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Abstract—In this paper, we present a novel image scaling
method that employs a mesh model that explicitly represents
discontinuities in the image. Our method effectively addresses
the problem of preserving the sharpness of edges, which has
always been a challenge, during image enlargement. We use
a constrained Delaunay triangulation to generate the model
and an approximating function that is continuous everywhere
except across the image edges (i.e., discontinuities). The model
is then rasterized using a subdivision-based technique. Visual
comparisons and quantitative measures show that our method
can greatly reduce the blurring artifacts that can arise during
image enlargement and produce images that look more pleasant
to human observers, compared to the well-known bilinear and
bicubic methods.

I. INTRODUCTION

Image scaling, as one of the classical and important prob-
lems in digital imaging and computer graphics, has received
much attention from researchers. Image scaling refers to the
operation of resizing digital images to obtain either a larger or
a smaller image, and is required in many applications such as
digital photography, computer graphics, and medical imaging.
Image scaling is most commonly performed using an image
interpolation method. Many different types of interpolation
techniques are possible. The effectiveness of an interpolation
technique depends on how well it handles undesired effects
such as edge blurring and staircasing (which can arise during
the scaling process) and how well it preserves the qualitative
attributes of the input image.

Image interpolation techniques can be divided into two
main categories: raster-based and vector-based. Many different
raster-based interpolation approaches have been introduced
such as non-adaptive methods like the nearest-neighbor, bi-
linear, bicubic, and Lanczos methods [1]. They have low
complexity and some of them, such as the bicubic method,
have become a standard interpolation tool in many image
editing programs like Adobe Photoshop. They, however, suffer
from severe blurring and artifacts around edges. To address
these problems, adaptive interpolation methods have been
proposed that consider important image features like edges and
textures to produce images with higher visual quality. A survey
of raster-based interpolation methods can be found in [1].

Another category of image interpolation techniques is
vector-based approaches, in which images are represented with
geometric primitives (as opposed to pixels as in raster-based
approaches). Using vector-based approaches, image scaling
can be performed by simple geometric transformations, with

no loss of image quality. One main problem in vector-based
interpolation methods, however, is how to create a vector
model which faithfully represents the raster image data and its
important features such as edges. Among the many techniques
to generate a vector image from a raster image, triangle
mesh models have become quite popular. With a triangle-mesh
model, the image domain is partitioned into a set of non-
overlapping triangles called a triangulation. Then, the image
intensity function is approximated over each of the triangles.
A mesh-generation method is required to choose a good subset
of sample points and to collect any critical data from the input
image to generate a faithful mesh model.

The approximating functions used in mesh models are often
piecewise-linear and continuous everywhere (e.g., [2], [3]).
Images, however, usually contain many discontinuities (i.e.,
image edges) and this has encouraged researchers to use mesh
models that allow discontinuities in their approximating func-
tions (e.g., [4]–[6]). Such a representation of discontinuities
makes the mesh model a good candidate for image scaling
because the edges can be reconstructed with the least amount
of blurring regardless of how large the scaling factor is. In this
paper, we propose a new mesh-based image scaling method.
This method first produces a mesh model of the image to
be scaled, known as an ERD model [4], [5], which explicitly
represents image discontinuities. The model is then rasterized
using a subdivision-based technique to obtain the enlarged
image. Through experiments, we show that the scaled images
obtained with our proposed method are of higher subjective
quality (e.g., have much sharper edges) than those obtained
with the commonly-used bilinear and bicubic methods.

The remainder of this paper is organized as follows. Sec-
tion II presents the proposed scaling method, introducing
the ERD mesh model and explaining mesh generation and
subdivision-based image reconstruction. Next, Section III eval-
uates the performance of our method by visual comparisons
and quantitative measures against the bilinear and bicubic
methods. Finally, Section IV concludes with a summary of
our work.

II. PROPOSED IMAGE SCALING METHOD

Before we can introduce our proposed image scaling
method, we must first introduce the type of mesh model that
it employs. In what follows, the cardinality of a set S is
denoted by |S|. The constrained Delaunay triangulation [7]
of a set P of points and set E of edge constraints is denoted
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Fig. 1: The relationship between vertices, constrained edges,
and wedges. Each wedge is colored with a different shade of
gray. The (a) single-wedge and (b) multiple-wedge cases.

by cdt(P,E). Consider an image function φ defined on the
rectangular region Γ = [0,W − 1] × [0, H − 1]. An ERD
triangle mesh model of φ consists of: 1) a set P = {pi} ⊂ Γ
of sample points, 2) a set E of edge constraints, and 3) a set
Z of what are called wedge values (to be explained later).
As a matter of terminology, the size of the model is defined
as |P |. The ERD model is associated with the triangulation
cdt(P,E) and with an approximating function defined over
each face in this triangulation. By combining the functions
over all faces, a function φ̂ is obtained that approximates φ
over the entire image domain Γ. In the ERD model, a set
of consecutive faces in a loop around a vertex v ∈ P that
are not separated by any constrained edge is called a wedge.
Fig. 1 illustrates this definition and the relationship between
wedges, vertices, faces, and constrained edges. Each wedge
has associated with it what is called a wedge value. The
wedge value z of the wedge w belonging to vertex v specifies
the limit of φ̂(p) as p approaches v from points inside the
wedge w. The approximating function defined over each face
f in the ERD model is a linear function that interpolates the
three wedge values of f corresponding to its three vertices.
With the help of the wedge values, φ̂ in the ERD model can
represent discontinuities along constrained edges, which are
used to represent the image edges.

Having introduced the ERD mesh model, we now present
our proposed image scaling method. The proposed method is
comprised of two stages (in order): 1) mesh generation, which
produces an ERD mesh model of the image to be scaled; and
2) image reconstruction, which produces a scaled image from
the mesh model. In what follows, each stage will be described
in detail.

A. Mesh Generation

As mentioned earlier, in the first stage of our image
scaling method, we generate a mesh model of the image
to be scaled. In what follows, we explain how this mesh-
generation process works. The mesh generator in our work
is based on earlier work from [8] and [5], but with critical
improvements such the addition of a more effective edge

detector, a backfilling technique, and subdivision. In mesh
generation, we select the parameters of the ERD model (i.e.,
P , E, Z) to obtain the best possible approximation φ̂ of
the input image φ for a specific target number N of sample
points. The input image to the mesh-generation algorithm is
an image function φ that is known only at the points in
Λ = {0, 1, ...,W − 1} × {0, 1, ...,H − 1} (i.e., a truncated
integer lattice of width W and height H) and the outputs are
the ERD model parameters P ⊂ Λ ⊂ Γ, E, and Z. The mesh-
generation process in our work consists of the following steps
(in order):

1) Initialization. Set the iteration number i to 0.
2) Initial triangulation selection. Select the values for the

initial set P0 of sample points and E (to be explained
later). Then, the initial mesh associated with the triangu-
lation cdt(P0, E) is constructed.

3) Wedge-value initialization. Compute the initial wedge
values (to be explained later).

4) Point selection. Select a new sample point q ∈ Λ to add
to the mesh (to be explained later).

5) Point insertion. Insert q in the triangulation. Calculate the
wedge values of the affected wedges in the mesh (to be
explained later) and select the set Pi+1 of sample points
for the next iteration as Pi ∪ {q}.

6) Stopping criterion. If |Pi+1| < N , set i to i + 1 and go
to step 4. Otherwise, set the output parameter P = Pi+1

and stop.
Selection of P0 and E. In the step 2 of mesh generation,

P0 and E are selected as follows. Apply the Canny edge
detector [9] with low and high thresholds tl and th, respec-
tively, to the input image φ defined on Λ to produce a binary
image B, where th is computed using the Otsu thresholding
method [10] and tl = 1

2 th. Then, from B, a collection of
polylines is generated to represent edges. The polylines are
then approximated using the simplification method from [11],
with the tolerance ε = 0.5, obtaining the set D of simplified
polylines. The set P0 is then chosen as the union of all vertices
in D, plus the extreme convex-hull points of Λ (i.e., the four
corner points of the bounding box of φ). Then, E is selected
as the union of all the line-segments in D.

Wedge-Value Calculation. As mentioned earlier, wedge
values are used to define the approximating function φ̂ over
each triangle. So, the wedge values chosen in steps 3 and 5
above are critically important and are computed as follows. If
the vertex v ∈ P has zero or one incident constrained edge
(e.g., as in Fig. 1(a)), its single wedge value z is simply chosen
as the value of φ at v (i.e., z = φ(v)). Otherwise, if v has more
than one incident constrained edge (as shown in Fig. 1(b)), the
wedge value associated with each wedge is calculated based
on a backfilling technique as follows. Consider a wedge w
incident to a vertex v, as shown in Fig. 2(a), and a set S of
vertices that are connected to v by unconstrained edges from
inside w and are not incident on any constrained edges in the
mesh. The wedge value z associated with w is calculated as

z =
1

|S|
∑
p∈S

φ(p), (1)
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Fig. 2: Two examples of the set S for calculating the wedge
value associated with the wedge w. The case (a) where S =
{b, c} and case (b) where S is empty.

if |S| 6= 0. In the special case that |S| = 0 (i.e., S is
empty), z is calculated as the average of φ at the midpoints
of the unconstrained edges incident to v from inside w.
For the example shown in Fig. 2(a), S = {b, c} and z is
calculated using (1). In Fig. 2(b), however, S is empty and
z = φ(m)+φ(n)

2 , where m and n are the midpoints of the
edges vb and vc, respectively. If midpoints (e.g., m and n in
Fig. 2(b)) are not in Λ, the bilinear interpolation technique [1]
is used to find the corresponding values of φ at the midpoints.
The set S in (1) is chosen in such a way that it does not
include the vertices that correspond to any points that fall
on, or are too close to, the image edges detected in step 1
of the mesh-generation process. This is because most often
there is some blurring near the image edges and if S includes
the vertices corresponding to the pixels in the vicinity of
edges, this blurring effect will become part of the mesh model.
Then, during the image scaling, this blurring effect will be
magnified, leading to undesired blurring and distortions around
the reconstructed edges. Thus, to reduce the edge blurring, in
our method, we avoid selecting sample points that correspond
to the edge pixels when selecting new points for insertion later
in step 4.

Selection of q. In step 4 of mesh generation, the point q is
chosen in two steps. First, the face f∗ into which to insert a
point is selected as given by

f∗ = argmax
f∈F

∑
p∈Ωf

(
φ̂(p)− φ(p)

)2

, (2)

where Ωf is the set of all valid points in Λ belonging to face
f and F is the set of all faces for which |Ωf | 6= 0. A point
in Ωf is valid if it does not correspond to any 8-connected
pixels of any image edges detected in step 1. Next, a point q
in f∗ for insertion in the mesh is selected as given by

q = argmax
p∈Ωf∗

∣∣∣φ̂(p)− φ(p)
∣∣∣ (3)

(i.e., q is the valid point in f∗ with the greatest absolute error).

B. Image Reconstruction

Having introduced the mesh-generation process, we now
describe the second stage of our image scaling method,
namely, image reconstruction. The image reconstruction pro-
cess consists of two steps (in order): 1) mesh refinement and
2) mesh rasterization. In step 1, the ERD mesh model obtained
from the mesh-generation stage (in Section II-A) is refined
iteratively through a process called subdivision. In step 2, the
refined mesh model is rasterized to produce the scaled version
of the input image. Although, in principle, we could simply
rasterize the mesh obtained from the mesh-generation process
(i.e., omit the mesh-refinement step), this would lead to an
image reconstruction with undesirable artifacts. In particular,
the image discontinuity contours in the scaled image would
lack a desirable level of smoothness as well as the image func-
tion itself. By employing subdivision-based mesh refinement,
however, we are able to obtain a mesh with better smoothness.
Now, in what follows, the details of each step in the image
reconstruction process will be elaborated.

Mesh Refinement. In the first step of the image reconstruc-
tion process, the mesh is refined using a variation of the Loop
subdivision scheme proposed in [6]. This variation of Loop
subdivision was chosen as it is able to selectively smooth only
certain parts of the mesh, allowing the discontinuities in our
ERD mesh model to be maintained (i.e., not smoothed). In
each iteration of subdivision, each triangle face is split into
four sub-triangles. Then, the vertex positions and wedge values
in the refined mesh are computed as weighted averages of
the nearby vertex positions and wedge values in the unrefined
mesh as described in [6]. The subdivision process is repeated l
times iteratively, resulting in a refined mesh. In order to apply
the subdivision scheme, each vertex must be labeled as one
of smooth, tear, or corner, and each edge must be labeled as
one of smooth or tear. To use this subdivision scheme with
our ERD model, a correspondence between the vertices/edges
in our mesh model and the preceding vertex/edge labels in
the subdivision scheme is established as follows: 1) a vertex
with no incident constrained edges is deemed to be a smooth
vertex; 2) a vertex with exactly two incident constrained edges
is treated as a tear vertex; 3) a vertex with either one or three
or more incident constrained edges is deemed to be a corner
vertex; and 4) unconstrained and constrained edges are deemed
to be smooth and tear edges, respectively. With the preceding
correspondence between the vertices and edges in our mesh
model and the labels in the subdivision scheme having been
established, the subdivision scheme from [6] can be applied to
our model. In our method, subdivision is applied three times
(i.e., l = 3) to produce a sufficiently-smooth surface.

Mesh Rasterization. In the second step of the image re-
construction process, the subdivided mesh model obtained in
step 1 (i.e., the mesh-refinement step) is rasterized, using
the piecewise-linear interpolating function associated with
the model as described in Section II, to produce the scaled
version of the input image. Since the ERD model explicitly
represents discontinuities, edges in the reconstructed image



TABLE I: Test images

Image Size, Bits/Sample
backlight 1400× 1400, 8
bowling 1200× 1400, 8

frangipani 1920× 1280, 8

could generate aliasing effects that are undesirable to the
human visual system. Thus, a 3×3 uniform super-sampling
technique similar to the one used in [5] is employed during
rasterization to avoid such aliasing effects at the edges.

III. RESULTS

Having introduced our proposed image scaling method,
we now evaluate its performance by comparing it with the
commonly-used bilinear and bicubic interpolation methods.
For test data, in this paper, we focus our attention on the
representative set of three images listed in Table I, which were
deliberately chosen to include images with low, medium, and
high levels of detail.

Since numerous approaches could potentially be used to
evaluate the performance of image scaling methods, we need
to explain the particular approach used herein. To compare
image scaling methods for a particular test image I and an
image scaling factor α, we proceed as follows. From the high-
resolution image I , we first generate a lower-resolution version
L of the image, where the resolution has been reduced by a
factor of α. This reduction in resolution is performed using the
default scaling approach called “pixel mixing” provided by the
Netpbm toolkit [12]. Then, each of the image scaling methods
under comparison (i.e., the bilinear, bicubic, and proposed
methods) is used to increase the resolution of the input image
L by a factor of α to produce a new high-resolution image I ′.
The resulting (upscaled) image I ′ obtained for each method is
then compared to I , which can be viewed as the ground truth.
This comparison is performed through both a visual inspection
and the percentage edge error (PEE) metric from [13].

In our work, the PEE metric is used because it reflects the
quality and sharpness of the edges in the reconstructed image
more effectively than other popular and widely-used measures
such as the peak signal-to-noise ratio (PSNR). It is a well-
established fact that the PSNR measure does not necessarily
reflect the human visual perception of image quality [14]. The
PEE metric, however, measures how close the edges of the
scaled image are to the edges of the high-resolution (ground-
truth) image. Generally, the larger positive PEE values indicate
that the edges in the scaled image are over-smoothed and more
blurring has happened during the scaling process. Therefore, a
decrease in the PEE value is a strong indication of a reduction
in the blurring effect.

Using the methodology described above, we generated
results for each of the three images listed in Table I using each
of the bilinear, bicubic, and proposed methods. The results
for each test image are illustrated in Figs. 3 to 5 and the
corresponding PEE values are given in each figure caption. In
the case of the proposed method, results were obtained with

(a) (b)

(c) (d)

(e) (f)

Fig. 3: Scaling results obtained by the bilinear, bicubic,
and proposed methods for backlight image with α = 8.
(a) The high-resolution image with region of interest marked
with white rectangle. The same region obtained from the
(b) high-resolution image, (c) bilinear (PEE 55.17), (d) bicubic
(PEE 47.58), and (e) proposed methods (PEE 0.95). (f) The
subdivided mesh corresponding to the result shown in (e), with
the constrained edges shown as thick lines.

the sampling density of 2% for the backlight and bowling
images (in Figs. 3 and 4) and 4% for the frangipani image
(in Fig. 5). Each of the figures from Figs. 3 to 5 contains
the high-resolution image along with a magnified region of
interest from it and the same region in the (scaled) images
obtained as output from each of the bilinear, bicubic, and
proposed methods. Also, for the benefit of the reader, each of
the above figures includes the subdivided mesh corresponding
to the magnified region obtained from the proposed method.

In Fig. 3, by comparing the magnified region of interest in
the high-resolution image in Fig. 3(b) with the corresponding



region in the scaled images obtained from the bilinear (in
Fig. 3(c)), bicubic (in Fig. 3(d)), and proposed (in Fig. 3(e))
methods, it is obvious that edges produced with the bilinear
and bicubic methods in Figs. 3(c) and (d) are severely blurred
and distorted. The result obtained from the proposed method
(in Fig. 3(e)), however, shows a much more accurate and
sharper reconstruction of edges. Furthermore, the significant
drop in the PEE of the results obtained from the proposed
method (i.e, the PEE of 0.95) compared with the PEE obtained
from the bilinear and bicubic methods (i.e., the PEE of 55.17
and 47.58) correlates well with the improved visual quality
observed in the case of our proposed method in Fig. 3(e).

In Fig. 4, given the magnified region of the high-resolution
image in Fig. 4(b) as the ground-truth image, we can see that
the result obtained from the proposed method in Fig. 4(e)
shows much fewer blurring artifacts, specifically along the
contours of the arm and ball, compared to the results obtained
from the bilinear and bicubic methods in Figs. 4(c) and (d),
respectively. Also, the PEE of 0.18 for the result obtained
from the proposed method implies better subjective quality
compared to the PEE of 27.51 and 18.44 for the results
obtained from the bilinear and bicubic methods, respectively.

Similarly, in Fig. 5, given the ground-truth image in
Fig. 5(b), we observe that the result obtained from the pro-
posed method in Fig. 5(e) is of higher subjective quality (e.g.,
much sharper reproduction of the image edges) compared to
the results obtained from the bilinear and bicubic methods
shown in Figs. 5(c) and (d), respectively. Similar to the results
for previous test cases, the lowest PEE is achieved with the
proposed scaling method. The PEE of −0.42 for the result
obtained from the proposed method is an implication of the
sharper and more accurate edge reproduction compared with
the PEE of 19.25 and 11.22 for the results obtained from
the bilinear and bicubic methods, respectively. The negative
sign for the PEE value shows that the reconstructed (scaled)
image is sharper than the ground-truth image and it does not
necessary indicate a weak edge reproduction, as long as the
general structure of the image is maintained well and the
absolute value of the PEE is close enough to zero.

Based on the results for the three test cases above, we
conclude that the proposed method significantly outperforms
the bilinear and bicubic methods in terms of both subjective
and objective measures. The better performance in the case of
the proposed method is firstly because of the fact that a mesh-
based image representation is used which is independent of
the image resolution and can be upscaled by simply applying
geometric transformations to the mesh primitives. Secondly,
and more importantly, we use the ERD mesh model which, by
allowing discontinuities in the approximating function, is capa-
ble of reconstructing as sharp edges as possible. Furthermore,
through the backfilling-based mesh-generation method, the
undesired effects of the pixels falling in the vicinity of edges
are minimized in our model. Finally, through the subdivision-
based image reconstruction, we ensure that the reconstructed
surface and edge contours look smooth enough in the scaled
image.

(a) (b)

(c) (d)

(e) (f)

Fig. 4: Scaling results obtained by the bilinear, bicubic,
and proposed methods for bowling image with α = 4.
(a) The high-resolution image with region of interest marked
with white rectangle. The same region obtained from the
(b) high-resolution image, (c) bilinear (PEE 27.51), (d) bicubic
(PEE 18.44), and (e) proposed methods (PEE 0.18). (f) The
subdivided mesh corresponding to the result shown in (e), with
the constrained edges shown as thick lines.

IV. CONCLUSIONS

In this paper, we proposed a new edge-preserving mesh-
based method for image scaling. Our proposed method em-
ploys a mesh-generation process to create a mesh model which
explicitly represents discontinuities in the image. Then, using
a subdivision-based image reconstruction approach, the model
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Fig. 5: Scaling results obtained by the bilinear, bicubic,
and proposed methods for frangipani image with α = 4.
(a) The high-resolution image with region of interest marked
with white rectangle. The same region obtained from the
(b) high-resolution image, (c) bilinear (PEE 19.25), (d) bicubic
(PEE 11.22), and (e) proposed methods (PEE -0.42). (f) The
subdivided mesh corresponding to the result shown in (e), with
the constrained edges shown as thick lines.

is rasterized with a piecewise-linear approximating function
to produce the scaled image. We compared the performance
of the proposed method against the well-known bilinear and
bicubic methods. The evaluation results showed that our pro-
posed method performs more effectively by producing scaled

images of higher subjective quality (e.g., more accurate and
sharper edges with a great reduction in the blurring artifacts)
compared to the results obtained with the bilinear and bicubic
methods. Visual comparisons and quantitative measures both
demonstrate the better performance of the proposed method.
Thus, our new image scaling method can benefit the many
image processing applications where image scaling is required
such as digital photography, computer graphics, and medical
imaging.
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