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Abstract—In earlier work, Tu and Adams proposed the
ERDED method, an effective technique for generating triangle-
mesh models of digital images through explicit representation
of discontinuities. In this paper, we propose a modified version
of the ERDED method that generates a triangle mesh which
better approximates the original image using an optimization-
based algorithm. The proposed method is shown to produce
image approximations of higher quality than those obtained
by the ERDED method, both in terms of squared error and
subjective quality. Moreover, this improvement in quality comes
at a relatively modest computational cost, with the proposed
method typically taking only a few seconds of computation time.

I. INTRODUCTION

Images are most often represented by using a uniform
sampling over a lattice. Uniform sampling, however, is almost
never optimal because of selecting too many sample points
in regions with small variations of the pixel intensity and too
few sample points in regions with high changes of intensity.
On the other hand, nonuniform sampling (i.e., sampling at
a subset of points from a lattice) can choose sample points
adaptive to the intensity variations in the image and is able to
produce higher quality results with greater compactness and
less memory cost, which is beneficial in many applications.
This is why nonuniform sampling of images has received a
considerable amount of attention from researchers recently
[1]–[7].

Among the many models of image representations based
on nonuniform sampling, triangle mesh models have become
quite popular (e.g., [2]–[5], [8]–[13]). Triangle-mesh modeling
of an image involves partitioning the image domain by a tri-
angulation into a collection of non-overlapping triangles. The
image function is then approximated over each triangle face. To
represent an image using a mesh model, a method is needed to
choose a good subset of sample points from the original image
to generate such a mesh model. The method to generate the
mesh model is known as a mesh-generation method. Often,
approximating functions are chosen to be piecewise linear
and continuous (e.g., [3], [5], [10], [11]). Images, however,
usually contain a large number of discontinuities (i.e., image
edges) and this leads to the fact that a mesh model that allows
discontinuities in its approximating function may be beneficial
as can be found in [1], [14], and [15].

In [1], Tu and Adams introduced a new mesh model for
images, called ERD, which is based on constrained Delaunay
triangulations (CDTs) [16] and an approximating function

that explicitly represents image discontinuities. In this way,
the approximating function allows for discontinuities across
constrained edges in the triangulation. In order to obtain
an ERD mesh model, two mesh-generation methods were
proposed in [1] of which the one using the error-diffusion
(ED) technique from [5] is called the ERDED mesh-generation
method. Although quite effective, the ERDED method has the
weakness that it often chooses suboptimal parameters for the
model, leading to a degradation in approximation quality. This
problem, as will be seen later, is even worse when modeling
less-sharp image edges. In this paper, we propose a modified
version of the ERDED method that utilizes an optimization-
based algorithm for selecting the parameters of the model
to minimize the approximation error. Through experimental
results, we show that our proposed method yields image
approximations of higher quality (i.e., with lower squared
error) than the ERDED method, with a relatively modest
computational cost.

The remainder of this paper is organized as follows.
Section II provides some background information on triangle-
mesh models for image representation and introduces basic
concepts of the ERD mesh model and the ERDED mesh-
generation method essential to the understanding of this pa-
per. Our proposed mesh-generation method is presented in
Section III. This is done by describing the weakness of
the ERDED method in choosing the model parameters, and
explaining how they are optimized in our proposed method
to minimize the approximation error. Through experimental
results, Section IV shows that our proposed method yields
image approximations of higher quality than the ERDED
method, in terms of squared error and subjective quality, with
a relatively modest computational cost. Finally, Section V
concludes with a summary of our work.

II. BACKGROUND

In what follows, the cardinality of a set S is denoted by
jSj. Consider an image function � defined on a truncated (2-
dimensional) integer lattice � of width W and height H . A
triangle mesh model of � consists of: 1) a set P = fpig �
� of sample points and their corresponding function values
fzi = �(pi)g; and 2) a triangulation T of P . As a matter of
terminology, the size and sampling density of the model are
defined as jP j and jP j=j�j, respectively. The mesh model is
associated with a piecewise-linear approximating function �̂
that interpolates � at each point in P . In other words, over each
face in T , �̂ specifies a unique linear function that interpolates
� at the three vertices of the face. In our work, the quality of a978-1-4673-7788-1/15/$31.00 c2015 IEEE
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Fig. 1: The relationship between vertices, constrained edges,
and wedges. The (a) single-wedge and (b) multiple-wedge
cases.

mesh is evaluated by the mean squared error (MSE) � between
�̂ and �, where

� =
1

j�j
X
p2�

�
�̂(p)� �(p)

�2
:

The MSE is typically expressed in terms of the peak
signal-to-noise ratio (PSNR), which is defined as PSNR =
20 log10 [(2

� � 1)=(
p
�)], where � is the number of bits per

sample in the image �. The PSNR is usually represented using
a decibel (dB) scale, with greater PSNR corresponding to lower
MSE and higher quality reconstructed images.

ERD Model. Since our work uses the ERD mesh model
introduced in [1], it is worthwhile to make a few brief
comments about this model here. As mentioned earlier, the
ERD model is based on the CDT and allows the piecewise-
linear approximating function to be discontinuous across the
constrained edges in the triangulation. In the ERD model,
constrained edges are used to represent the image edges. A
set of consecutive triangle faces in a loop around a vertex
v 2 P that are not separated by any constrained edge is called
a wedge. This definition is illustrated in Fig. 1. Each wedge of a
vertex has associated with it what is called a wedge value. The
wedge value z of the wedge w belonging to vertex v specifies
the limit of �̂(p) as p approaches v from points inside the
wedge w. Then, over each triangle face f in the triangulation,
�̂ defines a unique linear function that interpolates the three
wedge values of f corresponding to its three vertices. The
wedge values in the ERD model, as will be explained later,
are the parameters of interest in this paper.

ERDED Method. As mentioned earlier, one of the effec-
tive methods proposed in [1] for generating the ERD mesh
models of images is the ERDED mesh-generation method.
Since our proposed method builds on the ERDED method,
we briefly describe this method here. The ERDED method
selects the parameters of the ERD model (i.e., a set P of
sample points, a set E of constrained edges, and wedge values)
to obtain the best possible approximation �̂ of the original
image � for a specific target number N of sample points.
The general algorithmic framework of the ERDED mesh-
generation method consists of the following steps:

Fig. 2: The line search process used in the ERDED method
for selecting wedge values.

1) Initial triangulation. Select initial values for P and
E. This is performed using a modified Canny edge
detector followed by a polyline approximation of the
detected edges. Then, construct a CDT of P with
edge constraints E. Let N0 = jP j be the initial mesh
size.

2) Initial wedge values. Calculate the wedge value for
each wedge w of each vertex v 2 P .

3) Point Selection. Select a new sample point q to add
to the mesh. The set of new sample points S (where,
jSj = N � N0) is chosen using the error-diffusion
technique from the ED method in [5].

4) Point insertion. Insert the point q in the triangulation.
If q is on a constrained edge, split the edge at q
into two constrained edges, and compute the wedge
value for each new wedge of the vertex q. (If q is not
on a constrained edge, the wedges and wedge values
remain the same and no special action is required.)

5) Stopping criterion. If jP j < N , go to step 3.

Wedge-Value Calculation. Since our work mainly focuses
on improving step 2 in the framework above, we describe how
wedge values are calculated in step 2 in more detail. Consider
a CDT of P with edge constraints E. If only one wedge is
associated with the vertex v 2 P , the corresponding wedge
value z is simply chosen as the value of the image function at
vertex v (i.e., z = �(v)). Otherwise, if two or more wedges are
associated with the vertex v, the wedge value z associated with
each wedge is chosen using a line search as follows. The grid
points along the ray originating from v and bisecting the wedge
are searched. During the line search, the point p, at which
the maximum magnitude second-order directional derivative
(MMSODD) is largest, is selected as shown in Fig. 2. Then,
the wedge value z is chosen as the value of the image at p
(i.e., z = �(p)). To prevent p from falling far outside of the
corresponding face, the line search is restricted to distance
d 2 [1; 1:5] units from v as shown in Fig. 2. The obtained
wedge value is then rounded to the nearest integer value.

III. PROPOSED MESH-GENERATION METHOD

Having introduced the necessary background, we now
turn our attention to introducing the mesh-generation method
proposed in this paper. As mentioned previously, our method
is essentially a modified version of the ERDED scheme. The
ERDED method, as explained earlier, employs a restricted
local line search to choose the wedge values required by the
ERD model. In what follows, first, we consider two different
image-edge profiles and analyze how the restricted local line



Fig. 3: Sharp image-edge profile. The (a) top view of the
triangulation, (b) cross-section of the image intensity, and (c)
magnitude of the second-order directional derivative of the
image intensity.

search of the ERDED method performs for each profile. One
profile is the case where the restricted local line search selects
the wedge values properly, and the other one, which commonly
happens in images, is the case where the restricted local line
search fails to select the correct wedge values. Then, we
present our proposed algorithm to overcome this problem,
leading to the proposed mesh-generation method.

Figs. 3 and 4 show sharp and less-sharp image-edge
profiles, respectively, including the corresponding part of the
triangulation, the image intensity function I , and the magnitude
of its second-order directional derivative jI 00j. For the sake of
illustration, a simple ramp function with a relatively steep slope
is used in Fig. 3(b) to represent the image intensity across a
sharp edge in the image; and a ramp function with a gentle
slope is used in Fig. 4(b) to represent the image intensity
across a less-sharp edge. The thicker edges in Figs. 3(a) and
4(a) correspond to the constrained edges in the triangulation,
representing the image edges. The dotted line passing through
the middle of each edge profile corresponds to the image
edges detected by the edge detector. Therefore, two wedges
are formed, one on each side of the constrained edges and
incident to vertex v in Figs. 3(a) and 4(a). In this analysis, we
only consider the process of calculating the wedge value of
the wedge on the left side of the constrained edges. A similar
analysis applies to the wedge on the other side.

Fig. 4: Less-sharp image-edge profile. The (a) top view of
the triangulation, (b) cross-section of the image intensity, and
(c) magnitude of the second-order directional derivative of the
image intensity.

As explained earlier, the local line search of the ERDED
method tries to find the point with the highest MMSODD
along the bisecting line. In the case of the sharp-edge profile
shown in Fig. 3, the point with the highest MMSODD, which
is denoted by p in Figs. 3(a) and 3(c), falls inside the fixed
distance range of the line search (i.e., between d = 1 and
d = 1:5) as can be seen in Fig. 3(c). Thus, the point p is
correctly detected during the line search. Then, the intensity
value z at the point p is selected from Fig. 3(b) as the
wedge value associated with the wedge on the left side of
the constrained edges.

In contrast, in the case of a less-sharp edge profile shown
in Fig. 4, the desired point p with highest MMSODD is not
guaranteed to fall inside the fixed search range of d 2 [1; 1:5].
As displayed in Fig. 4(c), the line search fails to detect
the point p. Instead, another point p0 within the range of
d 2 [1; 1:5] is selected. Consequently, instead of the correct
intensity value z at p, the improper intensity value z0 at p0 is
selected from Fig. 4(b) as the wedge value of the wedge on
the left side of the constrained edges.

Since an image contains different edge profiles with various
sharpness levels, no single fixed range of line search can be
found that works best for all edge profiles. This problem of
the line search leads to suboptimal wedge values in the case
of less-sharp edges in the image, resulting in a degradation in



Fig. 5: The relationship between wedges, corners, and corner
z values.

approximation quality inside the wedge of interest.

The analysis mentioned above motivated us to employ a
more accurate approach to find the best possible wedge values,
which are used to construct the approximating function over
the faces. The proposed scheme exploits an optimization-based
algorithm to find the wedge values instead of using a local
line search. Before introducing the proposed algorithm, the
term corner z value should be defined. Recall from Fig. 1 that
a wedge is a set of triangles surrounded by two constrained
edges incident on a vertex. Thus, a wedge incident on a vertex
contains one or more triangle corners. Each triangle corner
inside a wedge is associated with a value, which is called a
corner z value.

Fig. 5 shows an example of a triangulation with three
constrained edges incident to the vertex v. As can be seen in
Fig. 5, the triangulation consists of three wedges denoted by
w0, w1, and w2. The wedge w0 contains two corners associated
with the corner z values z0 and z1. Similarly, the wedge w1

contains two corners associated with the corner z values z2
and z3, but the wedge w2 only contains one corner associated
with the corner z value z4. Similar to wedge values, the corner
z value of a triangle corner incident to a vertex v specifies
the limit of the approximating function �̂ at the point p as p
approaches v from points inside the triangle.

Having introduced the corner z values, we now describe
the proposed optimization-based algorithm for selecting the
wedge values. For each triangle f in the triangulation, the
corner z values fzig2i=0 associated with the corners of f
are optimized to minimize the total (pixelwise) squared error
between the linear approximating function �̂ and the original
image function � over f . The optimization problem introduced
above is given by

minimize
fzig

X
p2


����̂(p)� �(p)
���
2

; (1)

where 
 is the set of grid points in the face f . The mini-
mization problem (1) is a typical least-squares problem, which
can be efficiently solved by linear methods. In (1), the only
z values of the corners that are considered for optimization

Fig. 6: An example of a triangulation showing the corner z
values to be optimized.

are those associated with a vertex incident to more than one
constrained edge. In the case of a vertex incident to zero or one
constrained edge, the corresponding corner z values are simply
set to the values of the original image at the corresponding
sample points.

Fig. 6 illustrates an example of a triangulation with four
faces f0 to f3. As can be seen in Fig. 6, only z values of the
corners incident to the vertices c, d, and f are considered for
optimization. Thus, only the corner z value z0 is optimized for
the face f0. Similarly, only the two corner z values z1;0 and
z1;1 for f1, and z3;0 and z3;1 for f3 are optimized. Finally, for
f2, all three corner z values z2;0, z2;1, and z2;2 are considered
for optimization. The z values of the corners associated with
vertices a, b, and e interpolate the original values at sample
points a, b, and e, respectively.

The optimization-based method described above yields
different corner z values inside the same wedge, introducing
discontinuities along the unconstrained edges inside the wedge.
In the ERD model, however, discontinuities are only allowed
across the constrained edges. So, for the mesh to properly
model the discontinuities, all corners inside the same wedge
should have the same z value (same as wedge value in ERD
model). To accomplish this, the wedge value of each wedge
is obtained by averaging all corner z values inside the same
wedge. The wedge value is then rounded to the nearest integer
value. This procedure gives us a modified ERDED mesh-
generation method that uses the proposed optimization-based
algorithm for selecting the wedge values instead of the local
line search.

IV. RESULTS

Having introduced our proposed method, the modified
ERDED, we now evaluate its performance by comparing it in
terms of mesh quality with the ERDED method. For test data,
in this paper, we focus our attention on the set of five images
listed in Table I, which were deliberately chosen to include
photographic, medical, and computer-generated imagery. To
evaluate the performance of our proposed mesh-generation
method, we proceeded as follows. For each of our five test
images, we used each of the proposed and ERDED methods



TABLE I: Test images

Image Size, Bits/Sample Description
peppers 512� 512, 8 collection of peppers [17]

lena 512� 512, 8 woman [17]
ct 512� 512, 12 CT scan of head [18]

bull 1024� 768, 8 computer-generated bull [19]
wheel 512� 512, 8 computer-generated wheel

to generate a mesh with four sampling densities. Then, for
each method, the mean-squared error between the original
image and the reconstructed image was measured in terms
of PSNR. Table II shows the results for the five images listed
in Table I. In Table II, the best result in each test case is
highlighted in bold. The sampling densities for which results
are presented are chosen to be representative of the range that
would typically be used for each image in practice (which
differs from image to image). From Table II, we can see
that our proposed method outperforms the ERDED scheme
in 18/20 of the test cases by a margin of up to 5.06 dB. From
these results, it is clear that our proposed method is able to
produce meshes of higher quality, in terms of PSNR, than the
ERDED method.

In the above evaluation, PSNR was found to correlate
reasonably well with subjective quality. For the benefit of the
reader, however, we provide a visual example. In order to show
the location and intensity of the approximation error for a
reconstructed image, an error image is used. An error image is
obtained simply by taking the absolute difference between the
original image and the reconstructed image pixelwise. Then,
the difference image is inverted for better visualization. Thus,
in the error image, darker pixels correspond to pixels with
higher approximation error. For one of the test cases from
Table II (i.e., the bull image at a sampling density of 0.25%),
Fig. 7 shows an example of an area in the image where the
proposed method produces results with lower approximation
error compared to the ERDED method. The triangulation
shown in Fig. 7(c) is the same for both the proposed and
ERDED methods. As can be seen in the error images shown
in Figs. 7(d) and (e), the proposed method, which uses the
optimization-based algorithm for calculating the wedge values,
is able to produce results with lower error than the ERDED
method, which uses a local line search. Similarly, another
example from the lena image at a sampling density of 1%
is illustrated in Fig. 8. As can be seen in the error images
shown in Figs. 8(d) and (e), the proposed optimization-based
method leads to lower approximation error than the ERDED
method in the area of the interest. The better performance
in the case of the proposed method is entirely because of
the fact that the wedge values, which are employed by the
approximation function over each triangle face, are obtained
using the optimized corner z values as explained in Section III.
Consequently, the problem associated with the local line search
described previously in Fig. 4 is avoided through the proposed
optimization-based scheme.

In terms of complexity, our proposed method has a rel-
atively low computational cost. In our work, the optimiza-
tion problem is solved using the well-known steepest-descent
method (Section 6.9 in [20]) and it only increases the total
execution time by a few seconds on a modest computer with

TABLE II: Comparison of the mesh quality obtained with the
proposed and ERDED methods

Image Sampling
Density (%)

PSNR(dB)
Proposed ERDED

peppers

0.5 22.49 22.14
1 26.47 25.97
2 29.26 29.00
3 30.37 30.17

lena

0.5 20.81 20.55
1 26.14 25.81
2 29.38 29.28
3 31.30 31.31

ct

0.125 18.72 15.63
0.25 27.42 25.97
0.5 31.62 30.06
1 36.62 36.51

bull

0.125 25.22 24.68
0.25 29.47 28.86
0.5 35.35 35.15
1 39.21 39.02

wheel

0.0625 35.75 30.69
0.125 36.54 34.55
0.25 37.24 35.56
0.5 37.38 37.86

a 3 GHz Intel Core 2 Duo CPU. For example, to generate
a mesh for the lena image with a sampling density of 2%,
the proposed method takes less than 3 seconds. So, the use
of the proposed optimization-based algorithm for selecting the
wedge values does not result in a complicated and slow mesh-
generation scheme requiring execution times on the order of
minutes.

V. CONCLUSIONS

In this paper, we proposed an improved technique for
generating ERD mesh models of images, based on the ERDED
scheme. Our proposed method employs an optimization algo-
rithm to better exploit the image content and to reduce the
approximation error in the reconstructed image. Through ex-
perimental results, our proposed method was shown to produce
image approximations of higher quality than those obtained
with the ERDED scheme, both in terms of PSNR and sub-
jective quality. The improved approximation quality produced
by our method comes at a relatively modest computational
cost. Therefore, our proposed method is of potential benefit
to many image processing and computer graphics applications
that employ mesh models of images.
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