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An Improved Normal-Mesh-Based Image
Coder

Un Codeur Normal-Maille-Base Ameliore
d’Image

Di Xu∗and Michael D. Adams†

The normal-mesh-based image coder of Jansen, Baraniuk, and Lavu (JBL) is studied. First, the JBL coder is introduced and several of its shortcomings
are identified. Then, to address these shortcomings, three modificationsto this coder are proposed, namely, the use of a data-dependent base mesh, an
integer representation for normal/vertical offsets, and a different scan-conversion scheme based on bicubic interpolation. Experimental results show
that these proposed changes lead to improved coding performance in terms of both objective and subjective image-quality measures. In particular, the
use of a data-dependent base mesh helps to locate horizons more quickly and preserve image edges better. The number of bits required to encode the
normal/vertical offsets is reduced by representing this information with integers (as opposed to real numbers). Lastly, bicubic interpolation is found to
yield higher-quality image reconstructions, while still maintainingsharp edges.

Le codeur normal-maille-base d’image de Jansen, de Baraniuk, et de Lavu (JBL) est etudie. D’abord, le codeur de JBL est presente et plusieurs de son des
imperfections sont identifiees. Puis, pour adresser ces imperfections, on propose trois modifications a ce codeur, a savoir, l’utilisation d’a maille basse
donnee-dependante, une representation de nombre entier pour la normale/verticale excentrages, et un arrangement different de balayer-conversion base sur
bicubic interpolation. Les resultats experimentaux prouvent que ces changements proposes mnent a l’execution de codage amelioree en termes d’objectif
et subjectif mesures d’image-qualite. En particulier, l’utilisation d’une base donnee-dependante la maille aide a localiser des horizons plus rapidement et a
preserver des bords d’image meilleur. Le nombre de peu requis pour coder lenormal/verticale des excentrages est reduits en representant cette information
avec des nombres entiers (As oppose a de vrais nombres). Pour finir, l’interpolation bicubic s’avre pour rapporter des reconstructions plus de haute qualite
d’image, tout en maintenant toujours les bords pointus.
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I. Introduction

Many of today’s best image coders are based on wavelet trans-
forms [1, 2, 3]. Unfortunately, such coders cannot efficiently repre-
sent the geometric features inherent in images (i.e., edges). This has
led to an interest in schemes that better exploit the geometric proper-
ties of images. Some such schemes include ridgelets [4], curvelets [5],
edgelets [6], contourlets [7], wedgelets [8], and bandelets [9]. Re-
cently, an image coder based on normal (triangle) meshes was pro-
posed by Jansen, Baraniuk, and Lavu (JBL) [10], which we henceforth
refer to as the JBL coder. Unlike wavelets, meshes are well suited to ef-
ficiently capturing the geometric information in images. For example,
consider images from the so calledhorizon class(i.e., images con-
sisting of constant intensity regions separated by smooth contours of
discontinuity). It has been shown [10] that, under certain conditions,
the normal-mesh representation employed by the JBL coder can more
efficiently represent horizon class images than wavelet-based schemes.
In particular, for a representation withn coefficients, the normal-mesh
and wavelet schemes achieve asymptotic error-decay rates ofO(n−1)

andO(n−1/2), respectively. Furthermore, since many real-world im-
ages behave somewhat like horizon-class images, the preceding error-
decay-rate result suggests that the JBL coder has considerable promise
for practical image-coding applications.

In spite of its merits, the JBL coder also has some deficiencies that
unnecessarily restrict its performance. In this paper (which is an ex-
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tended version of [11]), we identify some of these shortcomings, and
propose three modifications to the coder aimed at addressing these
weaknesses. Furthermore, we show that these modifications lead to
improved coding performance.

The remainder of this paper is structured as follows. First, Section II
comments on some of the notation and terminology used herein. Then,
Sections III and IV, respectively, introduce the JBL coder and the im-
plementation of it used in our work. In Section V, several shortcom-
ings of the JBL coder are identified. This then leads us to propose, in
Section VI, three modifications to the JBL coder aimed at addressing
these shortcomings. The implementation of our enhanced (i.e., with
our proposed modifications) coder is introduced in Section VII. Then,
by way of experimental evidence provided in Section VIII, we demon-
strate that each of our proposed modifications yields improved coding
performance. Finally, we conclude in Section IX with a summary of
our work.

II. Notation and Terminology

Before proceeding further, a short digression is appropriate concern-
ing some of the notation and terminology used herein. The sets of in-
tegers, odd integers, and real numbers are denoted asZ, Zodd, andR,
respectively. In what follows, we assume the reader to be familiar with
basic geometric concepts, such as a triangulation, Delaunay triangula-
tion (DT), and constrained DT. For more information on such concepts
the reader is referred to [12]. For an image withP bits per sample,
the peak-signal-to-noise ratio (PSNR) distortion measure is defined as
PSNR= 20 log10([2

P − 1]/
√

MSE), where MSE corresponds to the
mean-squared error.
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III. JBL Coder

As mentioned previously, the focus of our work is the JBL coder. In the
sections that follow, we provide a brief introduction to this coder. First,
we describe the normal-mesh-based image representation employed
by the JBL coder and explain how this representation is constructed
through a process known as mesh refinement or subdivision. Then,we
discuss scan conversion and a few other details relevant to this coder.

A. Normal-Mesh-Based Image Representation

A grayscale image is a functionf of two variablesx andy, wherex
andy correspond to position, andz = f(x, y) corresponds to image
intensity. In this way, an image can be viewed as a surface parameter-
ized over thexy plane. Thus, mesh-based techniques for representing
surfaces can be used for images. In the case of the JBL coder, a normal
(triangle) mesh is employed for this purpose.

For our purposes here, a normal mesh [13] is a multiresolution
surface representation that consists of a nested sequence of meshes
{M0, M1, . . . , ML−1}, generated by repeated refinement of a base
meshM0. The base mesh consists of a small number of points from
the true surface (i.e., the actual image intensity surface to be approxi-
mated). The refinement process then generates a finer mesh by adding
new points from the true surface to a coarser mesh. This is done in such
a way that each new vertex on the finer mesh can be expressed as a dis-
placement from abase pointon the coarser mesh in the direction of
the base point’s surface normal. In other words, the new vertices added
during refinement are located where surface normals from base points
on the coarser mesh pierce the true surface (i.e., new vertices are lo-
cated at so-calledpiercing points). The line passing through the base
point and along some search direction for locating a piercing point is
called asearch line. Since each base point and its corresponding nor-
mal direction are completely determined by the coarser mesh, only a
single scalar value (i.e., anormal offset) is needed to identify the loca-
tion of each new vertex on the finer mesh. Thus, a normal mesh can be
completely characterized by its base mesh and a set of normal offsets.

As mentioned previously, an image can be represented as a sur-
face parameterized over thexy plane. In what follows, we refer to
this plane as theparameter plane. Since some aspects of the JBL
coder are more easily explained in terms of the parameter plane rather
than explicit 3-D geometry, we will largely adopt a parameter-plane
perspective in our description of this coder. In essence, the JBL coder
creates a partitioning of the parameter plane using a triangulation, and
then forms an interpolant over each of the resulting triangles in order
to construct a surface in 3-D (i.e., the image surface). In what follows,
unless otherwise noted, the term “vertex” will always refer to a ver-
tex in the parameter-plane triangulation. Vertices are associated with
height (i.e.,z coordinate) values. In this way, each vertex/height-value
pair corresponds to a point in 3-D. With the JBL coder, the three points
associated with the vertices of each triangle are used to form a planar
interpolant. By combining these interpolants, a piecewise-planar im-
age surface in 3-D is formed.

To represent discontinuities, the JBL coder models edges explicitly
using the so-calledhorizon model. As a matter of terminology, a con-
tour in the parameter plane that corresponds to a discontinuity contour
(i.e., image edge) is called ahorizon. A vertex that is on a horizon is
said to be ahorizon vertex, and an edge (in the triangulation) with
both of its endpoints being horizon vertices is said to be ahorizon
edge. The number of height values associated with a particular vertex,
depends on whether the vertex is a horizon vertex. A nonhorizon vertex
is associated with only one height value, while a horizon vertex is as-
sociated with two, in order to represent the height of the image surface
on both sides of the horizon. To distinguish between these two cases,
each vertex is associated with a bit, called ahorizon bit , indicating if
the vertex is a horizon vertex.

B. Mesh Refinement via Subdivision

Although the JBL coder employs a normal mesh, the base mesh and
its subsequent refinement are more easily described in terms of the
parameter-plane triangulation (introduced above) rather than directly
in terms of the 3-D mesh itself. First, the refinement process requires
the notion of a true surface. Since images are essentially assumed to
be piecewise constant in [10], the true surface is constructed using
piecewise-constant interpolation of the original image sample data. As
a matter of convenience, for the purposes of this interpolation process,
the original sample values are aligned with points on the lattice1

2
Zodd

(rather than the latticeZ). The base mesh is associated with a par-
ticular base (i.e., initial) triangulation of the parameter plane. In the
JBL scheme, the base triangulation is chosen to have four vertices,
corresponding to the four corner points of the image bounding box.
The refinement of the mesh then corresponds to a refinement of the
parameter-plane triangulation through the addition of new vertices. In
particular, refinement of the triangulation is performed byquaternary
subdivision, whereby a new vertex is added for each edge in the trian-
gulation, resulting in each triangle being split into four new triangles.
Due to the manner in which the refinement of the parameter-plane tri-
angulation is performed (i.e., using numerous normal directions), this
entire process can essentially be viewed as the refinement of a normal
mesh.

When performing subdivision as described above, the location of
the new vertex to be added for each edge is determined in one of two
ways, depending on whether the edge is a horizon or nonhorizon edge.
Horizon and nonhorizon edges are treated differently, since the goals
of refining these two types of edges are not the same. In the horizon-
edge case, the objective is to obtain a better polyline approximation
of a horizon, whereas in the nonhorizon-edge case, the objective is
to quickly locate new horizon vertices. We will now describe each of
these two types of subdivision in more detail. To simplify the expla-
nation that follows, some exceptional cases are not considered in this
discussion.

HORIZON -EDGE SUBDIVISION . First, we consider the subdivi-
sion of a horizon edge. Since our goal in this case is to construct
a refined polyline approximation of the horizon, we would like the
piercing point associated with the horizon edge to be a point on hori-
zon. To perform the subdivision, we first define the base point as the
midpoint of the edge. Then, the search line for the new horizon ver-
tex is chosen to be normal to the edge and parallel to thexy plane.
The new vertex is added where the search line pierces the vertical sur-
face through the horizon. The above process is illustrated in Figure 1,
where Figures 1(a) and 1(b) are from the viewpoints of the parame-
ter plane and 3-D space, respectively. In the diagram, a filled circle
denotes an endpoint associated with a horizon vertex. The thick solid
segmente1e2 is a coarse horizon edge. The starb at the middle of
the coarse edge represents a base point. The dotted segmentbp is on
the search line, which is normal to the coarse edgee1e2 and parallel
to the parameter plane. The filled squarep represents a new pierc-
ing point on horizon, the point at which the search line intersects the
vertical surface through the horizon. The (signed) length of the dot-
ted segment between the base pointb and the piercing pointp cor-
responds to the normal offset. The thin solid segmentse1p ande2p
connecting the endpoints of the coarse edge and the piercing point are
refined horizon edges of the coarse horizon edge. The refined edges
e1p and e2p form a polyline refinement of the coarse horizon edge
e1e2. Having located the piercing point, we also need to determine the
horizon-bit andz-coordinate information associated with the newly
added vertex. In this case (i.e., subdividing a horizon edge along the
normal direction), the piercing point is the intersection of the search
line with the vertical surface through the horizon. Therefore, the pierc-
ing point is always a point on horizon. For this reason, no horizon
bit is required for the new vertex. Letz−

1 and z+

1 be the twoz co-
ordinates associated with one endpoint of the horizon edge, andz−

2

andz+

2 be the twoz coordinates associated with the other endpoint of
the edge. Then, the twoz coordinatesz− andz+ associated with the
new vertex are determined as1

2
{min{z−

1 , z+

1 } + min{z−
2 , z+

2 }} and
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Figure 1: Subdivision of a horizon edge along the normal direction. The (a) parameter

plane view, and (b) 3-D view.

Figure 2: Subdivision of a nonhorizon edge along the normal direction. The (a) parameter

plane view, and (b) 3-D view.

1

2
{max{z−

1 , z+

1 } + max{z−
2 , z+

2 }}, respectively.

NONHORIZON -EDGE SUBDIVISION . Now, we consider the sub-
division of a nonhorizon edge. Before proceeding, we need to first de-
termine which of thez coordinates associated with the two endpoints
of the nonhorizon edge are appropriate to use for determining the non-
horizon edge in 3-D. If both endpoints of the nonhorizon edge are as-
sociated with nonhorizon vertices, thez coordinates of the endpoints
are unambiguously determined. Suppose now that one of the endpoints
of the nonhorizon edge is associated with a horizon vertex. Since, at
most, one vertex of a nonhorizon edge can be a horizon vertex, the
other endpoint of the edge must be associated with a nonhorizon ver-
tex. Let us assume that the horizon vertex is associated with the two
z coordinatesz−

1 andz+

1 and the nonhorizon vertex is associated with
thez coordinatez2. Thez coordinate associated with the horizon ver-
tex is chosen to be whichever of{z−

1 , z+

1 } is closer toz2. Then the
nonhorizon edge in 3-D is completely determined by its two endpoints
and their chosenz coordinates. The base point is determined as the
midpoint of this edge. The search line is through the base point, nor-
mal to the edge, and in the vertical plane containing the edge. The new
point is added where the search line pierces the image surface. This
process is illustrated in Figure 2, where Figures 2(a) and 2(b) are from
the viewpoints of the parameter plane and 3-D space, respectively. The

unfilled circlese1 ande2 are the endpoints of an edge. The thick solid
segmente1e2 is a coarse nonhorizon edge. The starb represents the
base point of the edgee1e2. The normal search line is perpendicular to
e1e2 and in the vertical plane containinge1e2. At the unfilled square
p, where the search line intersects the image surface, a new nonhorizon
vertex is added. Consequently, the two segmentse1p andpe2, shown
by the thin solid segments, form a refinement of the coarse nonhorizon
edgee1e2. To illustrate the adaptivity of nonhorizon-edge subdivision
along the normal direction, Figure 2 also shows the refinement of a
new nonhorizon edgepe2 for the next level of subdivision. Through
the corresponding base pointb1, the search line is perpendicular to the
edgepe2. At the filled squarep1, the normal search line intersects the
image surface. A piercing pointp1 associated with a horizon vertex is
located during the subdivision. By two iterations of subdivision to the
coarse nonhorizon edgee1e2, a new horizon vertexp1 is found.

EXCEPTIONAL CASES DURING SUBDIVISION . As suggested ear-
lier, some exceptional cases can occur during the refinement process.
This is because, with the approach described above, the piercing point
found in a normal direction does not always lead to a valid triangu-
lation in the parameter plane. To avoid this and other problems, we
must, in some exceptional circumstances, include an offset in the ver-
tical direction, in lieu of or in addition to the normal direction. There-
fore, an additional value, called thedirection value, is required for
each offset to capture which combination of normal/vertical directions
is employed. Due to space constraints, the exceptional cases are not
discussed further here. The interested reader is referred to the firstau-
thor’s Master’s thesis [14] for a detailed treatment of these cases.

In all of the subdivision cases, once the search line is fixed, the off-
set is calculated by measuring the (signed) distance between the base
point and piercing point. Offsets are signed quantities since these dis-
placements can be in either of two directions along the search line. In
all of the subdivision cases other than the horizon-edge case along the
normal direction, once a piercing point is found, this point is projected
vertically onto the the parameter plane to obtain a corresponding (tri-
angulation) vertex. The horizon bit for the offset associated with this
new vertex is then set to one if the vertex is on a horizon and zero
otherwise. Thez coordinate associated with the new vertex is thez
coordinate of the image surface at the piercing point.

It is worth noting that the normal search direction used in the sub-
division of nonhorizon edges contributes very significantly to the fast
location of new horizon vertices, since the normal direction tends to
point towards a nearby function discontinuity if one exists. In essence,
the choice of a normal search direction makes the subdivision process
adaptive to the image data (i.e., data dependent). In contrast, if we were
instead to perform these searches in the vertical direction, new vertices
would always be added at the midpoints of the edges in the parameter-
plane triangulation, making the fast location of new horizon vertices
more difficult.

C. Other Comments on the JBL Coder
The normal-mesh-based representation produced by the JBL coder
is completely characterized by the base mesh, normal/vertical off-
sets, horizon bits, and direction values. Using this information, the
corresponding mesh can be reconstructed. Since the resulting mesh
representation is a surface defined on a continuous domain, a scan-
conversion process is needed to convert the mesh data from the contin-
uous domain to points on a raster grid. It is implied in [10] that planar
interpolation is being used in the scan conversion by the JBL coder. By
sampling the image surface on a regular grid (aligned with the centers
of pixels in the parameter plane), a rasterized image is produced.

D. Simplified JBL Coder
Having introduced the JBL coder, we now take a moment to briefly
introduce a simplified version of this coder that is implicitly suggested
in [10] (in the context of natural images). We refer to this simpli-
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fied version of the coder by the name JBL-S herein. Conceptually,
the key difference between the JBL and JBL-S coders is in how the
original image surface is formed. In the JBL-S coder, the image sur-
face is constructed using piecewise-planar interpolation rather than
piecewise-constant interpolation. Due to the use of a piecewise-planar
interpolant, the image surface has no discontinuities and hence no hori-
zons exist either. Thus, the JBL-S coder is essentially the JBL coder
without the horizon model. Unlike in the JBL case, horizon bits are
not needed since horizon vertices are effectively not used in the JBL-
S coder. Furthermore, in the JBL-S coder, the exceptional subdivision
cases mentioned earlier can never occur, and subdivision always em-
ploys a normal search direction. Since the search direction is always
normal, direction values are not required. Thus, in the case of the JBL-
S coder, the normal-mesh-based image representation is completely
characterized by only the base mesh and normal offsets.

IV. Our Implementation of the JBL Coder

Before proceeding further, we briefly describe our implementation of
the JBL coder, which was used as the basis for our work herein. Gen-
erally, our implementation is written in MATLAB. In [10], the JBL
coder is applied exclusively to piecewise-constant images, most likely
because the horizons in such images can be detected with a very triv-
ial edge detector. To apply the JBL coder to a larger class of images,
however, a more sophisticated edge detector is required. In our imple-
mentation of the JBL coder, we employ a Canny edge detector [15]
to assist in the identification of horizons. After the horizons have been
identified, a normal-mesh-based representation is constructed, the cor-
responding normal/vertical offsets are quantized, and a final bit rate is
estimated based on a simple implicitly-assumed coding scheme.

In our implementation, the normal/vertical offsets are quantized
with a separate uniform scalar quantizer being used for the offsets of
each subdivision level. Rather than specifying all of the quantizer step
sizes individually, all step sizes are computed from a single encoder
parameterq. In particular, the step size∆k for the offsets of thekth
subdivision level (wherek = 0 corresponds to the base mesh) is cho-
sen as∆k = q2k−1 for k ≥ 1. Here,k 6= 0 since no offsets are
associated with the base mesh. This choice of∆k results in offsets
from coarser levels being weighted more heavily than those from finer
levels. Such is desirable, since in a normal mesh, errors in the coarser-
level offsets introduce considerably more distortion than errors in the
finer-level offsets. This is due to the fact that errors in the reconstructed
vertices and their height values introduced by offset quantization prop-
agate from coarser to finer levels of the mesh.

In [10], the authors do not make any attempt to estimate the bit rate
required to code the data of the normal-mesh-based image represen-
tation. In our work, however, we assume a simple coding scheme for
the data and determine the corresponding bit rate based on entropy es-
timates. For the remainder of this section, letW , H, andP denote the
width, height, and number of bits per sample in the image being coded,
and letL denote the number of subdivision levels. Table 1 identifies the
mesh data that needs to be coded for the JBL coder. The general struc-
ture of the code stream used to encode this information is as follows.
The code stream begins with a simple header which includes basic in-
formation such asW , H, P , L, and the quantization parameterq. This
is followed by the base-mesh information. Since the base mesh sim-
ply consists of four vertices corresponding to the four corners of the
image bounding box, thex andy coordinates of the vertices can be
derived fromW andH. Only thez coordinates need to be included in
the code stream, whereP bits are used for each coordinate. Finally, the
data for each subdivision level is appended to the code stream in order
of increasing subdivision-level index. For each level of subdivision, the
new-vertex information includes offsets, horizon bits, direction values,
a scale parameterλ for offset data (to be discussed shortly), and the ac-
tual probabilities for normal-bit and direction-value data. The offsets,
horizon bits, and direction values are assumed to be entropy coded

Table 1: Summary of mesh data for the JBL coder

Data Name Type Range
offset R ±max{2P − 1, W−1

2
, H−1

2
}

direction value Z {0,1,2}
horizon bit boolean {0,1}

base mesh (z coordinate) Z 0 to2P − 1

(e.g., by using arithmetic coding [16]).

Now, we explain how we estimate the rate for the entropy-coded
parts of the code stream, namely the normal/vertical offsets, horizon
bits, and direction values. First, we consider the normal/vertical off-
sets. Since the offsets have a symmetric sharply-peaked probability
distribution with zero mean, we employ a (zero-mean) Laplacian dis-
tribution to model this information. In particular, we employ a proba-
bility density functionpoff of the form

poff(x) = λ
2
e−λ|x|, (1)

whereλ is a scale parameter. To determine the scale parameterλ, we
measure the varianceσ2 of the offset data and then match the variance
of the Laplacian distribution toσ2, yielding the choiceλ =

√
2/σ.

Since the offsets from different subdivision levels typically have dis-
tinct distributions, the offsets are modelled on a per-subdivision-level
basis. Thus, we must choose a parameterλl for each subdivision level
l, and in our implementation 32 bits are employed to represent eachλl.
The entropyEoff,l of the quantized offsets at levell can be estimated
as

Eoff,l = −
n

X

k=1

fk log2 pk, (2)

wheren is the total number of quantization bins used,fk is the fraction
of offsets quantized to thekth bin, andpk is the probability of an offset
being in thekth bin (for thelth subdivision level). For a quantization
bin associated with the interval[a, b], the quantitypk is simply com-
puted aspk =

R b

a
poff(x)dx, wherepoff(x) is as defined in (1) with

λ = λl.

Next, we consider the rate estimation for the horizon-bit and
direction-value data. In this case, a first-order entropy estimate is used.
The first-order entropyE of a source is calculated as

E = −
n

X

k=1

pk log2 pk, (3)

wheren is the alphabet size andpk is the probability of thekth symbol.
Let Ehor,l andEdir,l, respectively, denote the entropies of the horizon-
bit and direction-value data for thelth subdivision level. To compute
Ehor,l using (3), we letn = 2 (since the alphabet is binary) and the
the probabilities{pk}2

k=1 are set to the first-order probabilities of the
actual horizon-bit data. To compute the entropyEdir,l using (3), we let
n = 3 (since the alphabet is ternary) and the probabilities{pk}3

k=1

are set to the first-order probabilities of the actual direction-value data.
In the case of both horizon-bit and direction-value data, the quantities
{pk}n−1

k=1
are included in the code stream, whilepn is not, as it can be

deduced from the relationship
Pn

k=1
pk = 1.

Given the above results, the total numberR of bits required for the
coded image can be computed as

R =
L

X

l=1

[(Eoff,l + Edir,l)Noff,l + Ehor,lNhor,l] + Roverhead, (4)

whereNoff,l and Nhor,l are respectively the numbers of offsets and
horizon bits at subdivision levell, andRoverhead is the number of bits
devoted to other overhead information. The overhead information ac-
counted for byRoverhead includes: a)16 bits for each ofW andH,
b) 8 bits for each ofP andL, c) 32 bits for the quantization parameter



Xu and Adams: An Improved Normal-Mesh-Based Image Coder 5

q (introduced above), d)32 bits representing the parameterλl for each
subdivision levell, e)32 bits for the actual-probability information for
horizon-bit data for each subdivision level, and f)32 · 2 = 64 bits for
actual-probability information for direction-value data for each sub-
division level. Since we use only first-order probabilities in the rate
estimation, the rate does not depend on the data-scanning order used
in the coding process.

Due to the similarities between the JBL and JBL-S coders as ex-
plained in Section III-D, the JBL-S coder is essentially implemented
trivially as a special case of the JBL coder with a piecewise-planar im-
age model. In this case, the set of horizons is empty, and consequently
the horizon bits and direction values do not need to be coded.

V. Shortcomings of the JBL Coder

Having introduced the JBL coder, we now discuss some of its short-
comings. By understanding the weaknesses of this coder, we can gain
better insight into how we might improve upon them. The modifica-
tions to the coder that we propose later are motivated by the desire to
overcome these deficiencies.

A. Choice of Base Mesh
One of the strengths of the JBL coder is its fast asymptotic error-decay
rate for horizon-class images. This fast rate is, in part, due to the ability
of the JBL coder to quickly locate new horizon vertices. Two different
mechanisms are available to the JBL coder for assisting in the location
of horizon vertices: 1) the choice of base mesh, and 2) the adaptivity
inherent in normal subdivision. Unfortunately, the JBL coder (which
uses a trivial data-independent base mesh) relies solely on the second
of these mechanisms in order to quickly locate enough horizon ver-
tices to form good polyline approximations of horizons. As a result,
normal subdivision usually introduces many nonhorizon vertices and
such vertices do not help to improve polyline approximations of hori-
zons. Furthermore, many of these new nonhorizon vertices will also be
positioned far away from any horizon, therefore, making a relatively
smaller contribution to achieving a good surface approximation. This
situation is undesirable, as it ultimately leads to reduced coding effi-
ciency. Furthermore, this degradation in coding efficiency can be es-
pecially significant at low bit rates, where performance often depends
very critically on the fast location of horizon vertices. In essence, the
problem here is that, by using a data-independent base mesh (as op-
posed to a data-dependent one), the JBL coder severely restricts its
ability to quickly locate horizons.

The above problem is illustrated by way of the example shown in
Figure 3. In this example, we have the imagecircle3 consisting of a
single solid-gray circle that we wish to code using the JBL coder. The
figure shows the mesh obtained after each of several levels of subdivi-
sion (superimposed on the original image). In a good polyline approx-
imation of a horizon, triangle edges should not cross the horizon; they
should instead be tangential to the horizon curve. Unfortunately, even
after five levels of subdivision, the resulting very dense mesh does not
form a particularly good polyline approximation of the circle bound-
ary. There is, however, good reason to believe that, with an intelligently
chosen data-dependent base mesh, a better approximation of horizons
can be achieved.

B. Normal/Vertical Offset Format
The second shortcoming of the JBL coder involves the representation
it employs for normal/vertical offsets. An offset measures the distance
from a base point to its associated piercing point. Since neither the
base point nor the piercing point falls on an integer grid, they can be
anywhere on the image surface. The offset measuring the distance be-
tween the two points is a real number.

(a) (b)

(c) (d)

(e) (f)

Figure 3: Ineffectiveness of a data-dependent base mesh for thecircle3 image. The

original image superimposed on the (a) base mesh, and the mesh after (b) one, (c) two,

(d) three, (e) four, and (f) five levels of subdivision.

By further observation, we notice that the image surface is not arbi-
trary. Due to the piecewise-constant interpolation used to generate the
image surface, any point on the surface has at least one of itsx, y, or
z coordinates being integer. This suggests that the JBL coder might be
improved by exploiting this special property of the image surface.

C. Scan Conversion

The third shortcoming of the JBL coder involves the scheme employed
for scan conversion. Ideally, we desire a scan-conversion schemethat
preserves both smooth regions in an image and sharp intensity changes
along horizons. The piecewise-planar interpolation scheme employed
by the JBL coder yields an interpolant that is smooth within each tri-
angular domain (of the parameter-plane triangulation) but is not usu-
ally smooth at the boundaries of these domains, due to mismatches
in partial derivatives along the boundaries of neighboring domains. A
higher-order interpolation scheme could improve the smoothness of
the interpolant along domain boundaries. For this reason, there is quite
likely room for improvement in the scan-conversion method employed
by the JBL coder.
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VI. Proposed Modifications to the JBL Coder

Having identified some shortcomings of the JBL coder, we now pro-
pose three modifications to it in order to overcome these weaknesses.
As we will later show, each of these changes leads to improved coding
performance.

A. Choice of Base Mesh
Our first modification to the JBL coder affects the choice of base
mesh. In particular, we propose the use of an intelligently chosen data-
dependent base mesh (instead of a data-independent one). As men-
tioned earlier, a data-dependent base mesh can help to achieve good
polyline approximations of horizons using relatively few vertices. In
simple terms, our base-mesh generation method uses image-edge in-
formation to produce a set of horizon vertices to be employed in the
base mesh. These horizon vertices along with some extra points are
then triangulated to form the base mesh. In what follows, we describe
our base-mesh generation method in more detail.

Since our base-mesh generation method requires image-edge infor-
mation, the first step in our method is to locate all of the edge pixels
in the image. This is accomplished by using a Canny edge detector.
To avoid potential problems in subsequent processing, any intersect-
ing edges are split at their intersection points. Thus, the output of the
edge-detection process is always a set of edges that do not intersect
each other except possibly at their endpoints.

Once the image edges have been found, for each edge, we must
select a subset of its pixels that effectively capture its shape, called a
critical set. To do this, curvature information for the edge is employed.
Using the method of [17], we compute an estimate of the curvature
of the edge at each of its constituent pixels. Initially, we select as the
critical set, the first and last pixels of the edge as well as every pixel
whose curvature value is above a certain threshold. In this way, an
edge with sharp cusps is divided into several pieces. This approach
solves the potential problem of needing many pixels to form a good
polyline approximation at places with large curvature. The preceding
critical set is then augmented by including more pixels such that the
distance between the neighboring pixels is smaller than the reciprocal
of the local curvature of the edge. In this way, we include more pixels
in regions where the edge bends sharply and fewer pixels in regions
where the edge is relatively straight.

Once the critical sets of pixels for the image edges have been de-
termined, this information must be mapped into geometric structures
in the continuous domain. For each edge, the critical set of pixels is
converted into a polyline approximation of a horizon in the continu-
ous domain. This is accomplished as follows. First, pixels from the
critical set are mapped to points in the parameter plane. Then, the re-
sulting points are joined by line segments in such a way as to maintain
the same connectivity that these points have on the image edge from
which they were derived. Since pixel centers are aligned on the lat-
tice 1

2
Zodd and horizons fall on (unit-square) pixel boundaries, horizon

points will always have at least one of theirx ory coordinates being in-
teger. This preceding discrete-to-continuous-domain mapping process
yields a set of polyline approximations of horizons. In what follows,
let V andE denote, respectively, the set of horizon points and line
segments associated with the polyline approximations of horizons.

The last step in our base-mesh generation method is to produce
a triangulation of the parameter plane from which the base-mesh is
trivially obtained. In particular, we want to construct a triangulation
containingV as triangle vertices andE as triangle edges. Since some
edge constraints are imposed on the triangulation process, we cannot
use a Delaunay triangulation (DT) (since a DT may not exist). In an
attempt to obtain a triangulation with good angle properties, we use
a constrained DT. Furthermore, for any given set of points and con-
strained segments, we would like to produce a constrained DT that is
unique. If the triangulation is unique, we do not need to code the com-

Figure 4: Example of a data-dependent base mesh for thecircle3 image.

plete connectivity information for the triangulation, as knowing only
the constrained segments will suffice. This is highly desirable, as any
additional connectivity information that must be coded will negatively
impact coding efficiency. For this reason, we employ a constrained DT
with preferred directions [18] in order to ensure the uniqueness of the
triangulation.

Although we could use a constrained DT of the pointsV and seg-
mentsE to form the base mesh, we elect not to do so. Instead, we
add some extra pointsVs (called Steiner points) toV . Then, we per-
form a constrained DT of the pointsV ∪ Vs and segmentsE. This
further improves the quality of the triangulation by obtaining a more
uniform vertex distribution and avoiding sliver triangles. The Steiner
pointsVs are generated by the Triangle software [19]. Unfortunately,
the Steiner points have realx andy coordinates. To overcome the in-
efficiency of coding real coordinates, the coordinates of Steiner points
are rounded to the nearest pixel centers. In other words, the rounded
Steiner points have bothx andy coordinates being elements of1

2
Zodd.

Clearly, no Steiner points could be a horizon vertex, since none of the
coordinates of the Steiner points is an integer. Therefore, the rounding
operation also eliminates the need for storing horizon bits pertaining to
the Steiner points. Furthermore, since the rounding of the Steiner point
coordinates changes the vertex geometry only very slightly, the good
vertex distribution is maintained in the data-dependent base mesh.

As it turns out, due to the geometry of the vertices in our data-
dependent base mesh, many edges in the constrained DT are also edges
in the DT (i.e., many constraints are inactive). The large number of in-
active constraints can be partly attributed to the short segments inE
and good distribution of vertices in the planar straight line graph. As an
optimization, we only encode the constrained segments that affect the
resulting constrained DT. In this way, the (constrained-segment) infor-
mation that needs to be coded for the base mesh can be significantly
reduced.

To illustrate the benefits of a data-dependent base mesh, we pro-
vide an example of a base mesh generated by our (above) method.
In particular, we consider thecircle3 image from an earlier ex-
ample. For this image, the base mesh produced using our method is
shown in Figure 4 (superimposed on the original image). Although
the mesh contains relatively few vertices, it still manages to provide a
good approximation of the horizon (i.e., circle boundary). For compar-
ison purposes, recall the earlier results from Figure 3, which show the
refined meshes for the same image obtained from a data-independent
base mesh. Evidently, in spite of having significantly fewer vertices,
the base mesh in Figure 4 generated using our method has a much
better polyline approximation of the horizon than the refined mesh in
Figure 3(f) generated from a data-independent base mesh. This ex-
ample clearly demonstrates that, by carefully choosing the base mesh
using our method described above, superior polyline approximations
of horizons can be obtained with fewer vertices (compared to when a
data-independent base mesh is employed).



Xu and Adams: An Improved Normal-Mesh-Based Image Coder 7

B. Normal/Vertical Offset Format
Our second modification to the JBL coder involves the representa-
tion of normal/vertical offsets. Since integers can be more efficiently
coded than real numbers, we propose to identify each piercing point
with an integer instead of a real number. Recall that an offset is a real
value measuring the distance between a base point and its correspond-
ing piercing point. Due to the piecewise-constant interpolation process
used to generate the image surface, we observe that at least one of the
x, y, or z coordinates of each piercing point must be integer. There-
fore, along the normal/vertical search line through the base point, all
possible piercing points can be identified, by finding all intersections
of the search line with planes of the formx = c, y = c, andz = c,
wherec ∈ Z. In this way, all possible piercing points can then be enu-
merated with an integer index. This index can be used to specify which
of the possible piercing points is the actual piercing point. By using an
integer index instead of a real number for each offset, coding efficiency
can likely be improved.

C. Scan Conversion
Our third modification to the JBL coder is in the interpolation scheme
used for scan conversion. In short, we propose the use of a higher-order
interpolant in order to improve the smoothness of the reconstructed
images at the boundaries of triangular domains in the parameter-plane
triangulation, while still maintaining sharp image edges. Our method is
based on the bicubic interpolation technique described in [20, pp. 446-
449], which yieldsC1-continuous surfaces (i.e., surfaces with contin-
uous first-order partial derivatives).

Since we wish to preserve sharp edges in the image, we cannot sim-
ply apply the above technique from [20] without modification, as this
would have the undesirable effect of badly blurring edges. To avoid
unnecessarily blurring edges, we modify the behavior of the preceding
technique in the vicinity of horizons. In effect, this leads to two dis-
tinct cases, depending on whether or not the triangular domain being
processed borders on a horizon edge. These two cases are illustrated
in Figures 5(a) and 5(b). In each case, part of the parameter-planetri-
angulation is shown, and the triangular domain over which we wish
to form an interpolant is denoted by a vertically-hatched triangle. The
solid-white and solid-gray areas denote two different regions separated
by a horizon.

In the first case, shown in Figure 5(a), the triangular domain being
processed does not border on a horizon edge. Here, we directly apply
the method of [20], which generates an interpolant that passes through
the three points associated with the three vertices of the triangle in the
mesh, and also has first-order partial derivatives that are continuous
along the boundary of (as well as inside) the triangular domain. All
1-ring neighbors (i.e., diagonally-hatched triangles) of the triangular
domain being processed are used to determine the necessary partial
derivative information. That is, all vertex/height-value pairs in and on
the boundary of the diagonally-hatched regions are used for interpola-
tion.

In the second case, shown in Figure 5(b), the triangular domain
being processed borders on a horizon edge. Here, when determin-
ing the interpolant for a particular triangular domain, we use only
vertex/height-value pairs from the same side of the horizon as the tri-
angular domain being processed. The region comprised of neighbour-
ing triangles (i.e., the diagonally-hatched region) straddles the horizon.
We use only vertex/height-value pairs in and on the boundary of the
diagonally-hatched white-shaded regions for interpolation, since the
triangular domain being processed is also from the same side of the
horizon (i.e., the white-shaded as opposed to gray-shaded region).

By combining the interpolants for each of the individual triangular
domains, a complete interpolated image surface is obtained. By sam-
pling this surface on a rectangular grid aligned to the pixel centers in
the parameter plane, a rasterized image is generated.

(a) (b)

Figure 5: Two cases for the proposed interpolation scheme. Interpolation (a) away from

any horizons, and (b) near a horizon.

Table 2: Summary of features for the various coders

Image Offset Scan
Coder InterpolantModel Base Mesh Format Conversion
JBL-S piecewise non- data R piecewise

planar horizon independent planar
JBL piecewisehorizon data R piecewise

constant independent planar
Enhancedpiecewisehorizondata dependentR or Z piecewise

constant /independent planar/bicubic

Table 3: Summary of data for the enhanced coder

Data Name Type Range of Value
offset R or Z ±max{2P − 1, W+H

2
}

direction value Z {0,1,2}
horizon bit boolean {0,1}

number of horizon vertices† Z —
number of Steiner points† Z —

x† horizon 1

2
Z 0 toW − 1

base Steiner 1

2
Zodd

meshy† horizon 1

2
Z 0 toH − 1

Steiner 1

2
Zodd

z Z 0 to2P − 1
active line segment†

Z —
†only employed when using data-dependent base mesh

VII. Enhanced Coder

In order to facilitate the further analysis of our three proposed JBL-
coder modifications, we added support for these changes to our orig-
inal implementation of the JBL coder, resulting in what we refer to
as our enhanced coder. For convenience, we summarize the main fea-
tures of the various coders (i.e., the JBL, JBL-S, and enhanced coders)
in Table 2. The enhanced coder supports all combinations of data-
independent/data-dependent base mesh, real/integer offsets, and pla-
nar/bicubic scan conversion. In what follows, we introduce some de-
tails regarding the enhanced coder. Since the enhanced coder is similar
in many ways to the original version, we focus our attention only on
the details that differ.

Table 3 shows the data that needs to be coded for the enhanced
coder. The real or integer offset data is assumed to be entropy coded,
where the corresponding bit rate can be estimated using (2). In the
case that integer offsets are employed, the specified quantizer step size
parameterq should satisfyq ≥ 1. If q = 1, quantization is effec-
tively bypassed, and no information is discarded by quantization. The
bit rate corresponding to the direction-value and horizon-bit data can
be estimated using (3), as in the JBL coder. The total number of bits
required for the coded image can be calculated using (4) withRoverhead

being modified to include the extra information needed for the data-
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dependent base-mesh (e.g., the numbers of horizon vertices and Steiner
points in the base mesh, vertex locations, height values, and active-
constraint segments for the constrained DT).

Consider now the coding of the base mesh. Here, we focus only on
the case of a data-dependent base mesh, since the data-independent
case is simply handled as described earlier in Section IV. We use 16
bits for each of the numbers of horizon vertices and Steiner points in
the data-dependent base mesh. In the subsequent discussion, letW ,
H, andP denote the width, height, and the number of bits per sample
of the original image, respectively. Since thex, y andz coordinates
of vertices of the base mesh tend to have fairly uniform distributions,
we choose to not use any entropy coding for this data. For the hori-
zon vertices in the base mesh, each of thex andy coordinates is an
element of1

2
Z. Furthermore, we know that if thex coordinate is an

integer, the correspondingy coordinate must be an element of1

2
Zodd,

and vice versa. Consequently, we need only code the (single-bit) frac-
tional part of either thex or y coordinate. In our case, we choose to
code only the fractional part of thex coordinate. Thus, each of thex
andy coordinates is represented using⌈log2 W ⌉ + 1 and⌈log2 H⌉
bits, respectively. In the case of Steiner points in the base mesh, we
observe that such points always havex andy coordinates each being
an element of1

2
Zodd. Thus, we need not code the (single-bit) fractional

part of these values (which is always one). So, for Steiner points, we
use⌈log2 W ⌉ and⌈log2 H⌉ bits to represent eachx andy coordinate,
respectively. The four corner points of the image bounding box are al-
ways chosen as vertices in the base mesh. Theirx andy coordinates
can be derived from the size of the image, and therefore do not need
to be coded. Eachz coordinate in the base mesh is represented using
P bits. The (active) constrained line segments for the base mesh are
coded as a list of pairs of vertex indices, where vertices are indexed
according to their order of appearance in the code stream.

The code stream format employed by the enhanced coder is very
similar to that of the original coder. Some basic information is included
in the header (e.g.,W , H, etc.). Then, thex, y, andz coordinates of
the base mesh are coded as explained above. Finally, the data associ-
ated with different levels of subdivision are coded, starting from data
associated with the smallest subdivision-level index and proceeding to
the data associated with the largest subdivision-level index.

Note that, since we do not entropy code the base mesh informa-
tion, there are probably more efficient schemes for handling this data.
At high bit rates, the base mesh information constitutes only a small
fraction of the entire code stream. Consequently, the price paid for not
entropy coding the base mesh information is relatively small. At low
bit rates, however, the base mesh information can consume a more sig-
nificant fraction of the entire code stream. So, the cost of not entropy
coding the base mesh information is more significant in this case. In
spite of our choice not to entropy code the base mesh data, however,
we still obtain reasonably good performance at low rates. We leave it
as a subject of future work to explore the use of more sophisticated
coding schemes for the base mesh information (perhaps, by perform-
ing differential coding of the vertex coordinates).

VIII. Experimental Results

Earlier, we suggested that our proposed modifications to the JBL
coder improve its performance. In the sections that follow, we sup-
port our claim through experimental evidence. Although numerous 8-
bit grayscale test images were employed in our work1, we focus our
attention on the results for two representative images herein, namely,
thepaw andpeppers images. Thepeppers image is taken from
the well known USC image database [21] (and has dimensions of
512× 512), while thepaw image is our own synthetic test image with
dimensions of1024 × 1024.

1For details on the other test images employed in our work, see [14].
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Figure 6: Coding performance for the (a)paw and (b)peppers images using the JBL-S,

JBL, XA, and JPEG-2000 methods.

Since we are primarily interested in low bit rates in our work, when
we subsequently use qualifiers like “low” or “high” for the bit rate,
these qualifiers should be understood in relative terms (i.e., relative
to the range of bit rates under consideration in our study). In what
follows, we evaluate the performance of each of our three proposed
modifications to the JBL coder in turn.

A. Choice of Base Mesh
To begin, we consider our proposed modification to the JBL coder
of employing a data-dependent base mesh. In what follows, we re-
fer to the JBL coder with this change by the name “XA”. To assess
the value of our proposed change, numerous test images were com-
pressed at various bit rates with both the JBL and XA methods and the
results were examined. In what follows, we provide a representative
subset of these results for thepaw andpeppers images. For refer-
ence purposes, we also include results obtained from the JBL-S and
(in some cases) JPEG-2000 [3] coders. To maintain a fair comparison
for the mesh-based methods, the number of subdivision levels for each
method was chosen so that the final-mesh vertex counts would be as
close to one another as possible (without giving an unfair advantage
to our XA method). Since these counts can only be controlled very
coarsely, it is only possible to have them match to within a factor of
about three. More specifically, for thepaw image, the JBL and JBL-S
coders use six levels of subdivision, resulting in 4225 vertices, while
the XA coder uses two levels of subdivision, resulting in 3308 vertices.
For thepeppers image, the JBL and JBL-S coders use seven levels
of subdivision, resulting in 16641 vertices, and the XA coder uses two
levels of subdivision, resulting in 6543 vertices. In what follows, we
examine the results obtained in detail.

The rate-distortion plots obtained for thepaw andpeppers im-
ages using the various methods are shown in Figure 6. From these
results, we can see that, at high bit rates, the XA coder outperforms
the JBL and JBL-S coders, and the XA coder even outperforms the
JPEG-2000 coder in the case of thepaw image. At low bit rates, how-
ever, the XA coder can sometimes perform more poorly than the other
three methods due to the rate overhead associated with the base mesh
(which is not entropy coded in our scheme). As mentioned earlier,
clever schemes for coding the base mesh, however, could reduce this
overhead, and significantly improve the coding efficiency of the XA
method at low bit rates. From the coding results, we can also see that,
at low bit rates, the JBL coder performs worse than the JBL-S coder,
while at high bit rates, the JBL coder performs better than or compara-
ble to the JBL-S coder. The superior performance of the JBL coder at
high bit rates can be attributed to the higher efficiency of the horizon
model, while the inferior performance at low bit rates can be attributed
to the overhead of encoding horizon bits and direction values.

Now, we consider the subjective performance of the various meth-
ods. For the case of thepaw andpeppers images, examples of the
obtained reconstructed images are shown in Figures 7 and 8, respec-
tively. In the first case, the final mesh employed by each method is
shown superimposed on the original image with the horizon vertices
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Coding example for thepaw image. Lossy reconstructions obtained at about

400:1 compression using the (a) JBL-S, (c) JBL, and (e) XA methods. The corresponding

final meshes employed by the (b) JBL-S, (d) JBL, and (f) XA methods.

denoted by circles. Examining the results for thepaw image in Fig-
ure 7, we can see that very significant edge distortions occur in the
case of the JBL and JBL-S methods, while the XA scheme has little
noticeable distortion. Clearly, the XA method approximates horizons
much better than the JBL and JBL-S methods. Examining the recon-
structions of thepeppers image in Figure 8, we can see that the
results obtained with the XA method are comparable to those obtained
with the JBL and JBL-S coders, in spite of the fact that the JBL and
JBL-S methods have meshes with about 2.5 times more vertices than
the XA case. On this basis, it is reasonable to conclude that the XA
scheme is superior to the JBL and JBL-S schemes.

Let us again consider the subjective results for thepaw image, in-
cluding the final meshes produced by the various methods, as shown
in Figure 7. By examining the final meshes, we can see why the XA
method is able to outperform the JBL and JBL-S methods. The mesh
for the JBL-S method has some larger-area triangles that straddle hori-
zons. This leads to very visually disturbing artifacts such as those near
the rightmost pad of the paw in Figure 7(a). By explicitly modelling
horizons, the JBL and XA methods are able to locate horizon ver-
tices faster, and reduce distortions in large regions. Furthermore, the
XA method, with a data-dependent base mesh, locates horizon ver-
tices faster and approximates horizons better than the JBL and JBL-S
schemes. As an aside, we note that the small triangular teeth occurring

(a) (b)

(c) (d)

Figure 8: Coding example for thepeppers image. Portions of the (a) original image and

the lossy reconstructions obtained at about 29:1 compression using the (b) JBL-S, (c) JBL,

and (d) XA methods.

in the reconstructed image for the XA coder can be attributed to inac-
curacies in the estimation of the location and curvature of horizons.

B. Real Versus Integer Offsets

Now, we consider our second proposed change to the JBL coder, which
is to use integers rather than real numbers to represent normal/vertical
offsets. To evaluate the effectiveness of our proposed change, several
test images were coded with the XA coder at various bit rates using
both real and integer representations of offsets. Some representative
results obtained in the case of thepaw image (using two levels of sub-
division) are shown in Figure 9. From this graph, we can see that, at
low to medium bit rates, integer offsets yield better results than real
offsets, with the difference being more pronounced at medium rates,
while in the high bit-rate case, comparable results are obtained with
integer and real offsets. It is worth noting that similar results as above
also hold in terms of subjective image quality (i.e., integer offsets are
better than or as good as real offsets).

C. Planar Versus Bicubic Interpolation

Lastly, we consider our third proposed change to the coder, which is
to use bicubic instead of planar interpolation for scan conversion. To
assess the value of this change, both planar and bicubic interpolation
were employed in the XA coder to compress numerous images at var-
ious bit rates. Some representative results obtained in the case of the
peppers image (using two levels of subdivision) are shown in Fig-
ure 10. From these results, we can see that bicubic interpolation out-
performs planar interpolation, especially at high bit rates. In terms of
subjective image quality, bicubic interpolation also leads to superior
results, as it tends to better preserve smoother regions in images, with-
out destroying sharp intensity changes at horizons.
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IX. Conclusions

In this paper, we proposed three modifications to the JBL coder and
demonstrated through experimental results that these changes lead to
improved coding performance. For example, we showed that good
data-dependent base meshes can help to locate horizons faster and pre-
serve edges better. Also, we showed that using a normal/vertical-offset
representation based on integers (instead of real numbers) yields supe-
rior performance. Finally, we demonstrated that, by exploiting horizon
information, bicubic interpolation can be made to provide smoother
reconstructed images while still maintaining sharp edges.
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