree-loop-vectorize
2 enable and disable loop vectorizer, respectively

� -ftree-slp-vectorize and -fno-tree-slp-vectorize
2 enable and disable basic-block vectorizer, respectively

� -fopt-info-vec-optimized
2 enable remarks that identify places in code where vectorization successfully

applied
� -fopt-info-vec-missed

2 enable remarks that identify places in code where vectorization could not be
applied

� -march=native
2 use instructions supported by local CPU
2 to see which flags are enabled with -march=native, use:

g++ -march=native -Q --help=target

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1874

GCC Compiler Options Related to Vectorization (Continued)

� -fopenmp
2 enable OpenMP support (which requires GOMP library)

� -fopenmp-simd
2 enable OpenMP SIMD support (which does not require run-time library)

� -S
2 produce assembly language output only (instead of object code)

� -fverbose-asm
2 enable generation of more verbose assembly language output (e.g.,

compiler version and command-line options, source-code lines associated
with assembly instructions, hints on which high-level expressions
correspond to various assembly instruction operands)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1875

Clang Compiler and Vectorization

� Clang supports auto-vectorization
� Clang has two vectorizers:

1 loop vectorizer
2 superword-level parallelism (SLP) vectorizer

� loop vectorizer widens instructions in loops to operate on multiple
consecutive iterations (i.e., performs loop vectorization)

� SLP vectorizer combines similar independent scalar instructions into
vector instructions

� both loop and SLP vectorizers enabled by default for optimization level of
at least 1 (where optimization level specified by -O option)

� Clang supports all non-offloading features of OpenMP 4.5 as of Clang 3.9

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1876

Clang Compiler Options Related to Vectorization

� -fvectorize and -fno-vectorize
2 enable and disable loop vectorizer, respectively

� -fslp-vectorize and -no-fslp-vectorize
2 enable and disable SLP vectorizer, respectively

� -fslp-vectorize-aggressive
2 enable more aggressive vectorization in SLP vectorizer

� -Rpass=loop-vectorize
2 enable remarks that identify loops that were successfully vectorized

� -Rpass-missed=loop-vectorize
2 enable remarks that identify loops that failed vectorization and indicate if

vectorization specified
� -Rpass-analysis=loop-vectorize

2 enable remarks that identify statements that caused vectorization to fail
� -fopenmp

2 enable OpenMP support (which requires OMP library)
� -S

2 produce assembly language output only (instead of object code)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1877

Assessing Quality of Vectorized Code

� to assess quality of vectorized code generated by compiler, often very
helpful to view assembly code generated by compiler

� quick inspection of assembly code can often give clear indication as to
how well particular part of code was vectorized

� most compilers provide option to generate assembly source as
compilation output (instead of object code)

� to assist in locating assembly source corresponding to particular part of
C++/C source code (such as loop) can inject comments into assembly
code using asm

� example:
1 float innerprod(float* a, float* b, int n) {
2 float result = 0.0f;
3 asm volatile ("# loop start");
4 for (int i = 0; i < n; ++i) {result += a[i] * b[i];}
5 asm volatile ("# loop end");
6 return result;
7 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1878

Assessing Quality of Vectorized Code (Continued)

1 .file "inner_product_1.cpp"
2 .text
3 .globl _Z9innerprodPfS_i
4 .type _Z9innerprodPfS_i, @function
5 _Z9innerprodPfS_i:
6 .LFB0:
7 .cfi_startproc
8 #APP
9 # 3 "inner_product_1.cpp" 1

10 # loop start
11 # 0 "" 2
12 #NO_APP
13 xorl %eax, %eax
14 vxorps %xmm0, %xmm0, %xmm0
15 .L3:
16 cmpl %eax, %edx
17 jle .L2
18 vmovss (%rdi,%rax,4), %xmm1
19 vfmadd231ss (%rsi,%rax,4), %xmm1, %xmm0
20 incq %rax
21 jmp .L3
22 .L2:
23 #APP
24 # 5 "inner_product_1.cpp" 1
25 # loop end
26 # 0 "" 2
27 #NO_APP
28 ret
29 .cfi_endproc

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1879

Auto-Vectorization with Hints

� in order to allow compiler to perform auto-vectorization more effectively,
can provide hints to compiler

� place annotations in code to provide compiler with additional information
to guide vectorization

� annotations typically provide information that compiler could not
reasonably deduce on its own but is important in making decisions
regarding vectorization

� approach is relatively easy to use since compiler still does most of work

� must be careful to provide correct information to compiler, however;
otherwise, compiler may generate incorrect code

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1880

Obstacles to Vectorization

� numerous obstacles to vectorization:
2 data dependencies
2 control-flow dependencies
2 aliasing
2 noncontiguous memory accesses
2 misaligned data

� by eliminating such obstacles, compiler can perform auto-vectorization
more effectively

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1881

Data Dependencies and Vectorization

� vectorization changes order of computation compared to sequential case

� changing order of computation may yield different result

� cannot replace sequential loop with vectorized version if this would
change result of computation

� need to consider independence of unrolled loop operations, which
depends on vectorization factor

� three types of data dependencies:
1 flow dependency (read after write)
2 output dependency (write after write)
3 antidependency (write after read)

� flow and output dependencies are of most concern for vectorization

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1882

Flow Dependencies

� flow dependency (also called read-after-write dependency) is type of
data dependency that occurs when variable is written in one iteration of
loop and read in subsequent iteration

� dependency distance is difference in iteration number in which read and
write of variable occur

� example of flow dependency with dependency distance of 1:
for (int i = 1; i < n; ++i)
{a[i] = a[i - 1] + 1;}

� if dependency distance less than vectorization factor, vectorized loop
cannot be guaranteed to yield same result as sequential version

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1883

Flow Dependence Example 1
� consider vectorization of following loop with vectorization factor of 4:

for (int i = 1; i < n; ++i)
{a[i] = a[i - 1] + b[i];}

� loop exhibits flow dependence (i.e., read after write) on a[i-1]
(dependence distance 1)

� loop in partially unrolled form (assuming number of iterations multiple of
4):

for (int i = 1; i < n; i += 4) {
a[i + 0] = a[i - 1] + b[i + 0];
a[i + 1] = a[i + 0] + b[i + 1];
a[i + 2] = a[i + 1] + b[i + 2];
a[i + 3] = a[i + 2] + b[i + 3];

}

� loop in vectorized form (assuming number of iterations multiple of 4):
for (int i = 1; i < n; i += 4)
{a[i : i + 3] = a[i - 1 : i + 2] + b[i : i + 3];}

� vectorized loop will not always produce same results as sequential loop
(due to flow dependence with dependence distance 1)

� therefore, with vectorization factor of 4, loop not legal to vectorize
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1884

Flow Dependence Example 1: Sequential Loop

� suppose that:
constexpr int n = 5;
int a_data[n] = {-1, -2, -3, -4, -5};
int b_data[n] = {0, 1, 2, 3, 4};
int* a = a_data;
int* b = b_data;

� sequential loop:
for (int i = 1; i < n; ++i) {

a[i] = a[i - 1] + b[i]
}

� computation for loop iteration:
i a[i - 1] b[i] a[i]

1 -1 1 0
2 0 2 2
3 2 3 5
4 5 4 9

� upon loop termination, array pointed to by a contains:
{-1, 0, 2, 5, 9}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1885

Flow Dependence Example 1: Vectorized Loop

� again, suppose that:
constexpr int n = 5;
int a_data[n] = {-1, -2, -3, -4, -5};
int b_data[n] = {0, 1, 2, 3, 4};
int* a = a_data;
int* b = b_data;

� vectorized loop:
for (int i = 1; i < n; i += 4) {

a[i : i + 3] = a[i - 1 : i + 2] + b[i : i + 3];
}

� computation for loop iteration:
i a[i - 1 : i + 2] b[i : i + 3] a[i : i + 3]
1 {-1, -2, -3, -4} {1, 2, 3, 4} {0, 0, 0, 0}

� upon loop termination, array pointed to by a contains:
{-1, 0, 0, 0, 0}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1886

Flow Dependence Example 2

� consider vectorizing following loop using vectorization factor of 4:
for (int i = 5; i < n; ++i)
{a[i] = a[i - 5] + b[i];}

� loop exhibits flow dependence (i.e., read after write) on a[i-5]
(dependence distance 5)

� loop in partially unrolled form (assuming number of iterations multiple of
4):

for (int i = 5; i < n; i += 4) {
a[i + 0] = a[i - 5] + b[i + 0];
a[i + 1] = a[i - 4] + b[i + 1];
a[i + 2] = a[i - 3] + b[i + 2];
a[i + 3] = a[i - 2] + b[i + 3];

}

� loop in vectorized form (assuming number of iterations multiple of 4):
for (int i = 5; i < n; i += 4)
{a[i : i + 3] = a[i - 5 : i - 2] + b[i : i + 3];}

� vectorized loop will always yield same result as sequential loop since no
flow dependence occurs within single iteration of vectorized loop

� with vectorization factor of 4, loop legal to vectorize
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1887

Output Dependencies

� output dependency (also called write-after-write dependency) is type
of data dependency that occurs when same variable is written in more
than one iteration

� example of output dependency:
for (int i = 0; i < n; ++i)
{a[i % 2] = b[i] + c[i];}

� generally unsafe to perform vectorization of loops with output
dependencies

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1888

Control-Flow Dependencies and Vectorization

� control-flow dependencies can lead to different operations for elements in
vector

� consider loop in following function:
void func(float* a, float* b, int n) {

for (int i = 0; i < n; ++i) {
a[i] = (a[i] > 1.0) ? a[i] / b[i] : a[i];

}
}

� code has control-flow dependence on a[i] (code behavior depends on
condition a[i] > 1.0)

� good compiler might be able to vectorize above function

� when control-flow dependencies become more complex, however,
vectorization extremely difficult or impossible to perform

� therefore, control-flow dependencies are best avoided

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1889

Aliasing

� when same memory location can be accessed through different names,
aliasing said to occur

� example of aliasing:
2 code:

float v[64];
float* p = &v[0];
float* q = &v[1];
// p and q can be used to access same memory
// e.g., p[1] and q[0] refer to same object

2 memory layout:

v[0] v[1] v[2] v[3] · · · v[63]

qp

� aliasing often limits ability of compiler to perform optimization

� in effect, aliasing can introduce new data dependencies that would not
otherwise exist

� failing to take aliasing into account could lead to illegal optimizations (i.e.,
optimizations that change code behavior)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1890

Aliasing and Optimization: An Example

� consider code:
1 void func(int* a, int* b, int* c) {
2 *a = 42;
3 *b = 0;
4 *c = *a;
5 }

� at first glance, might seem that code can be optimized to yield:
1 void func(int* a, int* b, int* c) {
2 *a = 42;
3 *b = 0;
4 *c = 42;
5 }

� above optimized code is incorrect, since a might equal b, in which case *c
should be assigned 0, not 42

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1891

Aliasing and Vectorization: An Example
� consider code:

1 void add(float* a, float* b, float* c) {
2 for (int i = 0; i < 1024; ++i) {
3 a[i] = b[i] + c[i];
4 }
5 }

� if only this code visible to compiler, simply vectorizing loop in this function
is not legal

� a could be aliased to b or c (i.e., storage pointed to by a, b, and c could
overlap); for example, if a equals b + 1, then b[i] same as a[i - 1]

� in this case, sequential and parallel execution of loop would yield different
results

� best compiler could do might be to:
2 generate two different versions of code for loop, one without vectorization

for aliasing case and one with vectorization for case of no aliasing
2 emit runtime aliasing check that decides which version of code for loop to

execute
� this solution less than ideal as it incurs cost of runtime check and results

in increased code size
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1892::::
diagram

The __restrict__ Keyword
� sometimes highly beneficial to have means to indicate to compiler that

aliasing cannot occur (so that compiler can better optimize code)
� although not part of C++ standard, some compilers support special

keyword for this purpose; for example:
2 GCC and Clang support __restrict__ keyword
2 MSVC supports __restrict keyword

� keyword can be applied to pointer or reference
� during execution of block in which restricted pointer/reference p is

declared, if some object that is accessible through p (directly or indirectly)
is modified by any means, then all access to that object in that block must
occur through p (directly or indirectly)

� important only to use __restrict__ if certain that no aliasing can occur;
otherwise, code behavior likely to be incorrect

� example:
void func(int* __restrict__ p, int* __restrict__ q) {

// compiler can safely assume that any data modified though p
// will only be accessed through p; and similarly for q
// thus, data pointed to by p and q cannot overlap
// ... (code modifies data pointed to by p and q)

}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1893

Noncontiguous Memory Accesses

� vector load/store operation typically reads/writes contiguous block of
memory (that is appropriately aligned)

� noncontiguous data typically needs multiple instructions to be read/written

� example of code with noncontiguous memory accesses:
// in loop, array elements accesses with stride 2
for (int i = 0; i < n; i += 2) {

c[i] = a[i] + b[i];
}

� sometimes noncontiguous memory access problem can be addressed by
choosing different layout for data in memory (e.g., struct of arrays instead
of array of structs)

� other times, problem may be resolvable by restructuring code to perform
computations in different order

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1894

Data Alignment

� for reasons of performance, vector load and store operations often impose
restrictions on data alignment

� typically, target address for vector load or store of n-byte register needs to
be aligned on n-byte boundary

� for some architectures, such alignment is strict requirement (i.e., code will
not work if data misaligned)

� for other architectures, such alignment is not strictly required, but
substantial performance penalty may be incurred in case of misaligned
data

� for this reason, important to align data appropriately whenever possible

� also, to allow compiler to vectorize in most effective manner possible,
important to let compiler know when data is appropriately aligned

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1895

Handling Misaligned Data

� sometimes not possible or practical to avoid misaligned data

� in such cases, can still partially vectorize

� peel first few iterations of loop where data is misaligned and process data
using scalar operations

� peel last few iterations (as necessary) where insufficient data to fill vector
register and process data using scalar operations

� use vector operations for remainder of iterations

� compared to case of properly aligned data that is multiple of vector size,
above approach likely to be slower and have larger code size

� alternatively, could add padding before and/or after data to ensure data
with padding is appropriately aligned and multiple of vector length, but this
approach often not practical

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1896::::
diagram

Controlling Alignment of Data

� for non-heap allocation, can use alignas qualifier to control alignment
of object

� for heap allocation, can use std::aligned_alloc to allocate memory
with particular alignment

� std::free can be used to free memory allocated by
std::aligned_alloc

� example:
1 #include <cassert>
2 #include <cstdlib>
3 #include <cstdint>
4

5 int main() {
6 alignas(4096) static char buffer[65536];
7 static_assert(alignof(buffer) == 4096);
8 float* fp = static_cast<float*>(
9 std::aligned_alloc(4096, sizeof(float)));

10 if (!fp) {return 1;}
11 assert(!(reinterpret_cast<intptr_t>(fp) % 4096));
12 std::free(fp);
13 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1897

Informing Compiler of Data Alignment

� to facilitate more effective vectorization by compiler, important to be able
to indicate data alignment in code

� unfortunately, C++ standard does not provide mechanism for doing this
� some compilers (such as GCC and Clang) support intrinsic function called

__builtin_assume_aligned that can be used to indicate alignment
� __builtin_assume_aligned declared as:

void* __builtin_assume_aligned(const void *p, size_t align, ...);

� this function simply returns its first argument p and allows compiler to
assume that returned pointer is at least align bytes aligned (when
invoked with two arguments)

� example:
void func(float* a, float* b, int n) {

// *a and *b can be assumed aligned to 64-byte boundary
a = static_cast<float*>(__builtin_assume_aligned(a, 64));
b = static_cast<float*>(__builtin_assume_aligned(b, 64));
for (int i = 0; i < n; ++i) {/* ... */}

}

� in case of compilers that do not support __builtin_assume_aligned,
another approach would need to be found

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1898

Profitability of Vectorization

� vectorization can often provide significant speedup (in some cases linear
with vectorization factor), but costs need to be considered

� vector loop bodies can be larger than their scalar forms, as more complex
operations may be needed, increasing code size

� vector loop may have increased startup costs to prepare for vectorized
execution

� if aliasing is potential problem, require overhead of runtime aliasing check

� vector instructions may take more cycles

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1899

Vectorization Example: Version 1

� source code:
1 #include <cstddef>
2

3 template <std::size_t n, class T>
4 void add(const T (&a)[n], T (&b)[n]) {
5 for (int i = 0; i < n; ++i) {
6 b[i] += a[i];
7 }
8 }

� since a and b may be aliased, compiler must generate code that correctly
handles aliased case (as well as non-aliased case)

� often, will generate code that tests for aliasing at run time and uses result
to decide between code for aliased case or non aliased case

� since compiler does not know alignment of a and b, must generate code
that handles any valid alignment

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1900

Vectorization Example: Version 2

� source code:
1 #include <cstddef>
2

3 template <std::size_t n, class T>
4 void add(const T (&__restrict__ a)[n],
5 T (&__restrict__ b)[n]) {
6 for (int i = 0; i < n; ++i) {
7 b[i] += a[i];
8 }
9 }

� compiler can assume no aliasing (due to use of __restrict__)

� since compiler does not know alignment of a and b, must generate code
that handles any valid alignment

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1901

Vectorization Example: Version 3
� source code:

1 #include <cstddef>
2

3 template <std::size_t n, std::size_t align, class T>
4 void add(const T (& __restrict__ a)[n],
5 T (& __restrict__ b)[n]) {
6 const T* ap = static_cast<const T*>(
7 __builtin_assume_aligned(&a, align));
8 T* bp = static_cast<T*>(
9 __builtin_assume_aligned(&b, align));

10 for (int i = 0; i < n; ++i) {
11 bp[i] += ap[i];
12 }
13 }

� compiler can assume no aliasing (due to use of __restrict__) and
align-byte alignment (due to use of __builtin_assume_aligned)

� code generated for vectorized loop in case of
add<65536, 16 * alignof(float), float>:
12 .L2:
13 vmovaps (%rsi,%rax), %ymm0
14 vaddps (%rdi,%rax), %ymm0, %ymm0
15 vmovaps %ymm0, (%rsi,%rax)
16 addq $32, %rax
17 cmpq $262144, %rax
18 jne .L2

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1902

Vectorization Example: Invoking add Function

� when calling add function, must be careful to ensure that assumptions
about aliasing and data alignment are not violated

� source code:
1 #include <cstddef>
2 #include <iostream>
3 #include <algorithm>
4 #include <numeric>
5 #include "example4_util.hpp"
6

7 int main() {
8 constexpr std::size_t n = 65536;
9 constexpr std::size_t align = 16 * alignof(float);

10 alignas(align) static float a[n];
11 alignas(align) static float b[n];
12 std::iota(&a[0], &a[n], 1);
13 std::fill(&b[0], &b[n], -1);
14 add<n, align>(a, b);
15 for (auto i : b) {std::cout << i << ’\n’;}
16 }

� if add function invoked in manner that violates assumptions about aliasing
or data alignment, code not guaranteed to work correctly (e.g., may crash
or yield incorrect results)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1903

Basic Requirements for Vectorizable Loops

� requirements imposed on vectorizable loops vary from compiler to
compiler

� so whether given loop can be vectorized will in many cases depend on
particular compiler being used

� consult compiler documentation for specific requirements
� some typical examples of requirements imposed on vectorizable loops

include:
2 loop is countable (i.e., number of loop iterations known at run time upon

entry to loop); this implies, for example, no conditional termination of loop
2 straight-line code in loop body (i.e., no control flow); no switch statements; if

statements only allowable when can be implemented as masked
assignments

2 must be innermost loop if nested
2 no function calls, except some basic math functions (such as std::pow,

std::sqrt, and std::sin) and some inline functions

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1904

OpenMP SIMD Constructs

� OpenMP is industry standard API for parallel computing

� supports C++, C, and Fortran

� OpenMP 4.0 added constructs for expressing SIMD data-level parallelism

� although OpenMP offers large amount of functionality, we only focus on
SIMD-related functionality here

� use pragmas to control vectorization

� simd pragma allows explicit control of vectorization of for loops

� declare simd pragma instructs compiler to generate vectorized version
of function (which can be used to vectorize loops containing function calls)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1905

OpenMP simd Pragma
� vectorized loop can be achieved with OpenMP simd pragma
� syntax:

#pragma omp simd [clause. . .]
/* for statement in canonical form */

� simd pragma must be immediately followed by for loop in canonical form
� optional clauses may be specified to affect behavior of pragma (i.e.,

safelen, linear, aligned, private, lastprivate, reduction, and
collapse)

� amongst other things, canonical form of for loop implies:
2 induction variable has integer, pointer, or random-access iterator type
2 limited test and increment/decrement for induction variable
2 iteration count known before execution of loop

� can target inner or outer loops
� loop must be suitable for vectorization (e.g., no data-dependence

problems)
� example:

#pragma omp simd
for (int i = 0; i < n; ++i) {c[i] = a[i] + b[i];}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1906

OpenMP declare simd Pragma

� can generate vectorized versions of functions with declare simd pragma

� syntax:
#pragma omp declare simd [clause. . .]
/* function declaration/definition */

� optional clauses may be specified to affect behavior of pragma (i.e.,
simdlen, linear, aligned, uniform, inbranch, and notinbranch)

� example:
#pragma omp declare simd
float foo(float a, float b, float c) {

return a * b + c;
}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1907

OpenMP SIMD-Related Pragma Clauses

� safelen(length)
2 specifies length as maximum number of iterations that can be run

concurrently in safe manner (i.e., without data-dependence problems)
� collapse(n)

2 specifies how many (nested) loops to associate with loop construct (i.e.,
how many nested loops to combine)

� simdlen(length)
2 specifies length as preferred length of vector registers used

� aligned(argument-list[:alignment])
2 specifies items in argument-list as having given alignment (e.g., alignment)

� uniform(argument-list)
2 indicates each argument in argument-list has constant value between

iterations of given loop (i.e., constant value across all SIMD lanes)
� inbranch

2 specifies that function will always be called from inside conditional
statement of SIMD loop

� notinbranch
2 specifies that function will never be called from inside conditional statement

of SIMD loop
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1908

OpenMP SIMD-Related Pragma Clauses (Continued)

� linear(list[:linear-step])
2 specifies that, for every iteration of original scalar loop, each variable in list

is incremented by particular step step (i.e., variable is incremented by step
times vector length for vectorized loop)

� private(list)
2 declares variables in list to be private to each iteration

� lastprivate(list)
2 declares variables in list to be private to each iteration, and last value is

copied out from last iteration instance
� reduction(operator:list)

2 specifies variables in list are reduction variables for operator operator

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1909

Example: Vectorized Loop

1 #include <cstddef>
2 #include <iostream>
3 #include <numeric>
4

5 template <std::size_t align, std::size_t n, class T>
6 [[gnu::noinline]]
7 void multiply(const T (&a)[n], const T (&b)[n], T (&c)[n]) {
8 #pragma omp simd aligned(a, b, c : align)
9 for (int i = 0; i < n; ++i) {

10 c[i] = a[i] * b[i];
11 }
12 }
13

14 int main() {
15 constexpr std::size_t n = 65536;
16 constexpr std::size_t align = 16 * alignof(float);
17 alignas(align) static float a[n];
18 alignas(align) static float b[n];
19 alignas(align) static float c[n];
20 std::iota(a, &a[n], 0);
21 std::iota(b, &b[n], 0);
22 multiply<align>(a, b, c);
23 for (auto x : c) {
24 std::cout << x << ’\n’;
25 }
26 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1910

Example: Vectorized Loop and Function

1 #include <cstddef>
2 #include <iostream>
3 #include <numeric>
4

5 #pragma omp declare simd notinbranch
6 float func(float a, float b) {
7 return a * a + b * b;
8 }
9

10 int main() {
11 constexpr std::size_t n = 65536;
12 constexpr std::size_t align = 16 * alignof(float);
13 alignas(align) static float a[n];
14 alignas(align) static float b[n];
15 alignas(align) static float c[n];
16 std::iota(a, &a[n], 0);
17 std::iota(b, &b[n], 0);
18 #pragma omp simd aligned(a, b, c : align)
19 for (int i = 0; i < n; ++i) {
20 c[i] = func(a[i], b[i]);
21 }
22 for (auto x : c) {
23 std::cout << x << ’\n’;
24 }
25 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1911END SLIDE: end of course material ,,,

Section 6.7.3

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1912

Talks I

1 Pablo Halpern. Introduction to Vector Parallelism. CppCon, Bellevue, WA,
USA, Sept. 21, 2016. Available online at
https://youtu.be/h6Q-5Q2N5ck.

2 Georg Zitzlsberger. C++ SIMD parallelism with Intel Cilk Plus and
OpenMP 4.0. Meeting C++, Berlin, Germany, Dec. 5–6, 2014. Available
online at https://youtu.be/6oKRL7jz2LY.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1913

https://youtu.be/h6Q-5Q2N5ck
https://youtu.be/6oKRL7jz2LY

References I

1 OpenMP web site, http://www.openmp.org.

2 Clang OpenMP page, http://openmp.llvm.org.

3 Cilk Plus web site, http://www.cilkplus.org.

4 A. Peleg, S. Wilkie, and U. Weiser. Intel MMX for multimedia PCs.
Communications of the ACM, 40(1):25–38, Jan. 1997.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1914

http://www.openmp.org
http://openmp.llvm.org
http://www.cilkplus.org

Section 6.8

Documentation for Software Development

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1915

Documentation for Software Development

� documentation plays essential role in software development process

� many benefits to formalizing in writing various aspects of software at
different points in development process

� consider two types of documents:
1 software requirements specification
2 software design description

� software requirements specification (SRS): describes what software
should do (from external viewpoint)

� software design description (SDD): describes how software works
internally

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1916

Software Requirements Specification (SRS)

� establishes agreement between consumer and contractors on what
software is expected to do as well as what it is not expected to do

� can be thought of as contract between customer and contractor

� functionality: what does software do? (what problem does it solve?)

� external interfaces: how does software interact with external agents, such
as humans, hardware, and software (e.g., command-line interface,
graphical user interface, application program interface)

� performance: speed, availability, response time, recovery time of various
functions

� attributes: considerations regarding reliability, availability, maintainability,
portability, security

� design constraints imposed on implementation: implementation language,
resource limits, operating environments

� assumptions upon which requirements are based

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1917

SRS (Continued)

� distinguish classes of requirements:
2 essential: software will be unacceptable unless requirement met
2 conditional: would enhance software if requirement met, but not

unacceptable if requirement not met
2 optional: class of functionality that may or may not be worthwhile

� should not leave details of software requirements to be determined

� only focus on what the software needs to do, not how done (i.e., should
not describe any design or implementation details)

� typical use cases
� constraints imposed on software:

2 time constraints
2 memory constraints

� software limitations:
2 restrictions on input data
2 allowable ranges for parameters of methods
2 dependencies on other software (e.g., other programs needed to function)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1918

External Interfaces

� external interfaces: how software interacts with external agents, such as
humans, hardware, and software

� command line interface (CLI) (for program)
2 options (e.g., required versus optional, default settings)
2 standard input, output, error
2 exit status

� graphical user interface (GUI) (for program)
2 window layout
2 user interaction (e.g., mouse/keyboard actions)

� application program interface (API) (for library)
2 constants
2 types, classes/methods
2 functions
2 namespaces

� format of all data used by software

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1919

Benefits of SRS

� establishes basis for agreement between customer and contractors

� reduces development effort by thoroughly considering all requirements
before starting design

� provides basis for estimating costs and schedules

� provides baseline for validation and verification

� facilitates transfer of software product to new users or machines

� serves as basis for enhancement

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1920

SRS Example: Sorting Program

� single program that performs sorting
� given records as input, program sorts records and outputs records in

sorted order
� record data format (for input and output):

2 records delimited by single newline character
2 each record consists of one or more fields, separated by one or more

whitespace characters
� restrictions/constraints:

2 may assume sufficient memory to buffer all records
2 software must work without any modification to source code on any platform

with C++ compiler compliant with C++11 standard
� records read from standard input
� sorted records written to standard output
� any error/warning messages written to standard error
� sorts records using nth field in record as key
� can sort in ascending or descending order
� sort key may be numeric or string

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1921

SRS Example: Sorting Program (Continued)

� command-line interface:

sort [-r] [-k $n] [-n]

� supported command-line options:
Option Description
-k $n Sort using nth field in record; if not specified, n

defaults to 1.
-n Treat key as real number (instead of string) for

sorting purposes; if not specified, key treated as
string.

-r Sort in descending (instead of ascending) order; if
not specified, defaults to ascending order.

� give examples illustrating expected use cases

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1922

Software Design Description (SDD)

� high-level design: overview of entire system, identifying all its components
at some level of abstraction (i.e., overall software architecture)

� detailed design (a.k.a. low-level design): full details of system and its
components (e.g., types, functions, APIs, pseudocode, etc.)

� describes high-level and detailed design of software

� some context regarding functionality provided by software

� how design is recursively structured into constituent parts and role of
those parts

� types and interfaces (e.g., classes and public members)

� data structures used to represent information to be processed

� internal interfaces (and external interfaces not described in SRS)

� interaction amongst entities

� algorithms

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1923

SDD (Continued)

� describe overall structure of software

� carefully consider choice of data structures used to represent information
being processed, as choice will almost always have performance
implications

� specify any data formats used internally by software

� provide pseudocode for key parts of software

� state any potentially limiting assumptions made

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1924

Benefits of SDD

� encourages better planning by forcing design ideas to be more carefully
considered and organized

� allows greater scrutiny of design

� captures important design decisions, such as rationale for particular
design choices

� allows newcomers to development team to become acquainted with
software more easily

� provides point of reference to be used throughout project

� promotes reuse of code (since well documented code more likely to be
reused)

� facilitates better software testing (since certain types of testing benefit
from understanding of software design)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1925

SDD Example: Sorting Program

� Key alias for type that represents sort key (alias for std::string)

� Compare functor class for comparing Key objects

� Dataset class represents collection of all records

� specify all class interfaces (i.e., public members)
� Dataset class provides:

2 constructor that creates dataset by reading all records from input stream
2 function to output all records in sorted order to output stream

� Dataset class to use std::multimap<Key, std::string, Compare>

� allows n records to be sorted in O(n logn) time [n insertions, each
requiring O(logn) time]

� handling n records requires O(n) memory

� only uses C++ standard library

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1926

Requirements/Design Document for Degree Project

� document is combination of SRS and SDD with some added information
about testing strategies

� briefly introduce problem being addressed by software
� describe each program and library to be developed
� identify parts of any external software (e.g., programs or libraries) that will

be used
� describe user interface (e.g., CLI, GUI) for each program
� fully specify all data formats used
� describe overall structure of each program and library
� identify all key data structures and algorithms to be used
� provide pseudocode for key parts of the software
� state any potentially limiting assumptions made by software
� indicate how programs and library code will be tested
� offer any other information that may be helpful (since above list is not

exhaustive)
� provide sufficient detail for other people to understand how software is to

be structured and how it will be implemented and tested
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1927

References

1 IEEE Std. 1016-2009 — IEEE standard for information technology —
systems design — software design descriptions, July 2009.

2 IEEE Std. 830-1998 — IEEE recommended practice for software
requirements specifications, Oct. 1998.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1928

Section 6.9

Software Testing

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1929

Software Testing

� software testing is process of checking to ensure that software (e.g.,
program, library, or system):

2 meets formal requirements (e.g., functional specification)
2 works as expected

� this involves such things as checking that software:
2 responds correctly to all inputs
2 has acceptable resource consumption (e.g., time and memory)
2 is sufficiently usable
2 works properly in all intended environments
2 does what is supposed to do
2 does not have undesired side effects (i.e., does not do things that it is not

supposed to do)

.Triangle Program

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1930.Git repo

Examples of Well-Known Software Failures
� Therac-25 Radiation Overdoses

2 from 1985 to 1987, at least six incidents in which patients being treated with
Therac-25 radiation-therapy machine received massive overdoses of
radiation (as much as 100 times intended dosage); at least three patients
died

2 failure due to race condition in control software
� Northeast Blackout of 2003

2 in 2003, widespread blackout occurred affecting several states/provinces in
USA and Canada (i.e., New York, New Jersey, Maryland, Connecticut,
Massachusetts, Ohio, and Ontario) with outage lasting from hours to days

2 at time, world’s second most widespread blackout in history
2 blackout contributed to almost 100 deaths
2 triggered by local outage that went undetected due to race condition in

monitoring software
� Ariane 5 Rocket Explosion

2 in 1996, unmanned Ariane 5 launched by European Space Agency
exploded 37 seconds after lift off

2 cause of failure was numerical overflow in inertial guidance system software

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1931

Examples of Well-Known Software Failures (Continued)

� Toyota Electronic Throttle Control System
2 in some 2009–2011 Toyota vehicles, electronic throttle control system

(ETCS) caused sudden unintended acceleration
2 at least 89 people were killed as result
2 problem likely caused by stack overflow in control software

� NASA Mars Climate Orbiter
2 in 1998, NASA Mars Climate Orbiter approached Mars at wrong angle

entering upper atmosphere and disintegrating
2 failure due to software using incorrect units in calculations controlling

thrusters
� NASA Mars Polar Lander

2 in 1999, when attempting to land on Mars, NASA Mars Polar Lander
prematurely terminated firing of engine causing spacecraft to crash into
planet’s surface

2 flight-control software mistook vibrations of stowed legs as surface
touchdown

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1932

Basic Terminology

� error: mistake made by programmer when coding

� defect (also known as fault or bug): flaw in source code resulting from
error

� failure: occurs when code corresponding to defect executes (i.e., defect
causes system to behave incorrectly)

� not all defects result in failures, since code corresponding to defect might
not execute (e.g., defect may be in unreachable code)

� incident: instance in which code does not behave as expected

� test case: specification of set of inputs and expected results associated
with checking particular program behavior

� test: act of exercising software with test cases

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1933

Some Types of Faults

� input/output faults
2 correct input not accepted; incorrect input accepted; wrong format;

cosmetic; incomplete or missing result
� interface faults

2 parameter mismatch; incompatible types; call to wrong procedure; call to
nonexistent procedure

� logic faults
2 missing or duplicate cases; missing or extraneous conditions; incorrect loop

iteration; incorrect operator; infinite recursion
� data faults

2 using uninitialized variable; dereferencing null pointer; incorrect
initialization; wrong variable used; wrong data reference; incorrect
subscript; incorrect data scope; inconsistent data; scaling or units error

� computation faults
2 incorrect algorithm; missing computation; incorrect operation; arithmetic

overflow or underflow; insufficient precision
� multithreading faults

2 race condition; deadlock
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1934

Testing Methods

� testing methods can be classified into two categories:
1 static: testing without executing code
2 dynamic: testing by executing code

� examples of static testing methods:
2 code reviews
2 static analysis tools

� examples of dynamic testing methods:
2 black box
2 white box
2 gray box
2 dynamic analysis tools

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1935

Code Reviews

� code review is process whereby source code examined by one or more
people in effort to identify bugs or other problems

� variety of terms used to refer to code reviews (e.g., code inspections and
code walkthroughs) but no widely accepted meaning for such terms

� code reviews can be applied at almost any stage of software development
� code review typically has several participants with original author often

being one
� code review meeting might last couple of hours
� may involve some preparatory work prior to meeting (e.g., examining

source code)
� code review process can take many forms, such as:

2 read code line by line looking for errors
2 select some test cases and then, for each test case, step through code as if

being executed by computer
� may be formal written documentation to complete as part of review
� code reviews often find actual bug as opposed to failure resulting from bug
� code reviews can be effective at finding certain types of errors

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1936

Static Analysis Tools

� static analysis tools examine code without executing it

� most frequently analyze source code

� can be used to find certain types of code defects
� examples of types of defects that can be found by static analysis tools

include:
2 use of uninitialized variable
2 unused variable
2 unreachable code (i.e., code that never executes) or dead code (i.e., code

that has no effect)
2 coding standards violation
2 security vulnerability
2 syntax violation
2 inconsistent interfaces between modules and components

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1937

Examples of Static Analysis Tools

�Clang Tidy

� .Clang Static Analyzer

� CppCheck (http://cppcheck.sourceforge.net)

� Cpplint (http://github.com/cpplint/cpplint)
� many commercial products also available, such as:

2 Coverity Scan (http://scan.coverity.com), which is free for use in
open-source projects

2 CppDepend (http://www.cppdepend.com)
2 Klocwork

(http://www.roguewave.com/products-services/klocwork)
2 PVS-Studio Analyzer (http://www.viva64.com/en/pvs-studio)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1938

http://cppcheck.sourceforge.net
http://github.com/cpplint/cpplint
http://scan.coverity.com
http://www.cppdepend.com
http://www.roguewave.com/products-services/klocwork
http://www.viva64.com/en/pvs-studio

Black-Box Testing (a.k.a. Functional Testing)
� black-box testing (also known as functional testing) is testing method

that checks if software meets its specifications without using knowledge
of its internal structure

� concentrates on finding circumstances in which software does not behave
according to its specifications

� test cases derived solely from specifications
� advantages:

2 tester does not need to know internal structure of program
2 test cases can be created as soon as functional specifications complete
2 tester needs no knowledge of implementation, including specific

programming languages
2 tests will be performed from user’s point of view
2 testing can help to expose ambiguities or inconsistencies in specifications
2 as tester and developer are independent of each other, testing balanced

and unprejudiced
� disadvantages:

2 may leave many program paths untested
2 high probability of repeating tests already performed by developer

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1939

White-Box Testing (a.k.a. Structural Testing)

� white-box testing (also known as structural testing) is testing method
that employs knowledge of internal structure of software under test

� tester has access to source code and possibly documentation describing
software internals, such data structures and algorithms used

� derive testing strategy based on examination of internal structure of
software

� typically choose tests to exercise as much of code and control flow as
possible

� advantages:
2 more thorough testing possible than with black-box testing
2 forces developer to reason more carefully about implementation

� disadvantages:
2 as details of code are considered, skilled testers required with knowledge of

programming
2 tests more sensitive to changes in underlying implementation (and may be

rendered useless due to implementation changes)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1940

Gray-Box Testing

� gray-box testing is combination of black-box (i.e., functional) and
white-box (i.e., structural) testing

� in gray-box testing, tester has partial knowledge of internal structure of
code to be tested

� for example, tester may have access to documentation describing internal
data structures and algorithms used

� tester does not have access to source code
� advantages:

2 testing performed from point of view of users rather than developer
2 allows tester to prioritize tests based on partial knowledge of underlying

program structure
� disadvantages:

2 some tests may be redundant since developer may have performed some
similar tests

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1941

Equivalence-Class Testing (a.k.a. Equivalence Partitioning)

� equivalence-class testing is testing method in which input domain (i.e.,
set of all possible inputs) for software being tested partitioned into
equivalence classes, which then drive testing process

� particular partitioning of input domain determined by equivalence relation
(i.e., elements in same equivalence class if and only if equivalent as
determined by equivalence relation)

� each possible input appears in exactly one equivalence class
� union of all equivalence classes yields set of all possible inputs
� equivalence relation chosen so that inputs in same equivalence class

expected to cause software to behave similarly
� consequently, if testing one input in equivalence class would detect defect,

testing all other inputs in same equivalence class would be expected to
find same defect

� challenge in equivalence-class testing is making good choice of
equivalence relation (which determines equivalence classes) and good
choice is crucial

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1942

Equivalence-Class Testing (Continued 1)

� often equivalence relation chosen based on:
2 ranges of input variables
2 expected output
2 type of computation needed

� with regard to type of inputs considered, equivalence-class testing said to
be:

2 normal if considers only valid inputs
2 robust if considers both valid and invalid inputs

� robust testing only possible in situations where invalid inputs required to
yield well-defined behavior

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1943

Equivalence-Class Testing (Continued 2)

� advantages:
2 equivalence classes allow many inputs to be tested using one

representative element from equivalence class, greatly reducing number of
test cases

2 since equivalence classes are disjoint, can eliminate/reduce redundancy in
tests

� disadvantages:
2 just because members of equivalence class should in theory behave

similarly does not means that they actually will in practice (e.g., due to
unanticipated bugs)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1944

Equivalence-Class Testing Example [Volume Discount]

� consider program that calculates volume discount, where customer can
order from 1 to 299 units:

Quantity 1–9 10–49 50–99 100–199 200–299
Discount (%) 0 1 2 3 5

� suppose that we partition into equivalence classes on basis of type of
calculation performed (i.e., type of discount calculation)

� for normal testing, leads to 5 equivalence classes:

Class 1 2 3 4 5
Quantity 1–9 10–49 50–99 100–199 200–299

� for robust testing, add 2 equivalence classes:

Class 6 7
Quantity 0 or less 300 or greater

� select one test case for each equivalence class

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1945

Equivalence-Class Testing Example [Safe Add]

� consider function that computes sum of two integers safely (i.e., ensuring
that overflow does not occur) and has declaration:

std::pair<int, bool> safe_add(int x, int y);
� one possible choice for equivalence classes:

1 overflow in positive direction: x≥ 0 and y≥ 0 and y> INT_MAX−x
2 overflow in negative direction: x< 0 and y< 0 and y< INT_MIN−x
3 no overflow:

2 x≥ 0 and y< 0; or x< 0 and y≥ 0; or
2 x≥ 0 and y≥ 0 and y≤ INT_MAX−x; or
2 x< 0 and y< 0 and y≥ INT_MIN−x

y

INT_MAXINT_MIN

INT_MIN

x

INT_MAX

� could then use three test cases, one from each equivalence class

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1946

Boundary-Value Testing

� boundary-value testing is testing method that involves testing inputs at
boundaries of equivalence classes

� rationale behind boundary-value testing is that errors tend to occur near
extreme values of inputs (which typically correspond to boundaries of
equivalence classes)

� for example, off-by-one errors common (e.g., iterate one too many or few
times or array index one too great or little)

� with regard to types of inputs allowed, boundary-value testing said to be:
2 normal if only valid inputs considered
2 robust if considers both valid and invalid inputs

� robust testing only possible in situations where invalid inputs required to
yield well-defined behavior

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1947

Boundary-Value Testing Example [Volume Discount]

� again, consider program that calculates volume discount, where customer
can order from 1 to 299 units:

Quantity Discount (%)

1–9 0
10–49 1
50–99 2
100–199 3
200–299 5

� for normal testing, could use values:
2 1,2,8,9
2 10,11,48,49
2 50,51,98,99
2 100,101,198,199
2 200,201,298,299

� for robust testing, could add additional values:
2 -1,0
2 300,301

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1948

Boundary-Value Testing Example [Safe Add]

� again, consider function that computes sum of two integers safely (i.e.,
ensuring that overflow does not occur) and has declaration:

std::pair<int, bool> safe_add(int x, int y);
� as shown in figure, can partition input domain into three equivalence

classes (i.e., overflow in positive direction, overflow in negative direction,
and no overflow):

y

INT_MAXINT_MIN

INT_MIN

x

INT_MAX

� could choose test cases to correspond to points at or near boundaries
between equivalence classes:

2 x≥ 0 and y≥ 0 and y= INT_MAX−x+∆, where ∆ ∈ {−1,0,1,2}
2 x< 0 and y< 0 and y= INT_MIN−x−∆, where ∆ ∈ {−1,0,1,2}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1949

Special-Value Testing

� special-value testing is type of testing where tester uses domain
knowledge, experience with similar programs, and information about soft
spots to devise test cases

� effectively tester guesses likely errors and tests for them

� form of experience-based testing

� perhaps most widely used form of functional testing

� most intuitive and probably least uniform (i.e., most ad hoc)

� effectiveness of special-value testing heavily dependent on skill of tester
� example: some test cases for sorting subroutine might include:

2 input list is empty
2 input list contains exactly one element
2 all entries in list have same value
2 input list is already sorted

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1950

Special-Value Testing (Continued)

� example: some test cases for binary search in container (e.g., array)
might include:

2 exactly one element in container being searched
2 container size is power of 2
2 container size is one greater and one less than power of 2
2 query element in container
2 query element not in container

� example: to test algorithm that calculates sinc function, might use
knowledge that handling cases of computing sinc(x) = sin(x)/x for x = 0
and x 6= 0 likely to be performed differently, leading to at least two test
cases:

2 test for both zero and nonzero values

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1951

Random Testing

� instead of choosing input variables deterministically, generate values
randomly

� black-box testing technique
� has advantage of avoiding possible bias in testing
� may be difficult to determine how much testing is sufficient
� can be quite beneficial, for example, in testing algorithms that have very

many possible edge/corner cases, which may be impossible to reliably
identify and enumerate (in full)

� for example, might use random testing for algorithm that inserts point in
triangulation (since certain bugs may only manifest themselves for very
particular inputs that would be difficult to identify manually in reliable
manner)

� particular test case that fails during random testing might also be codified
as non-random test to ensure that failed test case always included in
future testing; in this sense, random testing can also be used as means to
generate non-random tests

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1952

Control-Flow Graphs

� control-flow graph is directed graph that shows paths of execution in
code

� nodes correspond to statement fragments or statements

� given two nodes i and j in control-flow graph, edge from i to j exists if and
only if statement fragment corresponding to node j can be executed
immediately after statement fragment corresponding to node i

� program can be viewed in terms of control-flow graph

� control-flow graphs are particularly useful for purposes of considering
structural coverage in software testing

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1953

Control-Flow Graph Examples: If-Else and Switch

1

2 4

6

declarations:
bool c; double x; double y;

1 if (c) {
2 y = x * x;
3 } else {
4 y = x;
5 }
6 // ...

1

63 9

12

declarations:
int n; double x; double y;

1 switch (n) {
2 case 0:
3 y = 0.0;
4 break;
5 case 1:
6 y = 2.0 * x;
7 break;
8 case 2:
9 y = 0.5 * x * x;

10 break;
11 }
12 // ...

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1954

Control-Flow Graph Examples: While and Do-While Loops

1

2

4

declarations:
int n;

1 while (n > 0) {
2 --n;
3 }
4 // ...

2

3

4

declarations:
int n;

1 do {
2 --n;
3 while (n > 0);
4 // ...

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1955

Control-Flow Graph Examples: For Loop

1a

1b

2

1c

4

declarations:
int a[1024];

1 for (int i = 0; i < 1024; ++i) {
2 a[i] = 0;
3 }
4 // ...

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1956

Structural Coverage Analysis

� structural coverage analysis used to determine which code structure
exercised by test procedures

� such analysis can be helpful in order to:
2 create additional test cases to increase coverage
2 eliminate redundant test cases
2 detect unreachable code
2 determine quantitative measure of coverage, which can serve as indirect

measure of quality
� structural coverage criteria can be classified into one of two types:

1 control flow
2 data flow

� control flow criteria measure flow of control between statements and
sequences of statements

� data flow criteria measure flow of data between variable assignments and
references to variables

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1957

Examples of Structural-Coverage Criteria

� some examples of coverage criteria based on control flow include:
2 function coverage
2 statement coverage
2 decision coverage
2 condition coverage
2 condition/decision coverage
2 modified condition/decision coverage
2 multiple condition coverage
2 all paths coverage

� some examples of coverage criteria based on data flow include:
2 all-definitions coverage
2 all C-uses coverage
2 all P-uses coverage
2 all-uses coverage
2 all DU-paths coverage

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1958

Function Coverage

� function coverage ensures that every function invoked at least once

� level of function coverage can be measured as number of functions
invoked divided by total number of functions in program

� function coverage does not imply that all statements execute

� with only function coverage, very large fraction of code may never be
executed

� function coverage is extremely weak coverage criterion and therefore not
very useful by itself

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1959

Statement Coverage
� statement coverage ensures that every statement executed at least once
� statement coverage ensures that each node in control-flow graph visited

during testing (consequently, also called node coverage)
� level of statement coverage can be measured as number of (distinct)

statements executed divided by total number of (distinct) statements in
program

� statement coverage alone not particularly strong coverage criterion
� some weaknesses of statement coverage include:

2 does not usually test all branch outcomes
2 predicates may be tested for only one value
2 loop bodies may only be executed once

� statement coverage for following code fragment can be achieved with
single test case (e.g., (a,b) = (1,1)):

if (a > 0)
++x;

if (b > 0)
--x;

� in above example, statement coverage achieved with single test case
does not exercise all possible branch outcomes

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1960

Conditions and Decisions

� condition: boolean expression containing no boolean operators (i.e.,
boolean expression that cannot be decomposed into boolean
subexpressions)

� decision: boolean expression composed of conditions and zero or more
boolean operators (or integral expression in case of switch statement)

� decisions associated with branching (i.e., control-flow) constructs (e.g.,
if, switch, for, while, do, and ternary operator)

� example:
2 consider code fragment:

if (x > 0 && x < 1024) { /* ... */}
2 x > 0 is condition
2 x < 1024 is condition
2 x > 0 && x < 1024 is decision but not condition since can be

decomposed further

� short-circuit evaluation of boolean expressions has implications in terms
of what constitutes decision, as .short-circuit evaluation introduces
additional control flow

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1961

Decision Coverage (a.k.a. Branch Coverage)

� decision coverage (also known as branch coverage) ensures that:
1 every point of entry invoked at least once
2 every decision assumes every possible outcome (e.g., true or false) at least

once (i.e., every branch direction traversed at least once)

� decision coverage ensures that each edge in control-flow graph traversed
during testing (consequently, also called edge coverage)

� decision coverage includes statement coverage (so decision coverage
stronger criterion than statement coverage)

� some weaknesses of decision coverage include:
2 does not necessarily ensure that each condition upon which decision based

assumes all possible values (e.g., true and false)

� decision coverage for following code fragment requires at least two test
cases (e.g., (a,b) ∈ {(0,0),(1,1)}):

if (a > 0)
++x;

if (b > 0)
--x;

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1962

Decision Coverage Example [(a || b) && c]

� consider following code fragment (with partial control-flow graph shown

.earlier):
if ((a || b) && c)

++x;

� assuming no short-circuiting logic:
2 one decision ((a || b) && c) with three conditions, namely, a, b, and c
2 decision coverage requires at least two test cases (i.e., one test case for

each possible outcome of single binary decision), such as:
a b c (a || b) && c

1 F F F F
2 T T T T

� assuming short-circuiting logic:
2 effectively, three decisions: one with condition a, one with condition b, and

one with condition c
2 decision coverage requires at least three test cases, such as:

a b c (a || b) && c

1 F F X F
2 F T F F
3 T X T T

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1963

Condition Coverage

� condition coverage ensures that:
1 every point of entry invoked at least once
2 every condition in every decision assumes each possible outcome at least

once

� condition coverage often does not yield decision coverage

� condition coverage alone is very weak criterion so only useful when
combined with other criteria

� for following code fragment, condition coverage can be achieved (without
statement or decision coverage) with only two test cases (e.g.,
(a,b) ∈ {(0,1),(1,0)}):

if (a > 0 && b > 0)
++x;

� in above example, note that condition coverage is achieved without
achieving either decision or statement coverage

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1964

Condition/Decision Coverage

� condition/decision coverage ensures that:
1 every point of entry in program invoked at least once
2 every decision assumes each possible outcome (e.g., true or false) at least

once
3 every condition in each decision assumes each possible outcome at least

once

� that is, condition/decision coverage simply combines requirements for
decision coverage with those for condition coverage

� condition/decision coverage includes statement, decision, and condition
coverages

� for following code fragment, condition/decision coverage can be achieved
with two test cases (e.g., (a,b) ∈ {(0,0),(1,1)}):

if (a > 0 && b > 0)
++x;

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1965

Condition/Decision Coverage Example [(a || b) && c]

� consider following code fragment (with partial control-flow graph shown

.earlier):
if ((a || b) && c)

++x;

� assuming no short-circuiting logic:
2 one decision ((a || b) && c) with three conditions, namely, a, b, and c
2 condition/decision coverage requires at least two test cases, such as:

a b c (a || b) && c

1 F F F F
2 T T T T

� assuming short-circuiting logic:
2 effectively, three decisions: one with condition a, one with condition b, and

one with condition c
2 condition/decision coverage requires at least three test cases, such as:

a b c (a || b) && c

1 F F X F
2 F T F F
3 T X T T

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1966

Modified Condition/Decision Coverage (MCDC)

� modified condition/decision coverage (MCDC) ensures that:
2 every point of entry invoked at least once
2 every condition in each decision in program assumes each possible

outcome at least once
2 each condition in decision shown to independently affect that decision’s

outcome

� several different variants of MCDC, each differing in how independence
shown (i.e., last condition above)

� unique-cause MCDC: condition shown to independently affect decision’s
outcome by varying just that condition while holding fixed all other
possible conditions

� masking MCDC: condition is shown to independently affect decision’s
outcome by applying principle of boolean logic to assure that no other
condition influences output (even though more than one condition in
decision may change value)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1967

MCDC (Continued)

� unique-cause MCDC cannot handle decisions with strongly coupled
conditions

� for decision with n uncoupled (i.e., independent) conditions, need at least
n+1 test cases

� MCDC includes statement, decision, condition, and condition/decision
coverages

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1968

MCDC Example [a || b]

� consider following code fragment:
if (a || b)

x = 42;
else

x = 0;

� assuming no short-circuiting logic, unique-cause MCDC requires at least
3 test cases, such as:

a b (a || b)

1 F F F
2 T F T
3 F T T

Independence Pairs

a (1, 2)
b (1, 3)

� assuming short-circuiting logic, masking MCDC requires at least 3 test
cases, such as:

a b (a || b)

1 F F F
2 T X T
3 F T T

Independence Pairs

a (1, 2)
b (1, 3)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1969

MCDC Example [a && b && c && d]

� consider following code fragment:
if (a && b && c && d)

x = 42;
else

x = 0;

� assuming no short-circuiting logic, unique-cause MCDC requires at least
5 test cases, such as:

a b c d a && b && c && d

1 T T T T T
2 F T T T F
3 T F T T F
4 T T F T F
5 T T T F F

Independence Pairs

a (1, 2)
b (1, 3)
c (1, 4)
d (1, 5)

� assuming short-circuiting logic, masking MCDC requires at least 5 test
cases, such as:

a b c d a && b && c && d

1 T T T T T
2 F X X X F
3 T F X X F
4 T T F X F
5 T T T F F

Independence Pairs

a (1, 2)
b (1, 3)
c (1, 4)
d (1, 5)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1970

MCDC Example [(a || b) && c]

� consider following code fragment (with partial control-flow graph shown

.earlier):
if ((a || b) && c)

++x;
� assuming no short-circuiting logic, unique-cause MCDC requires at least

4 test cases, such as:
a b c (a || b) && c

1 F F T F
2 T F T T
3 F T T T
4 T F F F

Independence Pairs

a (1, 2)
b (1, 3)
c (2, 4)

� assuming short-circuiting logic, masking MCDC requires at least 4 test
cases, such as:

a b c (a || b) && c

1 F F X F
2 T X T T
3 F T T T
4 T X F F

Independence Pairs

a (1, 2)
b (1, 3)
c (2, 4)

� as seen earlier, condition/decision coverage only requires 3 test cases

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1971

Multiple-Condition Coverage

� multiple-condition coverage ensures that:
1 every point of entry invoked at least once
2 each possible combination of condition outcomes in each decision occurs at

least once

� that is, multiple-condition coverage requires exhaustive testing of all
possible combinations of condition outcomes

� multiple-condition coverage is very strong criterion as it includes
statement, decision, condition, and condition/decision, and MCDC
coverages

� for decision with n uncoupled (i.e., independent) conditions and no
short-circuiting logic, need at least 2n test cases

� often, multiple-condition coverage is impractical as it can result in very
large number of test cases being required

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1972

Multiple-Condition Coverage Example [(a || b) && c]

� consider following code fragment (with partial control-flow graph shown

.earlier):
if ((a || b) && c)

++x;

� assuming no short-circuiting logic, multiple-condition coverage requires at
least 23 = 8 test cases (i.e., 1 test case for each possible combination of
outcomes from 3 conditions):

a b c (a || b) && c

1 F F F F
2 T F F F
3 F T F F
4 T T F F

a b c (a || b) && c

5 F F T F
6 T F T T
7 F T T T
8 T T T T

� assuming short-circuiting logic, multiple-condition coverage requires at
least 5 test cases, such as:

a b c (a || b) && c

1 F F X F
2 T X F F
3 F T F F
4 T X T T
5 F T T T

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1973

All-Paths Coverage

� all-paths coverage ensures that every path in program taken at least once

� in other words, all-paths coverage ensures that every possible path from
source node to sink node in control-flow graph is taken during testing

� all-paths coverage includes function, statement, decision, condition,
condition/decision, MCDC, and multiple-condition coverages

� except in case of trivial programs, number of possible paths
astronomically large

� testing every path infeasible except in very trivial programs

� consequently, all-paths coverage of little practical utility
� moreover, even if every path could be tested, not sufficient to test every

path through code, since:
2 testing every path may not guarantee that program meets all specifications
2 defects in code could be due to missing paths and non-existent paths

cannot be tested
2 whether bug manifests itself on particular path through code may depend

on program state at each step (i.e., data sensitivity)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1974

All-Paths Coverage Examples

� consider following code fragment:
if (a)

x = 42;
if (b)

y = 42;

� all-paths coverage would require at least 4 test cases, such as:
a b

1 F F
2 T F
3 F T
4 T T

� consider following code fragment, where n is of type unsigned int
and unsigned int is 64-bit integer:

for (unsigned int i = 0; i < n; ++i)
sum += a[i];

� all-paths coverage would require at least 264 ≈ 1.84 ·1019 (i.e., about 18.4
quintillion) test cases

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1975

Comparison of Various Structural-Coverage Types

Condition/ Multiple
Statement Decision Condition Decision MCDC Condition

Coverage Criterion Coverage Coverage Coverage Coverage Coverage Coverage

every point of entry and exit invoked at
least once

3 3 3 3 3

every statement executed at least once 3 3∗ 3∗ 3∗ 3∗

every decision has taken all possible out-
comes at least once

3 3 3 3

every condition in each decision has
taken all possible outcomes at least once

3 3 3 3

every condition in each decision shown
to independently affect that decision’s out-
come

3 3

every combination of condition outcomes
within each decision invoked at least once

3

∗not explicitly required in coverage definition but always implicitly satisfied

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1976

Data-Flow Coverage

� data-flow coverage considers how data modified and accessed (i.e.,
writes to and reads from variables)

� data-flow analysis particularly well suited to detecting problems such as:
2 variable used before being initialized
2 variable initialized but never used
2 variable initialized more than once before its use

� data-flow coverage criteria not used as much in practice as control-flow
counterparts

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1977

Variable Definitions and Uses

� each occurrence of variable in program classified as being either definition
or use

� definition: occurrence of variable where its value is set (i.e., written)
std::string s; // definition of s (via construction)
i = 0; // definition of i
*p = 42; // definition of *p

� use: occurrence of variable where its value is used (i.e., read)

� each use can be classified as either being predicate use or computation
use

� predicate use (P-use): use of variable in predicate (i.e., condition) of
branch statement; for example:

if (x > 0) {/* ... */} // P-use of x
while (n != 0) {/* ... */} // P-use of n

� computation use (C-use): use of variable that is not P-use; for example:
y = x + 1; // C-use of x
y = sin(x); // C-use of x (pass by value parameter)

� variable can be both used and re-defined in same statement; for example:
x = 3 * x + 2; // x read and then written
increment(x); // x incremented (via pass by reference)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1978

Definition-Clear and Definition-Use Paths

� C-use associated with node in graph

� P-use associated with edge in graph

� definition-clear (DC) path with respect to variable x from node i to node
j is path (i,n1. . . . ,nm, j), where m≥ 0, that contains no definitions of x in
nodes n1, . . . ,nm

� definition-clear (DC) path with respect to variable x from node i to edge
(j,k) is path (i,n1. . . . ,nm, j,k), where m≥ 0, that contains no definitions
of x in nodes n1, . . . ,nm, j

� definition-use (DU) path with respect to variable x is path (n1, . . . ,n j,nk)
such that n1 has definition of x and either:

2 node nk has C-use of x and (n1, . . . ,n j,nk) is DC simple path with respect
to x; or

2 edge (n j,nk) has P-use of x and (n1, . . . ,n j) is DC loop-free path with
respect to x

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1979

Define/Use Coverage Criteria

� all definitions coverage: for every program variable x, at least one DC
path from every definition of x to at least one C-use or one P-use of x must
be covered

� all C-uses coverage: for every program variable x, at least one DC path
from every definition of x to every C-use of x must be covered

� all P-uses coverage: for every program variable x, at least one DC path
from every definition of x to every P-use (including all outgoing edges of
predicate statement) of x must be covered

� all uses coverage: for every program variable x, at least one DC path from
every definition of x to every C-use and P-use (including all outgoing
edges of predicate statement) of x must be covered

� all DU-paths coverage: for every program variable x, every DU path from
every definition of x to every C-use and P-use of x must be covered

� all-definitions coverage subsumed by all-uses coverage subsumed by all
DU-paths coverage

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1980

Power Example: Source Code

1 double power(double x, int y) {
2 int p;
3 if (y >= 0) {
4 p = y;
5 } else {
6 p = -y;
7 }
8 double z = 1.0;
9 while (p > 0) {

10 z *= x;
11 --p;
12 }
13 if (y < 0) {
14 z = 1.0 / z;
15 }
16 return z;
17 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1981

Power Example: Control-Flow Graph, Definitions, C-Uses, and P-Uses

1

initialize x, y; if (y >= 0)

2p = y; 3 p = -y;

4 z = 1.0;

5 while (p > 0)

6
z *= x; --p;

7 if (y < 0)

8
z = 1.0 / z;

9
return z;

T F

T F

T F

Node Definitions C Uses

1 x, y
2 p y
3 p y
4 z
5
6 z, p x, z, p
7
8 z z
9 z

Edge P Uses

(1, 2) y
(1, 3) y
(5, 6) p
(5, 7) p
(7, 8) y
(7, 9) y

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1982

Difficulties With Data-Flow Coverage

� often does not scale well to large real-world programs

� how to handle arrays

� aliasing poses challenges

� underestimation of aliases may fail to consider some definitions or uses

� overestimation of aliases may introduce infeasible test obligations

� can be more difficult to design test cases

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1983

Structural Coverage Criteria Subsumption Hierarchy

All Paths

All DU Paths

All Uses

All C-Uses/Some P-Uses

All C-Uses

All P-Uses/Some C-Uses

All P-UsesAll Definitions

Multiple Condition

Modified Condition/Decision

Condition/Decision

Decision

Statement

Function

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1984

Structural Coverage in Various Standards

� DO-178C — Software Considerations in Airborne Systems and
Equipment Certification

2 primary document used by certification authorities (such as FAA, EASA,
and Transport Canada) to approve all commercial software-based
aerospace systems

2 code that could result in catastrophic failure (e.g., crash) must have
statement, decision, and MCDC coverages

2 code that could result in hazardous failure (e.g., passenger fatality) must
have decision and statement coverages

2 code that could result in major failure (e.g., passenger injury) must have
statement coverage

� ISO 26262 — Road vehicles — Functional safety
2 standard for functional safety of electrical and electronic systems in

production automobiles
2 for most critical systems, highly recommends decision and MCDC

coverages and recommends statement coverage
2 for least critical systems, highly recommends statement coverage and

recommends decision and MCDC coverages

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1985

Structural Coverage in Various Standards (Continued)

� IEC 61508 — Functional Safety of Electrical/Electronic/Programmable
Electronic Safety-Related Systems

2 safety standard that applies to many industries
2 for most critical systems, highly recommends statement, decision, and

MCDC coverages
2 for least critical systems, recommends statement, decision, and MCDC

coverages
� EN 50128 — Railway Applications — Communication, Signalling and

Processing Systems (a.k.a. IEC 62279)
2 pertains to programmable electronic systems used in railway control and

protection applications
2 for most critical systems, highly recommends statement, decision, and

MCDC coverage
� IEEE 1008-1987 — IEEE Standard for Software Unit Testing

2 defines integrated approach to systematic and documented unit testing
2 specifies statement coverage as completeness requirement
2 recommends decision coverage for code that is critical or has inadequate

requirements specification

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1986

Structural Coverage in Practice

� for software in safety-critical systems (i.e., systems in which failures could
result in death or serious injury), desirable to have 100% coverage with
respect to statement, decision, condition/decision, and MCDC criteria

� for software that is not safety/mission critical, probably want to achieve
80% coverage or better with respect to each of statement, decision, and
condition/decision coverage,

� many organizations require at least 85% statement coverage for all
projects

� some people believe that anything less than 100% statement, decision, or
condition/decision coverage does not ensure sufficient quality, but
achieving 100% coverage often requires very substantial effort

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1987

Dynamic Analysis Tools

� dynamic analysis tools examine code by executing it
� dynamic analysis tools can be used to:

2 find certain types of code defects
2 measure structural coverage

� some types of code defects that can be found by dynamic analysis tools
include:

2 invalid memory accesses
2 memory leaks
2 data races
2 use of uninitialized variable
2 signed integer overflow
2 use of memory after deallocation
2 double deallocation

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1988

Examples of Dynamic Analysis Tools

� .Address Sanitizer (ASan)

� .Undefined-Behavior Sanitizer (UBSan)

� .Thread Sanitizer (TSan)

� .Memory Sanitizer (MSan)

� .Leak Sanitizer (LSan)

�Valgrind (.Callgrind, Cachegrind,Helgrind,Memcheck, andMassif) and

.KCacheGrind

�Gcov,Lcov,Gcovr, andLLVM Cov

�Kcov

� Control Flow Integrity (CFI) Sanitizer
(https://clang.llvm.org/docs/ControlFlowIntegrity.html)

� many commercial products also available, such as:
2 Testwell CTC++ (http://www.testwell.fi/ctcdesc.html)
2 Bullseye Coverage (http://www.bullseye.com)
2 PurifyPlus (http://teamblue.unicomsi.com/products/purifyplus)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1989

https://clang.llvm.org/docs/ControlFlowIntegrity.html
http://www.testwell.fi/ctcdesc.html
http://www.bullseye.com
http://teamblue.unicomsi.com/products/purifyplus

Testing Levels

Unit
Testing

Integration
Testing

System
Testing

Acceptance
Testing

� software testing levels are stages of testing performed as part of
software-development lifecycle

� four levels of testing (in order performed) are:
1 unit testing
2 integration testing
3 system testing
4 acceptance testing

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1990

Unit Testing

� unit testing is stage of software testing in which individual components
(i.e., units) tested

� first level of software testing; happens before integration testing
� unit being tested typically corresponds to:

2 class or class method
2 function

� goal is to isolate unit and validate its correctness
� only ensures that unit works correctly in isolation
� conducted by developer
� usually uses white-box testing but may also employ gray-box and

black-box testing
� can be done manually but is usually automated
� unit testing allows problems to be found early in development cycle
� unit testing might include (amongst other things): static code analysis,

running test cases in conjunction with structural-coverage analysis, and
code reviews

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1991

Integration Testing

� integration testing is stage of software testing in which individual
components combined and tested as group

� second level of testing; occurs after unit testing and before system testing

� components may be combined together incrementally or all at once (i.e.,
big bang)

� usually prefer to combine components incrementally as this typically
allows bugs to be isolated more quickly

� purpose is to expose defects in interfaces and interaction between
integrated components

� progressively larger groups of components integrated until software works
as system

� employs black-box or white-box testing

� performed by tester (or in some cases developer)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1992

System Testing
� system testing is testing of complete software product (i.e., consisting of

all integrated components) against specifications
� third level of testing; occurs after integration testing and before

acceptance testing
� performed before completed software product introduced to market
� goal is to ensure that system meets its requirements
� conducted by tester
� employs black-box testing
� examples of different types of testing that may be included in system

testing:
2 graphical user interface testing
2 usability testing
2 compatibility testing
2 performance testing
2 regression testing
2 installation testing
2 recovery testing

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1993

Acceptance Testing

� acceptance testing is stage of testing that evaluates compliance with
business requirements and assesses whether acceptable for delivery

� fourth (and last) level of testing; after system testing

� usually uses black-box testing and often ad hoc

� internal acceptance testing performed by members of organization that
developed software but are not directly involved in project

� external acceptance testing performed by people outside organization that
developed software

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1994

Regression Testing

� regression testing involves re-running tests to ensure that software still
works correctly after change or addition

� regression: defect (where software has reverted to exhibiting incorrect
behavior) due to code change

� changes that may require regression testing include:
2 applying bug fixes
2 adding enhancements or new features
2 making configuration changes (e.g., changes to configuration files)

� may re-run full test suite or subset thereof, depending on particular
situation

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1995

Performance Testing

� performance testing checks how software will behave and perform under
various workloads

� may consider such factors as:
2 speed
2 resource usage (e.g., memory, disk, and network)
2 reliability
2 scalability
2 responsiveness
2 throughput

� load testing checks how software behaves under anticipated workloads

� stress testing checks how software behaves under extreme workloads

� soak testing (also known as endurance testing) checks how well
software can handle expected workload over long periods of time

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1996

Fuzz Testing

� fuzz testing (also known as fuzzing) is automated technique used to find
bugs in code by providing massive amounts of random data as input to
test subject in effort to induce failure

� tool used to perform fuzz testing called fuzzer
� particularly effective for code that processes streams of characters (e.g.,

file-format processing and parsers)

� often exploit genetic algorithms in order to mutate input data

� may be aware of input structure

� may be aware of program structure (e.g., coverage-guided fuzzing)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1997

Fuzzing Tools

� American Fuzzy Lop (AFL)
2 security-oriented fuzzer that uses compiler-time instrumentation and

genetic algorithms
2 web site: http://lcamtuf.coredump.cx/afl

� libFuzzer
2 coverage-guided fuzzer in LLVM
2 web site: https://llvm.org/docs/LibFuzzer.html

� OSS-Fuzz
2 service provided by Google for continuous fuzzing of open-source software

with large user base
2 employs libFuzzer fuzzing engine
2 web site: https://github.com/google/oss-fuzz

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1998

http://lcamtuf.coredump.cx/afl
https://llvm.org/docs/LibFuzzer.html
https://github.com/google/oss-fuzz

Unit-Test Frameworks

� unit-test framework is tool that provides infrastructure for facilitating unit
testing

� by using unit-test framework, can avoid developing code that runs tests
and instead focus on only on code for tests themselves

� test fixture: provides properly initialized context in which to run tests
(which is typically used by multiple tests)

� mock object: simulated object that mimics behavior of real objects in
controlled ways

� unit-test frameworks vary greatly in features offered, and may include
support for things such as:

2 test fixtures (to reduce duplication of boiler-plate code)
2 mock objects
2 mechanisms for performing floating-point comparisons with tolerances
2 variety of output formats for reporting test results
2 multithreaded code

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 1999

Examples of Unit-Test Frameworks

�Catch2

� Google Test (http://github.com/google/googletest)

� Boost Test (http://www.boost.org)
� many commercial products also available, such as:

2 Parasoft C/C++ Test (https://www.parasoft.com/products/ctest)
2 Testwell CTA++ (http://www.testwell.fi/ctadesc.html)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2000

http://github.com/google/googletest
http://www.boost.org
https://www.parasoft.com/products/ctest
http://www.testwell.fi/ctadesc.html

Bugs in Concurrent Programs

� multi-threaded programs can have all same types of bugs as
single-threaded programs plus many more

� some types of bugs specific to multi-threaded programs include:
2 race conditions
2 data races
2 deadlocks
2 livelocks
2 starvation
2 atomicity violation (i.e., assumption that code block executes atomically is

violated)
2 ordering violation (i.e., assumption regarding relative order in which

operations performed is violated)
2 unintended sharing

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2001START SLIDE: tutorial

Strategies for Testing Concurrent Programs

� conduct detailed code inspections, looking for problems such as:
2 accessing shared data without taking lock
2 taking multiple locks in inconsistent orders
2 making invalid assumptions about happens-before relationships

� test code in manner that varies code timing as much as possible, since
many bugs will only show with very particular code timing (as many bugs
caused by race conditions)

� as in testing of any code, ensure:
2 good code coverage
2 boundary conditions encountered

� perform load (i.e., stress) testing, since many types of bugs more likely to
show themselves under extreme conditions

� allow test code to run for longer periods of time in hopes that less
frequently occurring timings that may expose bugs will eventually be
encountered

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2002

Strategies for Testing Concurrent Programs (Continued)
� utilize data-race detection tools such as:

2 Thread Sanitizer (TSan)
2 Valgrind/Helgrind

� test code on all platforms of interest (e.g., different processor architectures
and operating systems)

� since implementations of synchronization primitives may differ across
operating systems, some bugs may show themselves only under certain
operating systems

� some implementations of synchronization primitives (particularly those on
processor architectures with relatively strong memory models) may
provide more guarantees than what is requested by code, which can mask
bugs

� suppose, for example, that code requires particular aligned 32-bit memory
access to be atomic in order to work correctly, but does not specifically
request access to be atomic, which is bug

� preceding bug would never show itself on processor architecture where all
aligned 32-bit memory accesses are atomic

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2003NEXT SLIDE: TSan

Section 6.9.1

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2004

References I

1 P. C. Jorgensen. Software Testing — A Craftsman’s Approach.
CRC Press, Boca Raton, FL, USA, 4th edition, 2014.

2 G. J. Myers, C. Sandler, and T. Badgett. The Art of Software Testing.
Wiley, Hoboken, NJ, USA, 3rd edition, 2012.

3 A. Zeller. Why Programs Fail — A Guide to Systematic Debugging.
Morgan Kaufmann, Burlington, MA, USA, 2nd edition, 2009.

4 R. Black. Advanced Software Testing — Volume 1 — Guide to the ISTQB
Advanced Certification as an Advanced Test Analyst.
Rocky Nook, Santa Barbara, CA, USA, 2009.

5 R. Black. Advanced Software Testing — Volume 2 — Guide to the ISTQB
Advanced Certification as an Advanced Test Manager.
Rocky Nook, Santa Barbara, CA, USA, 2nd edition, 2014.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2005

References II

6 J. L. Mitchell and R. Black. Advanced Software Testing — Volume 3 —
Guide to the ISTQB Advanced Certification as an Advanced Technical
Test Analyst.
Rocky Nook, Santa Barbara, CA, USA, 2nd edition, 2015.

7 K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and L. K. Rierson. A
practical tutorial on modified condition/decision coverage.
Technical Report NASA/TM-2001-210876, NASA, May 2001.

8 J. J. Chilenski and S. P. Miller. Applicability of modified condition/decision
coverage to software testing.
Software Engineering Journal, 9(5):193–200, Sept. 1994.

9 J. J. Chilenski. An investigation of three forms of the modified condition
decision coverage (MCDC) criterion.
Technical Report DOT/FAA/AR-01/18, Federal Aviation Administration,
Apr. 2001.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2006

References III

10 L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil. A formal
evaluation of data flow path selection criteria.
IEEE Trans. on Software Engineering, 15(11):1318–1332, Nov. 1989.

11 S. Rapps and E. J. Weyuker. Selecting software test data using data flow
information.
IEEE Trans. on Software Engineering, 11(4):367–375, Apr. 1985.

12 T. Su, K. Wu, W. Miao, G. Pu, J. He, Y. Chen, and Z. Su. A survey on
data-flow testing.
ACM Computing Surveys, 50(1):5:1–5:35, Mar. 2017.

13 H. Zhu. A formal analysis of the subsume relation between software test
adequacy criteria.
IEEE Trans. on Software Engineering, 22(4):248–255, Apr. 1996.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2007

References IV

14 T. K. Paul and M. F. Lau. A systematic literature review on modified
condition and decision coverage.
In Proc. of ACM Symposium on Applied Computing, pages 1301–1308,
Mar. 2014.

15 T. Su, A bibliography of papers and tools on data-flow testing,
https://tingsu.github.io/files/dftbib.html, 2017.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2008

https://tingsu.github.io/files/dftbib.html

Talks I

1 Marshall Clow. Making Your Library More Reliable with Fuzzing. C++Now,
Aspen, CO, USA, May 10, 2018. Available online at
https://youtu.be/LlLJRHToyUk.

2 Craig Young. Fuzz Smarter, Not Harder: An AFL Fuzz Primer. BSidesSF,
San Francisco, CA, USA, Feb. 28–29, 2016. Available online at
https://youtu.be/29RbO5bftwo.

3 Daniel Marjamaki. Cppcheck: Static Analysis of C++ Code.
SwedenCpp::Stockholm, Sundbyberg, Sweden, Dec. 11, 2018. Available
online at https://youtu.be/ATkTqBqjYBY.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2009

https://youtu.be/LlLJRHToyUk
https://youtu.be/29RbO5bftwo
https://youtu.be/ATkTqBqjYBY

Part 7

Debugging and Testing Tools

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2010

Section 7.1

Debuggers

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2011

Source-Level Debuggers

� unfortunately, software does not always work as intended due to errors in
code (i.e., bugs)

� how does one go about fixing bugs in time-efficient manner?

� source-level debugger is essential tool

� single stepping: step through execution of code, one source-code line at a
time

� breakpoints: pause execution at particular points in code

� watchpoints: pause execution when the value of variable is changed

� print values of variables

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2012

GNU Debugger (GDB)

� GNU Debugger (GDB) is powerful source-level debugger

� home page: http://www.gnu.org/software/gdb

� available on most platforms (e.g., Unix, Microsoft Windows)

� most popular source-level debugger on Unix systems

� allows one to see what is happening inside program as it executes or what
a program was doing at the moment it crashed

� has all of the standard functionality of a source-level debugger (e.g.,
breakpoints, watchpoints, single-stepping)

� gdb command
� command-line usage:

gdb [options] executable

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2013

http://www.gnu.org/software/gdb

gdb Commands

help

Print help information.

quit

Exit debugger.

run [arglist]

Start the program (with arglist if specified).

print expr

Display the value of the expression expr.

bt

Display a stack backtrace.

list

Type the source code lines in the vicinity of where the program is currently
stopped.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2014

gdb Commands (Continued)

break function

Set a breakpoint at the function function.

watch expr

Set a watchpoint for the expression expr.

c

Continue running the program (e.g., after stopping at a breakpoint).

next

Execute the next program line, stepping over any function calls in the line.

step

Execute the next program line, stepping into any function calls in the line.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2015

GNU Data Display Debugger (DDD)

� graphical front-end to command-line debuggers such as GDB

� has some fancy graphical data display functionality

� all gdb commands available in text window, but can use graphical interface
to enter commands as well

� home page: http://www.gnu.org/software/ddd

� ddd command

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2016

http://www.gnu.org/software/ddd

Section 7.2

Code Sanitizers

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2017

Code Sanitizers

� code sanitizer: tool for automatically performing variety of run-time
checks on code

� typically requires compiler to instrument code

� may also need library for run-time support
� several code sanitizers supported by Clang and/or GCC, including:

2 Address Sanitizer (.ASan)
2 Thread Sanitizer (.TSan)
2 Memory Sanitizer (.MSan)
2 Undefined-Behavior Sanitizer (.UBSan)
2 Leak Sanitizer (.LSan)

� sanitizers easy to use

� can easily catch many bugs

� overhead of code sanitizer typically much less than that of other
competing approaches for detecting similar types of bugs

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2018

Address Sanitizer (ASan)

� Address Sanitizer (ASan) can be used to detect numerous errors related
to memory addressing, such as:

2 out of bounds accesses to heap, stack, and globals
2 heap use after free
2 stack use after return
2 stack use after scope
2 double or invalid free
2 memory leaks
2 initialization order problems

� supported by both Clang and GCC

� compiler instruments all loads/stores and inserts redzones around stack
and global variables

� run-time library provides malloc replacement (with redzone and
quarantine functionality) and bookkeeping for error messages

� typically introduces about 2 times slowdown

� about 1.5 to 3 times memory overhead

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2019

Using Address Sanitizer

� need to enable address sanitizer at compile and link time using
-fsanitize=address option for Clang and GCC

� environment variable ASAN_OPTIONS can be set to whitespace-separated
list of options to control some sanitizer behavior at run time

� some sanitizer options include:
2 strip_path_prefix
2 verbosity
2 detect_leaks
2 allocator_may_return_null
2 check_initialization_order
2 detect_stack_use_after_return
2 new_delete_type_mismatch
2 exitcode

� to enable checking for initialization order problems, use
ASAN_OPTIONS="check_initialization_order=1"

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2020

Out-of-Bounds Access to Globals

global_buffer_overflow.cpp
1 #include <iostream>
2 int a[4] = {1, 2, 3, 4};
3 int main() {
4 for (int i = 0; i <= 4; ++i) {
5 std::cout << a[i] << ’\n’;
6 }
7 }

program output (truncated):
===
==3359==ERROR: AddressSanitizer: global-buffer-overflow on address 0

x0000006020d0 at pc 0x000000400d31 bp 0x7ffeb78d2350 sp 0
x7ffeb78d2348

READ of size 4 at 0x0000006020d0 thread T0
#0 0x400d30 in main global_buffer_overflow.cpp:5
#1 0x7f83da8d4fdf in __libc_start_main (/lib64/libc.so.6+0x1ffdf)
#2 0x400bf8 (global_buffer_overflow+0x400bf8)

0x0000006020d0 is located 0 bytes to the right of global variable ’a’
defined in ’global_buffer_overflow.cpp:2:5’ (0x6020c0) of size 16

SUMMARY: AddressSanitizer: global-buffer-overflow
global_buffer_overflow.cpp:5 in main

Shadow bytes around the buggy address:

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2021

Out-of-Bounds Access to Stack

stack_buffer_overflow.cpp
1 #include <iostream>
2 int main() {
3 int a[4] = {1, 2, 3, 4};
4 for (int i = 0; i <= 4; ++i)
5 {std::cout << a[i] << ’\n’;}
6 }

program output (truncated):
===
==3364==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7ffc3e811cf0

at pc 0x000000400e53 bp 0x7ffc3e811c70 sp 0x7ffc3e811c68
READ of size 4 at 0x7ffc3e811cf0 thread T0

#0 0x400e52 in main stack_buffer_overflow.cpp:5
#1 0x7f10c1c7afdf in __libc_start_main (/lib64/libc.so.6+0x1ffdf)
#2 0x400c48 (stack_buffer_overflow+0x400c48)

Address 0x7ffc3e811cf0 is located in stack of thread T0 at offset 112 in frame
#0 0x400d06 in main stack_buffer_overflow.cpp:2

This frame has 2 object(s):
[32, 33) ’__c’
[96, 112) ’a’ <== Memory access at offset 112 overflows this variable

HINT: this may be a false positive if your program uses some custom stack unwind
mechanism or swapcontext
(longjmp and C++ exceptions *are* supported)

SUMMARY: AddressSanitizer: stack-buffer-overflow stack_buffer_overflow.cpp:5 in
main

Shadow bytes around the buggy address:

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2022

Out-of-Bounds Access to Heap
heap_buffer_overflow.cpp
1 #include <iostream>
2 #include <cstring>
3 int main() {
4 char* p = new char[5];
5 std::strcpy(p, "Hello");
6 std::cout << p << ’\n’;
7 delete[] p;
8 }

program output (truncated):
===
==3360==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000000015

at pc 0x7f7497932399 bp 0x7ffd8defc240 sp 0x7ffd8defb9f0
WRITE of size 6 at 0x602000000015 thread T0

#0 0x7f7497932398 in __interceptor_memcpy ../../../../src/libsanitizer/asan/
asan_interceptors.cc:456

#1 0x400dd4 in main heap_buffer_overflow.cpp:5
#2 0x7f7496c7dfdf in __libc_start_main (/lib64/libc.so.6+0x1ffdf)
#3 0x400ca8 (heap_buffer_overflow+0x400ca8)

0x602000000015 is located 0 bytes to the right of 5-byte region [0x602000000010,0
x602000000015)

allocated by thread T0 here:
#0 0x7f7497997170 in operator new[](unsigned long) ../../../../src/

libsanitizer/asan/asan_new_delete.cc:82
#1 0x400dbf in main heap_buffer_overflow.cpp:4

SUMMARY: AddressSanitizer: heap-buffer-overflow ../../../../src/libsanitizer/asan
/asan_interceptors.cc:456 in __interceptor_memcpy

Shadow bytes around the buggy address:

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2023

Use After Free

use_after_free.cpp
1 int main() {
2 int* p = new int[16];
3 delete[] p;
4 *p = 42;
5 }

program output (truncated):
===
==3366==ERROR: AddressSanitizer: heap-use-after-free on address 0x606000000020 at

pc 0x000000400836 bp 0x7ffc752b5c20 sp 0x7ffc752b5c18
WRITE of size 4 at 0x606000000020 thread T0

#0 0x400835 in main use_after_free.cpp:4
#1 0x7f0b6dab5fdf in __libc_start_main (/lib64/libc.so.6+0x1ffdf)
#2 0x400738 (use_after_free+0x400738)

0x606000000020 is located 0 bytes inside of 64-byte region [0x606000000020,0
x606000000060)

freed by thread T0 here:
#0 0x7f0b6e7cfe70 in operator delete[](void*) ../../../../src/libsanitizer/

asan/asan_new_delete.cc:128
#1 0x400801 in main use_after_free.cpp:3

previously allocated by thread T0 here:
#0 0x7f0b6e7cf170 in operator new[](unsigned long) ../../../../src/

libsanitizer/asan/asan_new_delete.cc:82
#1 0x4007f1 in main use_after_free.cpp:2

SUMMARY: AddressSanitizer: heap-use-after-free use_after_free.cpp:4 in main
Shadow bytes around the buggy address:

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2024

Stack Use After Return

stack_use_after_return.cpp
1 int* g = nullptr;
2 void foobar() {int i = 42; g = &i;}
3 int main() {
4 foobar();
5 return *g;
6 }

program output (truncated) (with ASAN_OPTIONS=detect_stack_use_after_return=1):
===
==3365==ERROR: AddressSanitizer: stack-use-after-return on address 0x7f74e7500020

at pc 0x000000400a88 bp 0x7ffdbd534e20 sp 0x7ffdbd534e18
READ of size 4 at 0x7f74e7500020 thread T0

#0 0x400a87 in main stack_use_after_return.cpp:5
#1 0x7f74eb1dffdf in __libc_start_main (/lib64/libc.so.6+0x1ffdf)
#2 0x4008b8 (stack_use_after_return+0x4008b8)

Address 0x7f74e7500020 is located in stack of thread T0 at offset 32 in frame
#0 0x400976 in foobar() stack_use_after_return.cpp:2

This frame has 1 object(s):
[32, 36) ’i’ <== Memory access at offset 32 is inside this variable

HINT: this may be a false positive if your program uses some custom stack unwind
mechanism or swapcontext
(longjmp and C++ exceptions *are* supported)

SUMMARY: AddressSanitizer: stack-use-after-return stack_use_after_return.cpp:5 in
main

Shadow bytes around the buggy address:

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2025

Stack Use After Scope

use_after_scope.cpp
1 #include <iostream>
2 int main() {
3 int* p;
4 {int x = 0; p = &x;}
5 std::cout << *p << ’\n’;
6 }

program output (truncated):
===
==3367==ERROR: AddressSanitizer: stack-use-after-scope on address 0x7ffe1d6a6c40

at pc 0x000000400b6b bp 0x7ffe1d6a6c10 sp 0x7ffe1d6a6c08
READ of size 4 at 0x7ffe1d6a6c40 thread T0

#0 0x400b6a in main use_after_scope.cpp:5
#1 0x7fea2e596fdf in __libc_start_main (/lib64/libc.so.6+0x1ffdf)
#2 0x400a58 (use_after_scope+0x400a58)

Address 0x7ffe1d6a6c40 is located in stack of thread T0 at offset 32 in frame
#0 0x400b16 in main use_after_scope.cpp:2

This frame has 1 object(s):
[32, 36) ’x’ <== Memory access at offset 32 is inside this variable

HINT: this may be a false positive if your program uses some custom stack unwind
mechanism or swapcontext
(longjmp and C++ exceptions *are* supported)

SUMMARY: AddressSanitizer: stack-use-after-scope use_after_scope.cpp:5 in main
Shadow bytes around the buggy address:

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2026

Double Free
double_free.cpp
1 int main() {
2 int* p = new int[16];
3 delete[] p;
4 delete[] p;
5 }

program output (truncated):
===
==3358==ERROR: AddressSanitizer: attempting double-free on 0x606000000020 in

thread T0:
#0 0x7fdc05ed8e70 in operator delete[](void*) ../../../../src/libsanitizer/

asan/asan_new_delete.cc:128
#1 0x4007b9 in main double_free.cpp:4
#2 0x7fdc051befdf in __libc_start_main (/lib64/libc.so.6+0x1ffdf)
#3 0x4006e8 (double_free+0x4006e8)

0x606000000020 is located 0 bytes inside of 64-byte region [0x606000000020,0
x606000000060)

freed by thread T0 here:
#0 0x7fdc05ed8e70 in operator delete[](void*) ../../../../src/libsanitizer/

asan/asan_new_delete.cc:128
#1 0x4007b1 in main double_free.cpp:3

previously allocated by thread T0 here:
#0 0x7fdc05ed8170 in operator new[](unsigned long) ../../../../src/

libsanitizer/asan/asan_new_delete.cc:82
#1 0x4007a1 in main double_free.cpp:2

SUMMARY: AddressSanitizer: double-free ../../../../src/libsanitizer/asan/
asan_new_delete.cc:128 in operator delete[](void*)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2027

Memory Leaks

memory_leak.cpp
1 #include <iostream>
2 #include <cstring>
3 int main() {
4 char* p = new char[1024];
5 std::strcpy(p, "Hello, World!\n");
6 std::cout << p;
7 }

program output (truncated):
Hello, World!
===
==3362==ERROR: LeakSanitizer: detected memory leaks
Direct leak of 1024 byte(s) in 1 object(s) allocated from:

#0 0x7f7413651170 in operator new[](unsigned long) ../../../../src/
libsanitizer/asan/asan_new_delete.cc:82

#1 0x400b51 in main memory_leak.cpp:4
SUMMARY: AddressSanitizer: 1024 byte(s) leaked in 1 allocation(s).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2028

Initialization Order Problems
init_order_main.cpp

1 #include <iostream>
2 extern int B;
3 int A = B;
4 int main()
5 {std::cout << A << ’\n’;}

init_order_other.cpp
1 #include <cstdlib>
2 int B = std::atoi("42");

program output (truncated) (with ASAN_OPTIONS=check_initialization_order=1):
===
==3361==ERROR: AddressSanitizer: initialization-order-fiasco on address 0

x000000602440 at pc 0x000000400f14 bp 0x7fff92151540 sp 0x7fff92151538
READ of size 4 at 0x000000602440 thread T0

#0 0x400f13 in __static_initialization_and_destruction_0 init_order_main.cpp
:3

#1 0x400f13 in _GLOBAL__sub_I_A init_order_main.cpp:5
#2 0x40103c in __libc_csu_init (init_order+0x40103c)
#3 0x7f933e2e7f6e in __libc_start_main (/lib64/libc.so.6+0x1ff6e)
#4 0x400c98 (init_order+0x400c98)

0x000000602440 is located 0 bytes inside of global variable ’B’ defined in ’
init_order_other.cpp:2:5’ (0x602440) of size 4

registered at:
#0 0x7f933ef5b7c8 in __asan_register_globals ../../../../src/libsanitizer/

asan/asan_globals.cc:317
#1 0x400fe9 in _GLOBAL__sub_I_00099_1_B (init_order+0x400fe9)

SUMMARY: AddressSanitizer: initialization-order-fiasco init_order_main.cpp:3 in
__static_initialization_and_destruction_0

Shadow bytes around the buggy address:

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2029

Thread Sanitizer (TSan)

� Thread Sanitizer (TSan) detects data races and deadlocks

� supported by Clang and GCC

� compiler instruments code to intercept all loads/stores

� run-time library provides malloc replacement, intercepts all
synchronization, and handles loads/stores

� does not instrument prebuilt libraries and inline assembly

� about 4 to 10 times slower

� about 5 to 8 times more memory

� only supported on 64-bit Linux

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2030

Using Thread Sanitizer

� need to enable sanitizer at compile and link time using
-fsanitize=thread option for Clang and GCC

� environment variable TSAN_OPTIONS can be set to whitespace-separated
list of options to control some sanitizer behavior at run time

� some sanitizer options include:
2 strip_path_prefix
2 verbosity
2 report_bugs
2 history_size
2 suppressions
2 exitcode

� for example, to set per-thread history size value to 7, use
TSAN_OPTIONS="history_size=7"

� at least some versions of TSan do not detect potential deadlock if it
actually happens (although arguably if deadlock happens, probably it will
be noticed)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2031

Data Race
data_race.cpp
1 #include <thread>
2 int x = 0;
3 int main() {
4 std::thread t([&]{x = 42;});
5 x = 43;
6 t.join();
7 }

program output (truncated):
==================
WARNING: ThreadSanitizer: data race (pid=10305)
Write of size 4 at 0x000001553848 by thread T1:
#0 main::$_0::operator()() const data_race.cpp:4:22 (data_race+0x4bfc81)
#1 void std::_Bind_simple<main::$_0 ()>::_M_invoke<>(std::_Index_tuple<>) /usr/lib/gcc/x86_64-redhat-

linux/4.9.2/../../../../include/c++/4.9.2/functional:1699:18 (data_race+0x4bfbf8)
#2 std::_Bind_simple<main::$_0 ()>::operator()() /usr/lib/gcc/x86_64-redhat-linux/4.9.2/../../../../

include/c++/4.9.2/functional:1688:16 (data_race+0x4bfb98)
#3 std::thread::_Impl<std::_Bind_simple<main::$_0 ()> >::_M_run() /usr/lib/gcc/x86_64-redhat-linux

/4.9.2/../../../../include/c++/4.9.2/thread:115:13 (data_race+0x4bf94c)
#4 execute_native_thread_routine_compat /gcc-7.1.0/build/x86_64-pc-linux-gnu/libstdc++-v3/src/c

++11/../../../../../src/libstdc++-v3/src/c++11/thread.cc:110 (libstdc++.so.6+0xba46f)
Previous write of size 4 at 0x000001553848 by main thread:
#0 main data_race.cpp:5:4 (data_race+0x4be2ce)

Location is global ’x’ of size 4 at 0x000001553848 (data_race+0x000001553848)
Thread T1 (tid=10310, running) created by main thread at:
#0 pthread_create /llvm-clang-4.0.0/src/projects/compiler-rt/lib/tsan/rtl/tsan_interceptors.cc:897 (

data_race+0x44f89b)
#1 __gthread_create /gcc-7.1.0/build/x86_64-pc-linux-gnu/libstdc++-v3/include/x86_64-pc-linux-gnu/bits/

gthr-default.h:662 (libstdc++.so.6+0xba5b2)
#2 std::thread::_M_start_thread(std::shared_ptr<std::thread::_Impl_base>, void (*)()) /gcc-7.1.0/build/

x86_64-pc-linux-gnu/libstdc++-v3/src/c++11/../../../../../src/libstdc++-v3/src/c++11/thread.cc:191
(libstdc++.so.6+0xba5b2)

#3 main data_race.cpp:4:14 (data_race+0x4be2bd)
SUMMARY: ThreadSanitizer: data race data_race.cpp:4:22 in main::$_0::operator()() const

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2032

Deadlock

deadlock.cpp
1 #include <iostream>
2 #include <thread>
3 #include <mutex>
4 std::mutex m0;
5 std::mutex m1;
6 void func1(int n) {
7 for (auto i = n; i > 0; --i) {
8 std::scoped_lock<std::mutex> l0(m0);
9 std::scoped_lock<std::mutex> l1(m1);

10 std::cout << "a\n";
11 }
12 }
13 void func2(int n) {
14 for (auto i = n; i > 0; --i) {
15 std::scoped_lock<std::mutex> l1(m1);
16 std::scoped_lock<std::mutex> l0(m0);
17 std::cout << "b\n";
18 }
19 }
20 int main() {
21 std::thread t1([]{func1(10’000);});
22 std::thread t2([]{func2(10’000);});
23 t1.join(); t2.join();
24 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2033

Deadlock (Continued)

program output (truncated):
==================
WARNING: ThreadSanitizer: lock-order-inversion (potential deadlock) (pid=29188)
Cycle in lock order graph: M9 (0x000000404240) => M10 (0x000000404200) => M9
Mutex M10 acquired here while holding mutex M9 in thread T1:
#0 pthread_mutex_lock ../../../../src/libsanitizer/sanitizer_common/sanitizer_common_interceptors.inc

:3799 (libtsan.so.0+0x407ab)
#1 __gthread_mutex_lock /include/c++/8.2.0/x86_64-pc-linux-gnu/bits/gthr-default.h:748 (deadlock+0x4016e6

)
#2 std::mutex::lock() /include/c++/8.2.0/bits/std_mutex.h:103 (deadlock+0x4016e6)
#3 std::scoped_lock<std::mutex>::scoped_lock(std::mutex&) /include/c++/8.2.0/mutex:610 (deadlock+0x4016e6

)
#4 func1(int) deadlock.cpp:9 (deadlock+0x4016e6)

[text deleted]
Hint: use TSAN_OPTIONS=second_deadlock_stack=1 to get more informative warning message

Mutex M9 acquired here while holding mutex M10 in thread T2:
#0 pthread_mutex_lock ../../../../src/libsanitizer/sanitizer_common/sanitizer_common_interceptors.inc

:3799 (libtsan.so.0+0x407ab)
#1 __gthread_mutex_lock /include/c++/8.2.0/x86_64-pc-linux-gnu/bits/gthr-default.h:748 (deadlock+0x401786

)
#2 std::mutex::lock() /include/c++/8.2.0/bits/std_mutex.h:103 (deadlock+0x401786)
#3 std::scoped_lock<std::mutex>::scoped_lock(std::mutex&) /include/c++/8.2.0/mutex:610 (deadlock+0x401786

)
#4 func2(int) deadlock.cpp:16 (deadlock+0x401786)

[text deleted]
SUMMARY: ThreadSanitizer: lock-order-inversion (potential deadlock) /include/c++/8.2.0/x86_64-pc-linux-gnu/

bits/gthr-default.h:748 in __gthread_mutex_lock
==================
a
b
ThreadSanitizer: reported 1 warnings

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2034NEXT SLIDE: Valgrind/Helgrind

Memory Sanitizer (MSan)

� Memory Sanitizer (MSan) detects reads from uninitialized memory

� in contrast, ASan cannot detect uninitialized reads

� currently, MSan only supported by Clang (not GCC)

� compiler instruments all loads/stores

� uses bit to bit shadow mapping

� if not all code instrumented (so that not all stores are observed), false
positives can result

� about 3 to 6 times slowdown

� about 2 to 3 times memory overhead

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2035

Using Memory Sanitizer

� need to enable sanitizer at compile and link time using
-fsanitize=memory option for Clang

� environment variable MSAN_OPTIONS can be set to whitespace-separated
list of options to control some sanitizer behavior at run time

� some sanitizer options include:
2 strip_path_prefix
2 verbosity

� for example, to set verbosity level to 2, use
MSAN_OPTIONS="verbosity=2"

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2036

Read From Uninitialized Memory

uninitialized_1.cpp
1 int main(int argc, char** argv) {
2 int x[2];
3 x[0] = 1;
4 if (x[argc % 2]) {
5 return 1;
6 }
7 }

program output (truncated):
==22595==WARNING: MemorySanitizer: use-of-uninitialized-value

#0 0x4a46c3 in main uninitialized_1.cpp:4:6
#1 0x7f5d3908ffdf in __libc_start_main (/lib64/libc.so.6+0x1ffdf)
#2 0x41a77e in _start (uninitialized_1+0x41a77e)

SUMMARY: MemorySanitizer: use-of-uninitialized-value uninitialized_1.
cpp:4:6 in main

Exiting

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2037

Undefined-Behavior Sanitizer (UBSan)

� Undefined-Behavior Sanitizer (UBSan) detects code that results in various
types of undefined behavior

� some types of problems detected include:
2 using misaligned or null pointer
2 signed integer overflow
2 conversion to, from, or between floating-point types which would overflow

destination
2 reaching end of value-returning function with returning value
2 out of bounds array indexing where array bound can be statically

determined

� compiler instruments code with extra checks

� supported by Clang and GCC

� slowdown varies between 0% and 50%

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2038

Using Undefined-Behavior Sanitizer

� need to enable sanitizer at compile and link time using
-fsanitize=undefined option for Clang and GCC

� environment variable UBSAN_OPTIONS can be set to
whitespace-separated list of options to control some sanitizer behavior at
run time

� some sanitizer options include:
2 suppressions
2 strip_path_prefix
2 verbosity

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2039

Signed Integer Overflow

signed_integer_overflow.cpp
1 #include <iostream>
2 #include <limits>
3 int main() {
4 int x = std::numeric_limits<int>::max();
5 int y = x + 1;
6 std::cout << y << ’\n’;
7 }

program output:
signed_integer_overflow.cpp:5:14: runtime error: signed integer

overflow: 2147483647 + 1 cannot be represented in type ’int’
-2147483648

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2040

Invalid Shift

invalid_shift.cpp
1 #include <iostream>
2 int main() {
3 int x = 32678;
4 int y = 1 << x;
5 std::cout << y << ’\n’;
6 }

program output:
invalid_shift.cpp:4:12: runtime error: shift exponent 32678 is too

large for 32-bit type ’int’
0

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2041

Leak Sanitizer (LSan)

� Leak Sanitizer (LSan) detects memory leaks

� supported by Clang and GCC

� adds almost no performance overhead until end of program, at which
point extra leak-detection checks performed

� need to enable sanitizer at compile and link time using -fsanitize=leak
option for Clang and GCC (or by using ASan, which includes LSan
functionality)

� environment variable LSAN_OPTIONS can be set to whitespace-separated
list of options to control some sanitizer behavior at run time

� some sanitizer options include:
2 strip_path_prefix
2 verbosity

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2042

Memory Leak

heap_buffer_overflow.cpp
1 #include <iostream>
2 #include <cstring>
3 int main() {
4 char* p = new char[1024];
5 std::strcpy(p, "Hello, World!\n");
6 std::cout << p;
7 }

program output:
Hello, World!
===
==10786==ERROR: LeakSanitizer: detected memory leaks
Direct leak of 1024 byte(s) in 1 object(s) allocated from:

#0 0x7faa5e0a7436 in operator new[](unsigned long) ../../../../src/
libsanitizer/lsan/lsan_interceptors.cc:164

#1 0x400894 in main memory_leak.cpp:4
SUMMARY: LeakSanitizer: 1024 byte(s) leaked in 1 allocation(s).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2043

Section 7.2.1

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2044

Talks I

1 Kostya Serebryany. Sanitize Your C++ Code. CppCon, 2014. Available
online at https://youtu.be/V2_80g0eOMc.

2 Kostya Serebryany. Beyond Sanitizers. CppCon, 2015. Available online at
https://youtu.be/qTkYDA0En6U.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2045

https://youtu.be/V2_80g0eOMc
https://youtu.be/qTkYDA0En6U

Section 7.3

Clang Static Analyzer

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2046

Clang Static Analyzer

� Clang Static Analyzer is static analysis tool for C/C++, which is part of
Clang

� supports many checks (e.g., new-delete mismatch, assigning uninitialized
values, and so on)

� interface provided mainly through two programs:
1 scan-build, which is used to invoke static analyzer when building code
2 scan-view, which is used to view results from static analyzer

� can be used with most build processes (e.g., CMake, Make, or direct
compiler invocation)

� incurs cost of processing code with static analyzer in addition to
compilation

� static analysis can be much slower than compilation since detailed
analysis of code can incur significant computational cost

� static analyzer can sometimes yield false positives

� web site: https://clang-analyzer.llvm.org

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2047

https://clang-analyzer.llvm.org

Some Supported Checks

� uninitialized arguments

� dereferencing null pointers

� division by zero

� address of stack memory that escapes function

� undefined result of binary operator

� uninitialized array subscript

� assigning uninitialized values

� uninitialized branch condition

� blocks that capture uninitialized values

� uninitialized value being returned from function

� new-delete mismatch

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2048

scan-build Program

� scan-build program allows user to run static analyzer over codebase as
part of performing regular build

� during project build, as source files compiled, also processed by static
analyzer

� upon completion of build, results can be viewed in web browser
� scan-build is used to invoke command that builds code (typically CMake

or Make)
� only files that are compiled are analyzed
� command line has following form:

scan-build [options] command [command_options]

� some commonly-used options include:
Option Description

-h print help information and exit
-v increase verbosity of output
-o target_dir set output directory to target_dir
-V view analysis results in web browser
--force-analyze-debug-code force assertions to be enabled

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2049

scan-build Program (Continued)

� enabling assertions can help to reduce false positives

� so advisable to either analyze project in its debug configuration or use
--force-analyze-debug-code flag of scan-build to force assertions
to be enabled

� can use verbose output to debug scan-build

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2050

Mechanics of scan-build Program

� scan-build sets CXX and CC environment variables to Clang Static
Analyzer program and then invokes user-specified command

� when Clang Static Analyzer invoked, performs static analysis and then
invokes real compiler to compile code

� internally, uses CCC_CXX and CCC_CC environment variables (set by
scan-build) to determine real compiler programs to use

� can enable verbosity of static analyzer with environment variable
CCC_ANALYZER_VERBOSE

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2051

Using scan-build With CMake

� must run CMake configure operation and build operation with scan-build

� all should work fine as long as CMAKE_CXX_COMPILER not set by
CMakeLists file or on command line

� for example:
scan-build cmake -S$SOURCE_DIR -B$BINARY_DIR
scan-build cmake --build $BINARY_DIR

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2052

Uninitialized Value: Code

1 #include <iostream>
2

3 void func(int i) {
4 for (int j; j < i; ++j) {
5 std::cout << "hello\n";
6 }
7 }

� in above code, variable j is not initialized

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2053

Uninitialized Value: Static Analyzer Output

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2054

New-Delete Mismatch: Code

1 void func() {
2 int *ip = new int[1024];
3 // ...
4 delete ip;
5 }

� in above code, array new not paired with array delete

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2055

New-Delete Mismatch: Static Analyzer Output

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2056

Section 7.3.1

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2057

Talks I

1 Gabor Horvath. Make Friends with the Clang Static Analysis Tools.
CppCon, Bellevue, WA, USA, Sept. 18–23, 2016. Available online at
https://youtu.be/AQF6hjLKsnM.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2058

https://youtu.be/AQF6hjLKsnM

Section 7.4

Clang-Tidy

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2059

Clang-Tidy

� Clang-Tidy is static analysis tool for C/C++, which is part of Clang
� supports many checks, which consider such things as:

2 correctness
2 efficiency
2 readability
2 modern style

� can automatically fix code in many cases

� by default, only small subset of checks enabled

� probably not advisable to enable all checks, since many benign warnings
may result, obscuring warnings that indicate serious problems

� web site: https://clang.llvm.org/extra/clang-tidy

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2060

https://clang.llvm.org/extra/clang-tidy

The clang-tidy Command

� command line has following form:
clang-tidy [options] [$source_file]...

� some options include:
Option Description
-checks=string specify check to include/exclude
-p build_path set build path to build_path
-version print version information and exit
-help print help information and exit
-list-checks list all enabled checks and exit
-fix apply suggested fixes
-fix-errors apply suggested fixes even if com-

pilation errors found
-warnings-as-errors=string treat specified warnings as errors

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2061

Division By Zero

divide_by_zero.cpp
1 int func(int x) {
2 if (!x) {
3 return 1024 / x;
4 } else {
5 return x;
6 }
7 }

clang-tidy output:
divide_by_zero.cpp:3:15: warning: Division by zero [clang-analyzer-core

.DivideZero]
return 1024 / x;

^
divide_by_zero.cpp:2:6: note: Assuming ’x’ is 0

if (!x) {
^

divide_by_zero.cpp:2:2: note: Taking true branch
if (!x) {
^

divide_by_zero.cpp:3:15: note: Division by zero
return 1024 / x;

^

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2062

New-Delete Mismatch
new_delete_mismatch.cpp
1 int main() {
2 char* p = new char[1024];
3 delete p;
4 }

clang-tidy output:
new_delete_mismatch.cpp:3:2: warning: ’delete’ applied to a pointer that was

allocated with ’new[]’; did you mean ’delete[]’? [clang-diagnostic-
mismatched-new-delete]

delete p;
^

[]
new_delete_mismatch.cpp:2:12: note: allocated with ’new[]’ here

char* p = new char[1024];
^

new_delete_mismatch.cpp:3:2: warning: Memory allocated by ’new[]’ should be
deallocated by ’delete[]’, not ’delete’ [clang-analyzer-unix.
MismatchedDeallocator]

delete p;
^

new_delete_mismatch.cpp:2:12: note: Memory is allocated
char* p = new char[1024];

^
new_delete_mismatch.cpp:3:2: note: Memory allocated by ’new[]’ should be

deallocated by ’delete[]’, not ’delete’
delete p;
^

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2063

Missing Return Statement

no_return.cpp
1 int func(int x) {
2 if (x >= 0) {
3 return 1;
4 }
5 }

clang-tidy output:
no_return.cpp:5:1: warning: control may reach end of non-void function

[clang-diagnostic-return-type]
}
^

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2064

Stack Address Escapes Function

stack_address_escape.cpp
1 int* p;
2

3 void test() {
4 int x = 42;
5 p = &x;
6 }

clang-tidy output:
stack_address_escape.cpp:6:1: warning: Address of stack memory

associated with local variable ’x’ is still referred to by the
global variable ’p’ upon returning to the caller. This will be a
dangling reference [clang-analyzer-core.StackAddressEscape]

}
^
stack_address_escape.cpp:6:1: note: Address of stack memory associated

with local variable ’x’ is still referred to by the global variable
’p’ upon returning to the caller. This will be a dangling
reference

}
^

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2065

Undefined Operand

undefined_operand.cpp
1 int test() {
2 int x;
3 return x + 1;
4 }

clang-tidy output:
undefined_operand.cpp:3:11: warning: The left operand of ’+’ is a

garbage value [clang-analyzer-core.UndefinedBinaryOperatorResult]
return x + 1;

^
undefined_operand.cpp:2:2: note: ’x’ declared without an initial value

int x;
^

undefined_operand.cpp:3:11: note: The left operand of ’+’ is a garbage
value

return x + 1;
^

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2066

Clang Tidy With CMake

� Clang Tidy relatively easy to use with CMake

� CMake provides CXX_CLANG_TIDY property for targets that can be set to
command to invoke for performing code checking with Clang Tidy

� consider example to illustrate use of Clang Tidy with CMake

� want each source file to be processed by Clang Tidy in addition to being
compiled

� project consists of three files:
1 CMakeLists.txt
2 app.cpp
3 lib.cpp

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2067

Clang Tidy CMake Example: CMakeLists File

CMakeLists.txt
1 cmake_minimum_required(VERSION 3.6 FATAL_ERROR)
2 project(clang_tidy LANGUAGES CXX)
3

4 find_program(CLANG_TIDY_PROGRAM NAMES "clang-tidy"
5 DOC "Path to clang-tidy executable")
6 if (CLANG_TIDY_PROGRAM)
7 set(CLANG_TIDY_OPTIONS "-warnings-as-errors=*")
8 set(RUN_CLANG_TIDY "${CLANG_TIDY_PROGRAM}" "${CLANG_TIDY_OPTIONS}")
9 endif()

10

11 add_library(lib lib.cpp)
12 add_executable(app app.cpp lib)
13 set(targets lib app)
14

15 if (CLANG_TIDY_PROGRAM)
16 set_target_properties(${targets} PROPERTIES CXX_CLANG_TIDY
17 "${RUN_CLANG_TIDY}")
18 endif()

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2068

Clang Tidy CMake Example: Source Code

lib.cpp
1 int func() {}
2

3 char* foobar() {
4 char c;
5 return &c;
6 }

app.cpp
1 int func();
2 char* foobar();
3

4 int main() {
5 auto x = 1 / 2;
6 double y = 1 / x;
7 char* cp = new char[1024];
8 delete cp;
9 func();

10 foobar();
11 int i;
12 return i + 1;
13 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2069

Section 7.4.1

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2070

Talks I

1 Daniel Jasper. Keep Your Code Sane With Clang Tidy. Meeting C++,
Berlin, Germany, Dec. 4–5, 2015. Available online at
https://youtu.be/nzCLcfH3pb0.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2071

https://youtu.be/nzCLcfH3pb0

Section 7.5

Valgrind

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2072

Valgrind
� Valgrind is software framework that provides number of tools for dynamic

analysis
� tools provided by Valgrind include:

2Memcheck (memory error detector)
2 Cachegrind (cache and branch-prediction profiler)
2Callgrind (call-graph generating cache and branch-prediction profiler)
2Helgrind (thread error detector)
2 DRD (thread error detector)
2Massif (heap profiler)
2 DHAT (dynamic heap analysis tool)

� above tools can be used to:
2 detect many memory management and threading bugs
2 profile programs in detail

� access to various Valgrind tools provided via valgrind program

� valkyrie program provides GUI for Memcheck and Helgrind tools

� Valgrind software is open source

� web site: http://www.valgrind.org
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2073

http://www.valgrind.org

Valgrind (Continued)

� Valgrind works by simulating processor in software

� Valgrind does not fully support IEEE 754 (floating-point arithmetic
standard)

� consequently, code that uses floating-point arithmetic in particular ways
may not behave correctly

� do not use Valgrind with ASan, TSan, or MSan code sanitizers

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2074

Support for Floating-Point Arithmetic in Valgrind

� unfortunately, Valgrind does not fully support IEEE 754 floating-point
standard (at time of this writing, at least)

� lacks support for floating-point exceptions

� lacks full support for floating-point rounding modes (e.g., some
instructions always use round to nearest)

� consequently, code that relies on control over rounding mode will not
behave correctly (e.g., code using interval arithmetic)

� code using CGAL library, for example, is often problematic, due to heavy
use of interval arithmetic (which needs rounding-mode control) for efficient
exact geometric predicates

� does not support extended floating-point formats used by some
architectures

� consequently, can sometimes obtain less accurate results from
floating-point arithmetic (which in extreme cases might cause numerical
instability)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2075

Helgrind

� Helgrind is Valgrind tool for detecting synchronization errors in programs
that use POSIX pthreads threading primitives

� Helgrind can detect:
2 misuses of POSIX pthreads API (e.g., thread exits while holding locks,

recursively locking non-recursive mutex, and so on)
2 potential deadlocks arising from lock ordering problems
2 data races (i.e., accessing memory without adequate locking or

synchronization)

� run-time overhead of Helgrind can be quite significant (e.g., slowdown of
100 times not unusual)

� to run program program using Helgrind, use command like:
valgrind --tool=helgrind program

� Helgrind described in Valgrind documentation:
2 http://valgrind.org/docs/manual/hg-manual.html

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2076

http://valgrind.org/docs/manual/hg-manual.html

Data Race Example

data_race_1_0.cpp
1 #include <thread>
2 #include <iostream>
3

4 unsigned long count = 0;
5

6 void func() {
7 for (unsigned long i = 0; i < 1’000’000; ++i) {
8 ++count;
9 }

10 }
11

12 int main() {
13 std::thread t1(func);
14 std::thread t2(func);
15 t1.join();
16 t2.join();
17 std::cout << count << ’\n’;
18 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2077

Helgrind Output for Data Race Example
output for command: valgrind --tool=helgrind ./data_race_1_0
[text deleted]
==5517== Thread #3 was created
[text deleted]
==5517== by 0x400D1E: main (data_race_1_0.cpp:14)
[text deleted]
==5517== Thread #2 was created
[text deleted]
==5517== by 0x400D0D: main (data_race_1_0.cpp:13)
[text deleted]
==5517== Possible data race during read of size 8 at 0x603250 by thread #3
==5517== Locks held: none
==5517== at 0x400CD8: func() (data_race_1_0.cpp:8)
[text deleted]
==5517== This conflicts with a previous write of size 8 by thread #2
==5517== Locks held: none
==5517== at 0x400CE3: func() (data_race_1_0.cpp:8)
[text deleted]
==5517== Address 0x603250 is 0 bytes inside data symbol "count"
[text deleted]
==5517== Possible data race during write of size 8 at 0x603250 by thread #3
==5517== Locks held: none
==5517== at 0x400CE3: func() (data_race_1_0.cpp:8)
[text deleted]
==5517==
==5517== This conflicts with a previous write of size 8 by thread #2
==5517== Locks held: none
==5517== at 0x400CE3: func() (data_race_1_0.cpp:8)
[text deleted]
==5517== Address 0x603250 is 0 bytes inside data symbol "count"
[text deleted]
==5517== For counts of detected and suppressed errors, rerun with: -v
==5517== Use --history-level=approx or =none to gain increased speed, at
==5517== the cost of reduced accuracy of conflicting-access information
==5517== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0 from 0)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2078END SLIDE: tutorial

Memcheck

� Memcheck is Valgrind tool for memory error detection
� can detect certain types of invalid memory accesses:

2 overrunning/underrunning heap blocks
2 overrunning top of stack
2 accessing memory after being freed

� can detect certain other types of memory-related problems, such as:
2 using uninitialized variables
2 incorrect freeing of heap memory (e.g., double freeing heap blocks and

mismatched use of malloc/new/new[] and free/delete/delete[])
2 overlapping source and destination buffers in memcpy and other related

functions
2 passing suspicious (e.g., excessively large) value to size parameter of

memory allocation function
2 memory leaks

� web page: http://valgrind.org/docs/manual/mc-manual.html

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2079

http://valgrind.org/docs/manual/mc-manual.html

The valgrind Program With Memcheck

� command line interface has following form:
valgrind [options] program [program_options]

� to use Memcheck tool, must specify --tool=memcheck option

� some Memcheck-specific options include:
Option Description

--leak-check=mode specifies mode for checking for mem-
ory leaks, where mode is no (dis-
abled), summary (summary information),
or yes/full (detailed information)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2080

Example: Source Code

memory_leak.cpp
1 int main() {
2 char* buf = new char[1024];
3 double* dp = new double;
4 // ... (no delete or delete[])
5 }

new_delete_mismatch.cpp
1 int main() {
2 char* buf = new char[1024];
3 // ...
4 delete buf;
5 }

uninitialized_memory.cpp
1 #include <iostream>
2

3 int main() {
4 int i;
5 std::cout << i << ’\n’;
6 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2081

Memcheck Output for memory_leak Program

command:
valgrind --tool=memcheck -q --leak-check=yes ./memory_leak

output:
==15265== 8 bytes in 1 blocks are definitely lost in loss record 1 of 2
==15265== at 0x4C2E1FC: operator new(unsigned long) (vg_replace_malloc.c:334)
==15265== by 0x400611: main (memory_leak.cpp:3)
==15265==
==15265== 1,024 bytes in 1 blocks are definitely lost in loss record 2 of 2
==15265== at 0x4C2E8E9: operator new[](unsigned long) (vg_replace_malloc.c:423)
==15265== by 0x400603: main (memory_leak.cpp:2)
==15265==

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2082

Memcheck Output for new_delete_mismatch Program

command:
valgrind -q --tool=memcheck ./new_delete_mismatch

output:
==15267== Mismatched free() / delete / delete []
==15267== at 0x4C2F21A: operator delete(void*) (vg_replace_malloc.c:576)
==15267== by 0x400638: main (new_delete_mismatch.cpp:4)
==15267== Address 0x5ab4c80 is 0 bytes inside a block of size 1,024 alloc’d
==15267== at 0x4C2E8E9: operator new[](unsigned long) (vg_replace_malloc.c:423)
==15267== by 0x400623: main (new_delete_mismatch.cpp:2)
==15267==

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2083

Memcheck Output for uninitialized_memory Program

command:
valgrind -q --tool=memcheck ./uninitialized_memory

output (truncated):
==15266== Conditional jump or move depends on uninitialised value(s)
==15266== at 0x4F3B8CB: std::ostreambuf_iterator<char, std::char_traits<char> > std::num_put<char, std::

ostreambuf_iterator<char, std::char_traits<char> > >::_M_insert_int<long>(std::ostreambuf_iterator<
char, std::char_traits<char> >, std::ios_base&, char, long) const (locale_facets.tcc:874)

==15266== by 0x4F47234: put (locale_facets.h:2371)
==15266== by 0x4F47234: std::ostream& std::ostream::_M_insert<long>(long) (ostream.tcc:73)
==15266== by 0x400798: main (uninitialized_memory.cpp:5)
==15266==
==15266== Use of uninitialised value of size 8
==15266== at 0x4F3B3DE: int std::__int_to_char<char, unsigned long>(char*, unsigned long, char const*, std

::_Ios_Fmtflags, bool) (locale_facets.tcc:803)
==15266== by 0x4F3B8F4: std::ostreambuf_iterator<char, std::char_traits<char> > std::num_put<char, std::

ostreambuf_iterator<char, std::char_traits<char> > >::_M_insert_int<long>(std::ostreambuf_iterator<
char, std::char_traits<char> >, std::ios_base&, char, long) const (locale_facets.tcc:876)

==15266== by 0x4F47234: put (locale_facets.h:2371)
==15266== by 0x4F47234: std::ostream& std::ostream::_M_insert<long>(long) (ostream.tcc:73)
==15266== by 0x400798: main (uninitialized_memory.cpp:5)
==15266==
==15266== Conditional jump or move depends on uninitialised value(s)
==15266== at 0x4F3B3EB: int std::__int_to_char<char, unsigned long>(char*, unsigned long, char const*, std

::_Ios_Fmtflags, bool) (locale_facets.tcc:806)
==15266== by 0x4F3B8F4: std::ostreambuf_iterator<char, std::char_traits<char> > std::num_put<char, std::

ostreambuf_iterator<char, std::char_traits<char> > >::_M_insert_int<long>(std::ostreambuf_iterator<
char, std::char_traits<char> >, std::ios_base&, char, long) const (locale_facets.tcc:876)

==15266== by 0x4F47234: put (locale_facets.h:2371)
==15266== by 0x4F47234: std::ostream& std::ostream::_M_insert<long>(long) (ostream.tcc:73)
==15266== by 0x400798: main (uninitialized_memory.cpp:5)
==15266==

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2084

Massif

� Massif is Valgrind tool for performing heap profiling

� measures how much heap memory program uses, including both useful
space and extra bytes allocated for bookkeeping and alignment

� can optionally measure size of program stack

� can use to determine how memory consumption evolves over lifetime of
program as well as peak memory usage

� Massif tool of Valgrind accessed via valgrind program

� running program with Massif tool generates output file containing heap
profiling information

� output file can be analyzed with various tools, such as ms_print and
Massif Visualizer

� web page: http://valgrind.org/docs/manual/ms-manual.html

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2085

http://valgrind.org/docs/manual/ms-manual.html

The valgrind Command with Massif

� command line interface has following form:
valgrind [options] program [program_options]

� to use Massif tool, must specify --tool=massif option

� some Massif-specific options include:
Option Description

--massif-out-file=file sets output file to file; defaults to
massif.out-$pid where $pid is pro-
cess ID

--stacks=flag specifies whether stack profiling should
be performed, where flag is true or
false

--time-unit=unit specifies time unit for profiling, where unit
is i (instructions), ms (time), or B (bytes)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2086

Analyzing Massif Data Files

� Valgrind software includes program called ms_print for analyzing Massif
data files

� ms_print output is text based

� GUI-based tools also available for analyzing Massif data files, such as
Massif Visualizer

� Massif Visualizer is accessible via massif-visualizer program

� Massif Visualizer web site:
https://github.com/KDE/massif-visualizer

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2087

https://github.com/KDE/massif-visualizer

Massif Example

source code for heap_1 program:
1 #include <algorithm>
2 #include <cstdlib>
3 #include <iostream>
4 #include <numeric>
5 #include <vector>
6

7 int main() {
8 std::size_t size = 1;
9 while (size < 1’000’000) {

10 std::vector<float> v;
11 v.reserve(size);
12 std::generate_n(std::back_inserter(v), size,
13 []() -> float {return drand48();});
14 auto sum = std::accumulate(v.begin(), v.end(), 0.0f);
15 std::cout << sum / size << ’\n’;
16 size <<= 1;
17 }
18 }

command to invoke Massif tool for heap_1 program:
valgrind --tool=massif --massif-out-file=profile.massif --stacks=yes

./heap_1

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2088

Massif Example: ms_print Output

command:
ms_print --x=70 --y=10 profile.massif

output (truncated):
--
Command: ./heap_1
Massif arguments: --massif -out-file=profile.massif --stacks=yes
ms_print arguments: --x=70 --y=10 profile.massif
--

MB
2.071^ ##

| # ::::::::::::::::::::::@::::::@:::
| # :: : :::::::::::::::::@::::::@:::
| # :: : :::::::::::::::::@::::::@:::
| # :: : :::::::::::::::::@::::::@:::
| @:::@::::@:::::::# :: : :::::::::::::::::@::::::@:::
| @: :@::::@::: :: # :: : :::::::::::::::::@::::::@:::
| @: :@::::@::: :: # :: : :::::::::::::::::@::::::@:::
| @::::::@:@: :@::::@::: :: # :: : :::::::::::::::::@::::::@:::
| ::::@:::: :@:@: :@::::@::: :: # :: : :::::::::::::::::@::::::@:::

0 +--->Mi
0 312.7

Number of snapshots: 71
Detailed snapshots: [8, 14, 16, 19, 24, 31 (peak), 55, 65]

--
n time(i) total(B) useful -heap(B) extra -heap(B) stacks(B)

--
0 0 0 0 0 0
1 5,653,795 90,704 90,112 24 568
2 9,989,271 139,760 139,264 24 472
3 15,104,837 205,296 204,800 24 472
4 19,380,693 205,296 204,800 24 472
5 25,946,699 336,296 335,872 24 400
6 30,435,811 336,296 335,872 24 400

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2089

Massif-Visualizer Example: Tool Output

command:
massif-visualizer profile.massif

output:

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2090

Section 7.5.1

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2091

References I

1 P. Floyd. Valgrind part 1 — introduction.
Overload, 108:14–15, Apr. 2012.

2 P. Floyd. Valgrind part 2 — basic memcheck.
Overload, 109:24–28, June 2012.

3 P. Floyd. Valgrind part 3 — advanced memcheck.
Overload, 110:4–7, Aug. 2012.

4 P. Floyd. Valgrind part 4 — cachegrind and callgrind.
Overload, 111:4–7, Oct. 2012.

5 P. Floyd. Valgrind part 5 — massif.
Overload, 112:20–24, Dec. 2012.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2092

Section 7.6

Gcov and LLVM Cov

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2093

Gcov

� Gcov is code coverage analysis tool, which is part of GCC software

� intended to be used in conjunction with GCC compiler

� supports measurement of function, statement, and decision (i.e., branch)
coverage

� can be used to assess test coverage and possibly as guide for improving
efficiency of code

� in order to generate data for Gcov, program being run must be properly
instrumented

� compilerinstruments code to count number of times each basic block (i.e.,
node in control-flow graph) and each branch (i.e., edge in control-flow
graph) executes

� when program run, coverage data files generated

� coverage data files can then be processed and displayed with Gcov

� web site: https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2094

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

The gcov Program

� can examine data files produced by execution of compiler-instrumented
code by using gcov program

� command line interface for gcov has following form:

gcov [options] [$file]...

� $file is source file for which coverage information desired or
corresponding object file

� some commonly-used options include:
Option Description

-a write individual execution counts for every basic
block

-b write branch frequencies/counts to output file
-c use branch counts instead of frequencies
-m use demangled function names in output
-h print help information and exit

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2095

Using Gcov

1 build each program for which code coverage information is desired
2 must compile and link with --coverage option with GCC
2 one block-graph description file (with .gcno extension) generated for each

object file produced during compilation and placed in same directory as
corresponding object file

2 run each program for which coverage information is desired one or more
times

2 when program exits, one count file (with .gcda extension) generated for
each object file associated with program

2 if output file does not yet exist, file created
2 if output file already exists, statistics are added to those already there
2 that is, statistics maintained in data files are cumulative

3 run gcov program to format data for display
2 for each source file with corresponding coverage data file, gcov generates

source_file.gcov (or transformed version of this name) for source_file.cpp

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2096

Using Gcov: Practical Considerations

� optimization and inline functions can cause strange behaviors in coverage
statistics

� for example, optimization can cause multiple lines of code to be merged
together, which will lead to unusual results for affected lines

� for above reasons, desirable to disable optimization (including function
inlining) when performing coverage analysis

� exceptions can introduce many additional conditional branches, which
may be undesirable when performing branch-coverage analysis

� consequently, when performing branch-coverage analysis, may be
desirable to disable exceptions if not used

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2097

Signum Example: Source Code
app.cpp
1 #include <cstdlib>
2 #include <iostream>
3 #include "utility.hpp"
4 int main(int argc, char** argv) {
5 if (argc < 2) {
6 return 1;
7 }
8 double x = std::atof(argv[1]);
9 std::cout << signum(x) << ’\n’;

10 }

utility.hpp
1 int signum(double x);

signum.cpp
1 #include "utility.hpp"
2 int signum(double x) {
3 if (x > 0) {
4 return 1;
5 } else if (x < 0) {
6 return -1;
7 } else {
8 return 0;
9 }

10 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2098

Signum Example: Using Gcov

� build program app using GCC, ensuring that --coverage option is used
for both compiling and linking; for example, use command sequence like:

g++ -O0 --coverage -c app.cpp
g++ -O0 --coverage -c signum.cpp
g++ -O0 --coverage -o app app.o signum.o

� run app program twice as follows:
./app 0
./app 1

� since app program run twice, statistics are accumulated from both runs of
program

� run Gcov; for example, use command like:
gcov -b -c -m app.o signum.o

� view resulting .gcov files (examples of which are given on following slides)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2099

Signum Example: Gcov Output [app.cpp.gcov]

-: 0:Source:app.cpp
-: 0:Programs:2
-: 1:#include <cstdlib >
-: 2:#include <iostream >
-: 3:#include "utility.hpp"
2: 4:int main(int argc , char** argv) {
2: 5: if (argc < 2) {

branch 0 taken 0 (fallthrough)
branch 1 taken 2

#####: 6: return 1;
-: 7: }
2: 8: double x = std::atof(argv[1]);
2: 9: std::cout << signum(x) << ’\n’;

call 0 returned 2
call 1 returned 2
call 2 returned 2

2: 10:}

main:
function main called 2 returned 100% blocks executed 86%

main:
function main called 2 returned 100% blocks executed 86%

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2100

Signum Example: Gcov Output [signum.cpp.gcov]

-: 0:Source:signum.cpp
-: 0:Programs:2
-: 1:#include "utility.hpp"

function signum(double) called 2 returned 100% blocks executed 83%
2: 2:int signum(double x) {
2: 3: if (x > 0) {

branch 0 taken 1 (fallthrough)
branch 1 taken 1

1: 4: return 1;
1: 5: } else if (x < 0) {

branch 0 taken 0 (fallthrough)
branch 1 taken 1

#####: 6: return -1;
-: 7: } else {
1: 8: return 0;
-: 9: }
-: 10:}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2101

LLVM Cov with GCC-Style Coverage

� LLVM Cov is code coverage analysis tool, which is part of LLVM software,
intended for use with Clang compiler

� supports measurement of function, statement, and decision (i.e., branch)
coverage

� manner in which coverage information collected similar to case of Gcov

� LLVM Cov provided as program called llvm-cov

� coverage data files produced by compiler and program execution
processed with gcov subcommand of llvm-cov

� gcov subcommand of llvm-cov has very similar interface as gcov
program (of Gcov)

� web site: http://llvm.org/docs/CommandGuide/llvm-cov.html

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2102

http://llvm.org/docs/CommandGuide/llvm-cov.html

Signum Example (Revisited): Using LLVM Cov

� build program app using Clang, ensuring that --coverage option is used
for both compiling and linking; for example, use command sequence like:

clang++ -O0 --coverage -c app.cpp
clang++ -O0 --coverage -c signum.cpp
clang++ -O0 --coverage -o app app.o signum.o

� run app program twice as follows:
./app 0
./app 1

� since app program run twice, statistics are accumulated from both runs of
program

� run LLVM Cov; for example, use command like:
llvm-cov gcov -b -c app.o signum.o

� view resulting .gcov files (which look similar to ones produced by Gcov;
see earlier Gcov example)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2103

Lcov

� Lcov is graphical front end for Gcov

� collects Gcov data from multiple source files and creates HTML pages
containing source code annotated with coverage information

� also provides overview pages for easy navigation

� Lcov supports statement, function, and decision (i.e., branch) coverage
measurement

� web site: http://ltp.sourceforge.net/coverage/lcov.php

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2104

http://ltp.sourceforge.net/coverage/lcov.php

The lcov Program: Capture

� to capture (i.e., import) coverage data from data files generated by
executing instrumented code, lcov has following command-line interface:

lcov -c [options]

� some commonly-used options include:
Option Description

--gcov-tool path set location of Gcov program to path
--rc keyword=value set configuration parameter keyword to

value
-o file write trace data to file file
--no-external do not capture coverage data from external

source files
-d dir search for .da files in directory dir
-h print help information and exit
-q do not print progress messages

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2105

The lcov Program: Capture (Continued)

� Lcov relies on external program to process information in coverage data
files

� external program must have similar command-line interface and behavior
as gcov

� external program used for above functionality controlled by --gcov-tool
option of lcov

� if using GCC, external program can simply be gcov

� if using Clang, however, need to invoke gcov subcommand of llvm-cov
through wrapper program to provide expected interface

� this can be accomplished by creating file containing following shell script
and then specifying this file to lcov via --gcov-tool option:

#! /usr/bin/env bash
exec llvm-cov gcov "$@"

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2106

The lcov Program: Summary

� to display summary information from tracefile, lcov has following
command-line interface:

lcov --summary [options]

� some commonly-used options include:
Option Description

--rc keyword=value set configuration parameter keyword to
value

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2107

The genhtml Program

� coverage report can be generated in HTML format from one or more trace
files with genhtml program, which has following command-line interface:

genhtml [options] $trace_file...

� some commonly-used options include:
Option Description

--legend include legend in report
--branch-coverage include branch coverage information in re-

port
-o dir set output directory for HTML document to

dir
-h print help information and exit

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2108

Using Lcov

1 build project with GCC or Clang, ensuring that --coverage option is used
for compiling and linking (as in earlier Gcov example)

2 run program (one or more times) to collect coverage data (e.g., as in
earlier Gcov or LLVM Cov examples)

3 process coverage data with Lcov; for example, use command like
following (where coverage data files under current directory):

lcov -c --gcov-tool $gcov_tool -d . -o coverage.lcov \
--rc lcov_branch_coverage=1

where $gcov_tool is gcov for GCC or pathname ofwrapper script shown
earlier for Clang

4 if HTML output desired, generate output using genhtml; for example, use
command like following:

genhtml --branch-coverage --legend -o output coverage.lcov

(main HTML document accessible via output/index.html)
5 if plaintext output desired, brief summary can be generated from tracefile

using command like:
lcov --summary coverage.lcov --rc lcov_branch_coverage=1

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2109

Signum Example (Revisited): Lcov Summary Output

Reading tracefile coverage.lcov
Summary coverage rate:
lines......: 83.3% (10 of 12 lines)
functions..: 100.0% (2 of 2 functions)
branches...: 66.7% (4 of 6 branches)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2110

Signum Example (Revisited): Lcov HTML Output [Summary]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2111

Signum Example (Revisited): Lcov HTML Output [app.cpp]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2112

Signum Example (Revisited): Lcov Output [signum.cpp]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2113

Lcov Caveats

� some potentially unexpected behaviors may be observed when using Lcov

� branches may be shown to be present at what might be unexpected
places in code, due to implicit control flow associated with

. .short-circuit evaluation or exception handling

� constructors or destructors that have been called may be reported as
never having been called, due to compiler implementingconstructors and

.destructors in manner similar to that specified in Itanium C++ ABI

� counts for different instantiations of same template are aggregated

� some functions associated with static initialization that have been called
are reported as never having been called (probably due to bug)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2114

Templates Example: Source Code
main.cpp

1 #include "utility.hpp"
2
3 int main() {
4 Widget<int> wi(42);
5 wi.get();
6 Widget<double> wd(42.0);
7 wd.get();
8 abs(42);
9 abs(42.0);

10 }

utility.hpp
1 template <class T> class Widget {
2 public:
3 Widget (T x) : x_(x) {}
4 T get() const {
5 return x_;
6 }
7 private:
8 T x_;
9 };

10
11 template <class T> T abs(T x) {
12 if (x < 0) {
13 return -x;
14 } else {
15 return x;
16 }
17 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2115

Templates Example: Gcov Output [main.cpp.gcov]

-: 0:Source:main.cpp
-: 0:Graph:main.gcno
-: 0:Data:main.gcda
-: 0:Runs:1
-: 0:Programs:1
-: 1:#include "utility.hpp"
-: 2:

function main called 1 returned 100% blocks executed 100%
1: 3:int main() {
1: 4: Widget <int> wi(42);

call 0 returned 1
1: 5: wi.get();

call 0 returned 1
1: 6: Widget <double > wd(42.0);

call 0 returned 1
1: 7: wd.get();

call 0 returned 1
1: 8: abs(42);

call 0 returned 1
1: 9: abs(42.0);

call 0 returned 1
1: 10:}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2116

Templates Example: Gcov Output [utility.hpp.gcov]

-: 0:Source:utility.hpp
-: 0:Graph:main.gcno
-: 0:Data:main.gcda
-: 0:Runs:1
-: 0:Programs:1
-: 1:template <class T> class Widget {
-: 2:public:
2: 3: Widget (T x) : x_(x) {}

Widget <double >::Widget(double):
function Widget <double >::Widget(double) called 1 returned 100% blocks executed 100%

1: 3: Widget (T x) : x_(x) {}

Widget <int >::Widget(int):
function Widget <int >::Widget(int) called 1 returned 100% blocks executed 100%

1: 3: Widget (T x) : x_(x) {}

2: 4: T get() const {
2: 5: return x_;
-: 6: }

Widget <double >::get() const:
function Widget <double >::get() const called 1 returned 100% blocks executed 100%

1: 4: T get() const {
1: 5: return x_;
-: 6: }

Widget <int >::get() const:
function Widget <int >::get() const called 1 returned 100% blocks executed 100%

1: 4: T get() const {
1: 5: return x_;
-: 6: }

-: 7:private:
-: 8: T x_;
-: 9:};
-: 10:
2: 11:template <class T> T abs(T x) {
2: 12: if (x < 0) {

#####: 13: return -x;
-: 14: } else {
2: 15: return x;
-: 16: }
-: 17:}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2117

Templates Example: Lcov Output [main.cpp]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2118

Templates Example: Lcov Output [utility.hpp]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2119

Exceptions Example: Source Code

main.cpp
1 #include <vector>
2 #include "utility.hpp"
3
4 void increment_3(int& i) noexcept {++i;}
5 void increment_4(int& i) {++i;}
6
7 int main() {
8 std::vector<int> u;
9 std::vector<int> v{1, 2, 3, 4};

10 u = v;
11 increment_1(u[0]);
12 increment_2(u[0]);
13 increment_3(u[0]);
14 increment_4(u[0]);
15 }

utility.hpp
1 void increment_1(int&) noexcept;
2 void increment_2(int&);

utility.cpp
1 #include "utility.hpp"
2
3 void increment_1(int& i) noexcept {++i;}
4 void increment_2(int& i) {++i;}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2120

Exceptions Example: Gcov Output [main.cpp.gcov]

-: 0:Source:main.cpp
-: 0:Programs:2
-: 1:#include <vector >
-: 2:#include "utility.hpp"
-: 3:
1: 4:void increment_3(int& i) noexcept {++i;}

increment_3(int&):
function increment_3(int&) called 1 returned 100% blocks executed 100%

increment_3(int&):
function increment_3(int&) called 1 returned 100% blocks executed 100%

1: 5:void increment_4(int& i) {++i;}

increment_4(int&):
function increment_4(int&) called 1 returned 100% blocks executed 100%

increment_4(int&):
function increment_4(int&) called 1 returned 100% blocks executed 100%

-: 6:
1: 7:int main() {
2: 8: std::vector <int> u;

call 0 returned 1
call 1 returned 1
call 2 never executed

2: 9: std::vector <int> v{1, 2, 3, 4};
call 0 returned 1
call 1 returned 1
branch 2 taken 1 (fallthrough)
branch 3 taken 0 (throw)
call 4 returned 1
call 5 never executed

1: 10: u = v;
call 0 returned 1
branch 1 taken 1 (fallthrough)
branch 2 taken 0 (throw)

1: 11: increment_1(u[0]);
call 0 returned 1
call 1 returned 1

1: 12: increment_2(u[0]);
call 0 returned 1
call 1 returned 1
branch 2 taken 1 (fallthrough)
branch 3 taken 0 (throw)

1: 13: increment_3(u[0]);
call 0 returned 1
call 1 returned 1

1: 14: increment_4(u[0]);
call 0 returned 1
call 1 returned 1

1: 15:}

main:
function main called 1 returned 100% blocks executed 72%

main:
function main called 1 returned 100% blocks executed 72%

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2121

Exceptions Example: Gcov Output [utility.cpp.gcov]

-: 0:Source:utility.cpp
-: 0:Programs:2
-: 1:#include "utility.hpp"
-: 2:

function increment_1(int&) called 1 returned 100% blocks executed 100%
1: 3:void increment_1(int& i) noexcept {++i;}

function increment_2(int&) called 1 returned 100% blocks executed 100%
1: 4:void increment_2(int& i) {++i;}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2122

Exceptions Example: Lcov Output [Summary]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2123

Exceptions Example: Lcov Output [main.cpp]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2124

Exceptions Example: Lcov Output [utility.cpp]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2125

Short-Circuiting Example: Source Code

utility.hpp
1 class Flag {
2 public:
3 explicit Flag(bool b = false) noexcept : b_(b) {}
4 explicit operator bool() const noexcept {return b_;}
5 Flag operator&&(const Flag& other) noexcept {
6 return Flag(b_ && other.b_);
7 }
8 Flag operator||(const Flag& other) noexcept {
9 return Flag(b_ || other.b_);

10 }
11 private:
12 bool b_;
13 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2126

Short-Circuiting Example: Source Code

main.cpp
1 #include <tuple>
2 #include "utility.hpp"
3
4 bool func(bool a, bool b, bool c) noexcept {
5 return (a || b) && c;
6 }
7
8 Flag func(Flag a, Flag b, Flag c) noexcept {
9 return (a || b) && c;

10 }
11
12 int main() {
13 std::tuple<bool, bool, bool> tests[] = {{0, 0, 0}, {1, 1, 1}};
14 for (auto&& [a, b, c] : tests) {
15 func(a, b, c);
16 func(Flag(a), Flag(b), Flag(c));
17 }
18 }

. .short-circuit evaluation example

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2127

Short-Circuiting Example: Lcov Output [main.cpp]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2128

Short-Circuiting Example: Lcov Output [utility.hpp]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2129

Virtual Destructor Example 1A: Source Code

example_1_1.cpp
1 struct Gadget {
2 Gadget();
3 virtual ~Gadget();
4 };
5 Gadget::Gadget() {}
6 Gadget::~Gadget() {}
7

8 struct Widget : Gadget {
9 Widget();

10 virtual ~Widget();
11 };
12 Widget::Widget() {}
13 Widget::~Widget() {}
14

15 int main() {
16 Widget w;
17 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2130

Virtual Destructor Example 1A: Lcov Output

� _ZN6GagdetD0Ev is mangled name for deleting destructor variant (in
Itanium C++ ABI) of Gagdet::~Gagdet()

� _ZN6WidgetD0Ev is mangled name for deleting destructor variant (in
Itanium C++ ABI) of Widget::~Widget()

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2131.ABIsItanium C++ ABI

Virtual Destructor Example 1B: Source Code

example_1_2.cpp
1 struct Gadget {
2 Gadget();
3 virtual ~Gadget();
4 };
5 Gadget::Gadget() {}
6 Gadget::~Gadget() {}
7

8 struct Widget : Gadget {
9 Widget();

10 virtual ~Widget();
11 };
12 Widget::Widget() {}
13 Widget::~Widget() {}
14

15 int main() {
16 Widget w;
17 Widget* wp = new Widget;
18 delete wp;
19 // invoke deleting destructor (Itanium C++ ABI)
20 Gadget* gp = new Gadget;
21 delete gp;
22 // invoke deleting destructor (Itanium C++ ABI)
23 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2132

Virtual Destructor Example 1B: Lcov Output

� _ZN6GagdetD0Ev is now called (unlike previously)

� _ZN6WidgetD0Ev is now called (unlike previously)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2133

Gcov and Lcov with CMake

� Gcov and Lcov somewhat tricky to use with CMake
� one very convenient way to collect coverage information with CMake is by

using CodeCoverage module developed by Lars Bilke, which can be
obtained from:

2 https://github.com/bilke/cmake-modules/blob/master/
CodeCoverage.cmake

� slightly modified version of above module can be found at:
2 https://github.com/mdadams/cmake-modules/blob/master/

CodeCoverage.cmake

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2134

https://github.com/bilke/cmake-modules/blob/master/CodeCoverage.cmake
https://github.com/bilke/cmake-modules/blob/master/CodeCoverage.cmake
https://github.com/mdadams/cmake-modules/blob/master/CodeCoverage.cmake
https://github.com/mdadams/cmake-modules/blob/master/CodeCoverage.cmake

Gcov/Lcov CMake Example: CMakeLists File

CMakeLists.txt
1 cmake_minimum_required(VERSION 3.1 FATAL_ERROR)
2 project(coverage_example LANGUAGES CXX C)
3 option(ENABLE_COVERAGE "Enable coverage" false)
4 set(CMAKE_VERBOSE_MAKEFILE true)
5 set(CMAKE_EXPORT_COMPILE_COMMANDS true)
6

7 if (ENABLE_COVERAGE)
8 set(CMAKE_BUILD_TYPE "Debug" CACHE STRING
9 "Set the build type." FORCE)

10 include(CodeCoverage.cmake)
11 append_coverage_compiler_flags()
12 endif()
13

14 add_executable(app app.cpp)
15

16 if (ENABLE_COVERAGE)
17 setup_target_for_coverage_lcov(
18 NAME coverage
19 EXECUTABLE ${CMAKE_CURRENT_SOURCE_DIR}/run_tests
20 EXECUTABLE_ARGS ${CMAKE_CURRENT_BINARY_DIR}
21 LCOV_ARGS -rc lcov_branch_coverage=1
22 GENHTML_ARGS --branch-coverage
23 DEPENDENCIES app)
24 endif()

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2135

Gcov/Lcov CMake Example: Source File and Test Script

app.cpp
1 #include <iostream>
2

3 void func(int x) {
4 if (x % 2) {
5 std::cout << "odd\n";
6 } else {
7 std::cout << "even\n";
8 }
9 }

10

11 int main() {
12 for (int i = 0; i < 100; ++i) {
13 func(i);
14 }
15 }

run_tests
1 #! /usr/bin/env bash
2

3 BINARY_DIR="$1"
4

5 $BINARY_DIR/app

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2136

Gcovr

� Gcovr is another tool for processing GCC coverage data

� similar in functionality to Lcov

� can generate XML output that can be used with Cobertura plugin of
Jenkins continuous integration server

� web site: https://gcovr.com

� GitHub web page: https://github.com/gcovr/gcovr

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2137

https://gcovr.com
https://github.com/gcovr/gcovr

Section 7.6.1

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2138

References I

1 B. J. Gough, An Introduction to GCC, Network Theory Limited, UK, 2004.

2 GNU Compiler Collection (GCC), https://gcc.gnu.org.

3 LLVM Clang, https://clang.llvm.org.

4 C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis and transformation.
In Proc. of International Symposium on Code Generation and
Optimization, Mar. 2004.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2139

https://gcc.gnu.org
https://clang.llvm.org

Section 7.7

LLVM XRay

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2140

LLVM XRay

� LLVM XRay is function call tracing system which combines
compiler-inserted instrumentation points and run-time library that can
enable and disable instrumentation

� XRay is part of LLVM software and needs to be used in conjunction with
Clang compiler

� allows collection of trace of function calls and information about stack
frames for those calls

� very minimal overhead when collection disabled

� moderate overhead when collection enabled
� consists of three main parts:

1 compiler-inserted instrumentation points
2 runtime library for enabling/disabling tracing at runtime
3 suite of tools for analyzing traces

� web site: https://llvm.org/docs/XRay.html

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2141

https://llvm.org/docs/XRay.html

Instrumenting Application

� when compiling with Clang, must enable instrumentation of code
� Clang has several options that relate to instrumentation of code for XRay:

2 -fxray-instrument
2 enable instrumentation for XRay

2 -fxray-instruction-threshold n
2 specify that functions with at least n instructions should be instrumented

2 -fxray-always-instrument
2 treat each function as if marked with always-instrument attribute

2 -fxray-never-instrument
2 treat each function as if marked with never-instrument attribute

� in order to allow any instrumentation to be performed by compiler, must
provide -fxray-instrument option

� other options may also be used to assert greater control over how
instrumentation performed

� must link with XRay Runtime Library (to be discussed shortly)
� providing -fxray-instrument option to Clang when linking, will

automatically link with XRay Runtime Library
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2142

Instrumenting Application (Continued)

� Clang compiler attributes for XRay include:
2 clang::xray_always_instrument

2 force (free or member) function to always be instrumented for XRay
2 clang::xray_never_instrument

2 inhibit (free or member) function from being instrumented for XRay
2 clang::xray_log_args(n)

2 preserve n arguments of function in logging (as of Clang 7.0.0, only n = 1 is
supported)

� above attributes can be used to assert finer control over XRay
instrumentation (if necessary)

� some examples of using attributes follow:
[[clang::xray_always_instrument]] void func_1() {/* ... */}
[[clang::xray_never_instrument]] void func_2() {/* ... */}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2143

XRay Runtime Library

� XRay Runtime Library is part of LLVM compiler-rt project

� environment variable XRAY_OPTIONS contains whitespace-delimited list of
options that control behavior of runtime library at application start up

� some supported options include:
2 patch_premain

2 if instrumentation points should be enabled prior to entering main
2 valid values: true and false; default value: false

2 xray_mode
2 default mode to install and initialize before main
2 valid values: xray-basic (basic) and xray-fdr (flight data recorder)

2 xray_logfile_base
2 base name of XRay log file
2 default value: xray-log.

2 verbosity
2 runtime verbosity level
2 integer value; default value: 0

� application can also control settings of XRay Runtime Library via API

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2144

Runtime Library (Continued)

� XRay supports two modes of operation:
1 basic
2 flight data recorder

� in basic mode, traces of application’s execution periodically appended to
single log file

� environment variable XRAY_BASIC_OPTIONS can be used to provide
additional options for basic mode

� in flight data recorder (FDR) mode, tracing events written to fixed-size
circular buffer in memory and traces can be dumped on demand through
triggering API

� environment variable XRAY_FDR_OPTIONS can be used to provide
additional options for FDR mode

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2145

LLVM XRay Tool

� trace log files can be analyzed with llvm-xray program

� command-line interface for llvm-xray:

llvm-xray [options] subcommand [subcommand_options]

� supports several subcommands:
2 account

2 performs basic function call accounting statistics with various options for
sorting and output formats

2 convert
2 converts XRay log file from one format to another

2 extract
2 extracts instrumentation map from binary and returns as YAML

2 graph
2 generates DOT graph of function call relationships between functions in XRay

trace
2 stack

2 reconstructs function call stacks from timeline of function calls in XRay trace

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2146

Code Example
example_1.cpp
1 #include <iostream>
2 #include <thread>
3 #include <chrono>
4

5 [[gnu::noinline, clang::xray_always_instrument]]
6 void delay() {
7 using namespace std::chrono_literals;
8 std::this_thread::sleep_for(1ms);
9 }

10

11 [[gnu::noinline, clang::xray_always_instrument,
12 clang::xray_log_args(1)]]
13 void func(int i, std::size_t n) {
14 for (std::size_t j = 0; j < n; ++j) {
15 std::cout << (i ? ’X’ : ’O’) << std::flush;
16 delay();
17 }
18 }
19

20 [[clang::xray_never_instrument]]
21 int main() {
22 std::thread t1([](){func(0, 500);});
23 std::thread t2([](){func(1, 500);});
24 t1.join(); t2.join();
25 std::cout << ’\n’;
26 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2147

Instrument Code and Run Application

� build instrumented code with command:
clang++ -std=c++17 -fxray-instrument -O1 example_1.cpp -o example_1

� run application with command:
XRAY_OPTIONS="patch_premain=true xray_mode=xray-basic" ./example_1

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2148

Account Subcommand Example

command:
llvm-xray account -k -m ./example_1 xray-log.example_1.5fNAQv

output produced:
Functions with latencies: 3

funcid count [min, med, 90p, 99p, max] sum function
1 1000 [0.000782, 0.000827, 0.000835, 0.000899, 0.000919] 0.825670 <invalid>:0:0: delay()
2 1 [0.420710, 0.420710, 0.420710, 0.420710, 0.420710] 0.420710 <invalid>:0:0: func(int,

unsigned long)
3 1000 [0.000781, 0.000825, 0.000831, 0.000896, 0.000917] 0.822853 <invalid>:0:0: void std::

this_thread::sleep_for<long, std::ratio<1l, 1000l> >(std::chrono::duration<long, std::ratio<1
l, 1000l> > const&)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2149

Stack Subcommand Example

command:
llvm-xray stack -m ./example_1 xray-log.example_1.5fNAQv

output produced:
Unique Stacks: 2
Top 10 Stacks by leaf sum:

Sum: 1439155104
lvl function count sum
#0 func(int, unsigned long) 1 1475472614
#1 delay() 500 1446943616
#2 void std::this_thread::sleep_for<long, std::ratio<1l, 100... 499 1439155104

Sum: 1437712794
lvl function count sum
#0 func(int, unsigned long) 1 1472486054
#1 delay() 500 1442899912
#2 void std::this_thread::sleep_for<long, std::ratio<1l, 100... 500 1437712794

Top 10 Stacks by leaf count:

Count: 500
lvl function count sum
#0 func(int, unsigned long) 1 1472486054
#1 delay() 500 1442899912
#2 void std::this_thread::sleep_for<long, std::ratio<1l, 100... 500 1437712794

Count: 499
lvl function count sum
#0 func(int, unsigned long) 1 1475472614
#1 delay() 500 1446943616
#2 void std::this_thread::sleep_for<long, std::ratio<1l, 100... 499 1439155104

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2150

Trace Subcommand Example

command:
llvm-xray convert -f yaml -y -m ./example_1 xray-log.example_1.5fNAQv

output produced:

header:
version: 3
type: 0
constant-tsc: true
nonstop-tsc: true
cycle-frequency: 3500000000

records:
- { type: 0, func-id: 2, function: ’func(int, unsigned long)’, args: [0], cpu: 5, thread: 29992,

process: 29991, kind: function-enter-arg, tsc: 1027021087397834 }
- { type: 0, func-id: 2, function: ’func(int, unsigned long)’, args: [1], cpu: 4, thread: 29993,

process: 29991, kind: function-enter-arg, tsc: 1027021087460270 }
- { type: 0, func-id: 1, function: ’delay()’, cpu: 5, thread: 29992, process: 29991, kind: function-enter

, tsc: 1027021087525002 }
- { type: 0, func-id: 3, function: ’void std::this_thread::sleep_for<long, std::ratio<1l, 1000l> >(std::

chrono::duration<long, std::ratio<1l, 1000l> > const&)’, cpu: 5, thread: 29992, process: 29991,
kind: function-enter, tsc: 1027021087526060 }

- { type: 0, func-id: 1, function: ’delay()’, cpu: 4, thread: 29993, process: 29991, kind: function-enter
, tsc: 1027021087532070 }

- { type: 0, func-id: 3, function: ’void std::this_thread::sleep_for<long, std::ratio<1l, 1000l> >(std::
chrono::duration<long, std::ratio<1l, 1000l> > const&)’, cpu: 4, thread: 29993, process: 29991,
kind: function-enter, tsc: 1027021087533716 }

- { type: 0, func-id: 3, function: ’void std::this_thread::sleep_for<long, std::ratio<1l, 1000l> >(std::
chrono::duration<long, std::ratio<1l, 1000l> > const&)’, cpu: 4, thread: 29993, process: 29991,
kind: function-exit, tsc: 1027021090288388 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2151

Talks I

1 Dean Berris. Debugging With LLVM XRay. Pacific++, Christchurch, NZ,
Oct. 26, 2017. Available online at https://youtu.be/cBc_MxbzqhY.
[This talk gives an introduction to the LLVM XRay tool, including what it is,
what it does, and how it works.]

2 Dean Michael Berris. XRay in LLVM: Function Call Tracing and Analysis.
LLVM Developers Meeting, San Jose, CA, USA, Oct. 18–19, 2017.
Available online at https://youtu.be/jyL-__zOGcU.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2152

https://youtu.be/cBc_MxbzqhY
https://youtu.be/jyL-__zOGcU

Section 7.8

Miscellaneous Tools

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2153

Kcov

� Kcov is tool for measuring code coverage

� unlike Gcov/Lcov, Kcov does not require instrumentation of code

� Kcov only supports measurement of statement coverage

� based on breakpoints

� can generate HTML reports similar in appearance to Lcov

� web site: https://github.com/SimonKagstrom/kcov

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2154

https://github.com/SimonKagstrom/kcov

Talks I

1 Simon Kagstrom. Kcov — A Single-Step Code Coverage Tool.
SwedenCpp::Stockholm, Stockholm, Sweden, Sept. 20, 2018. Available
online at https://youtu.be/1QMHbp5LUKg.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2155

https://youtu.be/1QMHbp5LUKg

Section 7.9

Catch2

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2156

Catch2

� Catch2 (originally known as Catch) is multiparadigm test framework for
C++

� Catch2 stands for “C++ automated test cases in a header”

� primarily distributed as single header library

� open source; released under Boost Software License

� written by Phil Nash

� official Git repository: http://github.com/catchorg/Catch2

� Google group: http://groups.google.com/group/catch-forum

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2157

http://github.com/catchorg/Catch2
http://groups.google.com/group/catch-forum

Counter Class Example: counter.hpp

1 #include <limits>
2 #include <stdexcept>
3

4 class counter {
5 public:
6 using count_type = std::size_t;
7 static constexpr count_type max_count() {
8 return std::numeric_limits<count_type>::max();
9 }

10 counter(count_type count = 0) : count_(count) {}
11 count_type get_count() const {
12 return count_;
13 }
14 void increment() {
15 if (count_ == max_count()) {
16 throw std::overflow_error("counter overflow");
17 }
18 ++count_;
19 }
20 private:
21 count_type count_;
22 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2158

Counter Class Example: Test Code

1 #define CATCH_CONFIG_MAIN
2 #include <catch2/catch.hpp>
3 #include "counter.hpp"
4

5 TEST_CASE("constructor", "[counter]") {
6 counter x;
7 CHECK(x.get_count() == 0);
8 counter y(1);
9 CHECK(y.get_count() == 1);

10 }
11

12 TEST_CASE("maximum count", "[counter]") {
13 CHECK(counter::max_count() == std::numeric_limits<
14 counter::count_type>::max());
15 }
16

17 TEST_CASE("increment (no overflow)", "[counter]") {
18 counter x(0);
19 REQUIRE(x.get_count() == 0);
20 x.increment();
21 CHECK(x.get_count() == 1);
22 }
23

24 TEST_CASE("increment (overflow)", "[counter]") {
25 counter x(counter::max_count());
26 CHECK_THROWS_AS(x.increment(), std::overflow_error);
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2159

Section Example
1 #define CATCH_CONFIG_MAIN
2 #include <catch2/catch.hpp>
3 #include <cstddef>
4 #include <vector>
5

6 TEST_CASE("Check resize", "[vector]") {
7 constexpr std::size_t size = 128;
8 std::vector<int> x(size);
9 REQUIRE(x.size() == size);

10 REQUIRE(x.capacity() >= size);
11 SECTION("Increase size") {
12 std::size_t n = size * 16;
13 x.resize(n);
14 CHECK(x.size() == n);
15 CHECK(x.capacity() >= n);
16 }
17 SECTION("Decrease size") {
18 std::size_t n = size / 16;
19 x.resize(n);
20 CHECK(x.size() == n);
21 CHECK(x.capacity() >= n);
22 }
23 SECTION("Zero size") {
24 x.resize(0);
25 CHECK(x.size() == 0);
26 CHECK(x.capacity() >= size);
27 }
28 }
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2160

Approximate Comparison Example

1 #define CATCH_CONFIG_MAIN
2 #include <catch2/catch.hpp>
3

4 TEST_CASE("addition") {
5 float x = 0.0f;
6 for (int i = 0; i < 10; ++i) {x += 0.1f;}
7 CHECK_NOFAIL(x == 1.0f);
8 // condition may be false due to roundoff error
9 CHECK(x == Approx(1.0f));

10 // should pass
11 CHECK(x == Approx(1.0f).margin(0.01f));
12 // should pass (absolute tolerance 0.01)
13 CHECK(x == Approx(1.0f).epsilon(0.01f));
14 // should pass (relative tolerance 1%)
15 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2161

Type-Parameterized Test Example: stack.hpp

1 #include <cstddef>
2 #include <vector>
3

4 // Note: T is not allowed to be bool.
5 template <class T>
6 class Stack {
7 public:
8 bool empty() const {return s_.empty();}
9 std::size_t size() const {return s_.size();}

10 const T& top() const {return s_.back();}
11 void push(const T& x) {s_.push_back(x);}
12 void pop() {s_.pop_back();}
13 private:
14 std::vector<T> s_;
15 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2162

Type-Parameterized Test Example: Test Code

1 #define CATCH_CONFIG_MAIN
2 #include <catch2/catch.hpp>
3 #include <complex>
4 #include "stack.hpp"
5

6 TEMPLATE_TEST_CASE("Check default constructor", "[constructors]",
7 int, double, std::complex<double>) {
8 Stack<TestType> s;
9 CHECK(s.empty());

10 CHECK(s.size() == 0);
11 }
12

13 TEMPLATE_TEST_CASE("Check push and pop", "[modifiers]",
14 int, double, std::complex<double>) {
15 std::size_t size = 0;
16 Stack<TestType> s;
17 REQUIRE(s.size() == size);
18 while (size < 3) {
19 ++size; s.push(TestType(size));
20 REQUIRE(s.size() == size);
21 REQUIRE(s.top() == TestType(size));
22 }
23 while (size > 0) {
24 s.pop(); --size;
25 REQUIRE(s.size() == size);
26 }
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2163

Test Fixture Example

1 #define CATCH_CONFIG_MAIN
2 #include <catch2/catch.hpp>
3 #include <deque>
4 #include <stdexcept>
5

6 class TestFixture {
7 public:
8 TestFixture() : q0(), q1{1, 2, 3} {
9 }

10 protected:
11 std::deque<int> q0;
12 std::deque<int> q1;
13 };
14

15 TEST_CASE_METHOD(TestFixture, "Check deque at", "[deque]") {
16 CHECK_THROWS_AS(q0.at(0), std::out_of_range);
17 CHECK(q1.at(0) == 1);
18 CHECK_THROWS_AS(q1.at(3), std::out_of_range);
19 }
20

21 TEST_CASE_METHOD(TestFixture, "Check deque clear", "[deque]") {
22 q0.clear();
23 CHECK(q0.size() == 0);
24 q1.clear();
25 CHECK(q1.size() == 0);
26 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2164

Talks I

1 Phil Nash. Modern C++ Testing with Catch2. CppCon, Bellevue, WA,
USA, Sept. 24, 2018. Available online at
https://youtu.be/Ob5_XZrFQH0.

2 Phil Nash. Modern C++ Testing with Catch2. Meeting C++, Berlin,
Germany, Nov. 9, 2017. Available online at
https://youtu.be/3tIE6X5FjDE.

3 Phil Nash. Modern C++ Testing with Catch2. C++ Edinburgh, Edinburgh,
UK, Aug. 14, 2017. Available online at
https://youtu.be/grC0S6ZK59U.

4 Phil Nash. Test Driven C++ with Catch. CppCon, Bellevue, WA, USA,
Sept. 22, 2015. Available online at https://youtu.be/gdzP3pAC6UI.

5 Phil Nash. Testdriven C++ with Catch. Meeting C++, Berlin, Germany,
Dec. 5–6, 2014. Available online at https://youtu.be/C2LcIp56i-8.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2165

https://youtu.be/Ob5_XZrFQH0
https://youtu.be/3tIE6X5FjDE
https://youtu.be/grC0S6ZK59U
https://youtu.be/gdzP3pAC6UI
https://youtu.be/C2LcIp56i-8

Part 8

Performance Analysis Tools

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2166

Section 8.1

Perf

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2167

Linux Kernel Perf Event Interface

� Linux kernel provides Perf Event (i.e., perf_event) interface for
performance monitoring

� perf_event_open system call returns file descriptor that can then be
used to collect performance information

� collection of performance data started and stopped with ioctl system call

� performance data accessed either via read or mmap system call

� Perf Event interface used by numerous performance analysis tools and
libraries on Linux systems (e.g., Perf and PAPI)

� supports many profiling/tracing features, including:
2 CPU performance monitoring counters
2 statically defined tracepoints
2 user and kernel dynamic tracepoints

� good documentation on Perf Event interface is scarce

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2168

Perf

� open-source profiling tool

� can collect aggregated counts of events during code execution

� can perform event-driven sample-based profiling

� uses Perf Event interface of Linux kernel

� noninvasive (i.e., no code instrumentation required)

� low overhead (i.e., code runs close to native speed)

� sample-based profiling can collect stack traces in addition to instruction
pointer

� does not provide call counts for functions

� web site: https://perf.wiki.kernel.org

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2169

https://perf.wiki.kernel.org

Events

� hardware event:
2 event measurable by performance monitoring unit (PMU) of processor
2 examples: CPU cycles (cycles) and cache misses (cache-misses)

� hardware cache event:
2 event measurable by PMU of processor
2 examples: L1 data cache load misses (L1-dcache-load-misses) and

data translation-lookaside-buffer load misses (dTLB-load-misses)
� software event:

2 low-level events based on kernel counters
2 examples: CPU clock (cpu-clock) and page fault (page-faults)

� kernel tracepoint event:
2 predefined static instrumentation points in kernel code where trace

information can be collected
2 examples: entering open system call (syscalls:sys_enter_open) and

context switch (sched:sched_switch)
� probe event:

2 user-defined events dynamically inserted into kernel
2 created using uprobes or kprobes

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2170

Some Events

Event Description

cache-misses cache misses
cache-references cache accesses
cycles CPU cycles
cpu-clock CPU wall-time clock
instructions CPU instructions
cs context switches
faults page faults

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2171

Stack Traces

� stack trace is list of stack frames

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2172

Event-Based Sampling

� with event-based sampling, sampling process driven by one or more types
of events

� sample is taken upon occurrence of every nth event, where n is either:
2 directly specified by user; or
2 dynamically chosen by kernel in order to (approximately) meet average

sampling rate specified by user

� default sampling event is cycles with average sampling rate that depends
on Perf version (typically 1000 Hz to 4000 Hz)

� cycles event does not necessarily have constant relationship with time,
due to CPU frequency scaling

� each sample captures:
2 timestamp
2 CPU number, process ID (PID), and thread ID (TID)
2 instruction pointer
2 stack trace (optional)

� can perform sampling:
2 system wide, per processor, per program, or per thread

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2173

Event Specifiers

� event specifier consists of event name, optionally followed by colon and
then one of more event modifiers

� list of event modifiers as follows:
Modifier Description

u user-space counting
k kernel counting
h hypervisor counting
i non-idle counting
G guest counting (in KVM guests)
H host counting (not in KVM guests)
p preciseness level (i.e., amount of skid)
S read sample value
D pin event to PMU

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2174

Event Specifiers (Continued)

� number n of p’s in modifier influences preciseness of event measurement
as follows:

n Description

0 can have arbitrary skid
1 must have constant skid
2 requested (but not required) to have zero skid
3 must have zero skid

� if zero skid required but not supported, error will be generated

� some examples of event specifiers are as follows:
Event Specifier Meaning

cycles:u clock cycles in user space
cache-misses:u cache misses in user space
cache-misses:k cache misses in kernel
cache-misses:uppp cache misses in user space with zero skid

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2175

Hardware Event Skid

� measurements involving hardware counters typically employ interrupts

� when hardware counter for event overflows, interrupt occurs

� when overflow interrupt occurs, takes CPU some amount of time to stop
processor and pinpoint exactly which instruction was active at time of
overflow

� due to this delay, can often be offset in execution flow between instruction
claimed to be active at time of overflow and instruction that actually was
active

� this offset known as skid
� in some cases, for example, skid could result in caller function event being

recorded in callee function

� due to skid, some care must be taken when interpreting profiling results

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2176

The perf Program

� functionality of Perf software provided by perf program

� command line interface has following form:
perf [options] command [args]

� some common commands include:
Command Description

list list all symbolic event types
stat run command and gather performance count statistics
record run command and record its profile into Perf data file
report read Perf data (created by Perf record) and display profile
script read Perf data (created by Perf record) and display trace

output
annotate read Perf data (created by Perf record) and display anno-

tated code

� some common options include:
Option Description

--help print help information and exit
--version print version information and exit

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2177

Perf List Command

� list all symbolic event types

� command line interface has following form:
perf list [event_type]

� event types include:
Event Type Description

hw hardware
sw software
cache cache
tracepoint tracepoint
pmu PMU
glob_expr any event matching glob expression glob_expr

� only lists event types available to invoking user

� some events only available to root user

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2178

Perf List Example

$ perf list
List of pre-defined events (to be used in -e):

branch -instructions OR branches [Hardware event]
branch -misses [Hardware event]
bus -cycles [Hardware event]
cache -misses [Hardware event]
cache -references [Hardware event]
cpu -cycles OR cycles [Hardware event]
instructions [Hardware event]
ref -cycles [Hardware event]

[text deleted]
alignment -faults [Software event]
context -switches OR cs [Software event]
cpu -clock [Software event]
cpu -migrations OR migrations [Software event]

[text deleted]
L1-dcache -load -misses [Hardware cache event]
L1-dcache -loads [Hardware cache event]
L1-dcache -prefetch -misses [Hardware cache event]
L1-dcache -store -misses [Hardware cache event]
L1-dcache -stores [Hardware cache event]
L1-icache -load -misses [Hardware cache event]

[text deleted]
cache -misses OR cpu/cache -misses/ [Kernel PMU event]
cache -references OR cpu/cache -references/ [Kernel PMU event]
cpu -cycles OR cpu/cpu -cycles/ [Kernel PMU event]
instructions OR cpu/instructions/ [Kernel PMU event]
mem -loads OR cpu/mem-loads/ [Kernel PMU event]
mem -stores OR cpu/mem -stores/ [Kernel PMU event]

[text deleted]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2179

Perf Stat Command

� run command and gather performance count statistics

� command line interface has following form:
perf stat [options] command [args]

� some common options include:
Option Description

-e event specify event for which to gather statistics
-p pid consider events on existing process ID
-t tid consider events on existing thread ID
-a consider all processors (i.e., system wide)
-r n repeat command n times and print averages and stan-

dard deviations
-C cpu consider only CPUs specified by cpu

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2180

Perf Stat Example

$ perf stat dd if=/dev/urandom of=/dev/null bs=1K count=32K status=none
Performance counter stats for
’dd if=/dev/urandom of=/dev/null bs=1K count=32K status=none ’:

1727.055828 task -clock (msec) # 0.999 CPUs utilized
1 context -switches # 0.001 K/sec

13 cpu-migrations # 0.008 K/sec
60 page -faults # 0.035 K/sec

5,805,261,702 cycles # 3.361 GHz
2,115,865,103 stalled -cycles -frontend # 36.45% frontend

cycles idle
<not supported > stalled -cycles -backend
12,108,757,065 instructions # 2.09 insns per cycle

0.17 stalled cycles
per insn

254,471,634 branches # 147.344 M/sec
257,282 branch -misses # 0.10% of all branches

1.728232622 seconds time elapsed

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2181

Perf Record Command

� run command and record its profile into Perf data file
� command line interface has following form:

perf record [options] command [args]

� some common options include:
Option Description

-e event specify event name
-a collect data from all processors
-p pid collect data from existing process ID pid
-t tid collect data from existing thread ID tid
-C cpu collect data from CPUs cpu
-c count set event count between samples to count
-o file set output file to file
-F freq set sampling frequency to approximately freq
-g enable call graph (i.e., stack trace) recording

� output file defaults to perf.data

� by default, uses cycles event with sampling frequency set to
version-dependent value (typically, 1000 Hz to 4000 Hz)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2182

Perf Record Example

$ perf record -g -F 99 -o perf.data dd if=/dev/urandom of=/dev/null \
bs=1K count=3200K status=none

[perf record: Woken up 9 times to write data]
[perf record: Captured and wrote 2.121 MB perf.data (16246 samples)]
$ ls
perf.data

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2183

Perf Report Command

� read Perf data (created by Perf record) and display profile
� command line interface has following form:

perf report [options]
� some common options include:

Option Description

-i file set input file to file
-v increase verbosity level
-n show number of samples for each symbol
-C cpu only show events for CPU cpu
--pid pid only show events for process ID pid
--tid tid only show events for thread ID tid
-d dsos only consider symbols in DSO/object files dsos
-S syms only consider symbols syms
-s key sort data by key key (such as PID)
--stdio use stdio interface
-U only display entries that resolve to symbol
-D dump raw trace data

� input file defaults to perf.data
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2184

Perf Report Example

$ perf record -g -e cycles:u -F 13000 -o perf.data ./array_sum
1
1
$ perf report -i perf.data -d array_sum --stdio
To display the perf.data header info , please use --header/--header -only options.
#
dso: array_sum
Samples: 1K of event ’cycles:u’
Event count (approx.): 158559166
#
Children Self Command Symbol
........
#

79.94% 79.94% array_sum [.] naive_sum
|
---naive_sum

main
__libc_start_main
0x48e258d4c544155

7.56% 7.56% array_sum [.] improved_sum
|
---improved_sum

main
__libc_start_main
0x48e258d4c544155

#
(For a higher level overview , try: perf report --sort comm ,dso)
#

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2185

Perf Script Command

� read Perf data (created by Perf record) and display trace output

� command line interface has following form:
perf script [options]

� some common options include:
Option Description

-i file set input file to file
--pid pid only show events for process ID pid
--tid tid only show events for thread ID tid
-C cpu only show events for CPU cpu

� input file defaults to perf.data

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2186

Perf Script Example

$ perf record -g -e cycles:u -F 13000 -o perf.data ./array_sum
1
1
$ perf script -i perf.data
array_sum 15602 2408817.214222: 1 cycles:u:

cf0 _start (/usr/lib64/ld -2.20.so)

array_sum 15602 2408817.214230: 1 cycles:u:
cf0 _start (/usr/lib64/ld -2.20.so)

array_sum 15602 2408817.214234: 2 cycles:u:
cf0 _start (/usr/lib64/ld -2.20.so)

array_sum 15602 2408817.214237: 7 cycles:u:
cf0 _start (/usr/lib64/ld -2.20.so)

array_sum 15602 2408817.214241: 25 cycles:u:
cf0 _start (/usr/lib64/ld -2.20.so)

array_sum 15602 2408817.214245: 88 cycles:u:
cf0 _start (/usr/lib64/ld -2.20.so)

array_sum 15602 2408817.214248: 308 cycles:u:
cf0 _start (/usr/lib64/ld -2.20.so)

array_sum 15602 2408817.214253: 1081 cycles:u:
ffffffff8179bef0 page_fault ([kernel.kallsyms])

cf0 _start (/usr/lib64/ld -2.20.so)

array_sum 15602 2408817.214270: 3147 cycles:u:
4980 _dl_start (/usr/lib64/ld -2.20.so)

array_sum 15602 2408817.214274: 4536 cycles:u:
4b8f _dl_start (/usr/lib64/ld -2.20.so)
cf8 _dl_start_user (/usr/lib64/ld -2.20.so)

[text deleted]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2187

Perf Annotate Command

� read Perf data (created by Perf record) and display annotated code

� command line interface has following form:
perf annotate [options]

� some common options include:
Option Description

-i file set input file to file
-s sym annotate symbol sym
-d dsos only consider symbols in DSO/object files dsos
-v increase verbosity level
-l print matching source lines
-P do not shorten displayed pathnames
-k file set vmlinux pathname to file
--stdio use stdio interface
--no-source disable displaying of source code

� input file defaults to perf.data

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2188

Perf Annotate Example

$ perf record -g -e cycles:u -F 13000 -o perf.data ./array_sum
[text deleted]
$ perf annotate -i perf.data -s naive_sum -l --stdio
[text deleted]

: double naive_sum(const double a[][N]) {
0.00 : 400807: push %rbp
0.00 : 400808: mov %rsp ,%rbp
0.00 : 40080b: lea 0x4000(%rdi),%rcx

: double sum = 0.0;
0.00 : 400812: pxor %xmm0 ,%xmm0
0.00 : 400816: lea 0x2000000(%rdi),%rdx
0.00 : 40081d: mov %rdi ,%rax

: for (int j = 0; j < N; ++j) {
: for (int i = 0; i < M; ++i) {
: sum += a[i][j];

0.00 : 400820: addsd (%rax),%xmm0
array_sum.cpp:11 100.00 : 400824: add $0x4000 ,%rax

[text deleted]
: double naive_sum(const double a[][N]) {
: double sum = 0.0;
: for (int j = 0; j < N; ++j) {
: for (int i = 0; i < M; ++i) {

0.00 : 40082a: cmp %rdx ,%rax
0.00 : 40082d: jne 400820 <naive_sum(double const (*) [2048])+0x19>
0.00 : 40082f: add $0x8 ,%rdi

[text deleted]
0.00 : 400833: cmp %rcx ,%rdi
0.00 : 400836: jne 400816 <naive_sum(double const (*) [2048])+0xf>

[text deleted]
: }
: }
: return sum;
: }

0.00 : 400838: pop %rbp
0.00 : 400839: retq

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2189

Example: Source Code

1 #include <iostream>
2 #include <algorithm>
3

4 constexpr int M = 4096;
5 constexpr int N = 4096;
6
7 [[gnu::noinline]]
8 double naive_sum(const double a[][N]) {
9 double sum = 0.0;

10 for (int j = 0; j < N; ++j) {
11 for (int i = 0; i < M; ++i) {
12 sum += a[i][j];
13 }
14 }
15 return sum;
16 }
17
18 [[gnu::noinline]]
19 double improved_sum(const double a[][N]) {
20 double sum = 0.0;
21 for (int i = 0; i < M; ++i) {
22 for (int j = 0; j < N; ++j) {
23 sum += a[i][j];
24 }
25 }
26 return sum;
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2190

Example: Source Code (Continued)

29 int main() {
30 for (int i = 0; i < 16; ++i) {
31 static double a[M][N];
32 static double b[M][N];
33 std::fill_n(&a[0][0], M * N, 1.0 / (M * N));
34 std::fill_n(&b[0][0], M * N, 1.0 / (M * N));
35 std::cout << naive_sum(a) << ’ ’;
36 std::cout << improved_sum(b) << ’\n’;
37 }
38 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2191

Profile of Cycles

To display the perf.data header info , please use --header/--header -only options.
#
dso: array_sum
Samples: 16K of event ’cycles:u’
Event count (approx.): 14049539983
#
Children Self Command Symbol
........
#

99.97% 0.00% array_sum [.] __libc_start_main
|
---__libc_start_main

0x46e258d4c544155

99.97% 10.92% array_sum [.] main
|
---main

__libc_start_main
0x46e258d4c544155

82.97% 82.97% array_sum [.] naive_sum
|
---naive_sum

main
__libc_start_main
0x46e258d4c544155

5.90% 5.90% array_sum [.] improved_sum
|
---improved_sum

main
__libc_start_main
0x46e258d4c544155

[text deleted]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2192

Cycles for naive_sum

: 0000000000400807 <naive_sum(double const (*) [4096])>:
: _Z9naive_sumPA4096_Kd ():

[text deleted]
: [[gnu::noinline]]
: double naive_sum(const double a[][N]) {

0.00 : 400807: push %rbp
0.00 : 400808: mov %rsp ,%rbp
0.00 : 40080b: lea 0x8000(%rdi),%rcx

: double sum = 0.0;
0.00 : 400812: pxor %xmm0 ,%xmm0
0.00 : 400816: lea 0x8000000(%rdi),%rdx
0.00 : 40081d: mov %rdi ,%rax

: for (int j = 0; j < N; ++j) {
: for (int i = 0; i < M; ++i) {
: sum += a[i][j];

0.00 : 400820: addsd (%rax),%xmm0
array_sum.cpp:12 99.93 : 400824: add $0x8000 ,%rax

[text deleted]
: for (int j = 0; j < N; ++j) {
: for (int i = 0; i < M; ++i) {

0.07 : 40082a: cmp %rdx ,%rax
0.00 : 40082d: jne 400820 <naive_sum(double const (*) [4096])+0x19>
0.00 : 40082f: add $0x8 ,%rdi

[text deleted]
: [[gnu::noinline]]
: double naive_sum(const double a[][N]) {
: double sum = 0.0;
: for (int j = 0; j < N; ++j) {

0.00 : 400833: cmp %rcx ,%rdi
0.00 : 400836: jne 400816 <naive_sum(double const (*) [4096])+0xf>

: for (int i = 0; i < M; ++i) {
: sum += a[i][j];
: }
: }
: return sum;
: }

0.00 : 400838: pop %rbp
0.00 : 400839: retq

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2193

Cycles for improved_sum

: 000000000040083a <improved_sum(double const (*) [4096])>:
: _Z12improved_sumPA4096_Kd ():

[text deleted]
: [[gnu::noinline]]
: double improved_sum(const double a[][N]) {

0.00 : 40083a: push %rbp
0.00 : 40083b: mov %rsp ,%rbp
0.00 : 40083e: lea 0x8000000(%rdi),%rdx

: double sum = 0.0;
0.00 : 400845: pxor %xmm0 ,%xmm0
0.00 : 400849: lea 0x8000(%rdi),%rax

: for (int i = 0; i < M; ++i) {
: for (int j = 0; j < N; ++j) {
: sum += a[i][j];

0.00 : 400850: addsd (%rdi),%xmm0
array_sum.cpp:23 99.70 : 400854: add $0x8 ,%rdi

[text deleted]
: for (int i = 0; i < M; ++i) {
: for (int j = 0; j < N; ++j) {

0.30 : 400858: cmp %rax ,%rdi
0.00 : 40085b: jne 400850 <improved_sum(double const (*) [4096])+0x16 >

: }
:
: [[gnu::noinline]]
: double improved_sum(const double a[][N]) {
: double sum = 0.0;
: for (int i = 0; i < M; ++i) {

0.00 : 40085d: cmp %rdx ,%rdi
0.00 : 400860: jne 400849 <improved_sum(double const (*) [4096])+0xf>

: for (int j = 0; j < N; ++j) {
: sum += a[i][j];
: }
: }
: return sum;
: }

0.00 : 400862: pop %rbp
0.00 : 400863: retq

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2194

Profile of Cache Misses

To display the perf.data header info , please use --header/--header -only options.
#
dso: array_sum
Samples: 25K of event ’cache -misses:u’
Event count (approx.): 256620000
#
Children Self Command Symbol
........
#

99.99% 0.00% array_sum [.] __libc_start_main
|
---__libc_start_main

0x46e258d4c544155

99.99% 3.67% array_sum [.] main
|
---main

__libc_start_main
0x46e258d4c544155

93.74% 93.73% array_sum [.] naive_sum
|
---naive_sum

main
__libc_start_main
0x46e258d4c544155

2.58% 2.58% array_sum [.] improved_sum
|
---improved_sum

main
__libc_start_main
0x46e258d4c544155

[text deleted]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2195

Cache Misses for naive_sum

: 0000000000400807 <naive_sum(double const (*) [4096])>:
: _Z9naive_sumPA4096_Kd ():

[text deleted]
: [[gnu::noinline]]
: double naive_sum(const double a[][N]) {

0.00 : 400807: push %rbp
0.00 : 400808: mov %rsp ,%rbp
0.00 : 40080b: lea 0x8000(%rdi),%rcx

: double sum = 0.0;
0.00 : 400812: pxor %xmm0 ,%xmm0
0.00 : 400816: lea 0x8000000(%rdi),%rdx
0.00 : 40081d: mov %rdi ,%rax

: for (int j = 0; j < N; ++j) {
: for (int i = 0; i < M; ++i) {
: sum += a[i][j];

0.00 : 400820: addsd (%rax),%xmm0
array_sum.cpp:12 99.93 : 400824: add $0x8000 ,%rax

[text deleted]
: for (int j = 0; j < N; ++j) {
: for (int i = 0; i < M; ++i) {

0.07 : 40082a: cmp %rdx ,%rax
0.00 : 40082d: jne 400820 <naive_sum(double const (*) [4096])+0x19>
0.00 : 40082f: add $0x8 ,%rdi

[text deleted]
: [[gnu::noinline]]
: double naive_sum(const double a[][N]) {
: double sum = 0.0;
: for (int j = 0; j < N; ++j) {

0.00 : 400833: cmp %rcx ,%rdi
0.00 : 400836: jne 400816 <naive_sum(double const (*) [4096])+0xf>

: for (int i = 0; i < M; ++i) {
: sum += a[i][j];
: }
: }
: return sum;
: }

0.00 : 400838: pop %rbp
0.00 : 400839: retq

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2196

Cache Misses for improved_sum

: 000000000040083a <improved_sum(double const (*) [4096])>:
: _Z12improved_sumPA4096_Kd ():

[text deleted]
: [[gnu::noinline]]
: double improved_sum(const double a[][N]) {

0.00 : 40083a: push %rbp
0.00 : 40083b: mov %rsp ,%rbp
0.00 : 40083e: lea 0x8000000(%rdi),%rdx

: double sum = 0.0;
0.00 : 400845: pxor %xmm0 ,%xmm0
0.00 : 400849: lea 0x8000(%rdi),%rax

: for (int i = 0; i < M; ++i) {
: for (int j = 0; j < N; ++j) {
: sum += a[i][j];

0.00 : 400850: addsd (%rdi),%xmm0
array_sum.cpp:23 99.70 : 400854: add $0x8 ,%rdi

[text deleted]
: for (int i = 0; i < M; ++i) {
: for (int j = 0; j < N; ++j) {

0.30 : 400858: cmp %rax ,%rdi
0.00 : 40085b: jne 400850 <improved_sum(double const (*) [4096])+0x16 >

: }
:
: [[gnu::noinline]]
: double improved_sum(const double a[][N]) {
: double sum = 0.0;
: for (int i = 0; i < M; ++i) {

0.00 : 40085d: cmp %rdx ,%rdi
0.00 : 400860: jne 400849 <improved_sum(double const (*) [4096])+0xf>

: for (int j = 0; j < N; ++j) {
: sum += a[i][j];
: }
: }
: return sum;
: }

0.00 : 400862: pop %rbp
0.00 : 400863: retq

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2197

Additional Remarks

� avoid sampling in lockstep with periodic behavior exhibited by programs
(e.g., caused by timeouts or loops)

� since programmers often choose timeout (and other timing related) values
to be “nice” numbers, such as integer multiples of 0.01 s, may be
beneficial to choose sampling frequency of 99 Hz instead of 100 Hz or
999 Hz instead of 1000 Hz

� sample-based profiling only provides meaningful results if sufficient
number of samples collected

� can use taskset command to pin process for particular CPU

� might want to force single-threaded program to run on fixed CPU so that
migration does not impact measurements (e.g., due to caching effects)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2198

Flame Graphs

� flame graph provides way to visualize collection of stack traces

� useful for visualizing output of profiler that collects stack traces using
sampling (e.g., Perf)

� stack trace represented as column of boxes, with each box corresponding
to function in stack trace

� function executing at time of stack trace shown at top of column

� vertical direction corresponds to stack depth

� horizontal direction spans stack trace collection (does not represent time)

� left to right ordering has no special meaning

� when identical function boxes horizontally adjacent, merged

� width of each function box shows frequency with which function present in
part of stack trace ancestry

� functions with wider boxes more frequent in stack traces than those with
narrower boxes

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2199

Flame Graph Example

Flame Graph

SPL::raster..
SPL..

Me..

SPL..

main_make_mesh

Mesh_generator::calc_triangulation_cost

__libc_start_main

Mes..

S..

Mesh_generator::calc_face_priority_se

Me..

[unknown]

SPL::r..

Me..

Mesh_generator::lawson_optimize

SPL::rasterize::Triangle_scan_line<int, Mesh..
Mesh_generator::calc_face_se

Mesh_generator::operator

make_mesh

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2200

Generating Flame Graphs

� can generate flamegraphs from Perf data by using software available from
2 https://github.com/brendangregg/FlameGraph

� need to use stackcollapse-perf.pl and flamegraph.pl programs

� convert Perf data from binary to text format via Perf script command; for
example:

perf script -i perf.data > tmp.perf

� fold stack samples into single lines via
stackcollapse-perf.pl command; for example:

stackcollapse-perf.pl tmp.perf > tmp.folded

� generate flame graph in SVG format via flamegraph.pl command; for
example:

flamegraph.pl tmp.folded > flamegraph.svg

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2201

https://github.com/brendangregg/FlameGraph

Section 8.1.1

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2202

Talks I

1 Brendan Gregg. Linux Profiling at Netflix. Southern California Linux Expo
(SCaLE), Los Angeles, CA, USA, Feb. 27, 2015. Available online at
https://youtu.be/_Ik8oiQvWgo.

2 Mans Rullgard. Performance Analysis Using the perf Suite. Embedded
Linux Conference, March 2015, San Jose, CA, USA. Available online at
https://youtu.be/kWnx6eOGVYo.

3 Chandler Carruth. Tuning C++: Benchmarks, and CPUs, and Compilers!
Oh My!. CppCon, Bellevue, WA, USA, Sept. 24, 2015. Available online at
https://youtu.be/nXaxk27zwlk.

4 Brendan Gregg. Blazing Performance with Flame Graphs. Large
Installation System Administration Conference (LISA), Washington, DC,
USA, Nov. 2013. Available online at https://youtu.be/nZfNehCzGdw.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2203

https://youtu.be/_Ik8oiQvWgo
https://youtu.be/kWnx6eOGVYo
https://youtu.be/nXaxk27zwlk
https://youtu.be/nZfNehCzGdw

References I

1 B. Gregg, The Flame Graph. ACM Queue, March 2016, pages 1–28.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2204

Section 8.2

Performance API (PAPI) Software

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2205

Motivation

� often easy to identify in general terms which parts of code are slow

� sometimes more difficult to pinpoint precise reason why code is slow (i.e.,
what is precise cause of bottleneck)

� often need to consider factors such as:
2 cache behavior
2 memory and resource contention
2 floating-point efficiency
2 branch behavior

� often, processor itself in best position to provide information related to
above factors

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2206

Hardware Performance Counters

� hardware performance counters are specialized registers used to
measure various aspects of processor performance

� hardware counters can provide insight into:
2 timing
2 cache behaviors (e.g., cache misses and cache coherence protocol events)
2 branch behaviors (e.g., incorrect branch predictions)
2 pipeline behavior (e.g., stalls)
2 memory and resource access patterns
2 floating-point efficiency
2 instructions per cycle

� hardware counter information can be obtained with:
2 subroutine or basic block resolution
2 process or thread attribution

� provide low-level information that often cannot be obtained easily through
other means

� useful for performance analysis and tuning (e.g., identifying bottlenecks in
code)

� use of hardware performance counters has no or little overhead
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2207

Performance API (PAPI) Software

� Performance API (PAPI) software provides portable and efficient API for
accessing hardware performance counters found on modern processors

� more generally allows monitoring of system information on range of
components, such as CPUs, network interface cards, and power monitors

� consists of library and several utility programs

� open source

� written in C

� supports most mainstream Unix-based operating systems (e.g., Linux, OS
X, and other Unix variants); older versions support Microsoft Windows

� supports most modern processors (e.g., Intel and AMD 32- and 64-bit
x86, ARM, MIPS, Intel Itanium II, UltraSparc I, II, and III, and IBM Power
4, 5, 6, and 7)

� web site: http://icl.utk.edu/papi

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2208

http://icl.utk.edu/papi

Events

� event is simply some action that can be counted

� native event: event that is specified in platform-dependent manner and
directly corresponds to particular hardware counter

� which native events are available will depend on underlying hardware

� preset event: event that is specified in platform-independent manner,
which is then mapped to appropriate native event(s) (e.g., PAPI_TOT_INS)

� derived event: preset event derived from multiple native events

� if hardware does not directly support counting of particular event, event
count can sometimes be computed by using combination of native events

� for example, PAPI_L1_TCM might be derived from L1 data misses plus L1
instruction misses

� preset events usually available for most processors, where derived events
used in cases where no corresponding native event exists

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2209

Events (Continued)

� which events supported and which combinations of supported events can
be used together depends on hardware

� hardware will typically have some upper limit on number of events that can
be monitored simultaneously

� some events often cannot be used with others (even if upper limit on
number of events not exceeded)

� papi_avail or papi_native_avail utility (discussed later) can be used
to determine number of hardware counters available

� papi_avail utility (discussed later) can be used to determine which
preset events are supported

� papi_native_avail utility (discussed later) can be used to determine
which native events are supported

� papi_event_chooser utility (discussed later) can be used to determine
which events can be used with which other events

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2210

PAPI

� must include header file papi.h

� library initialized with function PAPI_library_init

� depending on which functions used, may need to explicitly initialize library

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2211

PAPI High-Level Interface

� calls low-level API

� easier to use than low-level API

� usually enough for more basic measurements

� for preset events only

� high-level interface functions will initialize library if needed (so
PAPI_library_init need not be explicitly called)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2212

Functions in PAPI High-Level Interface

Function Description

PAPI_accum_counters add current counts to array and reset counters
PAPI_flips get floating-point instruction rate and real and proces-

sor time
PAPI_flops get floating-point operation rate and real and processor

time
PAPI_ipc get instructions per cycle and real and processor time
PAPI_num_counters get number of hardware counters available on system
PAPI_read_counters copy current counts to array and reset counters
PAPI_start_counters start counting hardware events
PAPI_stop_counters stop counters and return current counts

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2213

Some Commonly-Used Preset Events

Instruction Mix
Name Description

PAPI_LD_INS number of load instructions
PAPI_SR_INS number of store instructions
PAPI_LST_INS number of load/store instructions
PAPI_BR_INS number of branch instructions
PAPI_INT_INS number of integer instructions
PAPI_FP_INS number of floating-point instructions
PAPI_VEC_INS number of vector/SIMD instructions
PAPI_VEC_SP number of single-precision vector/SIMD instructions
PAPI_VEC_DP number of double-precision vector/SIMD instructions
PAPI_TOT_INS number of instructions in total

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2214

Some Commonly-Used Preset Events (Continued 1)

Clock Cycles
Name Description

PAPI_TOT_CYC total number of clock cycles

FLOPS
Name Description

PAPI_FP_OPS number of floating-point operations
PAPI_SP_OPS number of floating-point operations executed, optimized to count

scaled single-precision vector operations
PAPI_DP_OPS number of floating-point operations executed, optimized to count

scaled double-precision vector operations

Translation Lookaside Buffer (TLB)
Name Description

PAPI_TLB_DM number of data TLB misses
PAPI_TLB_IM number of instruction TLB misses
PAPI_TLB_TL number of TLB misses (in total)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2215

Some Commonly-Used Preset Events (Continued 2)
L1 Cache Behavior

Name Description

PAPI_L1_DCA number of L1 data cache accesses
PAPI_L1_DCH number of L1 data cache hits
PAPI_L1_DCM number of L1 data cache misses
PAPI_L1_DCR number of L1 data cache reads
PAPI_L1_DCW number of L1 data cache writes
PAPI_L1_ICA number of L1 instruction cache accesses
PAPI_L1_ICH number of L1 instruction cache hits
PAPI_L1_ICM number of L1 instruction cache misses
PAPI_L1_ICR number of L1 instruction cache reads
PAPI_L1_ICW number of L1 instruction cache writes
PAPI_L1_LDM number of L1 load misses
PAPI_L1_STM number of L1 store misses
PAPI_L1_TCA number of L1 cache accesses (in total)
PAPI_L1_TCH number of L1 cache hits (in total)
PAPI_L1_TCM number of L1 cache misses (in total)
PAPI_L1_TCR number of L1 cache reads (in total)
PAPI_L1_TCW number of L1 cache writes (in total)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2216

Some Commonly-Used Preset Events (Continued 3)

L2 and L3 Cache Behavior
Name Description

PAPI_L2_LDM number of L2 load misses
PAPI_L2_STM number of L2 store misses
PAPI_L2_TCA number of L2 cache accesses (in total)
PAPI_L2_TCH number of L2 cache hits (in total)
PAPI_L2_TCM number of L2 cache misses (in total)
PAPI_L2_TCR number of L2 cache reads (in total)
PAPI_L2_TCW number of L2 cache writes (in total)
PAPI_L3_LDM number of L3 load misses
PAPI_L3_STM number of L3 store misses
PAPI_L3_TCA number of L3 cache accesses (in total)
PAPI_L3_TCH number of L3 cache hits (in total)
PAPI_L3_TCM number of L3 cache misses (in total)
PAPI_L3_TCR number of L3 cache reads (in total)
PAPI_L3_TCW number of L3 cache writes (in total)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2217

Event Usage Examples

� most frequently used events are often those related to cache behavior
� instructions per cycle could be computed from events:

2 PAPI_TOT_CYC and PAPI_TOT_INS

� L1 cache data miss rate could be computed from events:
2 PAPI_L1_DCM and PAPI_L1_DCA; or
2 PAPI_L1_DCM and PAPI_L1_DCH; or
2 PAPI_L1_DCM, PAPI_LD_INS, and PAPI_SR_INS

� L2 cache (total) miss rate could be computed from events:
2 PAPI_L2_TCM and PAPI_L2_TCA; or
2 PAPI_L2_TCM and PAPI_L2_TCH; or
2 PAPI_L2_TCM, PAPI_LD_INS, and PAPI_SR_INS

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2218

Code Example Using PAPI High-Level Interface

1 #include <iostream>
2 #include <papi.h>
3

4 void do_work() {for (volatile auto i = 1’000’000; i > 0; --i) {}}
5

6 int main() {
7 constexpr int num_events = 2;
8 int events[num_events] = {PAPI_TOT_INS, PAPI_TOT_CYC};
9 long long values[num_events];

10 if (PAPI_start_counters(events, num_events) != PAPI_OK)
11 {std::cerr << "cannot start counters\n"; return 1;}
12 do_work();
13 if (PAPI_stop_counters(values, num_events) != PAPI_OK)
14 {std::cerr << "cannot stop counters\n"; return 1;}
15 for (auto i : values) {std::cout << i << ’\n’;}
16 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2219

PAPI Low-Level Interface

� several dozen functions available in low-level API

� provides increased efficiency and functionality

� can obtain more detailed information about hardware

� low-level interface works with event sets

� event set: set of events to be monitored

� some low-level API functions listed on next slide

� low-level interface functions do not initialize library (so
PAPI_library_init must be called explicitly)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2220

Some Functions in PAPI Low-Level Interface

Function Description

PAPI_library_init initialize PAPI library
PAPI_shutdown cleanup PAPI library
PAPI_create_eventset create event set
PAPI_destroy_eventset destroys empty event set
PAPI_cleanup_eventset removes all events from event set
PAPI_add_event add preset or native hardware event to event set
PAPI_add_events add multiple preset or native hardware events to

event set
PAPI_start start counting hardware events in event set
PAPI_read read hardware counters from event set
PAPI_reset reset hardware event counts in event set
PAPI_accum adds hardware counters from event set to elements

in array and resets counters
PAPI_stop stop counting hardware events in event set

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2221

Code Example Using PAPI Low-Level Interface

1 #include <iostream>
2 #include <papi.h>
3

4 void do_work() {for (volatile auto i = 1’000’000; i > 0; --i) {}}
5

6 int main() {
7 constexpr int num_events = 2;
8 int event_set = PAPI_NULL;
9 int events[num_events] = {PAPI_TOT_INS, PAPI_TOT_CYC};

10 long long values[num_events];
11 if (PAPI_library_init(PAPI_VER_CURRENT) != PAPI_VER_CURRENT)
12 {std::cerr << "cannot initialize\n"; return 1;}
13 if (PAPI_create_eventset(&event_set) != PAPI_OK)
14 {std::cerr << "cannot create event set\n"; return 1;}
15 if (PAPI_add_events(event_set, events, num_events) != PAPI_OK)
16 {std::cerr << "cannot add events\n"; return 1;}
17 if (PAPI_start(event_set) != PAPI_OK)
18 {std::cerr << "cannot start\n"; return 1;}
19 do_work();
20 if (PAPI_stop(event_set, values) != PAPI_OK)
21 {std::cerr << "cannot stop\n"; return 1;}
22 if (PAPI_cleanup_eventset(event_set) != PAPI_OK)
23 {std::cerr << "cannot cleanup event set\n"; return 1;}
24 if (PAPI_destroy_eventset(&event_set) != PAPI_OK)
25 {std::cerr << "cannot destroy event set\n"; return 1;}
26 for (auto i : values) {std::cout << i << ’\n’;}
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2222

PAPI Utilities

Name Description

papi_avail provides availability and detail information for PAPI pre-
set events

papi_clockres measures and reports clock latency and resolution for
PAPI timers

papi_cost computes execution time costs for basic PAPI opera-
tions

papi_command_line executes PAPI preset or native events from command
line

papi_decode provides availability and detail information for PAPI pre-
set events

papi_event_chooser given list of named events, lists other events that can
be counted with them

papi_mem_info provides information on memory architecture of current
processor

papi_native_avail provides detailed information for PAPI native events
papi_version provides version information for PAPI

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2223

Example papi_avail Output

Available events and hardware information.
--
PAPI Version : 5.3.2.0
Vendor string and code : GenuineIntel (1)
Model string and code : Intel(R) Core(TM) i7 -3820QM CPU @ 2.70GHz (58)
CPU Revision : 9.000000
CPUID Info : Family: 6 Model: 58 Stepping: 9
CPU Max Megahertz : 3700
CPU Min Megahertz : 1200
Hdw Threads per core : 2
Cores per Socket : 4
Sockets : 1
NUMA Nodes : 1
CPUs per Node : 8
Total CPUs : 8
Running in a VM : no
Number Hardware Counters : 11
Max Multiplex Counters : 64
--

Name Code Avail Deriv Description (Note)
PAPI_L1_DCM 0x80000000 Yes No Level 1 data cache misses
PAPI_L1_ICM 0x80000001 Yes No Level 1 instruction cache misses
PAPI_L2_DCM 0x80000002 Yes Yes Level 2 data cache misses
PAPI_L2_ICM 0x80000003 Yes No Level 2 instruction cache misses
PAPI_L3_DCM 0x80000004 No No Level 3 data cache misses
PAPI_L3_ICM 0x80000005 No No Level 3 instruction cache misses
PAPI_L1_TCM 0x80000006 No Yes Level 1 cache misses
PAPI_L2_TCM 0x80000007 Yes No Level 2 cache misses
PAPI_L3_TCM 0x80000008 Yes No Level 3 cache misses
[99 lines deleted]

Of 108 possible events , 43 are available , of which 14 are derived.

avail.c PASSED

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2224

Example papi_mem_info Output

Memory Cache and TLB Hierarchy Information.
--
TLB Information.

There may be multiple descriptors for each level of TLB
if multiple page sizes are supported.

L1 Data TLB:
Page Size: 4 KB
Number of Entries: 64
Associativity: 4

[other TLB information deleted]

Cache Information.

L1 Data Cache:
Total size: 32 KB
Line size: 64 B
Number of Lines: 512
Associativity: 8

L1 Instruction Cache:
Total size: 32 KB
Line size: 64 B
Number of Lines: 512
Associativity: 8

L2 Unified Cache:
Total size: 256 KB
Line size: 64 B
Number of Lines: 4096
Associativity: 8

[information for L3 Unified Cache deleted]

mem_info.c PASSED

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2225

Example papi_native_avail Output

Available native events and hardware information.
--
PAPI Version : 5.3.2.0
Vendor string and code : GenuineIntel (1)
Model string and code : Intel(R) Core(TM) i7 -3820QM CPU @ 2.70GHz (58)
CPU Revision : 9.000000
CPUID Info : Family: 6 Model: 58 Stepping: 9
CPU Max Megahertz : 3700
CPU Min Megahertz : 1200
Hdw Threads per core : 2
Cores per Socket : 4
Sockets : 1
NUMA Nodes : 1
CPUs per Node : 8
Total CPUs : 8
Running in a VM : no
Number Hardware Counters : 11
Max Multiplex Counters : 64
--
===
Native Events in Component: perf_event

===
[lines deleted]
--
| perf::L1-DCACHE -LOADS |
L1 cache load accesses
[lines deleted]
===
Native Events in Component: coretemp

===
| coretemp:::hwmon0:temp1_input |
degrees C, acpitz module , label ?
[lines deleted]

Total events reported: 322
native_avail.c PASSED

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2226

Section 8.2.1

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2227

References I

1 B. Sprunt. The basics of performance-monitoring hardware.
IEEE Micro, 22(4):64–71, July 2002.

2 P. Mucci, Performance Monitoring with PAPI, Dr. Dobb’s Journal, June
2005. Available online at http://www.drdobbs.com/tools/
performance-monitoring-with-papi/184406109.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2228

http://www.drdobbs.com/tools/performance-monitoring-with-papi/184406109
http://www.drdobbs.com/tools/performance-monitoring-with-papi/184406109

Section 8.3

Gprof

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2229

Gprof

� open-source tool for code-execution profiling
� can be used to collect statistics from program run, including:

2 amount of time spent in each function
2 how many times each function called
2 callers and callees of each function (i.e., call graph information)

� based on compiler instrumentation of code and sampling

� works with GCC and Clang compilers

� instrumentation added to code gathers function call information used to
generate call graphs and function call counts

� timing of code execution accomplished by statistical sampling at run time

� program counter probed at regular intervals by interrupting program

� typical sampling period 100 or 1000 samples/second

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2230

Comments on Gprof

� since sampling is statistical process, timing measurements not exact (i.e.,
only statistical approximation)

� if too few samples taken (e.g., in case of short-running program), timing
measurements very inaccurate

� overhead caused by instrumentation can be quite high (about 30% to
260%)

� overhead distorts timing measurements (e.g., instrumentation added to
code changes code timing) so timing of code with and without profiling
can potentially be quite different

� may not correctly handle multi-threaded applications

� cannot profile shared libraries

� cannot measure time spent in kernel mode (e.g., system calls); only
user-space code profiled

� has difficulties with call graphs containing non-trivial cycles (e.g., mutual
recursion)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2231

The gprof Command

� command line interface has following form:
gprof [options] [executable_file] [profile_file...]

� executable_file defaults to a.out

� profile_file defaults to gmon.out

� some common options include:
Option Description

-b omit explanations of meaning of all fields in output
-I dirs add directories dirs to search path for source files
-p show flat profile
-q show call graph
-h print help information and exit
-s summarize information in profile data files and

write to gmon.sum

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2232

Using Gprof

� compile and link program with -pg option; for example:
g++ -c -pg -g -O example_1.cpp
g++ -c -pg -g -O example_2.cpp
g++ -pg -g -O -o example example_1.o example_2.o

� run program which will produce profiling data file gmon.out; for example:
example

� run gprof to analyze profiling data; for example:
gprof example

� several gmon files can be combined with gprof -s to accumulate data
over several runs of program

� gprof2dot can be used to convert call graph to graphical form

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2233

Gprof Output

� output can be generated in following forms:
2 flat profile
2 call graph

� flat profile reports:
2 how much of total execution time spent in each function
2 how many times each function called
2 output sorted by percentage

� call graph reports:
2 for each function, which functions called it, which other functions it called,

and how many times
2 estimate of how much time spent in subroutines of each function

� flat profile useful to identify most expensive functions

� call graph useful to identify places where function calls could be eliminated

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2234

Example: Source Code

1 #include <algorithm>
2

3 constexpr int M = 1024;
4 constexpr int N = 1024;
5 constexpr int P = 1024;
6

7 // c += a * b
8 void naive_matmul(const double a[][N], const double b[][P],
9 double c[][P]) {

10 for (int i = 0; i < M; ++i) {
11 for (int j = 0; j < N; ++j) {
12 for (int k = 0; k < P; ++k)
13 {c[i][j] += a[i][k] * b[k][j];}
14 }
15 }
16 }
17

18 // c += a * b
19 void improved_matmul(const double a[][N], const double b[][P],
20 double c[][P]) {
21 for (int i = 0; i < M; ++i) {
22 for (int k = 0; k < P; ++k) {
23 for (int j = 0; j < N; ++j)
24 {c[i][j] += a[i][k] * b[k][j];}
25 }
26 }
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2235

Example: Source Code (Continued)

29 int main(int argc, char** argv) {
30 static double a[M][N];
31 static double b[N][P];
32 static double c0[M][P];
33 static double c1[M][P];
34 std::fill_n(&a[0][0], M * N, 1.0);
35 std::fill_n(&b[0][0], N * P, 1.0);
36 std::fill_n(&c0[0][0], M * P, 0.0);
37 naive_matmul(a, b, c0);
38 std::fill_n(&a[0][0], M * N, 1.0);
39 std::fill_n(&b[0][0], N * P, 1.0);
40 std::fill_n(&c1[0][0], M * P, 0.0);
41 improved_matmul(a, b, c1);
42 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2236

Flat Profile Information

� each row in table corresponds to function
� columns in table have following meanings:

2 % time: percentage of total running time of program used by this function
2 cumulative seconds: running sum of number of seconds accounted for by

this function and those listed above it
2 self seconds: number of seconds accounted for by this function alone (i.e.,

excluding descendants)
2 calls: number of times this function was invoked if function is profiled, blank

otherwise
2 self ms/call: average number of milliseconds spent in this function per call

(excluding descendants) if function is profiled, blank otherwise
2 total ms/call: average number of milliseconds spent in this function and its

descendants per call if function is profiled, blank otherwise
2 name: name of function

� entries in table sorted first by self seconds and then by function name

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2237

Example: Flat Profile

Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls s/call s/call name
89.48 7.55 7.55 1 7.55 7.55 naive_matmul(

double const (*) [1024],
double const (*) [1024],
double (*) [1024])

11.23 8.50 0.95 1 0.95 0.95 improved_matmul(
double const (*) [1024],
double const (*) [1024],
double (*) [1024])

0.12 8.51 0.01 main
0.00 8.51 0.00 1 0.00 0.00

_GLOBAL__sub_I__Z12naive_matmulPA1024_KdS1_PA1024_d

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2238

Call Graph Information

� table describes call graph of program

� one multi-line entry in table per function, with each entry containing
information for function and its callers and callees

� line with index number in left margin lists current function

� lines above current function list its callers

� lines below current function list its callees
� for current function, fields have following meanings:

2 index: unique integer index for this function
2 % time: percentage of total time spent in this function and its children
2 self: total amount of time spent in this function
2 children: total amount of time propagated into this function by its children
2 called: number of times this function called nonrecursively (possibly

followed by “+” and number of recursive calls)
2 name: name of this function (with index printed after it)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2239

Call Graph Information (Continued)

� for each parent of current function, fields have following meanings:
2 self: amount of time propagated directly from function into this parent
2 children: amount of time propagated from function’s children into this parent
2 called: number of times parent called function, followed by “/”, followed by

total number of times function called
2 name: name of this parent (with its index printed after name)

� if parents of current function cannot be determined, “<spontaneous>” is
printed in name field

� for each child of current function, fields have following meanings:
2 self: amount of time propagated directly from child to current function
2 children: amount of time propagated from child’s children to current function
2 called: number of times current function called child, followed by “/”,

followed by total number of times child called
2 name: name of function (followed by its index)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2240

Example: Call Graph

Call graph

granularity: each sample hit covers 2 byte(s) for 0.12% of 8.51 seconds

index % time self children called name
<spontaneous >

[1] 100.0 0.01 8.50 main [1]
7.55 0.00 1/1 naive_matmul(double const (*) [1024],

double const (*) [1024],
double (*) [1024]) [2]

0.95 0.00 1/1 improved_matmul(double const (*) [1024],
double const (*) [1024],
double (*) [1024]) [3]

7.55 0.00 1/1 main [1]

[2] 88.7 7.55 0.00 1 naive_matmul(double const (*) [1024],
double const (*) [1024],
double (*) [1024]) [2]

0.95 0.00 1/1 main [1]

[3] 11.1 0.95 0.00 1 improved_matmul(double const (*) [1024],
double const (*) [1024],
double (*) [1024]) [3]

0.00 0.00 1/1 __libc_csu_init [16]

[10] 0.0 0.00 0.00 1
_GLOBAL__sub_I__Z12naive_matmulPA1024_KdS1_PA1024_d [10]

Index by function name

[10] _GLOBAL__sub_I__Z12naive_matmulPA1024_KdS1_PA1024_d (matmul_array.cpp) [3]
improved_matmul(double const (*) [1024], double const (*) [1024], double (*) [1024])

[2] naive_matmul(double const (*) [1024], double const (*) [1024], double (*) [1024])
[1] main

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2241

Section 8.3.1

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2242

References I

1 S. L. Graham, P. B. Kessler, and M. K. McKusick. gprof: A call graph
execution profiler.
ACM SIGPLAN Notices, 17(6):120–126, June 1982.

2 S. L. Graham, P. B. Kessler, and M. K. McKusick. gprof: A call graph
execution profiler.
ACM SIGPLAN Notices, 39(4):49–57, Apr. 2004.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2243

Section 8.4

Valgrind/Callgrind

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2244

Callgrind

� Callgrind isValgrind tool that collects function call graph information and
measures number of instructions executed and cache behavior for
program

� does not measure execution time per se; but provides sufficient
information to make clock cycle estimates (as is done in KCachegrind)

� can be used to determine cache hit/miss counts and miss rate on program
wide, per function, and per source-code line basis

� simulates L1 instruction/data cache and L2 cache

� parameters for each cache can be specified (i.e., size, associativity, and
line size) but default to values taken from machine’s cache

� simplistic cache model only approximates real cache

� handles code in shared libraries

� typically 15 to 100 times slower (depending on whether cache and branch
simulation enabled)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2245

The valgrind Command with Callgrind Tool

� command line interface has following form:
valgrind [options] program [program_options]

� to use Callgrind tool, must specify --tool=callgrind option

� some tool-independent options include:
Option Description

--help print help information and exit
--log-file=file set file for log information to file

� some Callgrind-specific options include:
Option Description

--callgrind-out-file=file sets output file to file; defaults to
callgrind.out-$pid where $pid is
process ID

--cache-sim=b specifies if information on cache use
should be collected, where b is yes or no

--branch-sim=b specifies if branching information should
be collected, where b is yes or no

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2246

The callgrind_annotate Command

� command line interface has following form:
callgrind_annotate [options] $callgrind_out_file

� some options include:
Option Description

--help print help information and exit
--auto=b specifies if all source files should be annotated, where

b is yes or no

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2247

Using Callgrind

� build code as one would normally (no compile-time instrumentation is
needed); for example:

g++ -g -O -o array_sum array_sum.cpp

� run program using valgrind with Callgrind tool; for example:
valgrind --tool=callgrind --cache-sim=yes \
--log-file=callgrind.log \
--callgrind-out-file=callgrind.out \
./array_sum

� display results with callgrind_annotate; for example:
callgrind_annotate --auto=yes callgrind.out

� alternatively, display results in graphical form with tool like KCachegrind
(discussed later)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2248

Example: Source Code

1 #include <iostream>
2 #include <algorithm>
3

4 constexpr int M = 2048;
5 constexpr int N = 2048;
6

7 double naive_sum(const double a[][N]) {
8 double sum = 0.0;
9 for (int j = 0; j < N; ++j) {

10 for (int i = 0; i < M; ++i)
11 {sum += a[i][j];}
12 }
13 return sum;
14 }
15

16 double improved_sum(const double a[][N]) {
17 double sum = 0.0;
18 for (int i = 0; i < M; ++i) {
19 for (int j = 0; j < N; ++j)
20 {sum += a[i][j];}
21 }
22 return sum;
23 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2249

Example: Source Code (Continued)

25 int main() {
26 static double a[M][N];
27 std::fill_n(&a[0][0], M * N, 1.0 / (M * N));
28 std::cout << naive_sum(a) << ’\n’;
29 static double b[M][N];
30 std::fill_n(&b[0][0], M * N, 1.0 / (M * N));
31 std::cout << improved_sum(b) << ’\n’;
32 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2250

Example: Callgrind
$ valgrind --tool=callgrind --cache -sim=yes --branch -sim=yes --log-file=callgrind.log --

callgrind -out-file=callgrind.out ./array_sum
$ cat callgrind.log
==23469== Callgrind , a call -graph generating cache profiler
==23469== Copyright (C) 2002-2013, and GNU GPL’d, by Josef Weidendorfer et al.
==23469== Using Valgrind -3.10.1 and LibVEX; rerun with -h for copyright info
==23469== Command: ./array_sum
==23469== Parent PID: 23449
==23469==
--23469-- warning: L3 cache found , using its data for the LL simulation.
==23469== For interactive control , run ’callgrind_control -h’.
==23469==
==23469== Events : Ir Dr Dw I1mr D1mr D1mw ILmr DLmr DLmw Bc Bcm Bi Bim
==23469== Collected : 70339139 9142838 8663373 1601 4738282 1051026 1585 4728422 1050172

17247597 30398 4923 423
==23469==
==23469== I refs: 70,339,139
==23469== I1 misses: 1,601
==23469== LLi misses: 1,585
==23469== I1 miss rate: 0.0%
==23469== LLi miss rate: 0.0%
==23469==
==23469== D refs: 17,806,211 (9,142,838 rd + 8,663,373 wr)
==23469== D1 misses: 5,789,308 (4,738,282 rd + 1,051,026 wr)
==23469== LLd misses: 5,778,594 (4,728,422 rd + 1,050,172 wr)
==23469== D1 miss rate: 32.5% (51.8% + 12.1%)
==23469== LLd miss rate: 32.4% (51.7% + 12.1%)
==23469==
==23469== LL refs: 5,790,909 (4,739,883 rd + 1,051,026 wr)
==23469== LL misses: 5,780,179 (4,730,007 rd + 1,050,172 wr)
==23469== LL miss rate: 6.5% (5.9% + 12.1%)
==23469==
==23469== Branches: 17,252,520 (17,247,597 cond + 4,923 ind)
==23469== Mispredicts: 30,821 (30,398 cond + 423 ind)
==23469== Mispred rate: 0.1% (0.1% + 8.5%)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2251

Example: callgrind_annotate

$ callgrind_annotate callgrind.out array_sum.cpp

[text deleted]
--
-- User -annotated source: array_sum.cpp
--

Ir Dr Dw I1mr D1mr D1mw ILmr DLmr DLmw Bc Bcm Bi Bim

. #include <iostream >

. #include <algorithm >

.

. constexpr int M = 2048;

. constexpr int N = 2048;

.
1 0 0 1 0 0 1 double naive_sum(const double a[][N]) {

4,097 double sum = 0.0;
4,096 0 0 0 0 0 0 0 0 2,048 3 . . for (int j = 0; j < N; ++j) {

8,390,656 0 0 0 0 0 0 0 0 4,194,304 2,063 . . for (int i = 0; i < M; ++i)
8,388,608 4,194,304 0 0 4,194,304 0 0 4,194,304 {sum += a[i][j];}

. }

. return sum;
1 1 0 0 1 0 0 1 }
.
1 double improved_sum(const double a[][N]) {

2,049 double sum = 0.0;
4,096 0 0 0 0 0 0 0 0 2,048 3 . . for (int i = 0; i < M; ++i) {

8,388,608 0 0 0 0 0 0 0 0 4,194,304 2,058 . . for (int j = 0; j < N; ++j)
8,388,608 4,194,304 0 0 524,288 0 0 524,288 {sum += a[i][j];}

. }

. return sum;
1 1 0 0 1 0 0 1 }
.
2 0 0 1 0 0 1 int main() {
. static double a[M][N];
. std::fill_n(&a[0][0], M * N, 1.0 / (M * N));
2 0 1 0 0 1 0 0 1 std::cout << naive_sum(a) << ’\n’;

16,787,459 4,194,305 0 1 4,194,305 0 1 4,194,305 0 4,196,352 2,066 . . => array_sum.cpp:naive_sum(double const (*) [2048]) (1x)
. static double b[M][N];
. std::fill_n(&b[0][0], M * N, 1.0 / (M * N));
2 0 1 0 0 1 0 0 1 std::cout << improved_sum(b) << ’\n’;

16,783,363 4,194,305 0 0 524,289 0 0 524,289 0 4,196,352 2,061 . . => array_sum.cpp:improved_sum(double const (*) [2048]) (1x)
6 2 0 1 2 0 1 1 }

--
Ir Dr Dw I1mr D1mr D1mw ILmr DLmr DLmw Bc Bcm Bi Bim
--
48 92 0 0 100 0 0 100 0 49 14 0 0 percentage of events annotated

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2252

KCachegrind

� open-source call-graph profiling-data visualization tool

� part of K Desktop Environment (KDE)

� supports Callgrind data
� allows graphical visualization of:

2 call-graph relationships between functions (e.g., callers and callees)
2 function costs/counts
2 annotated source/assembly with costs/counts

� allows much easier interpretation of Callgrind data (relative to
callgrind_annotate)

� to allow annotation of assembly, add --dump-instr=yes option to
valgrind command for Callgrind

� use command of form:
kcachegrind $callgrind_out_file

� web site: https://kcachegrind.github.io

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2253

https://kcachegrind.github.io

KCachegrind Example: Source/Assembly Annotation

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2254

KCachegrind Example

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2255

Section 8.4.1

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2256

References I

1 P. Floyd. Valgrind part 4 — cachegrind and callgrind.
Overload, 111:4–7, Oct. 2012.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2257

Part 9

Build Tools

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2258

Section 9.1

Build Tools

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2259

Build Tools

� Build tools are programs that automate the creation of executable
programs, libraries, and other artifacts from source code.

� Build tools also typically provide some basic facilities for testing and
packaging the artifacts generated by the build process.

� Building software requires careful tracking of:
2 what items need to be built, and
2 the dependencies between these items.

� Dependency tracking is necessary to:
2 determine the order in which items must be built, and
2 minimize the number of items that need to be re-built when a change is

made to the code.

� In the case of very small projects, it may be feasible to perform the build
process manually.

� For larger projects, however, the build process is far too complex to
manage by hand, and build tools are therefore needed.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2260

Examples of Build Tools

� Some examples of build tools include:
2 CMake (a cross-platform tool)
2 GNU Build System (also known as Autotools) (for Unix)
2 Make (for Unix)
2 MSBuild (for Microsoft Visual Studio under Microsoft Windows)
2 Xcodebuild (for Apple Xcode)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2261

Section 9.2

Make

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2262

Make

� make command
� controls generation of executables and/or other non-source files from

program’s source files
� extremely popular tool for automating build process
� available on many platforms (e.g., Unix, Microsoft Windows, Mac OS X);

used extensively on Unix systems
� very flexible
� can handle building multiple programs consisting of hundreds of source

files or single program consisting of only one source file
� can be used to build almost anything (i.e., need not be a program)
� for example, all materials for this course typeset using LATEX (e.g.,

coursepack, slides, handouts, exams), and make utility used to compile
LATEX source code into PDF documents

� one of most popular implementations of make is GNU Make
� GNU Make web site: http://www.gnu.org/software/make

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2263

http://www.gnu.org/software/make

The make Command

� target is something that can be built, typically (but not necessarily) file
such as executable file or object file

� make command driven by data file called makefile
� makefile usually named Makefile or makefile
� command-line usage:

make [options] [targets]

� targets: zero or more targets to be built
� options: zero or more options
� by default, looks for makefile called makefile and then Makefile

� if no targets are specified, will build first target specified in makefile
� only builds files that are out of date
� most common command-line options include:

-n show commands that would be executed but do not actu-
ally execute them

-f makefile use makefile makefile

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2264

Makefiles

� comment starts at hash character (i.e., “#”) and continues until end of line;
example:

This comment continues until the end of the line.

� supports variables

� some important variables used by built-in rules:
Name Description
CXX C++ compiler command
CXXFLAGS C++ compiler options
LDFLAGS linker options

� to assign value to variable, use equal sign; example:

CXX = g++

� to substitute value of variable, use dollar sign followed by variable name in
parentheses; example:

$(CXX)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2265

Makefiles (Continued 1)

� makefile specifies targets and rules for building targets

� each rule in makefile has following form:

targets : prerequisites
commands
. . .

� indentation shown above must be with tab character and not spaces

� targets: list of one or more targets

� prerequisites: files on which targets depend (i.e., files used to produce
targets)

� commands: actions that must be carried out to produce target from its
prerequisites

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2266

Makefiles (Continued 2)

� normally, each target associated with file of same name (and building
target will create this file)

� phony target: target that is not associated with any file

� to identify target as phony make it prerequisite of special target called
“.PHONY”; example (specify all as phony target):

.PHONY: all

� some special built-in variables that can be used in rules:
Name Description
$@ target
$< name of first prerequisite
$^ names of all of prerequisites separated by spaces

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2267

Makefile for hello Program

1 CXX = g++ # The C++ compiler command.
2 CXXFLAGS = -g -O # The C++ compiler options.
3 LDFLAGS = # The linker options (if any).
4

5 # The all target builds all of the programs handled by
6 # the makefile.
7 # This target has the dependency chain:
8 # all -> hello -> hello.o -> hello.cpp
9 all: hello

10

11 # The clean target removes all of the executable files
12 # and object files produced by the build process.
13 clean:
14 rm -f hello *.o
15

16 # The hello target builds the hello executable.
17 hello: hello.o
18 $(CXX) $(CXXFLAGS) -o $@ $^ $(LDFLAGS)
19

20 # Indicate that the all and clean targets do not
21 # correspond to actual files.
22 .PHONY: all clean
23

24 # The following rule is effectively built into make and
25 # therefore need not be explicitly specified:
26 # hello.o: hello.cpp
27 # $(CXX) $(CXXFLAGS) -c $<

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2268

Commentary on Makefile for hello Program

� all target: builds all of the programs handled by the makefile (e.g.,
hello)

� clean target: removes all of the executable files and object files produced
by build process (e.g., hello, hello.o)

� although all and clean have no special meaning to make, very common
practice to provide targets with these particular names in all makefiles

� hello target: compiles and links the hello program

� chain of dependencies for all target:
all→ hello→ hello.o→ hello.cpp

� all and clean examples of phony targets

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2269

Section 9.2.1

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2270

References

1 S. I. Feldman. Make — a program for maintaining computer programs.
Software: Practice and Experience, 9(4):255–265, Apr. 1979.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2271

Section 9.3

CMake

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2272

CMake

� CMake is open-source cross-platform family of tools designed to build,
test, and package software

� controls software build process (e.g., compiling and linking) using simple
platform- and compiler-independent configuration files

� used in conjunction with native build environments

� generates files appropriate for whatever build environment being used

� supports native build environments such as Unix Make, Apple Xcode, and
Microsoft Visual Studio

� automatically generates dependency information for source files

� supports parallel builds

� created by Kitware (http://www.kitware.com)

� web site: https://cmake.org

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2273

http://www.kitware.com
https://cmake.org

Users of CMake

� CMake has very large user base and is employed in many open-source
and commercial projects

� some users of CMake include:
2 Blender (https://www.blender.org)
2 Clang (http://clang.llvm.org)
2 Computational Geometry Algorithms Library (CGAL)

(http://www.cgal.org)
2 JasPer Image Processing/Coding Tool Kit

(http://www.ece.uvic.ca/~mdadams/jasper)
2 K Desktop Environment (KDE) (https://www.kde.org)
2 MySQL (https://www.mysql.com)
2 Netflix (https://www.netflix.com)
2 OpenCV (http://opencv.org)
2 Qt (https://www.qt.io)
2 Second Life (http://secondlife.com)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2274

https://www.blender.org
http://clang.llvm.org
http://www.cgal.org
http://www.ece.uvic.ca/~mdadams/jasper
https://www.kde.org
https://www.mysql.com
https://www.netflix.com
http://opencv.org
https://www.qt.io
http://secondlife.com

Build Process

CMake
Build Files Build Files

CMake Native
Built Code

Build Tool
Native

� CMake build files: files used by CMake to describe build process for
software project (i.e., CMakeLists.txt and other build files it references)

� native build tool: program used to build code for particular software
development environment being employed (e.g., make for Unix, MSBuild
for Microsoft Visual Studio, and xcodebuild for Apple Xcode)

� native build files: files used by native build tool to control build process
(e.g., makefiles for Unix, project/solution files for Microsoft Visual Studio,
and project files for Apple Xcode)

� build process consists of two steps:
1 CMake used, with CMake build files as input, to produce native build files
2 native build tool invoked to build code using native build files generated by

CMake

� strictly speaking, CMake does not itself build code, but rather produces
build files that can be used by native build tool to build code

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2275

CMake Basics

� source directory: top-level directory of source tree for code to be built
� binary directory: directory under which all files generated by build

process will be placed
� source directory must contain CMakeLists.txt file which is used to

describe build process
� cache: file where CMake stores values of variables used for configuration

of build process (i.e., CMakeCache.txt in binary directory)
� build-system generator: entity within CMake that produces native build

files (i.e., build files targeting particular native build tool)
� CMake provides numerous generators (e.g., generators for Unix Make,

Apple Xcode, and Microsoft Visual Studio)
� build configuration: description of build to be performed with particular

set of parameters (e.g., optimized or debug version)
� some generators support multiple configurations using single build
� for generators that support only single configuration, need to specify

which configuration to build
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2276

In-Source Versus Out-of-Source Builds

� in-source build: when binary directory chosen to be inside source tree
(e.g., same as source directory)

� out-of-source build: when binary directory chosen to be outside source
tree

� when out-of-source build used, contents of source directory not modified
in any way by build process

� in contrast, when in-source build used, build process can generate many
new files under source directory

� out-of-source builds have numerous advantages over in-source builds; in
particular, out-of-source builds:

2 avoid cluttering source tree with many files generated by build process,
which can cause numerous difficulties (e.g., interacting poorly with version
control systems)

2 facilitate easy removal of all files generated by build process without risk of
accidentally removing source files

2 allow for multiple builds from single source tree (e.g., debug and release
builds)

� for above reasons, in-source builds should generally be avoided
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2277

The cmake Command for Configuring

� To generate build files for a native build tool (i.e., configure), use a
command of the form:

cmake [options] [$srcdir]

� The source directory $srcdir may be optionally specified.

� The source and binary directories default to the current directory (resulting
in an in-source build), but may both be set by using the -S and -B options.

� Some options include:
Option Description
-S srcdir Set the source directory to srcdir.
-B bindir Set the binary directory to bindir.
-D var=val Set the CMake variable var to val.
-G gen Set the build-system generator to gen.
--version Print name/version banner and exit.
--help Print usage information and exit.
--debug-output Enable debugging output.
--trace Enable tracing output.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2278

The cmake Command for Configuring (Continued 1)

� Some supported generators include:
Name Description
Unix Makefiles makefiles for Unix Make
Xcode project files for Apple Xcode
Visual Studio 15 2017 project files for Microsoft Visual Studio 15
Ninja build files for Ninja build system

� Some environment variables used by cmake include:
Option Description
CMAKE_CONFIG_TYPE The default build configuration.
CMAKE_BUILD_PARALLEL_LEVEL The maximum number of concurrent pro-

cesses to use when building.
CC The command for compiling C source.
CFLAGS The default compilation flags for compiling C

source.
CXX The command for compiling C++ source.
CXXFLAGS The default compilation flags for compiling

C++ source.
LDFLAGS The default linker flags.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2279

The cmake Command for Building

� To invoke the native build tool in a platform-independent manner for the
build files in the binary directory $bindir, use a command of the form:

cmake --build $bindir [$options]

� Some options include:
Option Description
--target target Build the target target instead of the default targets.
--config config For a multi-configuration generator, select the build con-

figuration config. For a single-configuration generator,
this option is ignored.

--clean-first Build the “clean” target first.
-j n Set the maximum number of concurrent processes to n.
-- Pass the remaining options to the native build tool.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2280

Hello World Example

� source directory $SOURCE_DIR contains two files:
1 CMakeLists.txt
2 hello.cpp

� commands to build with binary directory $BINARY_DIR:
cmake -S$SOURCE_DIR -B$BINARY_DIR
cmake --build $BINARY_DIR

$SOURCE_DIR/hello.cpp
1 #include <iostream>
2 int main() {std::cout << "Hello, World!\n";}

$SOURCE_DIR/CMakeLists.txt
1 # Specify minimum required version of CMake.
2 cmake_minimum_required(VERSION 3.1 FATAL_ERROR)
3

4 # Specify project and identify languages used.
5 project(hello LANGUAGES CXX)
6

7 # Add program target called hello.
8 add_executable(hello hello.cpp)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2281

Section 9.3.1

CMakeLists Files

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2282

Projects, Targets, and Build Configurations

� project: collection of source code to be built using CMake

� target: something to be built by build process, such as executable or
library

� target typically associated with one or more source files

� target has numerous properties (e.g., compiler flags and linker flags)

� target names cannot contain whitespace

� by default, following build configurations are supported:
Name Description
Debug basic debugging code/information enabled
Release basic optimization enabled
RelWithDebInfo optimized build with debugging code/informa-

tion enabled as well
MinSizeRel smallest (but not necessarily fastest) code

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2283

Comments and Commands

� comment starts with hash character (i.e., “#”) and continues until end of
line

� file consists of sequence of commands
� command consists of following (in order):

1 command name
2 opening parenthesis
3 whitespace-separated arguments
4 closing parenthesis

� command example:
cmake_minimum_required(VERSION 3.1)

� command names are case insensitive
� anything in double quotes treated as single argument; for example, as in:

message("Hello World")

� backslash character can be used to escape character such as double
quote; for example, as in:

message("\${X} is not a variable expansion")

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2284

Variables

� variable name is sequence of one or more letters, digits, and underscore
characters that does not begin with digit (e.g., MATH_LIBRARY, i)

� variable names are case sensitive

� value of variable can be treated as string or list of strings

� value of variable X is accessed as ${X}

� boolean tests are case insensitive

� all of following considered false: OFF, 0, NO, FALSE, NOTFOUND,
*-NOTFOUND, IGNORE

� variable can be internal or cache

� cache variable persists across separate invocations of cmake while
internal variable does not

� internal variable take precedence over cache variable

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2285

Modules

� module is file containing re-usable piece of CMakeLists code
� normally use “.cmake” file name extension
� most modules can be classified into one of following categories:

2 find
2 system introspection
2 utility

� find module:
2 determines location of software elements such as header files and libraries
2 often module name starts with prefix “Find”
2 examples: FindBoost and FindOpenGL

� system introspection module:
2 provides information about target system or compiler (e.g., size of various

types, availability of header files, compiler version)
2 often module name starts with prefix “Test” or “Check”
2 examples: CheckCXXSourceCompiles and CheckIncludeFile

� utility module:
2 provides additional functions/macros for convenience
2 example: ExternalProject

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2286

Modules (Continued 1)

� module can be accessed via include command

� find module normally accessed via find_package command (instead of
directly using include command)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2287

Commonly-Used Variables

� Source and binary directories:
2 CMAKE_BINARY_DIR. The full path to the top-level directory of the current

CMake build tree. For an in-source build, this is the same as
CMAKE_SOURCE_DIR.

2 CMAKE_SOURCE_DIR. The full path to the top-level directory of the current
CMake source tree. For an in-source build, this is the same as
CMAKE_BINARY_DIR.

2 CMAKE_CURRENT_SOURCE_DIR. The full path to the source directory that is
currently being processed by cmake.

2 CMAKE_CURRENT_BINARY_DIR. The full path to the binary directory that is
currently being processed by cmake.

� Build type:
2 CMAKE_BUILD_TYPE. In the case of single-configuration generators,

specifies the build type (e.g., Release, Debug, RelWithDebInfo,
MinSizeRel). In the case of multi-configuration generators, unused.

2 BUILD_SHARED_LIBS. Specifies if all libraries created should default to
shared (instead of static).

2 BUILD_TESTING. Specifies if testing is enabled (when the CTest module is
used).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2288

Commonly-Used Variables (Continued 1)

� C++ compiler:
2 CMAKE_CXX_COMPILER_ID. The C++ compiler in use (e.g., Clang, GNU,

Intel, MSVC).
2 CMAKE_CXX_STANDARD. Used to initialize the CXX_STANDARD property on all

targets, which selects version of C++ standard (e.g., 98, 11, and 14).
2 CMAKE_CXX_STANDARD_REQUIRED. Used to initialize the

CXX_STANDARD_REQUIRED property of all targets. This property determines
whether the specified version of C++ standard is required.

2 CMAKE_CXX_COMPILER. The compiler command used for C++ source code.
2 CMAKE_CXX_FLAGS. The compiler flags for compiling C++ source code.
2 CMAKE_CXX_FLAGS_DEBUG. The compiler flags for compiling C++ source

code for a debug build.
2 CMAKE_CXX_FLAGS_RELEASE. The compiler flags for compiling C++ source

code for a release build.
2 CMAKE_CXX_FLAGS_RELWITHDEBINFO. The compiler flags for compiling

C++ source code for a release build with debug flags.
2 CMAKE_CXX_FLAGS_MINSIZEREL. The compiler flags for compiling C++

source code for a release build with minimum code size.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2289

Commonly-Used Variables (Continued 2)

� Linker:
2 CMAKE_EXE_LINKER_FLAGS. The linker flags used to create executables.

This variable also has configuration-specific variants, such as
CMAKE_EXE_LINKER_FLAGS_RELEASE.

2 CMAKE_SHARED_LINKER_FLAGS. The linker flags used to create shared
libraries. This variable also has configuration-specific variants, such as
CMAKE_SHARED_LINKER_FLAGS_RELEASE.

2 CMAKE_STATIC_LINKER_FLAGS. The linker flags used to create static
libraries. This variable also has configuration-specific variants, such as
CMAKE_STATIC_LINKER_FLAGS_RELEASE.

� Target OS:
2 CMAKE_SYSTEM_NAME. The name of the target system’s OS (e.g., Linux,

Windows, Darwin).
2 UNIX. Specifies if the target system’s OS is UNIX (or UNIX-like).
2 APPLE. Specifies if the target system’s OS is Mac OS X.
2 WIN32. Specifies if the target system’s OS is Microsoft Windows (32- or

64-bit).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2290

Commonly-Used Variables (Continued 3)

� Makefile builds:
2 CMAKE_VERBOSE_MAKEFILE. Enable/disable verbose output from Makefile

builds.
2 CMAKE_RULE_MESSAGES. Specify if a progress message should be reported

by each makefile rule.
� Other:

2 CMAKE_MODULE_PATH. The list of directories to search for CMake modules.
(This is used by commands like include and find_package.)

2 CMAKE_PREFIX_PATH. The list of directories specifying installation prefixes
to be searched by the find_package, find_program, find_library,
and find_file commands.

2 CMAKE_PROJECT_NAME. The name of the current project.
2 CMAKE_CURRENT_LIST_DIR. The directory of the listfile currently being

processed. (The values of CMAKE_CURRENT_SOURCE_DIR and
CMAKE_CURRENT_LIST_DIR can differ, for example, when a listfile outside
the current source directory is included.)

2 CMAKE_EXPORT_COMPILE_COMMANDS. Enable/disable output of compile
commands during generation in file compile_commands.json.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2291

Commonly-Used Commands

� Initialization:
2 cmake_minimum_required. Set the minimum required version of Cmake

for a project.
2 cmake_policy. Manage CMake policy settings. (This is used to select

between old and new behaviors in CMake.)
2 project. Set a name, version, and enable languages for the entire project.

(If no languages specified, defaults to C and C++.)
2 option. Provide an option that the user can (optionally) select.

� Adding targets:
2 add_executable. Add a program target.
2 add_library. Add a library target.
2 add_test. Add a test target. (This is used in conjunction with the module

CTest.)
2 add_custom_target. Add a target with no output file that is always out of

date.
2 add_custom_command. Add a custom build rule to the generated build

system.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2292

Commonly-Used Commands (Continued 1)

� Setting properties for a specific target:
2 target_compile_definitions. Add compile definitions to a target.
2 target_compile_options. Add compile options to a target
2 target_include_directories. Add include directories to a target.
2 target_link_libraries. Add libraries to the list of libraries to be used

for linking a target. (May be used multiple times for the same target.)
2 set_target_properties. Set properties for a target. (Some properties

include: OUTPUT_NAME, SOVERSION, and VERSION.)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2293

Commonly-Used Commands (Continued 2)

� Setting properties for all targets (which is usually best avoided):
2 add_compile_options. Adds options to the compilation of source files in

the current directory and below. (This command should precede an
add_executable or add_library command.)

2 add_definitions. Adds -D define flags to the compilation of source files
in the current directory and below.

2 include_directories. Add directories to the list of include directories
used for compiling programs.

2 link_libraries. Add libraries to the list of libraries used for linking
programs. (This command appends to the list, each time it is invoked.)

2 link_directories. Specify directories in which the linker is to look for
libraries.

� Processing other files or directories:
2 add_subdirectory. Add a subdirectory to the build.
2 include. Load and run CMake code from a file or module.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2294

Commonly-Used Commands (Continued 3)

� Querying external packages and programs:
2 find_package. Load settings for an external software package (e.g.,

Doxygen, Threads, Boost, OpenGL, GLEW, GLUT, CGAL, PkgConfig).
2 find_library. Find an external library.
2 find_program. Find an external program.

� Assignment, control flow, functions, and macros:
2 set. Set a CMake, cache, or environment variable to a given value.
2 if, elseif, else, and endif. Conditionally execute a group of commands.
2 foreach and endforeach. Evaluate a group of commands for each value

in a list.
2 while and endwhile. Evaluate a group of commands while a condition is

true.
2 function and endfunction. Record a function for later invocation as a

command.
2 macro and endmacro. Record a macro for later invocation as a command.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2295

Commonly-Used Commands (Continued 4)

� String and list processing:
2 list. Perform operations on lists.
2 string. Perform operations on strings.

� Other:
2 message. Display a message to the user.
2 configure_file. Copy a file to another location and modify its contents.
2 install. Specify rules to run at install time (e.g., rules to install programs,

libraries, and header files).
2 math. Evaluate mathematical expressions.
2 file. Manipulate files.
2 enable_language. Enable a language.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2296

Commonly-Used Modules

� CheckIncludeFiles module, which provides:
2 check_include_files. Check if the specified files can be included.

� CheckCXXSourceCompiles module, which provides:
2 check_cxx_source_compiles. Check if the specified C++ source code

compiles and links to produce an executable.
� CheckFunctionExists module, which provides:

2 check_function_exists. Check if the specified C function is provided by
libraries on the system.

� CTest module:
2 Configure a project for testing with CTest/CDash.

� CPack module:
2 Configure a project to use CPack to build binary and source package

installers.
� PkgConfig module, which requires pkg-config tool to be available and

provides:
2 pkg_search_module. Finds a package via pkg-config.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2297

Commonly-Used Modules (Continued 1)

� ExternalProject module, which provides:
2 externalproject_add. Create custom targets to build projects in external

trees.
� GNUInstallDirs module:

2 Define GNU standard installation directories (e.g.,
CMAKE_INSTALL_INCLUDEDIR, CMAKE_INSTALL_LIBDIR, and
CMAKE_INSTALL_MANDIR).

� GenerateExportHeader module, which provides:
2 generate_export_header. Generate a header file containing export

macros to be used for a shared library.
� CMakePackageConfigHelpers module, which provides:

2 configure_package_config_file. Create a package configuration file
for installing a project or library. (This should be used instead of
configure_file.)

2 write_basic_package_version_file. Write a package version file.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2298

Some Find and Pkg-Config Modules

� Boost
2 https://cmake.org/cmake/help/v3.10/module/FindBoost.html
2 variables: Boost_FOUND, Boost_INCLUDE_DIRS, Boost_LIBRARY_DIRS,

Boost_LIBRARIES
2 imported targets: Boost::boost, Boost::component

� CGAL (Computational Geometry Algorithms Library)
2 variables: CGAL_INCLUDE_DIRS, CGAL_LIBRARY, GMP_LIBRARIES

� Doxygen
2 https://cmake.org/cmake/help/v3.10/module/FindDoxygen.html
2 variables: DOXYGEN_FOUND, DOXYGEN_EXECUTABLE
2 imported targets: Doxygen::doxygen, Doxygen::dot

� GLEW (OpenGL Extension Wrangler Library)
2 https://cmake.org/cmake/help/v3.10/module/FindGLEW.html
2 variables: GLEW_FOUND, GLEW_INCLUDE_DIRS, GLEW_LIBRARIES
2 imported targets: GLEW::GLEW

� GLFW (OpenGL Helper Library) [pkg-config module]
2 variables: GLFW_FOUND, GLFW_INCLUDE_DIRS, GLFW_LIBRARIES

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2299

https://cmake.org/cmake/help/v3.10/module/FindBoost.html
https://cmake.org/cmake/help/v3.10/module/FindDoxygen.html
https://cmake.org/cmake/help/v3.10/module/FindGLEW.html

Some Find and Pkg-Config Modules (Continued 1)

� GLUT (OpenGL Utility Toolkit)
2 https://cmake.org/cmake/help/v3.10/module/FindGLUT.html
2 variables: GLUT_FOUND, GLUT_INCLUDE_DIR, GLUT_LIBRARIES
2 imported targets: GLUT::GLUT

� OpenGL (Open Graphics Library)
2 https://cmake.org/cmake/help/v3.10/module/FindOpenGL.html
2 variables: OPENGL_FOUND, OPENGL_INCLUDE_DIR, OPENGL_LIBRARIES
2 imported targets: OpenGL::GL, OpenGL::GLU, OpenGL::GLX

� SPL (Signal/Geometry Processing Library)
2 variables: SPL_FOUND, SPL_INCLUDE_DIRS, SPL_LIBRARY_DIRS,

SPL_LIBRARIES, SNDFILE_INCLUDE_DIRS, SNDFILE_LIBRARIES
� Threads

2 https://cmake.org/cmake/help/v3.10/module/FindThreads.html
2 variables: CMAKE_THREAD_LIBS_INIT
2 imported targets: Threads::Threads

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2300

https://cmake.org/cmake/help/v3.10/module/FindGLUT.html
https://cmake.org/cmake/help/v3.10/module/FindOpenGL.html
https://cmake.org/cmake/help/v3.10/module/FindThreads.html

Using Per-Target Versus Global Settings
� can set compiler options, compiler definitions, include directories, and link

libraries in two ways:
1 per target (e.g., using target_compile_options,
target_compile_definitions, target_include_directories, and
target_link_libraries)

2 globally (e.g., using add_compile_options, add_definitions,
include_directories, and link_libraries)

� per-target approach allows properties to be specified with finer granularity
than global approach

� finer-granularity control over properties often necessary, especially when
building more complex projects

� if executable targets in project do not all use same set of libraries, global
specification of include directories and link libraries can introduce artificial
dependencies on some libraries

� per-target specification of link libraries allows automatic propagation of
library dependencies when hierarchies of libraries used (which, for
example, may avoid need to link against same library multiple times)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2301

Section 9.3.2

Examples

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2302

Hello World Example Revisited

hello.cpp
1 #include <iostream>
2

3 int main() {std::cout << "Hello, World!\n";}

CMakeLists.txt
1 # Specify minimum required version of CMake.
2 cmake_minimum_required(VERSION 3.1 FATAL_ERROR)
3

4 # Specify project and identify languages used.
5 project(hello LANGUAGES CXX)
6

7 # Print message indicating detected OS.
8 if (UNIX)
9 set(platform "Unix")

10 elseif (WIN32)
11 set(platform "Microsoft Windows")
12 else()
13 set(platform "Unknown")
14 endif()
15 message("OS is ${platform}")
16

17 # Add program target called hello.
18 add_executable(hello hello.cpp)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2303

Test Example

� want to build and test hello-world program

� code written in C++
� files in project:

2 CMakeLists.txt
2 hello.cpp
2 test_wrapper.in
2 run_test

� project has:
2 executable target hello
2 test target run_test

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2304

Test Example: Source Code (Including Some Scripts)

hello.cpp
1 #include <iostream>
2

3 int main() {std::cout << "Hello, World!\n";}

test_wrapper.in (with execute permission set)
1 #! /bin/sh
2 # Initialize the environment for the command being invoked.
3 export CMAKE_SOURCE_DIR="@CMAKE_SOURCE_DIR@"
4 export CMAKE_BINARY_DIR="@CMAKE_BINARY_DIR@"
5 "$@"

run_test
1 #! /bin/sh
2 # Test if the hello program produces the desired output.
3 ($CMAKE_BINARY_DIR/hello | grep "^Hello, World!$") || \
4 exit 1

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2305

Test Example: CMakeLists File

CMakeLists.txt
1 # Specify minimum required version of CMake.
2 cmake_minimum_required(VERSION 3.1 FATAL_ERROR)
3

4 # Specify project and identify languages used.
5 project(hello LANGUAGES CXX)
6

7 # Include the CTest module for testing.
8 include(CTest)
9

10 # Find the Bourne shell.
11 find_program(sh SH_COMMAND)
12

13 # Add program target called hello.
14 add_executable(hello hello.cpp)
15

16 # Create a wrapper script that initializes the environment
17 # for any test scripts.
18 configure_file(${CMAKE_SOURCE_DIR}/test_wrapper.in
19 ${CMAKE_BINARY_DIR}/test_wrapper @ONLY)
20

21 # Add a test that invokes run_test via a wrapper script.
22 add_test(run_test ${SH_COMMAND}
23 ${CMAKE_BINARY_DIR}/test_wrapper
24 ${CMAKE_SOURCE_DIR}/run_test)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2306

Threads Example

� want to build simple multithreaded program using pthread library

� code written in C++
� files in project:

2 CMakeLists.txt
2 hello.cpp

� project has:
2 executable target hello

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2307

Threads Example: Source and CMakeLists Files [With Imported Targets]

hello.cpp
1 #include <iostream>
2 #include <thread>
3

4 int main() {
5 std::thread t1([](){std::cout << "Hello, World!\n";});
6 t1.join();
7 }

CMakeLists.txt
1 cmake_minimum_required(VERSION 3.4 FATAL_ERROR)
2 project(threads_example LANGUAGES CXX)
3

4 # Require compliance with C++11 standard.
5 set(CMAKE_CXX_STANDARD 11)
6 set(CMAKE_CXX_STANDARD_REQUIRED TRUE)
7

8 # Find the threads library, indicating a preference for the
9 # pthread library.

10 set(THREADS_PREFER_PTHREAD_FLAG ON)
11 find_package(Threads REQUIRED)
12

13 # Define a program target called hello.
14 add_executable(hello hello.cpp)
15

16 # Set the libraries for the hello target.
17 target_link_libraries(hello Threads::Threads)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2308

Boost Log Example

� want to build simple program using Boost Log

� code written in C++

� uses Log component of Boost library
� files in project:

2 CMakeLists.txt
2 main.cpp

� project has:
2 executable target my_app

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2309

Boost Log Example: Source Code

main.cpp
1 #include <boost/log/trivial.hpp>
2

3 int main() {
4 BOOST_LOG_TRIVIAL(warning)
5 << "A warning severity message";
6 BOOST_LOG_TRIVIAL(error)
7 << "An error severity message";
8 BOOST_LOG_TRIVIAL(fatal)
9 << "A fatal severity message";

10 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2310

Boost Log Example: CMakeLists File [Without Imported Targets]

CMakeLists.txt
1 cmake_minimum_required(VERSION 3.4 FATAL_ERROR)
2 project(boost_example LANGUAGES CXX)
3

4 # Find the required libraries (i.e., POSIX threads and Boost).
5 set(Boost_USE_MULTITHREADED ON)
6 find_package(Threads REQUIRED)
7 find_package(Boost 1.54.0 REQUIRED COMPONENTS log)
8

9 # Define a program target called my_app.
10 add_executable(my_app main.cpp)
11

12 # Set the includes, defines, and libraries for the my_app target.
13 target_include_directories(my_app PUBLIC ${Boost_INCLUDE_DIRS})
14 target_compile_definitions(my_app PUBLIC "-DBOOST_LOG_DYN_LINK")
15 target_link_libraries(my_app ${Boost_LIBRARIES}
16 ${CMAKE_THREAD_LIBS_INIT})

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2311

Boost Log Example: CMakeLists File [With Imported Targets]

CMakeLists.txt
1 cmake_minimum_required(VERSION 3.5 FATAL_ERROR)
2 project(boost_example LANGUAGES CXX)
3

4 # Find the required libraries (i.e., POSIX threads and Boost).
5 set(Boost_USE_MULTITHREADED ON)
6 find_package(Threads REQUIRED)
7 find_package(Boost 1.54.0 REQUIRED COMPONENTS log)
8

9 # Define a program target called my_app.
10 add_executable(my_app main.cpp)
11

12 # Set the defines, includes, and libraries for the my_app target.
13 target_compile_definitions(my_app PUBLIC "-DBOOST_LOG_DYN_LINK")
14 target_link_libraries(my_app Boost::log Threads::Threads)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2312

OpenGL/GLFW Example

� want to build simple OpenGL/GLFW application

� code written in C++

� uses OpenGL and GLFW libraries (as well as GLEW library)
� files in project:

2 CMakeLists.txt
2 trivial.cpp

� project has:
2 executable target trivial

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2313

OpenGL/GLFW Example: Source Code
trivial.cpp

1 #include <cstdlib>
2 #include <GLFW/glfw3.h>
3

4 void display(GLFWwindow* window) {
5 glfwMakeContextCurrent(window);
6 glClearColor(0.0, 1.0, 1.0, 0.0);
7 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
8 glfwSwapBuffers(window);
9 }

10

11 int main(int argc, char** argv) {
12 if (!glfwInit()) {return EXIT_FAILURE;}
13 glfwSwapInterval(1);
14 GLFWwindow* window = glfwCreateWindow(512, 512, argv[0],
15 nullptr, nullptr);
16 if (!window) {
17 glfwTerminate();
18 return EXIT_FAILURE;
19 }
20 glfwSetWindowRefreshCallback(window, display);
21 while (!glfwWindowShouldClose(window))
22 {glfwWaitEvents();}
23 glfwTerminate();
24 return EXIT_SUCCESS;
25 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2314

OpenGL/GLFW Example: CMakeLists File [Without Imported Targets]

CMakeLists.txt
1 cmake_minimum_required(VERSION 3.2 FATAL_ERROR)
2 project(opengl_example LANGUAGES CXX)
3 set(CMAKE_CXX_STANDARD 11)
4 set(CMAKE_CXX_STANDARD_REQUIRED TRUE)
5

6 # Find the required libraries (i.e., OpenGL, GLEW, and GLFW).
7 find_package(OpenGL REQUIRED)
8 find_package(GLEW REQUIRED)
9 find_package(PkgConfig REQUIRED)

10 pkg_search_module(GLFW REQUIRED glfw3)
11

12 # Define a program target called trivial.
13 add_executable(trivial trivial.cpp)
14

15 # Set the includes and libraries for the trivial target.
16 target_include_directories(trivial PUBLIC ${GLFW_INCLUDE_DIRS}
17 ${GLEW_INCLUDE_DIRS} ${OPENGL_INCLUDE_DIR})
18 target_link_libraries(trivial ${GLFW_LIBRARIES} ${GLEW_LIBRARIES}
19 ${OPENGL_LIBRARIES})

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2315

OpenGL/GLFW Example: CMakeLists File [With Imported Targets]

CMakeLists.txt
1 cmake_minimum_required(VERSION 3.8 FATAL_ERROR)
2 project(opengl_example LANGUAGES CXX)
3 set(CMAKE_CXX_STANDARD 11)
4 set(CMAKE_CXX_STANDARD_REQUIRED TRUE)
5

6 # Find the required libraries (i.e., OpenGL, GLEW, and GLFW).
7 find_package(OpenGL REQUIRED)
8 find_package(GLEW REQUIRED)
9 find_package(PkgConfig REQUIRED)

10 pkg_search_module(GLFW REQUIRED glfw3)
11

12 # Define a program target called trivial.
13 add_executable(trivial trivial.cpp)
14

15 # Set the includes and libraries for the trivial target.
16 target_include_directories(trivial PUBLIC ${GLFW_INCLUDE_DIRS})
17 target_link_libraries(trivial ${GLFW_LIBRARIES} GLEW::GLEW
18 OpenGL::GL)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2316

OpenGL/GLUT Example

� want to build simple OpenGL/GLUT application

� code written in C++

� uses OpenGL and GLUT libraries
� files in project:

2 CMakeLists.txt
2 trivial.cpp

� project has:
2 executable target trivial

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2317

OpenGL/GLUT Example: Source Code

trivial.cpp
1 #include <GL/glut.h>
2

3 void display() {
4 glClearColor(0.0, 1.0, 1.0, 0.0);
5 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
6 glutSwapBuffers();
7 }
8

9 int main(int argc, char** argv) {
10 glutInit(&argc, argv);
11 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
12 glutInitWindowSize(512, 512);
13 glutCreateWindow(argv[0]);
14 glutDisplayFunc(display);
15 glutMainLoop();
16 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2318

OpenGL/GLUT Example: CMakeLists File [Without Imported Targets]

CMakeLists.txt
1 cmake_minimum_required(VERSION 3.9 FATAL_ERROR)
2 project(opengl_example LANGUAGES CXX)
3

4 # Find the required libraries (i.e., OpenGL and GLUT).
5 find_package(OpenGL REQUIRED)
6 find_package(GLUT REQUIRED)
7

8 # Define a program target called trivial.
9 add_executable(trivial trivial.cpp)

10

11 # Set the includes and libraries for the trivial target.
12 target_include_directories(trivial PUBLIC ${GLUT_INCLUDE_DIR}
13 ${OPENGL_INCLUDE_DIR})
14 target_link_libraries(trivial ${GLUT_LIBRARIES} ${OPENGL_LIBRARIES})

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2319

OpenGL/GLUT Example: CMakeLists File [With Imported Targets]

CMakeLists.txt
1 cmake_minimum_required(VERSION 3.8 FATAL_ERROR)
2 project(opengl_example LANGUAGES CXX)
3

4 # Find the required libraries (i.e., OpenGL and GLUT).
5 find_package(OpenGL REQUIRED)
6 find_package(GLUT REQUIRED)
7

8 # Define a program target called trivial.
9 add_executable(trivial trivial.cpp)

10

11 # Set the includes and libraries for the trivial target.
12 target_link_libraries(trivial GLUT::GLUT OpenGL::GL)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2320

CGAL Example

� want to build simple CGAL application

� code written in C++

� uses CGAL library (as well as GMP library)
� files in project:

2 CMakeLists.txt
2 orient_test.cpp

� project has:
2 executable target orient_test

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2321

CGAL Example: Source Code

orient_test.cpp
1 #include <iostream>
2 #include <string>
3 #include <CGAL/Cartesian.h>
4 #include <CGAL/Filtered_kernel.h>
5

6 std::string toString(CGAL::Orientation orient) {
7 switch (orient) {
8 case CGAL::LEFT_TURN:
9 return "left turn";

10 case CGAL::RIGHT_TURN:
11 return "right turn";
12 case CGAL::COLLINEAR:
13 return "collinear";
14 }
15 }
16

17 int main(int argc, char** argv) {
18 using Point = CGAL::Point_2<CGAL::Filtered_kernel<
19 CGAL::Cartesian<double>>>;
20 Point a, b, q;
21 while (std::cin >> a >> b >> q) {
22 auto orient = CGAL::orientation(a, b, q);
23 std::cout << toString(orient) << ’\n’;
24 }
25 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2322

CGAL Example: CMakeLists File

CMakeLists.txt
1 # Specify minimum required version of CMake.
2 cmake_minimum_required(VERSION 3.1 FATAL_ERROR)
3

4 # Specify project and enable the C++ language.
5 project(cgal_demo LANGUAGES CXX)
6

7 # Find the required CGAL package.
8 find_package(CGAL REQUIRED)
9

10 # On some systems, GCC may need the -frounding-math option.
11 if (CMAKE_CXX_COMPILER_ID MATCHES GNU)
12 add_compile_options("-frounding-math")
13 endif()
14

15 # Add a program target called orient_test.
16 add_executable(orient_test orient_test.cpp)
17

18 # Specify the includes and libraries for the orient_test target.
19 target_include_directories(orient_test PUBLIC ${CGAL_INCLUDE_DIRS})
20 target_link_libraries(orient_test ${CGAL_LIBRARY} ${GMP_LIBRARIES})

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2323

HG2G Example: Overview

� want to be able to build and install HG2G library and application that uses
library

� code written in C++
� files in project:

2 CMakeLists.txt
2 app/CMakeLists.txt
2 app/answer.cpp
2 hg2g/CMakeLists.txt
2 hg2g/answer.cpp
2 hg2g/question.cpp
2 hg2g/include/hg2g/answer.hpp
2 hg2g/include/hg2g/config.hpp.in

� project has:
2 library target hg2g
2 executable target answer
2 option HG2G_ZAPHOD (which takes a boolean value)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2324

HG2G Example: Library Source Code
hg2g/include/hg2g/config.hpp.in

1 #ifndef HG2G_CONFIG_H
2 #define HG2G_CONFIG_H
3 #define HG2G_VERSION "@HG2G_VERSION@"
4 #cmakedefine HG2G_ZAPHOD
5 #endif

hg2g/include/hg2g/answer.hpp
1 #include <string>
2 namespace hg2g {
3 std::string answer_to_ultimate_question();
4 std::string ultimate_question();
5 }

hg2g/answer.cpp
1 #include "hg2g/answer.hpp"
2 namespace hg2g {
3 std::string answer_to_ultimate_question() {return "42";}
4 }

hg2g/question.cpp
1 #include "hg2g/answer.hpp"
2 namespace hg2g {
3 std::string ultimate_question() {throw 42;}
4 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2325

HG2G Example: Application Source Code

app/answer.cpp
1 #include <iostream>
2 #include <hg2g/config.hpp>
3 #include <hg2g/answer.hpp>
4

5 int main() {
6 #ifdef HG2G_ZAPHOD
7 std::cout << "HG2G_ZAPHOD is defined\n";
8 #endif
9 std::cout << "According to version " << HG2G_VERSION <<

10 " of the HG2G library:\n";
11 std::cout <<
12 "The answer to the ultimate question is " <<
13 hg2g::answer_to_ultimate_question() << ".\n";
14 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2326

HG2G Example: CMakeLists Files
CMakeLists.txt

1 cmake_minimum_required(VERSION 3.1 FATAL_ERROR)
2 project(hg2g_example LANGUAGES CXX)
3 option(HG2G_ZAPHOD "Define HG2G_ZAPHOD" FALSE)
4

5 # Set the version number and name.
6 set(HG2G_VERSION_MAJOR 1)
7 set(HG2G_VERSION_MINOR 42)
8 set(HG2G_VERSION_PATCH 0)
9 string(CONCAT HG2G_VERSION "${HG2G_VERSION_MAJOR}"

10 ".${HG2G_VERSION_MINOR}" ".${HG2G_VERSION_PATCH}")
11

12 # Process the subdirectories hg2g and app.
13 add_subdirectory(hg2g)
14 add_subdirectory(app)

app/CMakeLists.txt
1 # Add a program target called answer.
2 add_executable(answer answer.cpp)
3

4 # Link the answer program against the hg2g library.
5 target_link_libraries(answer hg2g)
6

7 # Install the answer program in the bin directory.
8 install(TARGETS answer DESTINATION bin)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2327

HG2G Example: CMakeLists Files (Continued 1)

hg2g/CMakeLists.txt
1 # Place the names of the header and source files into
2 # variables (for convenience).
3 set(hg2g_headers include/hg2g/answer.hpp
4 "${CMAKE_CURRENT_BINARY_DIR}/include/hg2g/config.hpp")
5 set(hg2g_sources answer.cpp question.cpp)
6

7 # Add a library target called hg2g.
8 add_library(hg2g ${hg2g_sources} ${hg2g_headers})
9

10 # Specify the include directories for library.
11 target_include_directories(hg2g PUBLIC
12 include
13 "${CMAKE_CURRENT_BINARY_DIR}/include")
14

15 # Create a header file containing the config information.
16 configure_file(
17 include/hg2g/config.hpp.in
18 "${CMAKE_CURRENT_BINARY_DIR}/include/hg2g/config.hpp")
19

20 # Install the library in the lib directory.
21 install(TARGETS hg2g DESTINATION lib)
22

23 # Install the header files in the include/hg2g directory.
24 install(FILES ${hg2g_headers} DESTINATION include/hg2g)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2328

External Project Example

hello, hg2g, and example 100 are subdirectories containing CMake projects

CMakeLists.txt
1 cmake_minimum_required(VERSION 3.1 FATAL_ERROR)
2 # Specify the project and do not enable any languages.
3 project(examples LANGUAGES CXX)
4 # Include the module for external project functionality.
5 include(ExternalProject)
6 # Create a list of the subdirectories containing
7 # CMake projects to be built.
8 list(APPEND dirs hello hg2g "example 100")
9 # Add each project as an external project.

10 foreach(dir IN LISTS dirs)
11 # Set target name to directory name with any
12 # spaces changed to underscores.
13 string(REPLACE " " "_" target "${dir}")
14 # Add external project.
15 externalproject_add("${target}"
16 SOURCE_DIR "${CMAKE_SOURCE_DIR}/${dir}"
17 BINARY_DIR "${CMAKE_BINARY_DIR}/${dir}"
18 CMAKE_ARGS
19 "-DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}"
20 INSTALL_COMMAND "")
21 endforeach()

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2329

LATEX Example

� want to build LATEX document (i.e., produce PDF document from LATEX
source)

� files in project:
2 CMakeLists.txt
2 main.tex
2 bib.bib
2 cmake_modules/UseLATEX.cmake

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2330

LATEX Example: Source Code

main.tex
1 \documentclass{article}
2 \usepackage{graphicx}
3 \author{John Doe}
4 \title{Why I Like C++}
5 \begin{document}
6 \maketitle
7 \section{Why I Like C++}
8 What can I say?
9 C++~\cite{TCPL4} is a great language!\newline

10 \includegraphics[width=1in,height=1in,keepaspectratio]
11 {cpp.png}
12 \bibliographystyle{plain}
13 \bibliography{bib}
14 \end{document}

bib.bib
1 @book{
2 TCPL4,
3 author = "B. Stroustrup",
4 title = "The {C++} Programming Language",
5 edition = "4th",
6 publisher = "Addison Wesley",
7 year = 2013
8 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2331

LATEX Example: CMakeLists File

CMakeLists.txt
1 cmake_minimum_required(VERSION 3.1 FATAL_ERROR)
2

3 # Specify the project name and indicate that no languages
4 # should be enabled.
5 project(my_doc NONE)
6

7 # Add the cmake_modules directory to the module search path.
8 set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH}
9 ${CMAKE_SOURCE_DIR}/cmake_modules)

10

11 # Include the UseLATEX module.
12 include(UseLATEX)
13

14 # Specify the properties of the LaTeX document such as its
15 # constituent source files (e.g., LaTeX, BibTeX, images,
16 # figures, etc.)
17 add_latex_document(main.tex IMAGES cpp.png BIBFILES bib.bib)

cmake_modules/UseLATEX.cmake
This file is taken from https://cmake.org/Wiki/images/8/80/
UseLATEX.cmake.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2332

https://cmake.org/Wiki/images/8/80/UseLATEX.cmake
https://cmake.org/Wiki/images/8/80/UseLATEX.cmake

Code Profiling Example: Overview

� want to provide file that can be included in CMakeLists file that defines
option called ENABLE_PROFILING for building code with profiling enabled

� for sake of simplicity, only consider cases of using GCC and Clang C++
compilers

� place definition of option in file named profiling.cmake

� include profiling.cmake in CMakeLists.txt

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2333

Code Profiling Example: profiling.cmake

profiling.cmake
1 # Define an option for enabling code profiling, which is disabled
2 # by default.
3 option(ENABLE_PROFILING "Enable code profiling with gprof." false)
4

5 if (ENABLE_PROFILING)
6 if (CMAKE_CXX_COMPILER_ID MATCHES GNU OR
7 CMAKE_CXX_COMPILER_ID MATCHES Clang)
8 # The GCC or Clang C++ compiler is being used.
9 # Add the -pg option to the flags used for compiling.

10 set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pg")
11 # Add the -pg option to the linker flags used for creating
12 # executables.
13 set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -pg")
14 # Add the -pg option to the linker flags used for creating
15 # shared libraries.
16 set(CMAKE_SHARED_LINKER_FLAGS
17 "${CMAKE_SHARED_LINKER_FLAGS} -pg")
18 else()
19 # Handle the case of unsupported compilers.
20 message(FATAL_ERROR
21 "Only GCC and Clang are currently supported.")
22 endif()
23 endif()

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2334

Code Profiling Example: CMakeLists.txt

CMakeLists.txt (showing how one might use profiling.cmake)
1 cmake_minimum_required(VERSION 3.1 FATAL_ERROR)
2 project(gprof LANGUAGES CXX)
3

4 # Include the file containing the profiling option definition.
5 # Note: To enable profiling, one can add the command line option
6 # -DENABLE_PROFILING=true to cmake.
7 include(profiling.cmake)
8

9 add_executable(app app.cpp)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2335

Section 9.3.3

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2336

References

1 Ken Martin and Bill Hoffman, Mastering CMake — A Cross-Platform Build
System — CMake 3.1, Kitware, 2015. ISBN 978-1-930934-31-3.

2 CMake Tutorial (excerpt from the book “Mastering CMake”),
https://cmake.org/cmake-tutorial.

3 CMake FAQ, https://cmake.org/Wiki/CMake_FAQ.

4 CMake Wiki, https://cmake.org/Wiki/CMake.

5 Kenneth Moreland, “UseLATEX.cmake: LATEX Document Building Made
Easy,” Version 2.4.0. Available online at
https://cmake.org/Wiki/images/d/d7/UseLATEX.pdf.

6 CMakeUserUseLATEX
https://cmake.org/Wiki/CMakeUserUseLATEX

7 UseLATEX GitHub Site https://github.com/kmorel/UseLATEX

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2337

https://cmake.org/cmake-tutorial
https://cmake.org/Wiki/CMake_FAQ
https://cmake.org/Wiki/CMake
https://cmake.org/Wiki/images/d/d7/UseLATEX.pdf
https://cmake.org/Wiki/CMakeUserUseLATEX
https://github.com/kmorel/UseLATEX

Talks

1 Bill Hoffman. Google Tech Talk — Building Science With CMake. October
8, 2015. Available online at https://youtu.be/TqjtN8NGtl4.
A very basic introduction to CMake.

2 Daniel Pfeifer. Effective CMake. C++ Now, May 19, 2017, Aspen, CO,
USA. Available online at https://youtu.be/bsXLMQ6WgIk.

3 Florent Castelli. Introduction to CMake. SwedenCpp::Stockholm 0xC,
Sundbyberg, Sweden, Apr. 26, 2018. Available online at
https://youtu.be/jt3meXdP-QI.

4 Deniz Bahadir. More Modern CMake — Working With CMake 3.12 and
Later. Meeting C++, Berlin, Germany, Nov. 16, 2018. Available online at
https://youtu.be/TsddSCzYiRs.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2338

https://youtu.be/TqjtN8NGtl4
https://youtu.be/bsXLMQ6WgIk
https://youtu.be/jt3meXdP-QI
https://youtu.be/TsddSCzYiRs

Part 10

Version Control Systems

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2339

Section 10.1

Version Control Systems

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2340

Version Control Systems

� Version control (also known as revision control) is the management of
changes to programs, documents, and other collections of information.

� In practice, multiple versions of the same software will often be in
existence at any given time.

� For the purposes of locating and fixing a bug, it is critically important to be
able to access different versions of the software, since only certain
versions of the software may have the bug.

� When concurrently developing multiple versions of some software, it is
necessary to be able to keep track of what information belongs to which
versions.

� Having developers manually maintain version information themselves is
impractical, as this would be very error prone.

� Therefore, a version control system (VCS) is used to manage changes in
a systematic manner.

� Some examples of VCSes include: Source Code Control System (SCCS),
Revision Control System (RCS), Concurrent Versions System (CVS)
Subversion, Mercurial, and Git.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2341

Centralized Version Control

Working CopyWorking Copy Working Copy

Repository

User 2

Server

User 1 User 3

� repository resides only on server

� users do not have their own local copy of repository

� examples: CVS and Subversion

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2342

Distributed Version Control

Repository

Server

User 1 User 2 User 3

Repository

Working Copy

Repository

Working Copy

Repository

Working Copy

� each user has their own local copy of repository

� examples: Git and Mercurial

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2343

Pros and Cons of Distributed Version Control

� advantages of distributed (over centralized) version control:
2 most operations (namely, ones that do not synchronize with other

repositories) are local and extremely fast
2 all operations, except those that synchronize with other repositories, can be

performed without network connection
2 more robust (e.g., data loss less likely due to replication of information

across repositories, less reliance on network/server connectivity)
2 committing new changesets can be done locally without anyone else seeing

them
2 easier to share changes with only, say, one or two people before showing

changes to everyone
� disadvantages of distributed (relative to centralized) version control:

2 since repository is stored locally, more local disk space is required
2 if repository becomes large, downloading it can require considerable

amount of time

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2344

Section 10.2

Git

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2345

Git

� Git is open-source distributed (i.e., decentralized) version control system

� created by Linus Torvalds

� development started in 2005 with first release made later in same year

� designed to support projects varying in size from very small to very large
with speed and efficiency

� can efficiently handle very large numbers of files

� can efficiently handle large numbers of parallel branches

� revision history of file modelled as directed acyclic graph (DAG)

� official web site: https://git-scm.com

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2346

https://git-scm.com

Users of Git

� Git has a very large user base and is employed heavily in industry
� some organizations using Git include:

2 Apple (https://github.com/apple)
2 eBay (https://github.com/eBay)
2 Facebook (https://github.com/facebook)
2 Google (https://github.com/google)
2 Intel (https://github.com/intel)
2 Microsoft (https://github.com/Microsoft)
2 NVIDIA (https://github.com/NVIDIA)
2 Twitter (https://github.com/twitter)

� some projects using Git include:
2 Linux Kernel (https://github.com/torvalds/linux)
2 Android (https://android-review.googlesource.com)
2 Qt (http://code.qt.io)
2 Gnome (https://git.gnome.org)
2 Eclipse (https://git.eclipse.org)
2 KDE (https://github.com/KDE)
2 FreeDesktop (https://cgit.freedesktop.org)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2347

https://github.com/apple
https://github.com/eBay
https://github.com/facebook
https://github.com/google
https://github.com/intel
https://github.com/Microsoft
https://github.com/NVIDIA
https://github.com/twitter
https://github.com/torvalds/linux
https://android-review.googlesource.com
http://code.qt.io
https://git.gnome.org
https://git.eclipse.org
https://github.com/KDE
https://cgit.freedesktop.org

Repositories

� A repository is effectively a database that records the information for all
of the versions of all of the files in the directory tree under version control.

� A commit is simply a record (i.e., snapshot) of all of the files that
comprise a particular version in the repository.

� This record includes, for each file, the location of the file in the directory
tree as well as the contents of the file.

� For each version of the directory tree, the repository has a corresponding
commit (i.e., snapshot).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2348

Revision History and Directed Acyclic Graphs

� The revision history can be represented as a directed acyclic graph (DAG).

� Each node in the graph corresponds to a commit in the repository.

� Each edge in the graph points to the immediately preceding commit in the
revision history.

� Example of DAG:

C0 C1 C2

C3

C4

C5

C6 C7

C1 based on changing content from C0;
C2 based on changing content from C1;
C4 based on changing content from C2;

C6 based on merging content from C4 and C5;
. . .

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2349

Branching Workflows
� single (master) branch:

M1 M2 M3 M4 M5 M6

master

� master, development, and topic branches:

M1 M2

D1 D2 D3

T1 T2

master

develop

topic

2 master branch: used for releases (highly stable, well tested)
2 development branch: used for development work (possibly unstable)
2 topic branch: used for highly experimental work

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2350

Local Picture

Working Tree Index
Stage

Repository
Commit

Checkout

� three distinct types of data:
2 working tree: directory hierarchy containing files on which user is working
2 index (also known as staging area): place where changes that are

tentatively marked to be committed are stored
2 repository: database used to store all versions of data and associated

metadata
� three basic local operations on data:

2 checking out: populates working tree with particular version of data from
repository

2 staging: applies changes in working tree to index
2 committing: applies changes in index to repository

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2351

Local and Remote Picture

Local Repository Remote RepositoryPush

Fetch/Pull

� clone: creates local repository that is copy of remote repository
� three basic operations for propagating changes between repositories:

2 push: propagate changes from local repository to remote repository
2 fetch: propagate changes from remote repository to local repository without

merging changes
2 pull: propagate changes from remote repository to local repository and

merge changes

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2352

HEAD

� The name HEAD is a reference to the current working revision (i.e., a
branch or commit) in the repository.

� Normally (i.e., except in the case of a detached HEAD), HEAD refers to the
current branch.

� In the case of a detached HEAD, HEAD refers to a specific commit (not a
branch).

� Consider a repository having a single master branch and three commits
C1, C2, and C3 (with C3 being the most recent), where the current branch
is master. This would appear as follows:

C1 C2 C3

masterHEAD

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2353

Remote-Tracking Branches
� Consider a remote repository whose commit history is as shown below,

with a single branch master.

C1 C2 C3

masterHEAD

[remote repository]

� Cloning the above repository will produce a new local repository whose
commit history is as shown below, with a (local) branch master and a
remote-tracking branch origin/master.

C1 C2 C3

masterHEAD

origin/master [local repository]

� A branch fetched from a remote repository is called a remote-tracking
branch.

� A remote-tracking branch is a reference to a commit in the remote
repository and is used for operations like pushing and fetching/pulling.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2354

Commit History Example I

1 Consider the following remote repository with a single branch master:

C1 C2

masterHEAD

2 Cloning the remote repository yields a new local repository that is identical
to the remote repository but with a remote-tracking branch
origin/master added as follows:

C1 C2

master

origin/master

HEAD

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2355

Commit History Example II

3 Committing change A1 to the master branch of the local repository
transforms the local repository as follows:

C1 C2

master

origin/master

HEAD

−→ C1 C2 A1

master

origin/master

HEAD

4 Committing change A2 to the master branch of the local repository
transforms the local repository as follows:

C1 C2 A1

master

origin/master

HEAD

−→ C1 C2 A1 A2

master

origin/master

HEAD

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2356

Commit History Example III

5 Another user committing changes B1 and B2 to the remote repository
transforms the remote repository as follows:

C1 C2

masterHEAD

−→
C1 C2 B1 B2

masterHEAD

6 Fetching (to the local repository) from the remote repository transforms
the local repository as follows:

C1 C2 A1 A2

master

origin/master

HEAD

−→
C1 C2 A1

B1

A2

B2

master

origin/master

HEAD

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2357

Commit History Example IV

7 Merging the origin/master branch into the master branch (in the local
repository) transforms the local repository as follows:

C1 C2 A1

B1

A2

B2

master

origin/master

HEAD

−→

C1 C2 A1

B1

A2

B2

A3

master

origin/master HEAD

8 Pushing (from the local repository) to the remote repository transforms the
remote and local repositories, respectively, as follows:

C1 C2 B1 B2

masterHEAD

−→
C1 C2 A1

B1

A2

B2

A3

master HEAD

C1 C2 A1

B1

A2

B2

A3

master

origin/master HEAD

−→ C1 C2 A1

B1

A2

B2

A3

master

origin/master

HEAD

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2358

Commit History Example: Commands to Setup Remote

1 TOP_DIR=‘pwd‘
2

3 cd $TOP_DIR
4 mkdir remote
5 cd remote
6 git init
7 printf "apple\n" >> fruits.txt
8 git add fruits.txt
9 git commit -m "Added file fruits.txt" # Commit C1

10 printf "banana\n" >> fruits.txt
11 git add fruits.txt
12 git commit -m "Added banana to fruits.txt" # Commit C2
13 git init --bare .git
14 mv .git $TOP_DIR/remote.git
15 cd $TOP_DIR
16 rm -rf remote

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2359

Commit History Example: Remaining Commands

1 cd $TOP_DIR
2 git clone remote.git local-1
3

4 cd $TOP_DIR/local-1
5 printf "grape\n" >> fruits.txt
6 git add fruits.txt
7 git commit -m "Added grape to fruits.txt" # Commit A1
8 printf "orange\n" >> fruits.txt
9 git add fruits.txt

10 git commit -m "Added orange to fruits.txt" # Commit A2
11

12 cd $TOP_DIR
13 git clone remote.git local-2
14 cd local-2
15 printf "red\n" >> colors.txt
16 git add colors.txt
17 git commit -m "Added file colors.txt" # Commit B1
18 printf "green\n" >> colors.txt
19 git add colors.txt
20 git commit -m "Added green to colors.txt" # Commit B2
21 git push
22

23 cd $TOP_DIR/local-1
24 git push # ERROR: local repository not up to date
25 git fetch
26 git merge -m "Merged changes." # Commit A3
27 git push

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2360

Git Configuration

� Git employs three levels of configuration settings, which in order of
decreasing priority are as follows:

1 local (i.e., per repository)
2 global (i.e., per user)
3 system (i.e., system wide)

� Configuring system settings may require administrator privileges.

� On Linux systems, the global settings are typically stored in the file
$HOME/.gitconfig.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2361

Git on One Slide

� Configure user information and clone the repository:
git config --global user.name "John Doe"
git config --global user.email jdoe@gmail.com
git clone $repository $directory

� Edit the working tree and stage changes as appropriate for the local
repository:

git add $path_to_add
git mv $source_path $destination_path
git rm $file_to_remove
git rm -r $directory_to_remove

� Check what changes are staged and then commit these changes to the
local repository:

git status
git commit

� Push changes from the local repository to the remote repository:
git push

� As needed, retrieve changes from the remote repository and merge them
locally (e.g., if a push failed due to being out of date):

git pull

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2362

Section 10.2.1

Basic Commands

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2363

Determining the Version of Git

� To query the version of the Git software, type:
git --version

� The original release dates for a few versions of Git are as follows:

Original
Version Release Date

1.0 2005-12-21
1.7 2010-02-13
1.8 2012-10-21
1.9 2014-02-14
2.0 2014-05-28
2.3 2015-02-05
2.8 2016-03-28
2.12 2017-02-24
2.16 2018-01-17

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2364

Obtaining Help on the git Command

� To obtain general help for the git command, use a command of the form:
git help [options]

� To obtain detailed information for the git command or guide $item, use a
command of the form:

git help [options] $item
� Some commonly-used options include:

Option Description

-a list all commands for which help available
-g list all available help guides
-w display in HTML format using a web browser
-m display in man (i.e., manual page) format

� To obtain detailed help on the commit command with the information
displayed in HTML format in a web browser, type:

git help -w commit
� To list all of the help guides available, type:

git help -g

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2365

Configuring Git

� To set the variable $name to the value $value, use a command of the
form:

git config [options] $name $value
� To unset the variable $name, use a command of the form:

git config [options] --unset $name
� To list all of the current variables settings, use a command of the form:

git config [options] -l
� Some commonly-used options include:

Option Description

--system consider only the system-wide settings
--global consider only the global (i.e., per-user) settings
--local consider only the local (i.e., per-repository) settings

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2366

Some Commonly-Used Git Variables

Variable Description

core.askPass program for entering user name and password
credentials

core.editor program for editing
core.pager program for paging output
credential.helper external program to be called when a user

name or password credential is needed
user.name user’s full name
user.email user’s email address
web.browser program for browsing web

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2367

Configuring User Information

� To globally set the user name to “John Doe”, type:
git config --global user.name "John Doe"

� To globally set the email address to “jdoe@gmail.com”, type:
git config --global user.email jdoe@gmail.com

� To list all system, global, and local variables, type:
git config -l

� To list only the global variables, type:
git config --global -l

� To list only the local (i.e., per-repository) variables for the current
repository, type:

git config --local -l

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2368

Configuring User-Credential-Related Information

� To enable the global caching of user credentials for 1 hour (i.e.,
3600 seconds), type:

git config --global \
credential.helper ’cache --timeout=3600’

� To disable all caching of user credentials (i.e., at the system, global, and
repository levels) and purge any cached values, type:

git config --unset credential.helper
git config --global --unset credential.helper
git config --system --unset credential.helper
git credential-cache exit

� To ensure that prompting for user credentials employs standard
input/output (as opposed to, say, a pop-up window), type:

git config --unset core.askPass
git config --global --unset core.askPass
git config --system --unset core.askPass
unset GIT_ASKPASS
unset SSH_ASKPASS

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2369

Creating an Empty Repository

� To create an empty repository, use a command of the form:
git init [$directory]

� If $directory is not specified, it defaults to the current directory.

� The repository is created in the directory $directory.

� If $directory already contains a repository, the repository is re-initialized
(in a non-destructive manner).

� All of the information used internally by Git to maintain the state of the
repository is stored in a directory named .git at the top-level directory in
the working tree.

� To create a new repository in the directory hello (which does not
currently exist), type:

git init hello

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2370

Cloning a Repository

� To clone a repository $repository, use a command of the form:
git clone [options] $repository [$directory]

� If $directory is not specified, it defaults to a value derived from
$repository.

� The cloned repository is placed in the directory $directory.
� The repository specifier $repository can be a URL (for a repository

accessed through a network server) or a directory (for a repository
accessed through the local file system).

� Some commonly-used options include:
Option Description

-b $branch after cloning, checkout the branch $branch

� To clone the repository associated with the URL
https://github.com/uvic-aurora/hello-world.git to the
directory hello-world, type:

git clone \
https://github.com/uvic-aurora/hello-world.git \
hello-world

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2371

https://github.com/uvic-aurora/hello-world.git

Adding Files/Directories to the Index

� To add the files/directories $path... to the index (i.e., mark for
committing later), use a command of the form::

git add $path...
� The contents of $path... at the time that the git add command is run

are staged; subsequent changes to these contents are not automatically
staged.

� When a directory is staged, all directories and files that are contained
under it are staged (i.e., staging is recursive).

� To prevent certain files/directories in a directory from being staged, they
can be listed in a .gitignore file in that directory.

� To add the files README and LICENSE to the index, type:
git add README LICENSE

� To add the directory src (and everything contained under it) to the index,
type:

git add src

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2372

Removing Files/Directories from the Index

� To remove all changes from the index, type:
git reset

� To remove the files/directories $path... from the index, use a command
of the form:

git reset $path...
� To undo the effects of the command “git add README LICENSE”, type:

git reset README LICENSE
� To undo the effects of the command “git add README”, type:

git reset README

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2373

Renaming Files

� To move the file/directory $source to $destination, use a command of
the form:

git mv [options] $source $destination
� To move multiple files $s_1, $s_2, . . . , $s_n to the directory

$destination_directory, use a command of the form:
git mv [options] $s_1 $s_2 ... $s_n \
$destination_directory

� Some commonly-used options include:
Option Description

-f force moving even if the target exists

� To rename the file README to README.old, type:
git mv README README.old

� To move the files hello.cpp and goodbye.cpp to the directory src, type:
git mv hello.cpp goodbye.cpp src

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2374

Removing Files

� To remove the files/directories $path... from the working tree and the
index, use a command of the form:

git rm [options] $path...

� Some commonly-used options include:
Option Description

-f override the up-to-date check
-r if the given path is a directory, recursively remove files be-

low it

� To remove the directory src and all files and directories beneath it from
the working tree and index, type:

git rm -r src
� To remove the files README and LICENSE from the working tree and index,

type:
git rm README LICENSE

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2375

Committing Changes

� To commit all staged changes, use a command of the form:
git commit [options]

� Some commonly-used options include:
Option Description

-a automatically stage any files that have been mod-
ified or deleted

-m $message set message to $message

� To commit all staged changes with the message “Fixed overflow bug”,
type:

git commit -m "Fixed overflow bug"
� To commit all staged changes with the message “Fixed overflow bug”,

automatically staging any files that have been modified or deleted, type:
git commit -a -m "Fixed overflow bug"

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2376

Checking the Status of the Working Tree

� To display the status of the working tree, use a command of the form:
git [options] status

� Some commonly-used options include:
Option Description

--long give the output in long format (default)
--short give the output in short format

� The information displayed by this command includes:
2 paths (i.e., files and directories) that have differences between the index

and the current HEAD commit, (i.e., what would be committed by running
git commit)

2 paths that have differences between the working tree and index as well as
paths that are not tracked by Git (i.e., what could by committed by running
git add before git commit)

� To display the status of the working tree in long form, type:
git status

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2377

Showing Commit Logs

� To show the commit history (which can be limited to a particular revision
range $revision_range or files/directories $path...), use a command
of the form:

git log [options] [$revision_range] [[--] $path...]
� Some commonly-used options include:

Option Description

--since $date select commits more recent than date $date
--until $date select commits older than date $date
-$n select last n commits
-S $pattern select commits adding/removing string match-

ing pattern $pattern
--graph draw text-based graph of commit history
--all consider all branches/remotes/tags
--grep $pattern select only commits with message matching

$pattern

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2378

Showing Commit Logs (Continued)

� To show the commit history for the file README since 2016-01-01, type:
git log --since 2016-01-01 README

� To show the commit history for all files between 2014-01-01 and
2014-12-31, type:

git log --since 2014-01-01 --until 2014-12-31
� To show the commit history for all files in all branches with a text-based

graph, type:
git log --all --graph

� To show the commit history for all commits made since v1.0 until and
including v2.0 (assuming that v1.0 and v2.0 exist), type:

git log v1.0..v2.0

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2379

Showing Changes

� To show changes between the working tree and the index (i.e., what could
be staged but has not yet been) for files/directories $path... (which
defaults to all files/directories), use a command of the form:

git diff [options] [$path...]
� To show changes between the index and the named commit $commit

(which defaults to HEAD) for the files/directories $path... (which defaults
to all files/directories), use a command of the form:

git diff [options] --cached [$commit] -- \
[$path...]

� To show changes between the working tree and the named commit
$commit (which defaults to HEAD) for the files/directories $path...
(which defaults to all files/directories), use a command of the form:

git diff [options] [$commit] -- [$path...]
� To show changes between two arbitrary commits $commit1 and

$commit2 for the files/directories $path..., use a command of the form:
git diff [options] $commit1 $commit2 -- \
[$path...]

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2380

Showing Changes (Continued)

� Some commonly-used options include:
Option Description

-b ignore changes in amount of whitespace
-w ignore all whitespace
--ignore-blank-lines ignore blank lines

� To show all changes between the working tree and the index for all
files/directories, type:

git diff
� To show all differences between the working tree and the index for the file

README, ignoring changes in amount of whitespace, type:
git diff -b README

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2381

Finding Lines Matching a Pattern
� To find all lines of text in the files $path... (which defaults to all files) in

the working tree that satisfy the condition specified by the p_options,
use a command of the form:

git grep [options] [p_options] -- [$path...]
� Some commonly-used options include:

Option Description

-l print only names of files with matches
-i ignore case
--max-depth $depth descend at most $depth levels of directories
-v select non-matching lines
-F patterns are fixed strings
-E patterns are extended POSIX regular expressions
-e $pattern specify pattern $pattern
--and logical and
--or logical or
--not logical not
(for grouping logical operations
) for grouping logical operations
--cache search in the index instead of the working tree

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2382

Finding Lines Matching a Pattern (Continued)

� To search for the text “hello” in a case insensitive manner in all of the
files in the working tree, type:

git grep -i -e hello
� To print only the names of the files that match the pattern specified in the

preceding example, type:
git grep -i -e hello -l

� To find all of the files in the working tree with suffixes “.cpp” or “.hpp” that
have lines containing either “#include <vector>” or
“#include <list>”, type:

git grep -e ’#include <vector>’ --or \
-e ’#include <list>’ -- ’*.cpp’ ’*.hpp’

� To perform the same search as the preceding example but in the index
rather than the working tree, type:

git grep --cache -e ’#include <vector>’ --or \
-e ’#include <list>’ -- ’*.cpp’ ’*.hpp’

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2383

Removing Untracked Files and Directories

� To remove all untracked files in the working tree, use a command of the
form:

git clean [options]
� Some commonly-used options include:

Option Description

-d remove untracked directories in addition to untracked files
-f force removal of files
-i enable interactive mode
-n show what would be done without actually doing anything
-x do not use standard ignore rules (such as those specified in

.gitignore files)

� To remove all untracked files and directories in the working tree excluding
those ignored by Git, type:

git clean -d -f
� To remove all untracked files and directories in the working tree including

those ignored by Git, type:
git clean -d -f -x

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2384

.gitignore Files
� A .gitignore file specifies which files and directories are intentionally

untracked and should be ignored by Git.
� The purpose of a .gitignore file is to ensure that certain files not

tracked by Git remain untracked.
� The .gitignore file lists patterns specifying files that should be ignored

by Git.
� A “!” prefix negates a pattern.
� A leading slash matches the directory containing the .gitignore file. For

example, /hello.cpp matches hello.cpp but not
some/subdirectory/hello.cpp.

� The patterns in a .gitignore file apply to the directory containing the file
as well as all directories below the file in the working tree.

� The patterns in a .gitignore file at a higher level in the tree are
overridden by patterns in a .gitignore file at a lower level.

� A .gitignore file in the root directory of the working tree can be used to
establish ignore defaults for the whole tree.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2385

.gitignore File Example

ignore all object files
*.o
ignore all library files
*.a
ignore foobaz only in this directory
/foobaz
ignore foo only in directory example
/example/foo

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2386

.gitattributes Files

� A .gitattributes file is used to specify attributes for files/directories.

� For example, the determination of whether a file employs a binary or text
format can be controlled via a .gitattributes file.

� An example of a .gitattributes file is as follows:
Consider all PNM files to be binary.
*.pnm binary

� The settings in a .gitattributes file apply to the directory containing
the file as well as all directories below the file in the working tree.

� The settings in a .gitattributes file at a higher level in the tree are
overridden by settings in a .gitattributes file at a lower level.

� A .gitattributes file in the root directory of the working tree can be
used to establish attribute defaults for the whole tree.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2387

Tracking Empty Directories

� The current implementation of git does not allow empty directories to be
tracked.

� The best workaround for this problem is to create a .gitignore file in the
directory that ignores all files except the .gitignore file itself.

� Such a .gitignore file might look like the following:
First, ignore everything in this directory.
*
Now, override the preceding rule and force
the .gitignore file not to be ignored.
!.gitignore

� This is not a perfect solution as it requires that the “empty” directory
contain one file (namely, a .gitignore file) and this file be committed to
the repository.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2388

Section 10.2.2

Remote-Related Commands

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2389

Listing, Adding, and Removing Remotes

� To list the remotes, use a command of the form:
git remote [general_options]

� Some general options include:
Option Description
-v enable verbose mode

� To add the remote $remote with the associated URL $url, use a
command of the form:

git remote add $remote $url
� To remove the remote $remote, use a command of the form:

git remote rm $remote
� To rename a remote from $old to $new, use a command of the form:

git remote rename $old $new
� To show detailed information on the remote $remote, use a command of

the form:
git remote [general_options] show $remote

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2390

Fetching Changes from Another Repository

� To fetch changes from the remote $remote (which normally defaults to
origin), use a command of the form:

git fetch [$remote]
� A fetch operation gathers any commits from the target branch that do not

exist in current branch, and stores them in the local repository.

� It is always safe to perform a fetch in sense that no conflicts can arise,
since no merge is attempted.

� By fetching frequently, one can keep their local repository up to date
without being forced to merge.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2391

Pushing Changes to Another Repository

� To push changes to the branch $branch (which normally defaults to the
current branch) of the remote $remote (which normally defaults to
origin), use a command of the form:

git push [options] [$remote [$branch]]
� When pushing a new local branch to a remote, the -u option should be

specified.

� To delete the branch $branch on the remote $remote only, use a
command of the form:

git push --delete origin $branch
� The preceding command is useful if one wants to delete a branch that

exists on the remote but not in the local repository.

� To delete the tag $tag on the remote $remote only, use a command of
the form:

git push --delete origin $tag
� To push to the default remote and branch, type:

git push

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2392

Pulling Changes from Another Repository

� To pull changes from the branch $branch of the remote $remote, use a
command of the form:

git pull [$remote [$branch]]
� To pull from the default remote and branch, type:

git pull
� A pull is approximately a fetch followed by merge.

� A pull automatically merges commits without letting them be reviewed first.

� For this reason, some people suggest that it is better to use fetch and
merge separately instead of performing a pull.

� Also, the use of pull operations can, in some cases, result in unnecessary
merge commits.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2393

Merging Changes

� To merge changes from the branch $branch (which normally defaults to
the upstream branch for the current branch) into the current branch, use a
command of the form:

git merge [$branch]
� To merge from the default branch, type:

git merge
� Note that the merge direction is from the branch $branch into the current

branch.

� It is advisable to ensure that any outstanding changes are committed
before running git merge in order to reduce the likelihood of major
difficulties in the case of a conflict.

� If a conflict arises, no commit will be performed and manual intervention is
required to resolve the conflict.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2394

Section 10.2.3

Branch-Related Commands

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2395

Listing, Creating, and Deleting Branches

� To list all of the branches, use a command of the form:
git branch [options]

� To create a branch $branch, use a command of the form:
git branch [options] $branch

� To delete the (local) branch $branch, use a command of the form:
git branch [options] -d $branch

� Some commonly-used options include:
Option Description

-a list both remote and local branches
-r list or delete remote branches
-v enable verbose mode for listing (use twice for extra verbose)

� When a new branch is created with git branch, this does not
automatically checkout (i.e., switch to using) the new branch.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2396

Checking Out a Branch

� To checkout (i.e., switch to) the branch $branch, use a command of the
form:

git checkout $branch
� Checking out a branch changes the files/directories of the working tree to

match that branch.

� If you have local modifications to one or more files that are different
between the current branch and the branch to which you are switching,
the command refuses to switch branches in order to preserve your
modifications in context.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2397

Section 10.2.4

Tag-Related Commands

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2398

Listing, Creating, and Deleting Tags

� To list all tags, type:
git tag

� To tag a commit $commit (which defaults to HEAD) with the name $name,
use a command of the form:

git tag [options] $name [$commit]
� To delete the (local) tags with names $name..., use a command of the

form:
git tag -d $name...

� Some commonly-used options include:
Option Description

-a make an unsigned annotated tag

� To create an annotated tag version-1.0 for the most recent commit on
the master branch, type:

git tag -a version-1.0 master
� To delete the tag version-1.0, type:

git tag -d version-1.0

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2399

Pushing Tags

� To push a tag $tag to the remote $remote, use a command of the form:
git push $remote $tag

� To push the tag v1.0 to the remote origin, type:
git push origin v1.0

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2400

Section 10.2.5

Miscellany

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2401

Duplicating a Repository

� can create exact duplicate of entire Git repository (including all tags and
local branches) by using bare-clone and mirror-push operations

� to copy repository $source_repo to (already existing) remote repository
$destination_repo (overwriting contents of repository), use command
sequence:

Create a bare clone of the repository.
git clone --bare $source_repo $bare_dir
Mirror push to the destination repository.
git -C $bare_dir push --mirror $destination_repo
Remove the temporary local bare repository.
rm -rf $bare_dir

� to copy repository $source_repo to local repository directory
$destination_dir, simply perform bare clone operation using
command:

git clone --bare $source_repo $destination_dir

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2402

Avoiding Repeated Passphrase Entry for SSH Authentication

� if SSH used to access repository, SSH passphrase often needs to be
provided

� to avoid having to enter SSH passphrase every time it is needed, can use
SSH Agent to cache passphrase and provide it as required

� to start SSH Agent and provide it with passphrase to cache for private key
file $key_file, use command sequence:

Start SSH Agent
eval ‘ssh-agent‘
Provide passphrase for particular key.
ssh-add $key_file

� on Unix systems, SSH key information typically stored in directory
$HOME/.ssh

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2403

Additional Remarks

� A file is said to be derived if it is generated from one or more other files
(e.g., an object file is derived from its corresponding source code file, a
PDF or PostScript file is derived from its corresponding LATEX source files).

� Do not place derived files under version control, as such files are
completely redundant and can often lead to a significant increase in
repository size.

� Do not place large unchanging datasets under version control, as this will
greatly increase repository size without any tangible benefit (i.e., since the
datasets are not changing, there will never be multiple versions of them to
manage).

� Avoid placing sensitive information (e.g., passwords) under version
control.

� Remember that deleting a file from a particular commit does not delete
that file from the repository, since the file will still exist in other commits.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2404

Git-Related Software

� Gitg. A GNOME GUI client for viewing Git repositories.
https://wiki.gnome.org/Apps/Gitg.

� Meld. A visual diff and merge tool. http://meldmerge.org.

� Hub. A command-line wrapper for Git that facilitates easier use of GitHub.
https://hub.github.com.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2405

https://wiki.gnome.org/Apps/Gitg
http://meldmerge.org
https://hub.github.com

Section 10.2.6

References

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2406

References I

1 Official Git Web Site. https://git-scm.com, August 2016.
This web site has many excellent resources related to Git, including:

1 Git Downloads: https://git-scm.com/downloads.
This web page has the Git software for various platforms, including Linux,
Mac OS X, and Windows.

2 Git Book: Scott Chacon and Ben Straub, Pro Git,
http://git-scm.com/book.
This online book can also be downloaded in several formats (including
PDF).

3 Git Videos: https://git-scm.com/videos.
This web page has several short videos on various aspects of Git.

2 Good Resources for Learning Git and GitHub, https://help.github.
com/articles/good-resources-for-learning-git-and-github
August 2016.
This web page has a list of many excellent resources for learning both Git and
GitHub.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2407

https://git-scm.com
https://git-scm.com/downloads
http://git-scm.com/book
https://git-scm.com/videos
https://help.github.com/articles/good-resources-for-learning-git-and-github
https://help.github.com/articles/good-resources-for-learning-git-and-github

References II

3 TryGit Tutorial, https://try.github.com, August 2016.
This online Git tutorial allows the user to try Git in their web browser.

4 J. Loeliger. Version Control with Git.
O’Reilly, Sebastopol, CA, USA, 2009.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2408

https://try.github.com

Talks

1 Linus Torvalds. Google Tech Talk: Linus Torvalds on git — Git: Source
code control the way it was meant to be!. May 2007. Available online at
https://youtu.be/4XpnKHJAok8.
Linus Torvalds shares his thoughts on Git, the source control management
system he created.

2 Matthew McCullough. The Basics of Git and GitHub. July 2013. Available
online at https://youtu.be/U8GBXvdmHT4.
This is an excellent introduction to using Git.

3 Scott Chacon. Introduction to Git with Scott Chacon of GitHub. June
2011. Available online at https://youtu.be/ZDR433b0HJY.
This is another popular introduction to using Git.

4 Matthew McCullough. Advanced Git: Graphs, Hashes, and Compression,
Oh My!. Sept. 2012. Available online at
https://youtu.be/ig5E8CcdM9g.
This is a very good more advanced talk on Git.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2409

https://youtu.be/4XpnKHJAok8
https://youtu.be/U8GBXvdmHT4
https://youtu.be/ZDR433b0HJY
https://youtu.be/ig5E8CcdM9g

Part 11

Miscellaneous Tools

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2410

Section 11.1

Online C++ Compilers

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2411

Online C++ Compilers

� numerous online (i.e., web-based) C++ compilers available

� typically provide means to upload, edit, build, and run code

� usually provide some control over compiler options and libraries

� often support multiple compilers and/or compiler versions
� some examples of online C++ compilers include:

2 Wandbox
2 http://melpon.org/wandbox

2 Ideone
2 https://ideone.com

2 Coliru
2 http://coliru.stacked-crooked.com

2 Repl.It
2 https://repl.it/repls/SmallIvorySyntax

2Compiler Explorer (discussed in more detail shortly)
2C++ Insights (discussed in more detail shortly)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2412

http://melpon.org/wandbox
https://ideone.com
http://coliru.stacked-crooked.com
https://repl.it/repls/SmallIvorySyntax

Online C++ Compiler Example

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2413

Compiler Explorer

� Compiler Explorer is interactive web-based compiler that supports C++, C,
and numerous other languages

� can load, save, and edit source code
� source code is automatically compiled as edited
� can simultaneously display source code and corresponding assembly

code
� can select language, compiler, and compiler options
� source code can utilize numerous libraries (such as Boost)
� extremely useful for understanding what assembly code is generated by

compiler
� also helpful for quickly testing compilation of small code snippets with

variety of compilers
� created by Matt Godbolt
� web site running Compiler Explorer: https://godbolt.org
� GitHub page:

https://github.com/mattgodbolt/compiler-explorer
Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2414

https://godbolt.org
https://github.com/mattgodbolt/compiler-explorer

Some Compiler Explorer Functionalities

� uses color coding to show correspondence between lines of source and
assembly code

� can hover over instruction name in assembly code for information on
instruction

� display of assembly code can be controlled in various ways:
2 show or hide machine op codes
2 use mangled versus demangled names
2 show or hide debugging information
2 trim extra whitespace
2 filter unused labels or extra assembler directives

� can display assembly code from multiple compilers at same time
� can draw control flow graph corresponding to assembly code
� can be used to test whether different compilers can successfully compile

particular source code
� can share code and Compiler Explorer session via URL
� does not support execution of code (at least as of October 2018)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2415

Compiler Explorer Example

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2416

Compiler Explorer Example

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2417

Example Showing GCC Code-Coverage Instrumentation

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2418

Example Showing Short-Circuit Evaluation

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2419

C++ Insights

� C++ Insights is Clang-based tool that makes visible numerous code
transformations performed by compiler

� created by Andreas Fertig
� for example, tool allows for things such as following to be seen:

2 operator invocations
2 expansion of range-based for loop into “classic” for loop
2 classes generated from lambda expressions
2 code generation associated with structured bindings

� C++ Insights page (which allows tool to be accessed via web browser):
2 https://cppinsights.io

� GitHub repository page:
2 https://github.com/andreasfertig/cppinsights

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2420

https://cppinsights.io
https://github.com/andreasfertig/cppinsights

Example: Structured Bindings and Operators

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2421

Example: Lambda Expressions

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2422

Talks I

1 Matt Godbolt. Compiler Explorer — Part 1 of 2. March 9, 2018. Available
online at https://youtu.be/4_HL3PH4wDg.

2 Matt Godbolt. Compiler Explorer —- Part 2 of 2. March 16, 2018.
Available online at https://youtu.be/1u_ku_OJPDg.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2423

https://youtu.be/4_HL3PH4wDg
https://youtu.be/1u_ku_OJPDg

Section 11.2

Clang Format

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2424

Clang Format

� Clang Format is tool for performing automatic formatting of source code
for C++ (and other languages in C family)

� accessible via clang-format program

� command-line interface for clang-format:

clang-format [options] $file...

� some common options include:
Option Description
-help print usage information and exit
-i perform formatting in place
-style style use coding style style (supported styles include:

LLVM, Google, Chromium, Mozilla, WebKit)

� can be used as standalone tool or integrated with various editors (e.g.,
Vim or Emacs) or IDEs

� online documentation can be found at:
2 http://clang.llvm.org/docs/ClangFormat.html

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2425

http://clang.llvm.org/docs/ClangFormat.html

Talks I

1 Daniel Jasper. clang-format: Automatic formatting for C++. European
LLVM Conference, Paris, France, Apr. 29–30, 2013. Available online at
https://youtu.be/s7JmdCfI__c.

2 Daniel Jasper and Manuel Klimek. An update on Clang-based C++
Tooling. LLVM Developers’ Meeting, San Jose, CA, USA, Oct. 30, 2015.
Available online at https://youtu.be/1S2A0VWGOws.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2426

https://youtu.be/s7JmdCfI__c
https://youtu.be/1S2A0VWGOws

Section 11.3

Language Server Protocol (LSP) Clients and Servers

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2427

Language Server Protocol (LSP)
� Language Server Protocol (LSP) is protocol used between editor or IDE

and server that provides language features such as completion, identifier
queries (e.g., go to definition and find all references), formatting, and
identifier renaming

� LSP is language agnostic; servers available for many languages including
C++ and C

� originally proposed by Microsoft
� allows language-aware component of software to be separated from

editing component
� server has intimate knowledge of particular programming language
� client is typically editor or IDE
� base protocol consists of header and content part (similar to HTTP)
� content part of messages uses JSON-RPC to describe requests,

responses, and notifications
� web site: https://microsoft.github.io/

language-server-protocol/specification

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2428

https://microsoft.github.io/language-server-protocol/specification
https://microsoft.github.io/language-server-protocol/specification

Clangd

� Clangd is LSP server developed as part of LLVM project

� supports C++ and C languages

� has basic LSP support (e.g., completion, diagnostics, fix-its, signature
help, local rename, go to definition, and formatting)

� has support for global completion (e.g., completion still knows about
std::vector even if vector header not included in translation unit)

� has support for project-wide index

� LSP server provided by clangd program

� clangd not normally run directly by user; instead, invoked indirectly by
editor or IDE

� web site: https://clang.llvm.org/extra/clangd.html

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2429

https://clang.llvm.org/extra/clangd.html

Cquery

� Cquery is highly-scalable low-latency LSP server for C, C++ and
Objective C

� designed for large code bases

� fast but has large memory overhead for caching

� web site: https://github.com/cquery-project/cquery

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2430

https://github.com/cquery-project/cquery

LSP Clients

� growing number of IDEs and editors providing support for LSP
� some editors and IDEs with LSP support include:

2 Microsoft Visual Studio IDE
(https://visualstudio.microsoft.com/vs)

2 Eclipse IDE (https://www.eclipse.org/ide)
2 Vim (https://www.vim.org) and Neovim (https://neovim.io)

2 Vim LSP (https://github.com/prabirshrestha/vim-lsp)
2 LanguageClient-Neovim

(https://github.com/autozimu/LanguageClient-neovim)
2 Vim-LSC (https://github.com/natebosch/vim-lsc)
2 Asynchronous Lint Engine (ALE) (https://github.com/w0rp/ale)

2 Emacs (https://www.gnu.org/software/emacs)
2 Emacs LSP Mode (https://github.com/emacs-lsp/lsp-mode)
2 Emacs Polyglot (https://github.com/joaotavora/eglot)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2431

https://visualstudio.microsoft.com/vs
https://www.eclipse.org/ide
https://www.vim.org
https://neovim.io
https://github.com/prabirshrestha/vim-lsp
https://github.com/autozimu/LanguageClient-neovim
https://github.com/natebosch/vim-lsc
https://github.com/w0rp/ale
https://www.gnu.org/software/emacs
https://github.com/emacs-lsp/lsp-mode
https://github.com/joaotavora/eglot

Talks I

1 Ilya Biryukov. Global Code Completion and Architecture of clangd.
European LLVM Developers Meeting, Bristol, England, April 16–17, 2018.
Available online at https://youtu.be/BvjrZ3QioBI.

2 Marc-Andre Laperle. Advancing Clangd: Bringing Persisted Indexing to
Clang Tooling. LLVM Developers Meeting, San Jose, CA, USA, Oct.
18–19, 2017. Available online at https://youtu.be/Y9JB3hlAWeA.

3 Ilya Biryukov. Clangd: Architecture of a Scalable C++ Language Server.
CppCon, Bellevue, WA, USA, Sept. 28, 2018. Available online at
https://youtu.be/5HIyAXj1YNQ

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2432

https://youtu.be/BvjrZ3QioBI
https://youtu.be/Y9JB3hlAWeA
https://youtu.be/5HIyAXj1YNQ

Section 11.4

YouCompleteMe (YCM)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2433

YouCompleteMe (YCM)

� YouCompleteMe (YCM) is code completion engine for Vim editor
� some features of YCM include:

2 semantic code completion
2 real-time diagnostic display for fast syntax checking
2 find declaration, definitions, usages of identifiers
2 display type information for classes, variables, functions
2 fix coding errors by applying fix-it hints
2 display documentation for identifiers

� supports C++, C, and other languages

� uses libclang to perform semantic analysis of code

� web site: http://valloric.github.io/YouCompleteMe

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2434

http://valloric.github.io/YouCompleteMe

YCM With Vim: Completion Example

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2435

Specifying Compiler Commands

� to perform semantic analysis, YCM uses library interface to Clang
compiler (libclang)

� libclang must be provided with set of compile flags in order to parse code
� YCM allows compile flags to be specified in two ways:

1 via compilation database (i.e., compile_commands.json file)
2 via (user-provided) Python script (i.e., .ycm_extra_conf.py)

� use of compilation database is preferred approach, since database can
often be automatically generated by build tools

� YCM searches for file named compile_commands.json, starting in
directory of opened file and then moving up directory hierarchy

� YCM also searches for file name .ycm_extra_conf.py, starting in
directory of opened file and then moving up directory hierarchy

� full functionality of YCM requires that compile-flag information be specified

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2436

Specifying Compiler Commands with CMake

� if using CMake, compile_commands.json file can be automatically
generated (in build directory) by setting
CMAKE_EXPORT_COMPILE_COMMANDS to true when configuring with
CMake

� then, symlink (or copy) compile_commands.json in build directory to
directory searched by YCM (if needed)

� can set CMAKE_EXPORT_COMPILE_COMMANDS when configuring with
cmake command via command line option
“-DCMAKE_EXPORT_COMPILE_COMMANDS=ON”

� alternatively, can set CMAKE_EXPORT_COMPILE_COMMANDS via line in
CMakeLists.txt like:

set(CMAKE_EXPORT_COMPILE_COMMANDS ON)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2437

YCM Commands

� :YcmRestartServer
2 restarts ycmd completion server (e.g., if server exits for some reason)

� :YcmForceCompileAndDiagnostics
2 forces YCM to immediately recompile file and display any new diagnostics

encountered
� :YcmDiags

2 populates Vim’s locationlist with errors or warnings if any were detected in
file and then opens locationlist

� :YcmShowDetailedDiagnostic
2 shows full diagnostic text when user’s cursor is on line with diagnostic

� :YcmDebugInfo
2 displays various debug information for current file

� :YcmToggleLogs
2 shows list of logfiles created by YCM, ycmd server, and semantic engine

server for current filetype, if any
� :YcmCompleter

2 gives access to numerous additional IDE-like features like go to definition
and apply fix-it

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2438

Some YcmCompleter Subcommands

� GoTo
2 performs context-sensitive goto operation based on current cursor position

(e.g., GoToInclude, GoToDeclaration, GoToDefinition, etc.)
� GoToInclude

2 looks for header file on current line and jumps to it
� GoToDeclaration

2 looks up identifier at current cursor position and jumps to its declaration
� GoToDefinition

2 looks up identifier at current cursor position and jumps to its definition
� GoToType

2 looks up identifier at current cursor position and jumps to definition of its
type

� GetType
2 displays type of identifier at current cursor position

� FixIt
2 attempts to make changes to buffer to correct diagnostics on current line

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2439

Vim-Related Comments

� enable file type detection in .vimrc file with “:filetype on”

� typically choose to map commonly used YCM commands to Vim keyboard
shortcuts

� to map “:YcmForceCompileAndDiagnostics” to F5 key, add line like
following to .vimrc file:

nnoremap <F5> :YcmForceCompileAndDiagnostics<CR>

� to map “:YcmCompleter GoTo” to key sequence <leader>jd, add line
like following to .vimrc file:

nnoremap <leader>jd :YcmCompleter GoTo<CR>

� leader key (i.e., <leader>) can be queried with “:let mapleader” (often
set to comma on Linux systems)

� leader key can be set to comma with “:let mapleader=","”
� for more information on Vim, refer to Vim web site:

2 http://www.vim.org

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2440

http://www.vim.org

Part 12

Miscellany

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2441

Section 12.1

Miscellany

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2442

The abs Function

� Consider a program with the following source listing:
#include <iostream>
#include <cstdlib>
int main() {std::cout << abs(-1.5) << ’\n’;}

� The C++ implementation is permitted (but not required) to place the C abs
function in the global namespace.

� If the implementation does not do this, the above program will fail to
compile (avoiding the more troubling problem discussed next).

� If, however, the C++ implementation does do this (which is not uncommon
in practice), the above program will compile successfully, but behave
unexpectedly when run.

� In particular, the program will output a value of 1, instead of the value of
1.5 that was likely expected by the programmer.

� Since the C abs function is declared as int abs(int), the use of this
function will introduce a conversion from double to int, leading to the
unexpected result.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2443

The abs Function (Continued)

� The problems of the previous slide can be easily avoided as follows.

� First, include the header cmath, which provides overloads of std::abs
for various built-in types, including double.

� Then, invoke the function std::abs (instead of ::abs).

� For example, the following code will behave as expected, outputting the
value of 1.5:

#include <iostream>
#include <cmath>
int main() {std::cout << std::abs(-1.5) << ’\n’;}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2444

Sizeof Class Versus Sum of Member Sizes

� compilers can (and do) add padding to classes/structs
� Example:

1 #include <iostream>
2

3 class Widget {
4 // ...
5 private:
6 char c;
7 int i;
8 };
9

10 int main() {
11 // two numbers printed not necessarily the same
12 std::cout << sizeof(char) + sizeof(int) << ’ ’ <<
13 sizeof(Widget) << ’\n’;
14 std::cout << alignof(int) << ’ ’ <<
15 alignof(Widget) << ’\n’;
16 }

� many processors place alignment restrictions on data (e.g., data type of
size n must be aligned to start on address that is multiple of n)

� other factors can also add to size of class/struct (e.g., virtual function table
pointer)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2445

Sizeof Class Versus Sum of Member Sizes (Continued)

� consider following type:
struct Widget {

char c;
int i;

};

� suppose that sizeof(int) is 4 and alignof(int) is 4

� compiler adds padding to structure so that int data member is suitably
aligned (i.e., offset is multiple of 4)

� memory layout for Widget object:

1

2

3

4

5

6

7

0

Offset

padding

i

c

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2446

Avoid Returning an Rvalue Reference to an Rvalue Reference Parameter

� Returning an rvalue reference to an rvalue reference parameter can
potentially lead to very subtle bugs.

� Example:
std::string&& join(std::string&& s, const char* p) {

return std::move(s.append(", ").append(p));
}

std::string getMessage() {return "Hello";}

void func() {
const string& r = join(getMessage(), " World");
// lifetime of temporary returned by getMessage
// not extended to lifetime of r since not
// directly bound to r
// r now refers to destroyed temporary

}

� Fix:
std::string join(std::string&& s, const char* p) {

return std::move(s.append(", ").append(p));
}

� Returning by rvalue reference should probably be avoided, except in very
special circumstances (such as std::forward and std::move).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2447

Be Careful When Mixing Signed and Unsigned Types

1 #include <cassert>
2

3 int main() {
4 short ss = -1;
5 int si = -1;
6 long sl = -1;
7 long long sll = -1;
8 unsigned short us = 0;
9 unsigned int ui = 0;

10 unsigned long ul = 0;
11 unsigned long long ull = 0;
12 // comparison between signed and unsigned types
13 assert(ss < ui); // FAILS: ss becomes UINT_MAX
14 // comparison between signed and unsigned types
15 assert(si < ui); // FAILS: si becomes UINT_MAX
16 // comparison between signed and unsigned types
17 assert(sl < ul); // FAILS: sl becomes ULONG_MAX
18 // comparison between signed and unsigned types
19 assert(sll < ull); // FAILS: sll becomes ULONGLONG_MAX
20 }

� be aware of rules for promotions and conversions involving integral types

� if these rules not considered, code may not behave in manner expected

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2448

Section 12.2

Exercises

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2449

[Q.1] What Is Wrong With This Code?

main.cpp
1 #include <complex>
2 #include <iostream>
3 #include <vector>
4

5 std::complex<long double>
6 square(std::complex<long double>& x) {
7 return x * x;
8 }
9

10 void do_stuff(std::vector<int>& v) {
11 int* ip = v.data();
12 std::cout << ip << ’\n’;
13 for (std::vector<int>::iterator i = v.begin();
14 i != v.end(); ++i) {
15 std::cout << (i - v.begin()) << ’ ’ << *i << ’\n’;
16 }
17 }
18

19 int main() {
20 std::vector<int> v{1, 2, 4, 8};
21 do_stuff(v);
22 std::complex<long double> fortytwo{42};
23 std::cout << square(fortytwo) << ’\n’;
24 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2450

[Q.1] Solution: Use Const Qualifier Correctly

main.cpp
1 #include <complex>
2 #include <iostream>
3 #include <vector>
4

5 std::complex<long double>
6 square(const std::complex<long double>& x) {
7 return x * x;
8 }
9

10 void do_stuff(const std::vector<int>& v) {
11 const int* ip = v.data();
12 std::cout << ip << ’\n’;
13 for (std::vector<int>::const_iterator i = v.begin();
14 i != v.end(); ++i) {
15 std::cout << (i - v.begin()) << ’ ’ << *i << ’\n’;
16 }
17 }
18

19 int main() {
20 const std::vector<int> v{1, 2, 4, 8};
21 do_stuff(v);
22 const std::complex<long double> fortytwo{42};
23 std::cout << square(fortytwo) << ’\n’;
24 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2451

[Q.2] What Is Wrong With This Code?
main.cpp

1 #include <iostream>
2
3 class Counter {
4 public:
5 Counter(unsigned c = 0) : c_(c) {}
6 Counter(Counter& other) : c_(other.c_) {}
7 Counter(const Counter&& other) : c_(other.c_) {}
8 ~Counter() {}
9 Counter& operator=(Counter& other)

10 {c_ = other.c_; return *this;}
11 Counter& operator=(const Counter&& other)
12 {c_ = other.c_; return *this;}
13 void clear() {c_ = 0;}
14 const unsigned get_count() {return c_;}
15 const Counter& operator++() {++c_; return *this;}
16 operator bool() {return c_ != 0;}
17 private:
18 unsigned c_; // counter value
19 };
20

21 int main() {
22 Counter zero;
23 Counter c{zero};
24 ++c;
25 std::cout << c.get_count() << ’\n’;
26 std::cout << zero.get_count() << ’\n’;
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2452

[Q.2] Solution: Use Const Qualifier Correctly
main.cpp

1 #include <iostream>
2
3 class Counter {
4 public:
5 Counter(unsigned c = 0) : c_(c) {}
6 Counter(const Counter& other) : c_(other.c_) {}
7 Counter(Counter&& other) : c_(other.c_) {}
8 ~Counter() {}
9 Counter& operator=(const Counter& other)

10 {c_ = other.c_; return *this;}
11 Counter& operator=(Counter&& other)
12 {c_ = other.c_; return *this;}
13 void clear() {c_ = 0;}
14 unsigned get_count() const {return c_;}
15 Counter& operator++() {++c_; return *this;}
16 operator bool() const {return c_ != 0;}
17 private:
18 unsigned c_; // counter value
19 };
20

21 int main() {
22 const Counter zero;
23 Counter c{zero};
24 ++c;
25 std::cout << c.get_count() << ’\n’;
26 std::cout << zero.get_count() << ’\n’;
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2453

[Q.3] What Is Wrong With This Code?

foo.hpp
1 #ifndef foo_hpp
2 #define foo_hpp
3 namespace foo {
4 bool is_odd(int x) {return (x % 2) != 0;}
5 bool is_even(int x) {return (x % 2) == 0;}
6 }
7 #endif

main.cpp
1 #include <iostream>
2 #include "foo.hpp"
3 int main() {
4 std::cout << foo::is_odd(42) << ’ ’ <<
5 foo::is_even(42) << ’\n’;
6 }

other.cpp
1 #include "foo.hpp"
2 // ...

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2454

[Q.3] Solution: Functions Should Be Inline

foo.hpp
1 #ifndef foo_hpp
2 #define foo_hpp
3 namespace foo {
4 inline bool is_odd(int x) {return (x % 2) != 0;}
5 inline bool is_even(int x) {return (x % 2) == 0;}
6 }
7 #endif

main.cpp
1 #include <iostream>
2 #include "foo.hpp"
3 int main() {
4 std::cout << foo::is_odd(42) << ’ ’ <<
5 foo::is_even(42) << ’\n’;
6 }

other.cpp
1 #include "foo.hpp"
2 // ...

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2455

[Q.4] What Is Wrong With This Code?

foo.hpp
1 #ifndef foo_hpp
2 #define foo_hpp
3 namespace foo {
4 inline bool is_odd(int x);
5 inline bool is_even(int x);
6 }
7 #endif

foo.cpp
1 #include "foo.hpp"
2 namespace foo {
3 bool is_odd(int x) {return (x % 2) != 0;}
4 bool is_even(int x) {return (x % 2) == 0;}
5 }

app.cpp
1 #include <iostream>
2 #include "foo.hpp"
3 int main() {
4 std::cout << foo::is_odd(42) << ’ ’ <<
5 foo::is_even(42) << ’\n’;
6 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2456

[Q.4] Solution: Place Inline Function Definitions in Header File

foo.hpp
1 #ifndef foo_hpp
2 #define foo_hpp
3 namespace foo {
4 inline bool is_odd(int x) {return (x % 2) != 0;}
5 inline bool is_even(int x) {return (x % 2) == 0;}
6 }
7 #endif

app.cpp
1 #include <iostream>
2 #include "foo.hpp"
3 int main() {
4 std::cout << foo::is_odd(42) << ’ ’ <<
5 foo::is_even(42) << ’\n’;
6 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2457

[Q.5] What Is Wrong With This Code?

foo.hpp
1 #ifndef foo_hpp
2 #define foo_hpp
3 namespace foo {
4 template <typename T> T abs(const T& x);
5 }
6 #endif

foo.cpp
1 #include "foo.hpp"
2 namespace foo {
3 template <typename T> T abs(const T& x)
4 {return (x < 0) ? (-x) : x;}
5 }

app.cpp
1 #include <iostream>
2 #include "foo.hpp"
3 int main() {
4 std::cout << foo::abs(-42) << ’ ’ <<
5 foo::abs(-3.14) << ’\n’;
6 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2458

[Q.5] Solution 1: Explicit Template Instantiation

foo.hpp
1 #ifndef foo_hpp
2 #define foo_hpp
3 namespace foo {
4 template <typename T> T abs(const T& x);
5 }
6 #endif

foo.cpp
1 #include "foo.hpp"
2 namespace foo {
3 template <typename T> T abs(const T& x)
4 {return (x < 0) ? (-x) : x;}
5 template int abs<int>(const int&);
6 template double abs<double>(const double&);
7 }

app.cpp
1 #include <iostream>
2 #include "foo.hpp"
3 int main() {
4 std::cout << foo::abs(-42) << ’ ’ <<
5 foo::abs(-3.14) << ’\n’;
6 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2459

[Q.5] Solution 2: Define Function Template in Header File

foo.hpp
1 #ifndef foo_hpp
2 #define foo_hpp
3 namespace foo {
4 template <typename T> T abs(const T& x)
5 {return (x < 0) ? (-x) : x;}
6 }
7 #endif

app.cpp
1 #include <iostream>
2 #include "foo.hpp"
3 int main() {
4 std::cout << foo::abs(-42) << ’ ’ <<
5 foo::abs(-3.14) << ’\n’;
6 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2460

Remarks on Headers Files and Function Declarations

� Every function (whether it be inline or non-inline, or template or
non-template) must be declared before being used.

� Consequently, functions that are part of an interface should normally be
declared in a header file so that users of the interface can obtain the
declarations needed for the interface by simply including the header file.

� An inline function should always be defined before being used.
� Consequently, an inline function that is declared in a header file should

normally also be defined in the file.
� A template function must be defined at its point of use in order for the

template to be implicitly instantiated.
� Consequently, a template function that is declared in a header file should

normally also be defined in the file.
� A function must not be defined more than once.
� Consequently, unless a function is inline or a template, it should not be

defined in a header file, as this will result in multiple definitions if the
header file is included by more than one source file.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2461

[Q.6] What Is Wrong With This Code?

foo.hpp
1 #ifndef foo_hpp
2 #define foo_hpp
3 #include <cmath>
4 namespace foo {
5 double log(double x, double b);
6 }
7 #endif

foo.cpp
1 #include <cmath>
2 #include "foo.hpp"
3 namespace foo {
4 double log(double x, double b = 10.0)
5 {return std::log(x) / std::log(b);}
6 }

app.cpp
1 #include <iostream>
2 #include "foo.hpp"
3 int main() {
4 std::cout << foo::log(16.0, 2.0) << ’ ’ <<
5 foo::log(10.0) << ’\n’;
6 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2462

[Q.6] Solution: Place Default Arguments in Header File

foo.hpp
1 #ifndef foo_hpp
2 #define foo_hpp
3 #include <cmath>
4 namespace foo {
5 double log(double x, double b = 10.0);
6 }
7 #endif

foo.cpp
1 #include <cmath>
2 #include "foo.hpp"
3 namespace foo {
4 double log(double x, double b)
5 {return std::log(x) / std::log(b);}
6 }

app.cpp
1 #include <iostream>
2 #include "foo.hpp"
3 int main() {
4 std::cout << foo::log(16.0, 2.0) << ’ ’ <<
5 foo::log(10.0) << ’\n’;
6 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2463NEXT SLIDE: constexpr for functions

[Q.7] What Is Wrong With This Code?

foo.hpp
1 namespace foo {
2 constexpr int abs(int x);
3 }

foo.cpp
1 #include "foo.hpp"
2

3 namespace foo {
4 constexpr int abs(int x) {return (x < 0) ? (-x) : x;}
5 }

app.cpp
1 #include <iostream>
2 #include "foo.hpp"
3

4 int main() {
5 constexpr auto a = foo::abs(-42);
6 std::cout << a << ’\n’;
7 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2464

[Q.7] Solution: Define Constexpr Function in Header

foo.hpp
1 namespace foo {
2 constexpr int abs(int x) {return (x < 0) ? (-x) : x;}
3 }

app.cpp
1 #include <iostream>
2 #include "foo.hpp"
3

4 int main() {
5 constexpr auto a = foo::abs(-42);
6 std::cout << a << ’\n’;
7 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2465

[Q.8] What Is Wrong With This Code?

1 #include <cmath>
2 #include <cassert>
3

4 constexpr double func(double x) {
5 assert(x >= 0.0);
6 return std::sqrt(x) + std::sin(x) * std::cos(x);
7 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2466

[Q.8] Answer: Invalid Constexpr Function

1 #include <cmath>
2 #include <cassert>
3

4 constexpr double func(double x) {
5 assert(x >= 0.0);
6 return std::sqrt(x) + std::sin(x) * std::cos(x);
7 }

� std::sqrt, std::sin, and std::cos are not constexpr functions (at
least, in fully compliant C++17 implementation)

:::::::::
[C++17 20.5.5.6/1]

� consequently, func is invalid constexpr function, since no arguments exist
for which function can be evaluated as constant expression

� invocation of assert is okay, since assert can be used in constant
expression

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2467

http://www.ece.uvic.ca/~mdadams/cppdraft/n4659/html/constexpr.functions#1

[Q.9] What Is Wrong With This Code?

1 #include <iostream>
2

3 constexpr unsigned int factorial(unsigned int x) {
4 unsigned int result;
5 result = 1;
6 for (unsigned int i = 2; i <= x; ++i) {
7 result *= i;
8 }
9 return result;

10 }
11

12 int main() {
13 constexpr auto x = factorial(4);
14 std::cout << x << ’\n’;
15 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2468

[Q.9] Solution: Initialize Constexpr Function Variables

1 #include <iostream>
2

3 constexpr unsigned int factorial(unsigned int x) {
4 unsigned int result = 1;
5 for (unsigned int i = 2; i <= x; ++i) {
6 result *= i;
7 }
8 return result;
9 }

10

11 int main() {
12 constexpr auto x = factorial(4);
13 std::cout << x << ’\n’;
14 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2469

[Q.10] What Is Wrong With This Code?

1 #include <vector>
2 #include <iostream>
3

4 constexpr std::vector<float> get_value(float a) {
5 return {a * 1.0f, a * 2.0f, a * 3.0f};
6 }
7

8 int main() {
9 constexpr auto v = get_value(2.0);

10 for (auto x : v) {
11 std::cout << x << ’\n’;
12 }
13 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2470

[Q.10] Solution: Constexpr Requires Literal Types

1 #include <array>
2 #include <iostream>
3

4 constexpr std::array<float, 3> get_value(float a) {
5 return {a * 1.0f, a * 2.0f, a * 3.0f};
6 }
7

8 int main() {
9 constexpr auto v = get_value(2.0);

10 for (auto x : v) {
11 std::cout << x << ’\n’;
12 }
13 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2471NEXT SLIDE: Temporary Objects

[Q.11] What Is Wrong With This Code?

1 #include <algorithm>
2 #include <cstddef>
3

4 template <class T>
5 void in_place_transpose(T* a, std::size_t m, std::size_t n) {
6 T tmp[m][n];
7 std::copy_n(a, m * n, &tmp[0][0]);
8 for (std::size_t i = 0; i < m; ++i) {
9 for (std::size_t j = 0; j < n; ++j) {

10 a[j * m + i] = tmp[i][j];
11 }
12 }
13 }

� ignore possibility of integer overflow

� ignore potential cache-efficiency issues

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2472

[Q.11] Answer: Code Has At Least Two Serious Problems

1 #include <algorithm>
2 #include <cstddef>
3

4 template <class T>
5 void in_place_transpose(T* a, std::size_t m, std::size_t n) {
6 T tmp[m][n];
7 std::copy_n(a, m * n, &tmp[0][0]);
8 for (std::size_t i = 0; i < m; ++i) {
9 for (std::size_t j = 0; j < n; ++j) {

10 a[j * m + i] = tmp[i][j];
11 }
12 }
13 }

� code uses variable length array (VLA) (i.e., tmp)

� VLAs are forbidden in (standard-compliant) C++ (i.e., array sizes must be
constant expressions)

� even with compilers that allow VLAs in violation of C++ standard (such as
GCC), object of unknown (and potentially very large) size being created
on stack

� can easily result in stack overflow

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2473

[Q.11] Solution: Avoid VLAs and Creating Large Stack Objects

1 #include <algorithm>
2 #include <vector>
3 #include <cstddef>
4

5 template <class T>
6 void in_place_transpose(T* a, std::size_t m, std::size_t n) {
7 std::vector<T> tmp(a, a + m * n);
8 for (std::size_t i = 0; i < m; ++i) {
9 for (std::size_t j = 0; j < n; ++j) {

10 a[j * m + i] = tmp[i * n + j];
11 }
12 }
13 }

� use of std::vector for temporary array avoids need for VLA

� since std::vector allocates its underlying array storage from heap,
potential stack overflow problem avoided

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2474

[Q.FCC1] How to Invoke func at Compile Time?

1 int func() {
2 int i = 0;
3 // ... (valid code for constexpr function)
4 return i;
5 }
6

7 int main() {
8 return func();
9 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475START SLIDE: tutorial .addresses and constexpr

[Q.FCC1] Solution

1 constexpr int func() {
2 int i = 0;
3 // ... (valid code for constexpr function)
4 return i;
5 }
6

7 int main() {
8 constexpr int i = func();
9 return i;

10 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

[Q.FCC2] How to Invoke func at Compile Time?

1 void func() {
2 // ... (valid code for constexpr function)
3 }
4

5 int main() {
6 func();
7 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

[Q.FCC2] Solution

1 constexpr void func() {
2 // ... (valid code for constexpr function)
3 }
4

5 static_assert((func(), true));
6

7 int main() {
8 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475END SLIDE: tutorial

[Q.C1A] Cache Exercise
� memory and cache parameters:

2 maximum memory size is 1024 bytes
2 cache size is 64 bytes
2 4-byte cache block size
2 4-way set associative cache

� determine:
1 number of bits in address

2 log2 1024 = 10 (i.e., log base 2 of number of addresses)

2 number of blocks in memory
2 1024/4 = 256 (i.e., memory size divided by block size)

3 number of blocks in cache
2 64/4 = 16 (i.e., cache size divided by block size)

4 number of sets in cache
2 16/4 = 4 (i.e., number of cache blocks divided by set associativity)

5 number of bits in block offset
2 log2 4 = 2 (i.e., log base 2 of cache block size)

6 number of bits in cache index
2 log2 4 = 2 (i.e., log base 2 of number of sets)

7 number of bits in cache tag
2 10− (2+2) = 6 (i.e., number of address bits minus number of cache index and block offset bits)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2475

[Q.C1B] Cache Exercise (Continued)

� same memory and cache parameters as on previous slide

� valid entries in cache:

Data
Byte Byte Byte Byte

Tag Index 0 1 2 3
0010102 102 1116 1216 1316 1416
0010102 112 2116 2216 2316 2416
0010012 002 3116 3216 3316 3416
0011112 012 4116 4216 4316 4416

� does memory access to each of following addresses result in cache hit or
miss, and if hit what value for address in cache?

1 00101000112
2 tag 0010102, index 002, block offset 112; cache miss

2 00101011012
2 tag 0010102, index 112, block offset 012; cache hit; data 2216

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2476

[Q.C2] Virtual Memory Exercise

� virtual and physical memory parameters:
2 16-bit virtual address
2 12-bit physical address
2 page size is 256 bytes

� determine:
1 number of virtual pages

2 216/28 = 28 = 256 (i.e., number of virtual addresses divided by page size)
2 number of physical pages

2 212/28 = 24 = 16 (i.e., number of physical addresses divided by page size)
3 number of bits in page offset (PO)

2 log2 256 = 8 (i.e., log base 2 of page size)
4 number of bits in virtual page number (VPN)

2 16−8 = 8 (i.e., virtual address size in bits minus number of bits in PO)
5 number of bits in physical page number (PPN)

2 12−8 = 4 (i.e., physical address size in bits minus number of bits in PO)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2477

[Q.C2] Virtual Memory Exercise (Continued)

� same virtual memory parameters as on previous slide
� page table contains following address translation information:

VPN PPN Flags
000000002 11112 present, readable, writable, not executable
000000012 10102 present, readable, writable, not executable
100000002 00002 present, readable, not writable, executable

� determine result of translation and protection check for accesses to
following addresses:

1 data read 11111111000000002
2 VPN 111111112, PO 000000002 access violation (no address mapping)

2 instruction fetch 00000000000000002
2 VPN 000000002, PO 000000002; access violation (physical address

1111000000002)
3 data write 00000001000000002

2 VPN 000000012, PO 000000002; physical address 1010000000002
� could virtual address xxxxxxxx000000002 map to physical address

yyyy000011112?
2 no (page offsets differ)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2478

[Q.A1] What Is Wrong With This Code?

1 #include <cstddef>
2

3 // write elements of source array src to destination
4 // array dst in reverse order
5 template <class T, std::size_t N>
6 void reverse(const T (&src)[N], T (&dst)[N]) {
7 for (std::size_t i = 0; i < N; ++i) {
8 dst[N - 1 - i] = src[i];
9 }

10 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2479START SLIDE: tutorial

[Q.A1] Answer: Aliasing Case Not Handled Correctly

1 #include <iostream>
2

3 // include definition of reverse
4 #include "aliasing_1_1.hpp"
5

6 int main() {
7 int a[4] = {1, 2, 3, 4};
8 reverse(a, a);
9 for (auto&& x : a) {

10 std::cout << x << ’\n’;
11 }
12 }

� reverse will not work correctly if src and dst parameters refer to same
array

� consider above usage of reverse, which is problematic

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2480

[Q.A1] Bug Fix

1 #include <cstddef>
2

3 template <class T, std::size_t N>
4 void reverse(const T (&src)[N], T (&dst)[N]) {
5 // Check for aliasing case.
6 if (src == dst) {
7 for (std::size_t i = 0; i < N / 2; ++i) {
8 using std::swap;
9 swap(dst[i], dst[N - 1 - i]);

10 }
11 } else {
12 for (std::size_t i = 0; i < N; ++i) {
13 dst[N - 1 - i] = src[i];
14 }
15 }
16 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2481

[Q.A2] What Is Wrong With This Code?

1 // Append the string pointed to by src to the string
2 // pointed to by dst.
3 // Suppose that no restrictions are placed on src and dst.
4 // What is wrong with this code?
5 char* string_concat(char* dst, const char* src) {
6 while (*dst != ’\0’) {
7 ++dst;
8 }
9 while (*src != ’\0’) {

10 *dst++ = *src++;
11 }
12 *dst = ’\0’;
13 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2482

[Q.A2] Answer: Problems Caused By Aliasing

1 #include <iostream>
2

3 char* string_concat(char *, const char*);
4

5 int main() {
6 char a[1024] = "bye";
7 string_concat(a, a);
8 std::cout << a << ’\n’;
9 }

� string_concat will not work correctly if source and destination strings
overlap

� consider above code, which will not work correctly (and probably result in
segmentation fault)

� best solution is to change interface so that overlap of source and
destination forbidden (since detecting aliasing cannot be done efficiently)

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2483

[Q.A3] What Is Wrong With This Code?

1 class Complex {
2 public:
3 Complex(double r, double i) : r_(r), i_(i) {}
4 double real() const {return r_;}
5 double imag() const {return i_;}
6 // What is wrong with the following function?
7 Complex& operator*=(const Complex& other) {
8 auto r = r_;
9 auto i = i_;

10 r_ = r * other.r_ - i * other.i_;
11 i_ = r * other.i_ + i * other.r_;
12 return *this;
13 }
14 // ...
15 private:
16 double r_; // real part
17 double i_; // imaginary part
18 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2484

[Q.A3] Answer: Does Not Correctly Handle Aliasing

1 #include <iostream>
2 #include "aliasing_3_1.hpp"
3

4 int main() {
5 Complex a(1.0, 1.0);
6 Complex b(a);
7 b *= a;
8 a *= a;
9 // The value of b is correct.

10 std::cout << b.real() << ’ ’ << b.imag() << ’\n’;
11 // The value of a is not correct.
12 std::cout << a.real() << ’ ’ << a.imag() << ’\n’;
13 }

� Complex::operator*= will not correctly handle case that *this and
other are aliased

� above code will not work correctly

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2485

[Q.A3] Bug Fix

1 class Complex {
2 public:
3 Complex(double r, double i) : r_(r), i_(i) {}
4 double real() const {return r_;}
5 double imag() const {return i_;}
6 Complex& operator*=(const Complex& other) {
7 auto r = r_;
8 auto i = i_;
9 auto other_r = other.r_;

10 auto other_i = other.i_;
11 r_ = r * other_r - i * other_i;
12 i_ = r * other_i + i * other_r;
13 return *this;
14 }
15 // ...
16 private:
17 double r_; // real part
18 double i_; // imaginary part
19 };

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2486END SLIDE: tutorial

[Q.ST1] Triangle Program

� consider simple triangle classification program
� program performs following:

1 read (from standard input stream) three integers a, b, and c that represent
lengths of sides of triangle

2 classify triangle with sides of lengths a, b, and c as one of:
1 equilateral (i.e., all three sides equal in length)
2 isosceles (i.e., exactly two sides equal in length)
3 scalene (i.e., all sides have distinct lengths)

3 write (to standard output stream) triangle classification

� what set of test cases would be effective for testing above program?

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2487

[Q.ST1] Triangle Program: Test Strategy

� problem somewhat ill-posed in sense that following important information
not stated:

2 how critical is correct program function
2 what assumptions can be made about input data

� as starting point, might consider test cases that cover:
2 equilateral case (e.g., (2,2,2))
2 isosceles case, considering all permutations of edge lengths (e.g., (1,1,2),

(1,2,1), (2,1,1))
2 scalene case, considering all possible permutations of edge lengths (e.g.,

(3,4,5), (3,5,4), (4,3,5), (4,5,3), (5,3,4), (5,4,3))
2 incorrectly formatted data (e.g., “1 2 apple”)
2 insufficient data (i.e., less than three integers provided)
2 superfluous data (i.e., more than three integers provided)
2 lengths correspond to invalid triangle (e.g.: lengths not all strictly positive; or

sum of any two lengths less than or equal to remaining length)
2 lengths chosen in attempt to induce overflow (i.e., very large lengths)

� if mission critical, we might perform more exhaustive testing

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2488

[Q.LR1] Expressions

1 #include <iostream>
2 #include <string>
3 #include <utility>
4

5 std::string&& func1(std::string& x) {
6 return std::move(x);
7 // x? std::move(x)?
8 }
9

10 int main() {
11 const std::string hello("Hello");
12 std::string a;
13 std::string b;
14

15 a = hello + "!";
16 // hello? hello + "!"? a = hello + "!"?
17 std::cout << a << ’\n’;
18 // std::cout? std::cout << a?
19

20 a = std::string("");
21 // std::string("")? a = std::string("")?
22 ((a += hello) += "!");
23 // a += hello?
24 b = func1(a);
25 // func1(a)? b = func1(a)?
26 std::cout << b << ’\n’;
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2489

[Q.I1] What Is the Behavior of This Code?

1 class Widget {
2 public:
3 Widget() {}
4 int i() const {return i_;}
5 private:
6 int i_;
7 };
8

9 int main() {
10 Widget w;
11 return w.i();
12 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2490

[Q.I2] What Is the Behavior of This Code?

1 class Widget {
2 public:
3 Widget() : i_() {}
4 int i() const {return i_;}
5 private:
6 int i_;
7 };
8

9 int main() {
10 Widget w;
11 return w.i();
12 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2491

[Q.I3] What Is the Behavior of This Code?

1 class Widget {
2 public:
3 Widget() {}
4 int i() const {return i_;}
5 private:
6 int i_{};
7 };
8

9 int main() {
10 Widget w;
11 return w.i();
12 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2492

[Q.I4] What Is the Behavior of This Code?

1 #include <iostream>
2

3 // aggregate
4 struct Widget {
5 int i = 0;
6 int j = 0;
7 };
8

9 std::ostream& operator<<(std::ostream& out, const Widget& w) {
10 return out << w.i << ’,’ << w.j;
11 }
12

13 int main() {
14 Widget a;
15 Widget b{};
16 Widget c{1};
17 Widget d{1, 2};
18 std::cout << a << ’ ’ << b << ’ ’ << c << ’ ’ << d << ’\n’;
19 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2493

[Q.MC1] Copy, Move, or Copy Elision?

1 #include <utility>
2
3 class Gadget {
4 public:
5 Gadget();
6 Gadget(const Gadget&);
7 Gadget(Gadget&&);
8 Gadget& operator=(const Gadget&);
9 Gadget& operator=(Gadget&&);

10 // ...
11 };
12
13 Gadget func_1() {return Gadget();}
14 Gadget func_2() {Gadget g; return g;}
15 void func_3(Gadget g) {/* ... */}
16
17 int main() {
18 Gadget s = Gadget();
19 Gadget t(std::move(s));
20 Gadget u(func_1());
21 Gadget v(func_2());
22 Gadget w(v);
23 s = std::move(t);
24 t = s;
25 s = func_1();
26 s = func_2();
27 func_3(s);
28 func_3(std::move(s));
29 func_3(func_1());
30 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

[Q.MC1] Answer
1 #include <utility>
2
3 class Gadget {
4 public:
5 Gadget();
6 Gadget(const Gadget&);
7 Gadget(Gadget&&);
8 Gadget& operator=(const Gadget&);
9 Gadget& operator=(Gadget&&);

10 // ...
11 };
12
13 Gadget func_1() {return Gadget();}
14 Gadget func_2() {Gadget g; return g;}
15 void func_3(Gadget g) {/* ... */}
16
17 int main() {
18 Gadget s = Gadget(); // default ctor, elided copy
19 Gadget t(std::move(s)); // move ctor
20 Gadget u(func_1()); // default ctor, elided copy
21 Gadget v(func_2()); // default ctor, maybe move ctor
22 Gadget w(v); // copy ctor
23 s = std::move(t); // move assign
24 t = s; // copy assign
25 s = func_1(); // default ctor, elided copy, move assign
26 s = func_2(); // default ctor, maybe move ctor, move assign
27 func_3(s); // copy ctor
28 func_3(std::move(s)); // move ctor
29 func_3(func_1()); // default ctor, elided copy
30 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475NEXT SLIDE: more move semantics

[Q.MC2] Copy, Move, or Copy Elision?

1 #include <utility>
2
3 class Gadget {
4 public:
5 Gadget();
6 Gadget(const Gadget&);
7 Gadget(Gadget&&);
8 Gadget& operator=(const Gadget&);
9 Gadget& operator=(Gadget&&);

10 // ...
11 };
12
13 Gadget func_1() {return std::move(Gadget());} // BAD IDEA
14 Gadget func_2() {Gadget g; return std::move(g);} // BAD IDEA
15 const Gadget func_3() {return Gadget();} // BAD IDEA
16 const Gadget func_4() {Gadget g; return g;} // BAD IDEA
17
18 int main() {
19 Gadget s(func_1());
20 Gadget u(func_2());
21 Gadget t(func_3());
22 Gadget w(func_4());
23 s = func_1();
24 s = func_2();
25 s = func_3();
26 s = func_4();
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

[Q.MC2] Answer

1 #include <utility>
2
3 class Gadget {
4 public:
5 Gadget();
6 Gadget(const Gadget&);
7 Gadget(Gadget&&);
8 Gadget& operator=(const Gadget&);
9 Gadget& operator=(Gadget&&);

10 // ...
11 };
12
13 Gadget func_1() {return std::move(Gadget());} // BAD IDEA
14 Gadget func_2() {Gadget g; return std::move(g);} // BAD IDEA
15 const Gadget func_3() {return Gadget();} // BAD IDEA
16 const Gadget func_4() {Gadget g; return g;} // BAD IDEA
17
18 int main() {
19 Gadget s(func_1()); // default ctor, move ctor
20 Gadget u(func_2()); // default ctor, move ctor
21 Gadget t(func_3()); // default ctor, copy elided
22 Gadget w(func_4()); // default ctor, maybe move ctor
23 s = func_1(); // default ctor, move ctor, move assign
24 s = func_2(); // default ctor, move ctor, move assign
25 s = func_3(); // default ctor, copy elided, copy assign
26 s = func_4(); // default ctor, maybe move ctor, copy assign
27 }

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

std::string Concatenation

� What is wrong with the following code?
void func(const std::string&);
std::string s("one");
const char* p = "two";
func(std::string(s) + std::string(", ") + std::string(p));
func(std::string(p) + std::string(", ") + std::string(s));

� Unnecessary temporaries!

� Fix:
func(s + ", " + p);
func(p + ", "s + s);

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2495

std::vector<std::string> Insertion

� What is wrong with the following code?
std::vector<std::string> v;
std::string s("one");
v.push_back(std::string(s));
v.push_back(std::string(s + ", two"));
v.push_back(std::string("three"));
v.push_back(std::string());

� Again, unnecessary temporaries.

� Fix:
v.push_back(s);
v.push_back(s + ", two")
v.emplace_back("three");
v.emplace_back();

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2496

Classes Holding Multiple Resources
� What is wrong with this code?

class TwoResources {
public:

TwoResources() : x_(nullptr) : y_(nullptr) {
x_ = new X;
y_ = new Y;

}
~TwoResources() {

delete x_;
delete y_;

}
private:

X* x_;
Y* y_;

};

� If an exception is thrown in a constructor, the object being constructed is
deemed not to have started its lifetime and no destructor will ever be
called for the object.

� So, for example, if new Y throws, x_ will be leaked.
� Fix:

class TwoResources {
public:

TwoResources() : x_(make_unique<X>()),
y_(make_unique<Y>()) {}

private:
unique_ptr<X> x_;
unique_ptr<Y> y_;

};

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2497

Avoid Returning By Const Value

� What is wrong with the following code?
const std::string getMessage() {

return "Hello";
}

� The const return value will interact poorly with move semantics, as the
returned object cannot be used as the source for a move operation (since
the source for a move operation must be modifiable).

� Fix:
std::string getMessage() {

return "Hello";
}

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2498

Types of Literals

� When specifying a literal, be careful to use a literal of the correct type, as
the type can often be quite important.

� For example, what value will be printed by the following code and (more
importantly) why:

std::vector<double> values;
values.push_back(0.5);
values.push_back(0.5);
// Compute the sum of the elements in the vector values.
double sum = std::accumulate(values.begin(),
values.end(), 0);

std::cout << sum << ’\n’;

� Hint: The value printed for sum is not 1.

� In order to determine what values will be printed, look carefully at the
definition of std::accumulate.

� Answer: The value printed for sum is 0.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2499

Other Exercises

This slide is a placeholder and has been intentionally left blank.

::::
question

:::::
discussion

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475NEXT SLIDE: ordRel

Part 13

Additional Learning Resources

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2500

Limits of Knowledge

� Know what you do not know.

� Ask questions when you are uncertain about something and be sure that
the person whom you ask is knowledgeable enough to give a correct
answer.

� Know what information resources can be trusted.

� Learn to use reference materials effectively (e.g., documentation on
libraries, standards).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2501

C++ References

� Some good references on various topics related to the C++ programming
language, C++ standard library, and other C++ libraries (such as Boost)
are listed on the slides that follow.

� Any information on C++ (e.g., books, tutorials, videos, seminars) from the
following individuals (who are held in very high regard by the C++
community) is highly recommended:

2 Bjarne Stroustrup (the creator of C++)
2 Scott Meyers
2 Herb Sutter (Convener of ISO C++ standards committee for over 10 years)
2 Andrei Alexandrescu
2 Stephan Lavavej

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2502

C++ References I

1 ISO/IEC 14882:2017 — information technology — programming
languages — C++, Dec. 2017.
This is the definitive specification of the C++ language and standard library. This
is an essential reference for any advanced programmer.

2 B. Stroustrup. The C++ Programming Language.
Addison Wesley, 4th edition, 2013.
This is the classic book on the C++ programming language and standard library,
written by the creator of the language. This is one of the best references for first
learning C++.

3 Standard C++ Foundation web site. http://www.isocpp.org, 2014.
This is the web site of a non-profit organization whose purpose is to support the
C++ software development community and promote the understanding and use
of modern standard C++ on all compilers and platforms. This is an absolutely
outstanding source of information on C++.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2503

http://www.isocpp.org

C++ References II

4 B. Stroustrup and H. Sutter (editors), C++ Core Guidelines, 2016, http:
//isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.
This document provides a very detailed set of guidelines for writing good C++
code.

5 S. Meyers. Effective Modern C++: 42 Specific Ways to Improve Your Use
of C++11 and C++14.
O’Reilly Media, Cambridge, MA, USA, 2015.
This book covers a list of 42 topics on how to better utilize the C++ language.

6 S. Meyers. Effective C++: 50 Specific Ways to Improve Your Programs and
Designs.
Addison Wesley, Menlo Park, California, 1992.
This book covers a list of 50 topics on how to better utilize the C++ language.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2504

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

C++ References III

7 S. Meyers. More Effective C++: 35 New Ways to Improve Your Programs
and Designs.
Addison Wesley, Menlo Park, California, 1996.
This book covers a list of 35 topics on how to better utilize the C++ language. It
builds on Meyers’ earlier “Effective C++” book.

8 S. Meyers. Effective STL: 50 Specific Ways to Improve Your Use of the
Standard Template Library.
Addison Wesley, 2001.
This book covers a list of 50 topics on how to better utilize the Standard Template
Library (STL), an essential component of the C++ standard library.

9 N. M. Josuttis. The C++ Standard Library: A Tutorial and Reference.
Addison Wesley, Upper Saddle River, NJ, USA, 2nd edition, 2012.
This is a very comprehensive book on the C++ standard library. This is arguably
the best reference on the standard library (other than the C++ standard).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2505

C++ References IV

10 D. Vandevoorde and N. M. Josuttis. C++ Templates: The Complete Guide.
Addison Wesley, 2002.
This is a very comprehensive book on template programming in C++. It is
arguably one of the best books on templates in C++.

11 A. Williams. C++ Concurrency in Action.
Manning Publications, Shelter Island, NY, USA, 2012.
This is a fairly comprehensive book on concurrency and multithreaded
programming in C++. It is arguably the best book available for those who want to
learn how to write multithreaded code using C++.

12 H. Sutter. Exceptional C++: 47 Engineering Puzzles, Programming
Problems, and Solutions.
Addison Wesley, 1999.
This book covers topics including (but not limited to): proper resource
management, exception safety, RAII, and good class design.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2506

C++ References V

13 H. Sutter. More Exceptional C++: 40 New Engineering Puzzles,
Programming Problems, and Solutions.
Addison Wesley, 2001.
This book covers topics including (but not limited to): exception safety, effective
object-oriented programming, and correct use of STL.

14 H. Sutter. Exceptional C++ Style: 40 New Engineering Puzzles,
Programming Problems, and Solutions.
Addison Wesley, 2004.
This book covers topics including (but not limited to): generic programming,
optimization, resource management, and how to write modular code.

15 H. Sutter and A. Alexandrescu. C++ Coding Standards: 101 Rules,
Guidelines, and Best Practices.
Addison Wesley, 2004.
This book presents 101 best practices, idioms, and common pitfalls in C++ in
order to allow the reader to become a more effective C++ programmer.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2507

C++ References VI

16 A. Langer and K. Kreft. Standard C++ IOStreams and Locales.
Addison Wesley, 2000.
This book provides a very detailed look at C++ I/O streams and locales.

17 V. A. Punathambekar. How to interpret complex C/C++ declarations.
http://www.codeproject.com/Articles/7042/
How-to-interpret-complex-C-C-declarations, 2004.
This is a detailed tutorial on how to interpret complex C/C++ type declarations.
This tutorial explains how type declarations are parsed in the language, which is
essential for all programmers to understand clearly.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2508

http://www.codeproject.com/Articles/7042/How-to-interpret-complex-C-C-declarations
http://www.codeproject.com/Articles/7042/How-to-interpret-complex-C-C-declarations

Other C++ References I

1 S. B. Lippman, J. Lajoie, and B. E. Moo. C++ Primer.
Addison Wesley, Upper Saddle River, NJ, USA, 4th edition, 2005.

2 A. Koenig and B. E. Moo. Accelerated C++: Practical Programming by
Example.
Addison Wesley, Upper Saddle River, NJ, USA, 2000.

3 B. Eckel. Thinking in C++—Volume 1: Introduction to Standard C++.
Prentice Hall, 2nd edition, 2000.

4 B. Eckel and C. Allison. Thinking in C++—Volume 2: Practical
Programming.
Prentice Hall, 1st edition, 2003.

5 B. Stroustrup. Programming: Principles and Practice Using C++.
Addison Wesley, Upper Saddle River, NJ, USA, 2009.
An introduction to programming using C++ by the creator of the language.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2509

Other C++ References II

6 A. Alexandrescu. Modern C++ Design.
Addison Wesley, Upper Saddle River, NJ, USA, 2001.

7 D. Abrahams and A. Gurtovoy. C++ Template Metaprogramming:
Concepts, Tools, and Techniques from Boost and Beyond.
Addison Wesley, Boston, MA, USA, 2004.

8 D. D. Gennaro. Advanced C++ Metaprogramming.
CreateSpace Independent Publishing Platform, 2011.

9 Boost web site. http://www.boost.org, 2014.
The web site for the Boost C++ libraries.

10 B. Karlsson. Beyond the C++ Standard Library: An Introduction to Boost.
Addison Wesley, Upper Saddle River, NJ, USA, 2005.
An introduction to (some parts of) the Boost library.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2510

http://www.boost.org

Other C++ References III

11 B. Schaling. The Boost C++ Libraries.
XML Press, 2nd edition, 2014.
An introduction to the Boost library. Online version at
http://theboostcpplibraries.com.

12 M. Kilpelainen. Overload resolution — selecting the function.
Overload, 66:22–25, Apr. 2005.
Available online at http://accu.org/index.php/journals/268.

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2511

http://theboostcpplibraries.com
http://accu.org/index.php/journals/268

Yet More C++ References I

1 Herb Sutter’s Web Site: http://herbsutter.com

2 Herb Sutter’s Guru of the Week: http://www.gotw.ca/gotw/

3 Bjarne Stroustrup’s Web Site: http://www.stroustrup.com

4 ISO C++ Working Group web site:
http://www.open-std.org/jtc1/sc22/wg21/

5 ISO C++ Standards Committee GitHub site:
https://github.com/cplusplus

6 C++ FAQ: http://www.parashift.com/c++-faq/

7 Newsgroup comp.lang.c++.moderated: https:
//groups.google.com/forum/#!forum/comp.lang.c++.moderated

8 http://en.cppreference.com

9 http://www.cplusplus.com

10 Stackoverflow: http://stackoverflow.com

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2512

http://herbsutter.com
http://www.gotw.ca/gotw/
http://www.stroustrup.com
http://www.open-std.org/jtc1/sc22/wg21/
https://github.com/cplusplus
http://www.parashift.com/c++-faq/
https://groups.google.com/forum/#!forum/comp.lang.c++.moderated
https://groups.google.com/forum/#!forum/comp.lang.c++.moderated
http://en.cppreference.com
http://www.cplusplus.com
http://stackoverflow.com

Yet More C++ References II

11 Cpp Reddit (C++ discussions, articles, and news):
https://www.reddit.com/r/cpp

12 Cplusplus Reddit (C++ questions, answers, and discussion):
https://www.reddit.com/r/cplusplus

13 ACCU Overload Journal:
http://accu.org/index.php/journals/c78/

14 The C++ Source: http://www.artima.com/cppsource

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2513

https://www.reddit.com/r/cpp
https://www.reddit.com/r/cplusplus
http://accu.org/index.php/journals/c78/
http://www.artima.com/cppsource

C++-Related Conferences I

1 CppCon, https://cppcon.org

2 C++ Now, http://cppnow.org

3 Meeting C++, https://meetingcpp.com

4 code::dive, https://codedive.pl

5 ACCU Conference, https://conference.accu.org

6 Pacific++, https://pacificplusplus.com
7 NDC Conferences, https://ndcconferences.com

2 NDC TechTown, https://ndctechtown.com

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475

https://cppcon.org
http://cppnow.org
https://meetingcpp.com
https://codedive.pl
https://conference.accu.org
https://pacificplusplus.com
https://ndcconferences.com
https://ndctechtown.com

C++ Programming Competitions

1 Google Code Jam
https://code.google.com/codejam/

2 Topcoder
https://www.topcoder.com/

3 IEEEXtreme 24-Hour Programming Competition
http://www.ieee.org/xtreme

4 ACM International Collegiate Programming Contest (ICPC)
http://icpcnews.com/

5 CodeChef
https://www.codechef.com/

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2515

https://code.google.com/codejam/
https://www.topcoder.com/
http://www.ieee.org/xtreme
http://icpcnews.com/
https://www.codechef.com/

The Last Word

� Use as many information resources as you can to learn as much as you
can about C++.

� Read books, articles, and other documents.

� Watch videos.

� Attend lectures and seminars.

� Participate in programming competitions.

� But most importantly:

Write code!
Write lots and lots and lots of code!

� The only way to truly learn a programming language well is to use it
heavily (i.e., write lots of code using the language).

Copyright c© 2015–2019 Michael D. Adams C++ Version: 2019-09-01-SENG475 2516

	Copyright Page
	License
	Other Textbooks and Lectures Slides by the Author
	Preface
	About These Lecture Slides
	Acknowledgments
	Disclaimer
	Typesetting Conventions

	Software
	C++
	History of C++
	References

	Getting Started
	C++ Basics
	Preprocessor
	Objects, Types, and Values
	Operators and Expressions
	Control-Flow Constructs: Selection and Looping
	Functions
	Input/Output (I/O)
	Miscellany
	References

	Classes
	Members and Access Specifiers
	Constructors and Destructors
	Operator Overloading
	Miscellany
	Functors
	References

	Templates
	Function Templates
	Class Templates
	Variable Templates
	Alias Templates
	Variadic Templates
	Template Specialization
	Miscellany
	References

	Lambda Expressions
	References

	Classes and Inheritance
	Derived Classes and Class Hierarchies
	Virtual Functions and Run-Time Polymorphism
	Multiple Inheritance and Virtual Inheritance
	References

	C++ Standard Library
	Containers, Iterators, and Algorithms
	The @std::array@ Class Template
	The @std::vector@ Class Template
	The @std::basicstring@ Class Template
	Other Container Classes
	Time Measurement
	Miscellany

	Miscellany

	More C++
	Initialization
	References

	Temporary Objects
	Lvalues and Rvalues
	Copy Elision and Implicit Moving
	Rvalue References
	Introduction
	Copying and Moving
	References, Reference Binding, and Overload Resolution
	Moving
	Reference Collapsing and Forwarding References
	Perfect Forwarding
	References

	Exceptions
	Introduction
	Exceptions
	Throwing and Catching Exceptions
	Exception Specifications
	Storing and Retrieving Exceptions
	Exception Safety
	Exceptions: Implementation, Cost, and Usage
	Exception Gotchas
	References

	Smart Pointers
	Introduction
	The @std::uniqueptr@ Class Template
	The @std::sharedptr@ Class Template
	The @std::weakptr@ Class Template
	The @boost::intrusiveptr@ Class Template
	Smart-Pointer Usage Examples
	References

	Memory Management
	New and Delete Expressions
	More on Memory Management
	Allocators
	References

	Concurrency
	Preliminaries
	Multithreaded Programming
	Multithreaded Programming Models
	Thread Management
	Sharing Data Between Threads
	Mutexes
	Condition Variables
	Promises and Futures
	Atomics
	Atomics and the Memory Model
	References

	Compilers and Linkers
	Itanium C++ ABI
	References

	Even More C++
	Undefined Behavior and Other Evil Stuff
	C++ Compatibility
	C Compatibility

	Libraries
	Boost Libraries
	Introduction
	Boost Container Library
	Boost Intrusive Library
	Boost Iterator Library
	Miscellaneous Examples
	References

	Computational Geometry Algorithms Library (CGAL)
	Geometry Kernels
	Polygon Meshes
	Surface Subdivision Methods
	Example Programs

	OpenGL Utility Toolkit (GLUT)
	OpenGL Framework (GLFW) Library
	OpenGL Mathematics (GLM) Library
	Open Graphics Library (OpenGL)
	Simple OpenGL Program
	Shaders
	Shader Examples
	OpenGL Example Programs
	References

	Other Libraries

	Programming
	Good Programming Practices
	Algorithms
	References

	Data Structures
	Lists, Stacks, and Queues
	Multiway and Binary Trees
	Hash Tables
	Sets, Multisets, Maps, and Multimaps
	Priority Queues
	Graphs
	Data Structures and File Formats for Polygon Meshes
	Intrusive Containers
	Miscellany
	References

	Finite-Precision Arithmetic
	Interval Arithmetic
	Applications in Geometry Processing
	References

	Cache-Efficient Code
	Memory Hierarchy and Caches
	Cache-Efficient Algorithms
	Cache-Oblivious Algorithms
	References

	Vectorization
	Vector Processing
	Code Vectorization
	References

	Documentation for Software Development
	Software Testing
	References

	Debugging and Testing Tools
	Debuggers
	Code Sanitizers
	References

	Clang Static Analyzer
	References

	Clang-Tidy
	References

	Valgrind
	References

	Gcov and LLVM Cov
	References

	LLVM XRay
	Miscellaneous Tools
	Catch2

	Performance Analysis Tools
	Perf
	References

	Performance API (PAPI) Software
	References

	Gprof
	References

	Valgrind/Callgrind
	References

	Build Tools
	Build Tools
	Make
	References

	CMake
	CMakeLists Files
	Examples
	References

	Version Control Systems
	Version Control Systems
	Git
	Basic Commands
	Remote-Related Commands
	Branch-Related Commands
	Tag-Related Commands
	Miscellany
	References

	Miscellaneous Tools
	Online C++ Compilers
	Clang Format
	Language Server Protocol (LSP) Clients and Servers
	YouCompleteMe (YCM)

	Miscellany
	Miscellany
	Exercises

	Additional Learning Resources

