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An Improved Normal-Mesh-Based Image
Coder

Un Codeur Normal-Maille-Base Ameliore
d'Image

Di Xu* and Michael D. Adams'

The normal-mesh-based image coder of Jansen, Baraniuk, and Lavu (JBL)i¢zlsfidst, the JBL coder is introduced and several of its shortcomings
are identified. Then, to address these shortcomings, three modifictdidhis coder are proposed, namely, the use of a data-dependent base mesh, an
integer representation for normal/vertical offsets, and a different scan-camvessheme based on bicubic interpolation. Experimental results show
that these proposed changes lead to improved coding performance in ternth @blpective and subjective image-quality measures. In particular, the
use of a data-dependent base mesh helps to locate horizons more quicklyesegimage edges better. The number of bits required to encode the
normal/vertical offsets is reduced by representing this information witbgers (as opposed to real numbers). Lastly, bicubic interpolation il ftau

yield higher-quality image reconstructions, while still maintainghgrp edges.

Le codeur normal-maille-base d’'image de Jansen, de Baraniuk, et de Lavu (iBl)dis. D’abord, le codeur de JBL est presente et plusieurs de son des
imperfections sont identifiees. Puis, pour adresser ces imperfections, posprorois modifications a ce codeur, a savoir, I'utilisation d'a mdiksse
donnee-dependante, une representation de nombre entier pour la normesévercentrages, et un arrangement different de balayer-conversion base sur
bicubic interpolation. Les resultats experimentaux prouvent que ces efmamgs proposes mnent a I'execution de codage amelioree en termes d’objectif
et subjectif mesures d'image-qualite. En particulier, I'utilisation d’'uneslsmnee-dependante la maille aide a localiser des horizons plus rapidement et a
preserver des bords d'image meilleur. Le nombre de peu requis pour cauemiel/verticale des excentrages est reduits en representant cette information
avec des nombres entiers (As oppose a de vrais nombres). Pour fingrdtfation bicubic s’avre pour rapporter des reconstructions plusidegualite
d’'image, tout en maintenant toujours les bords pointus.
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I. Introduction tended version of [11]), we identify some of these shortcomings, and
propose three modifications to the coder aimed at addressing these

) weaknesses. Furthermore, we show that these modifications lead to
Many of today's best image coders are based on wavelet trafigproved coding performance.

forms [1, 2, 3]. Unfortunately, such coders cannot efficiently eepr

sent the geometric features inherent in images (i.e., edges). This hagne remainder of this paper is structured as follows. First, Section I
led to an interest in schemes that better exploit the geometric propggmments on some of the notation and terminology used herein. Then,
ties of images. Some such schemes include ridgelets [4], curvelets Bdctions 111 and IV, respectively, introduce the JBL coder and the im-
edgelets [6], contourlets [7], wedgelets [8], and bandelets [9]. Rgrementation of it used in our work. In Section V, several shortcom-
cently, an image coder based on normal (triangle) meshes was RHYs of the JBL coder are identified. This then leads us to propose, in
posed by Jansen, Baraniuk, and Lavu (JBL) [10], which we henttef section VI, three modifications to the JBL coder aimed at addressing
refer to as the JBL coder. Unlike wavelets, meshes are well suited to gfase shortcomings. The implementation of our enhanced (i.e., with
ficiently capturing the geometric information in images. For examplgyr proposed modifications) coder is introduced in Section VII. Then,
consider images from the so callédrizon class(i.e., images con- py \ay of experimental evidence provided in Section VIII, we demon-
sisting of constant intensity regions separated by smooth contourssghte that each of our proposed modifications yields improved coding

discontinuity). It has been sh‘own [10] that, under certain Conditionéerformance. Finally, we conclude in Section iX with a summary of
the normal-mesh representation employed by the JBL coder can mg(g work.

efficiently represent horizon class images than wavelet-based ssheme
In particular, for a representation withcoefficients, the normal-mesh
and wavelet schemes achieve asymptotic error-decay rat@&of!)
andO(n~1/?), respectively. Furthermore, since many real-world im-
ages behave somewhat like horizon-class images, the preceding erro
decay-rate result suggests that the JBL coder has considerablis@rom

for practical image-coding applications. Before proceeding further, a short digression is appropriate conce
. . ) o ing some of the notation and terminology used herein. The sets of in-
In spite of its merits, the JBL coder also has some deficiencies tfﬁégers, odd integers, and real numbers are denot&q As, andR,
unnecessarily restrict its performance. In this paper (which is an &spectively. In what follows, we assume the reader to be familiar with
——— ) B basic geometric concepts, such as a triangulation, Delaunay triangula-
“Di Xu is with the Department of Electrical and Computer Engi®®  tjon (DT), and constrained DT. For more information on such concepts
University of British Columbia, Vancouver, BC, V6T 1Z4, Calsa E-mail: the reader is referred to [12]. For an image withbits per sample,

di xu@ce. ubc. ca. . . - . . ; )
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1. Notation and Terminology
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I1l. JBL Coder B. Mesh Refinement via Subdivision

Although the JBL coder employs a normal mesh, the base mesh and

its subsequent refinement are more easily described in terms of the

As mentioned previously, the focus of our work is the JBL coder. In t%rameter-plane triangulation (introduced above) rather than directly

sections that follow, we provide a brief introduction to this coder. Firs terms of the 3-D mesh itself. First, the refinement process requires
tﬁg

we describe the normal-mesh-based image representation empl

by the JBL coder and explain how this representation is constructgd o cewise constant in [10], the true surface is constructed using

through a process known as mesh refinement or subdivision. Ween, ;o coise-constant interpolation of the original image sample data. As

discuss scan conversion and a few other details relevant to this cod matter of convenience, for the purposes of this interpolation process,

the original sample values are aligned with points on the |a§@&jd

(rather than the lattic&). The base mesh is associated with a par-

ticular base (i.e., initial) triangulation of the parameter plane. In the
A. Normal-Mesh-Based Image Representation JBL scheme, the base triangulation is chosen to have four vertices,
A grayscale image is a functiof of two variablesz andy, wherez corresp_ondlng to the four corner points of the image b_oundlng box.
andy correspond to position, and= f(z,y) corresponds to image The refinement of the mesh then corresponds to a refinement of the
intensity. In this way, an image can be viewed as a surface parameR@t@meter-plane triangulation through the addition of new vertices. In
ized over thery plane. Thus, mesh-based techniques for representiﬂgmcma"' refinement of the triangulation is performectjoaternary

surfaces can be used for images. In the case of the JBL codemaknorSUPdivision, whereby a new vertex is added for each edge in the trian-
(triangle) mesh is employed for this purpose. gulation, resulting in each triangle being split into four new triangles.
Due to the manner in which the refinement of the parameter-plane tri-

angulation is performed (i.e., using numerous normal directions), this
tire process can essentially be viewed as the refinement of a normal

notion of a true surface. Since images are essentially assumed to

For our purposes here, a normal mesh [13] is a multiresoluti
surface representation that consists of a nested sequence of me
{Mo, M, ...,Mr_1}, generated by repeated refinement of a base
meshMy. The base mesh consists of a small number of points from ) o . )
the true surface (i.e., the actual image intensity surface to be approxiVhen performing subdivision as described above, the location of
mated). The refinement process then generates a finer mesh by adHif new vertex to be added for each edge is determined in one of two
new points from the true surface to a coarser mesh. This is done in si¢@S, depending on whether the edge is a horizon or nonhorizon edge.
away that each new vertex on the finer mesh can be expressed as d##izon and nonhorizon edges are treated differently, since the goals
placement from dase pointon the coarser mesh in the direction of0f réfining these two types of edges are not the same. In the horizon-
the base point's surface normal. In other words, the new verticeslad @9 case, the objective is to obtain a better polyline approximation
during refinement are located where surface normals from basespoff @ horizon, whereas in the nonhorizon-edge case, the objective is
on the coarser mesh pierce the true surface (i.e., new vertices arelfoduickly locate new horizon vertices. We will now describe each of
cated at so-calleliercing points). The line passing through the basgnese two types of subdivision in more detail. To simplify the expla-.
point and along some search direction for locating a piercing point'ition that follows, some exceptional cases are not considered in this
called asearch line Since each base point and its corresponding ndfiSCussion.
mal direction are completely determined by the coarser mesh, only a
single scalar value (i.e.,;eormal offset) is needed to identify the loca- HORIZON-EDGE SUBDIVISION. First, we consider the subdivi-
tion of each new vertex on the finer mesh. Thus, a normal mesh carsiien of a horizon edge. Since our goal in this case is to construct
completely characterized by its base mesh and a set of normal offsetsefined polyline approximation of the horizon, we would like the

piercing point associated with the horizon edge to be a point on hori-

As mentioned previously, an image can be represented as a g@0- To perform the subdivision, we first define the base point as the
face parameterized over the; plane. In what follows, we refer to mldpomt of the edge. Then, the search line for the new horizon ver-
this plane as thgparameter plane Since some aspects of the JBLI€X is chosen to be normal to the edge and parallel torthelane.
coder are more easily explained in terms of the parameter plane rathBp new vertex is added where the search line pierces the vertical sur-
than explicit 3-D geometry, we will largely adopt a parameter-plarféce thro_ugh the horizon. The above process is |IIL_|strated in Figure 1,
perspective in our description of this coder. In essence, the JBLr codéere Figures 1(a) and 1(b) are from the viewpoints of the parame-
creates a partitioning of the parameter plane using a triangulation, 488 plane and 3-D space, respectively. In the diagram, a filled circle
then forms an interpolant over each of the resulting triangles in ord@@notes an endpoint associated with a horizon vertex. The thick solid
to construct a surface in 3-D (i.e., the image surface). In what fellowsegmentzez is a coarse horizon edge. The staat the middle of
unless otherwise noted, the terweftex” will always refer to a ver- the coarse edge represents a base point. The dotted segprisrin
tex in the parameter-plane triangulation. Vertices are associated wile search line, which is normal to the coarse eéige and parallel
height (i.e.z coordinate) values. In this way, each vertex/height-valu@ the parameter plane. The filled squareepresents a new pierc-
pair corresponds to a point in 3-D. With the JBL coder, the three poirit¥g point on horizon, the point at which the search line intersects the
associated with the vertices of each triangle are used to form a plamartical surface through the horizon. The (signed) length of the dot-
interpolant. By combining these interpolants, a piecewise-planar ii¢d segment between the base pairgnd the piercing poinp cor-
age surface in 3-D is formed. responds to the normal offset. The thin solid segmensandezp

connecting the endpoints of the coarse edge and the piercing point are

To represent discontinuities, the JBL coder models edges explicifffined horizon edges of the coarse horizon edge. The refinecs edge
using the so-callelorizon model. As a matter of terminology, a con- €1P @ndezp form a polyline refinement of the coarse horizon edge

tour in the parameter plane that corresponds to a discontinuity contﬁ&?z’- Having located the piercing point, we also need to determine the
(i.e., image edge) is calledherizon. A vertex that is on a horizon is

orizon-bit andz-coordinate information associated with the newly
said to be ehorizon vertex, and an edge (in the triangulation) withadded vertex. In this case (i.e., subdividing a horizon edge along the
both of its endpoints being horizon vertices is said to beosizon Normal direction), the piercing point is the intersection of the search
edge The number of height values associated with a particular vertd{1® With the vertical surface through the horizon. Therefore, the pierc-
depends on whether the vertex is a horizon vertex. A nonhorizon veﬁgﬂ.po'm is always a point on horizon. For th reason, no horizon
is associated with only one height value, while a horizon vertex is adt IS required for the new vertex. Let” andz;" be the twoz co-
sociated with two, in order to represent the height of the image surfa@&linates associated with one endpoint of the horizon edgezand
on both sides of the horizon. To distinguish between these two cas¥¥lz;” be the twoz coordinates associated with the other endpoint of
each vertex is associated with a bit, calledlogizon bit, indicating if the edge. Then, the twe coordinates:™ andz™ associated with the
the vertex is a horizon vertex. new vertex are determined §{min{z; , 2; } + min{z;, 25 }} and
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@  Endpoint — Coarse Edge unfilled circlese; ande; are the endpoints of an edge. The thick solid
segmeni ez is a coarse nonhorizon edge. The dtaepresents the
base point of the edggez. The normal search line is perpendicular to
®  Picrcing Point — Refined Edge erez and in the vertical plane containirggez. At the unfilled square

. p, where the search line intersects the image surface, a new nonhorizon
vertex is added. Consequently, the two segmengsandpez, shown
by the thin solid segments, form a refinement of the coarse nonhorizon
edgeeres. To illustrate the adaptivity of nonhorizon-edge subdivision
along the normal direction, Figure 2 also shows the refinement of a
new nonhorizon edgge; for the next level of subdivision. Through
the corresponding base point, the search line is perpendicular to the
edgepes. At the filled square, the normal search line intersects the
image surface. A piercing poipt associated with a horizon vertex is
located during the subdivision. By two iterations of subdivision to the
coarse nonhorizon ed@gez, a new horizon vertey; is found.

#  Base Point - = Normal Offset

EXCEPTIONAL CASES DURING SUBDIVISION . As suggested ear-
lier, some exceptional cases can occur during the refinement groces
(b This is because, with the approach described above, the piercing point
found in a normal direction does not always lead to a valid triangu-
Figure 1: Subdivision of a horizon edge along the normal direction. The (a) pasametlation in the parameter plane. To avoid this and other problems, we
plane view, and (b) 3-D view. must, in some exceptional circumstances, include an offset in the ver-
tical direction, in lieu of or in addition to the normal direction. There-

o i fore, an additional value, called thirection value, is required for
©  Endpoint — Coarse Edge each offset to capture which combination of normal/vertical directions
% BiePhit == Normal Ofst is employed. Due to space constraints, the exceptional cases are not
o _ discussed further here. The interested reader is referred to thatfirst
m o Piercing Point — Refined Edge thor's Master’s thesis [14] for a detailed treatment of these cases.
In all of the subdivision cases, once the search line is fixed, the off-

set is calculated by measuring the (signed) distance between the base
point and piercing point. Offsets are signed quantities since these dis-
placements can be in either of two directions along the search line. In
all of the subdivision cases other than the horizon-edge case along the
normal direction, once a piercing point is found, this point is projected
vertically onto the the parameter plane to obtain a corresponding (tri-
angulation) vertex. The horizon bit for the offset associated with this
new vertex is then set to one if the vertex is on a horizon and zero
otherwise. Thez coordinate associated with the new vertex is the
coordinate of the image surface at the piercing point.

It is worth noting that the normal search direction used in the sub-
(®) division of nonhorizon edges contributes very significantly to the fast
location of new horizon vertices, since the normal direction tends to
point towards a nearby function discontinuity if one exists. In essence,
the choice of a normal search direction makes the subdivision process
adaptive to the image data (i.e., data dependent). In contrast, if we were
instead to perform these searches in the vertical direction, new vertices
H{max{z, 2} + max{z; , 23 }}, respectively. would always be added at the midpoints of the edges in the parameter-
plane triangulation, making the fast location of new horizon vertices

NONHORIZON -EDGE SUBDIVISION . Now, we consider the sub- more difficult.
division of a nonhorizon edge. Before proceeding, we need to fixst d
termine which of the: coordinates associated with the two endpoints
of the nonhorizon edge are appropriate to use for determining the N@n- 6iher comments on the JBL Coder

horizon edge in 3-D. If both endpoints of the nonhorizon edge areé ag;e normal-mesh-based representation produced by the JBL coder
sociated with nonhorizon vertices, thecoordinates of the endpoints is_ completely characterized by the base mesh, normalivertical off-

are unambiguously determined. Suppose now that one of the endpo , horizon bits, and direction values. Using this information, the
of the nonhorizon edge is associated with a horizon vertex. Since,gtesponding mesh can be reconstructed. Since the resulting mesh
most, one vertex of a nonhorizon edge can be a horizon vertex, ﬁé resentation is a surface defined on a continuous domain, a scan-
other endpoint of the edge must be associated with a nonhorizon v&fiersion process is needed to convert the mesh data from the contin-
tex. Let us assume thf‘t the horizon vertex is associated with the 49 s qomain to points on a raster grid. It is implied in [10] that planar

z coordinates; andz;” and the nonhorizon vertex is associated With e oation is being used in the scan conversion by the JBL coder. By
the z coordinateze. The z coordinate associated with the horizon Ver’sampling the image surface on a regular grid (aligned with the centers

X ; =
tex is chosen to be whichever ¢t , z; } is closer toz;. Then the ¢ nivesin the parameter plane), a rasterized image is produced.
nonhorizon edge in 3-D is completely determined by its two endpoints

and their choserr coordinates. The base point is determined as the

midpoint of this edge. The search line is through the base point, nor-

mal to the edge, and in the vertical plane containing the edge. The new Simplified JBL Coder

point is added where the search line pierces the image surface. THaving introduced the JBL coder, we now take a moment to briefly
process is illustrated in Figure 2, where Figures 2(a) and 2(b) are froamtroduce a simplified version of this coder that is implicitly suggested
the viewpoints of the parameter plane and 3-D space, respectively. Ting10] (in the context of natural images). We refer to this simpli-

Figure 2: Subdivision of a nonhorizon edge along the normal direction. Thed@rpeter
plane view, and (b) 3-D view.
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fied version of the coder by the name JBL-S herein. Conceptually,

the key difference between the JBL and JBL-S coders is in how the Table 1: Summary of mesh data for the JBL coder

original image surface is formed. In the JBL-S coder, the image sur- Data Name Type - Rang‘?hl —
face is constructed using piecewise-planar interpolation rather thar offset R |Fmax{2” —1, 75—, 75}
piecewise-constant interpolation. Due to the use of a piecewise-plandr___direction value Z {0,1,%
interpolant, the image surface has no discontinuities and hence no hori- horizonbit __[boolean {0;,1}

zons exist either. Thus, the JBL-S coder is essentially the JBL codetPase meshe(coordinate) 7 | Oto2” —1

without the horizon model. Unlike in the JBL case, horizon bits are

not needed since horizon vertices are effectively not used in the JBL-
S coder. Furthermore, in the JBL-S coder, the exceptional subdivis
cases mentioned earlier can never occur, and subdivision always
ploys a normal search direction. Since the search direction is alwaysN

normal, direction values are not required. Thus, in the case of the JBL- ow, we explain how we estimate the rate for_the entropy-coded
s of the code stream, namely the normal/vertical offsets, horizon

S coder, the normal-mesh-based image representation is complegtﬁrg and direction values. First, we consider the normal/vertical off-

characterized by only the base mesh and normal offsets. . : ' > -
sets. Since the offsets have a symmetric sharply-peaked probability
distribution with zero mean, we employ a (zero-mean) Laplacian dis-
tribution to model this information. In particular, we employ a proba-
bility density functionps of the form

g)?ng., by using arithmetic coding [16]).

IV. Our Implementation of the JBL Coder \
porr(z) = 37, @

Before proceeding further, we briefly describe our implementation efhere is a scale parameter. To determine the scale parametes

the JBL coder, which was used as the basis for our work herein. Geneasure the varianee® of the offset data and then match the variance
erally, our implementation is written in MATLAB. In [10], the JBL of the Laplacian distribution te?, yielding the choice\ = v/2/0.
coder is applied exclusively to piecewise-constant images, most lik&jnce the offsets from different subdivision levels typically have dis-
because the horizons in such images can be detected with a very tiivet distributions, the offsets are modelled on a per-subdivision-level
ial edge detector. To apply the JBL coder to a larger class of imageasis. Thus, we must choose a paramatdor each subdivision level
however, a more sophisticated edge detector is required. In our impleand in our implementation 32 bits are employed to representiach
mentation of the JBL coder, we employ a Canny edge detector [IBje entropyFE.s,; of the quantized offsets at levetan be estimated

to assist in the identification of horizons. After the horizons have bees

identified, a normal-mesh-based representation is constructed, the cor n
responding normal/vertical offsets are quantized, and a final bit rate is Eofi1 = — Z filogy pr, @
estimated based on a simple implicitly-assumed coding scheme. k=1

wheren is the total number of quantization bins uségljs the fraction

In our implementation, the normal/vertical offsets are quantize?f offsets quantized to thieth bin, andps, is the probability of an offset
with a separate uniform scalar quantizer being used for the offsetshsfing in thekth bin (for theith subdivision level). For a quantization
each subdivision level. Rather than specifying all of the quantizer stbj associated with the intervid, b], the quantityp;, is simply com-
sizes individually, all step sizes are computed from a single encodgited asp, = f; Poif () dx, wherepes (z) is as defined in (1) with
parameteg. In particular, the step siz&;, for the offsets of thekth )\ = ),.
subdivision level (wheré = 0 corresponds to the base mesh) is cho-
sen asA, = ¢2°7! for k > 1. Here,k # 0 since no offsets are  Next, we consider the rate estimation for the horizon-bit and
associated with the base mesh. This choiceé\gfresults in offsets direction-value data. In this case, a first-order entropy estimate is used.
from coarser levels being weighted more heavily than those from fin€he first-order entropy of a source is calculated as
levels. Such is desirable, since in a normal mesh, errors in the coarser
level offsets introduce considerably more distortion than errors in the -
finer-level offsets. This is due to the fact that errors in the reconistuc E=- Zpk logs pr, ©)
vertices and their height values introduced by offset quantization prop- k=1

agate from coarser to finer levels of the mesh. wheren is the alphabet size ang is the probability of thésth symbol.

. . Let Ehor,; and Egir 1, respectively, denote the entropies of the horizon-
In [10], the authors do not make any attempt to estimate the bit rgdg and direction-value data for tHeh subdivision level. To compute

required to code the data of the normal-mesh-based image represgn-  ;sing (3), we leta = 2 (since the alphabet is binary) and the
tation. In our work, however, we assume a simple coding scheme i, ohapilities(p, }2_, are set to the first-order probabilities of the

the data and determine the corresponding bit rate based on entropy_es- P ;
timates. For the remainder of this section,figt H, and P denote the a%za;r};rrl]zcc;ntﬁg i?;ﬂézzf ?Snzgmzr;h)eairgrgg” ;rzzggilg{?;é?;,lft

width, height, and number of bits per sample in the image being COdéLde set to the first-order probabilities of the actual direction-value data.

and letL denote the number of subdivision levels. Table 1 identifies t éhe case of both horizon-bit and direction-value data, the quantities
mesh data that needs to be coded for the JBL coder. The general st (17~ are included in the code stream, whilg is not, as it can be

ture of the code stream used to encode this information is as follows, - "
The code stream begins with a simple header which includes basic(lé-duceoI from the relationship;_, px = 1.
formation such a8V, H, P, L, and the quantization parameteiThis

is followed by the base-mesh information. Since the base mesh sim
ply consists of four vertices corresponding to the four corners of e
image bounding box, the andy coordinates of the vertices can be L
derived fromWW and H. Only thez coordinates need to be included in — '

the code stream, whef bits are used for each coordinate. Finally, the R ;[(Ec’ff’l *+ Bairs )Nttt + Ehoryt Noor] + overnesd; - (4)

data for each subdivision level is appended to the code stream in order

of increasing subdivision-level index. For each level of subdivigiba where Nok; and Nior,; are respectively the numbers of offsets and
new-vertex information includes offsets, horizon bits, direction valuebprizon bits at subdivision levé] and Roverhead IS the number of bits

a scale parameterfor offset data (to be discussed shortly), and the adevoted to other overhead information. The overhead information ac-
tual probabilities for normal-bit and direction-value data. The offsetspunted for byRoermead includes: a)16 bits for each ofili and H,
horizon bits, and direction values are assumed to be entropy cod®a bits for each ofP andL, c) 32 bits for the quantization parameter

Given the above results, the total numteof bits required for the
ded image can be computed as
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q (introduced above), d)2 bits representing the parameterfor each
subdivision level, )32 bits for the actual-probability information for
horizon-bit data for each subdivision level, and®)- 2 = 64 bits for
actual-probability information for direction-value data for each sub;
division level. Since we use only first-order probabilities in the rate
estimation, the rate does not depend on the data-scanning order u
in the coding process.

Due to the similarities between the JBL and JBL-S coders as €]
plained in Section IlI-D, the JBL-S coder is essentially implementel
trivially as a special case of the JBL coder with a piecewise-planar in
age model. In this case, the set of horizons is empty, and consequer.
the horizon bits and direction values do not need to be coded. (a) (b)

V. Shortcomings of the JBL Coder

Having introduced the JBL coder, we now discuss some of its shor M
comings. By understanding the weaknesses of this coder, we can g

better insight into how we might improve upon them. The modifica;
tions to the coder that we propose later are motivated by the desire

overcome these deficiencies. W

(c) (d)
A. Choice of Base Mesh
One of the strengths of the JBL coder is its fast asymptotic error-dec: %
rate for horizon-class images. This fast rate is, in part, due to the abili
of the JBL coder to quickly locate new horizon vertices. Two different ]
mechanisms are available to the JBL coder for assisting in the locatic 2

of horizon vertices: 1) the choice of base mesh, and 2) the adaptivi
inherent in normal subdivision. Unfortunately, the JBL coder (which Lk\
uses a trivial data-independent base mesh) relies solely on the sect % Wl WVE
of these mechanisms in order to quickly locate enough horizon ve
tices to form good polyline approximations of horizons. As a resul
normal subdivision usually introduces many nonhorizon vertices a
such vertices do not help to improve polyline approximations of hori
zons. Furthermore, many of these new nonhorizon vertices will also be (e) U]
positioned far away from any horizon, therefore, making a relatively
smaller contribution to achieving a good surface approximation. This
situation is undesirable, as it ultimately leads to reduced coding effigure 3: Ineffectiveness of a data-dependent base mesh focithe! e3 image. The
ciency. Furthermore, this degradation in coding efficiency can be @g§ginal image superimposed on the (a) base mesh, and the mesh after (b) one, (c) t
pecially significant at low bit rates, where performance often depen@three, (e) four, and (f) five levels of subdivision.
very critically on the fast location of horizon vertices. In essence, the
problem here is that, by using a data-independent base mesh (as op-
posed to a data-dependent one), the JBL coder severely restricts itgy further observation, we notice that the image surface is not arbi-
ability to quickly locate horizons. trary. Due to the piecewise-constant interpolation used to generate the
o image surface, any point on the surface has at least one of gtsor
The above problem is illustrated by way of the example shown incoordinates being integer. This suggests that the JBL coder might be

Figure 3. In this example, we have the imade cl e3 consisting of a improved by exploiting this special property of the image surface.
single solid-gray circle that we wish to code using the JBL coder. The

figure shows the mesh obtained after each of several levels of subdiv

sion (superimposed on the original image). In a good polyline approx-
imation of a horizon, triangle edges should not cross the horizon; they
should instead be tangential to the horizon curve. Unfortunately, even
after five levels of subdivision, the resulting very dense mesh does not

form a particularly good polyline approximation of the circle boundhe third shortcoming of the JBL coder involves the scheme employed
ary. There is, however, good reason to believe that, Wl_th an |nteII|ger_1;b(r scan conversion. Ideally, we desire a scan-conversion sctieae
chosen data-dependent base mesh, a better approximation of 8orizgaseres both smooth regions in an image and sharp intensity changes
can be achieved. along horizons. The piecewise-planar interpolation scheme employed
by the JBL coder yields an interpolant that is smooth within each tri-
angular domain (of the parameter-plane triangulation) but is not usu-
B. Normal/Vertical Offset Format ally smooth at the boundaries of these domains, due to mismatches
The second shortcoming of the JBL coder involves the representatiBriartial derivatives along the boundaries of neighboring domains. A
it employs for normal/vertical offsets. An offset measures the digtanBigher-order interpolation scheme could improve the smoothness of
from a base point to its associated piercing point. Since neither t interpolant along domain boundaries. For this reason, there is quite
base point nor the piercing point falls on an integer grid, they can kely room forimprovement in the scan-conversion method employed
anywhere on the image surface. The offset measuring the distance®ethe JBL coder.
tween the two points is a real number.

Scan Conversion



6 CAN. J. ELECT. COMPUT. ENG., VOL. XX, NO. XX, MONTH YEAR

VI. Proposed Modifications to the JBL Coder

Having identified some shortcomings of the JBL coder, we now pro-
pose three modifications to it in order to overcome these weaknesses.
As we will later show, each of these changes leads to improved coding
performance.

A. Choice of Base Mesh

Our first modification to the JBL coder affects the choice of base
mesh. In particular, we propose the use of an intelligently chosen data-
dependent base mesh (instead of a data-independent one). As men-
tioned earlier, a data-dependent base mesh can help to achieve good Figure 4: Example of a data-dependent base mesh focthecl e3 image.
polyline approximations of horizons using relatively few vertices. In

simple terms, our base-mesh generation method uses image-edge in-

formation to produce a set of horizon vertices to be employed in the . ) ) ) )
base mesh. These horizon vertices along with some extra points Bigié connectivity information for the triangulation, as knowing only

then triangulated to form the base mesh. In what follows, we descrilit¢ constrained segments will suffice. This is highly desirable, as any
our base-mesh generation method in more detail. additional connectivity information that must be coded will negatively

impact coding efficiency. For this reason, we employ a constrained DT

Since our base-mesh generation method requires image-edge in%;tr‘]glz?;ﬁgﬁd directions [18] in order to ensure the uniqueness of the

mation, the first step in our method is to locate all of the edge pixetlré
in the image. This is accomplished by using a Canny edge detector.
To avoid potential problems in subsequent processing, any intersect, . )
ing edges are split at their intersection points. Thus, the output of tﬂw Although we could use a constrained DT of the poititand seg

edge-detection process is always a set of edges that do not intergg%rt]tSE to form the base mesh, we elect not 1o do so. Instead, we
each other except possibly at their endpoints. some extra pointg; (called Steiner points) t&". Then, we per-

form a constrained DT of the pointg U V; and segment&. This

. further improves the quality of the triangulation by obtaining a more
Once the image edges have been found, for each edge, we Mty vertex distribution and avoiding sliver triangles. The Steiner

select a subset of its pixels that effectively capture its shape, callefd a5y are generated by the Triangle software [19]. Unfortunately

critical set. To do this, curvature information for the edge is employef},, giainer points have realandy coordinates. To overcome the in- '

Using the method of [17], we compute an estimate of the curvat ?ficiency of coding real coordinates, the coordinates of Steiner points

of the edge at each of its constituent pixels. Initially, we select as t o rounded to the nearest pixel centers. In other words, the rdunde

critical set, the first and _Iast pixels of the_edge as well as every pi)@*einer points have bothandy coordinates being elements §Z0dd_

whose purvature value IS a_b(_)ve a certain thres_hold. In th's way, @ arly, no Steiner points could be a horizon vertex, since none of the
edge with sharp Cusps IS divided into several PIECES. This approdyhrdinates of the Steiner points is an integer. Therefore, the rounding
solve_s the pote_ntlal_ problem of ”e‘?d'”g many pixels to form a 99%heration also eliminates the need for storing horizon bits pertaining to
polyline approximation at places with large curvature. The precedifie gioiner points. Furthermore, since the rounding of the Steiner point
critical set is then augmented by including more pixels such that thg, jinates changes the vertex geometry only very slightly, the good

; . '. istribution is maintained in th - nden mesh.
of the local curvature of the edge. In this way, we include more plxe?sj[él tex distribution is maintained in the data-dependent base mes

in regions where the edge bends sharply and fewer pixels in regions

where the edge is relatively straight. As it turns out, due to the geometry of the vertices in our data-
. ) ) dependent base mesh, many edges in the constrained DT are also edge
Once the critical sets of pixels for the image edges have been ggthe DT (i.e., many constraints are inactive). The large number of in-
termined, this information must be mapped into geometric structurggtive constraints can be partly attributed to the short segmerifs in
in the continuous domain. For each edge, the critical set of pixelsgfd good distribution of vertices in the planar straight line graph. As an
converted into a polyline approximation of a horizon in the contintgptimization, we only encode the constrained segments that affect the
ous domain. This is accomplished as follows. First, pixels from th@sulting constrained DT. In this way, the (constrained-segment) infor-

critical set are mapped to points in the parameter plane. Then, the gation that needs to be coded for the base mesh can be significantly
sulting points are joined by line segments in such a way as to maintaéijuced.

the same connectivity that these points have on the image edge from
which they were derived. Since pixel centers are aligned on the lat-
tice %Zodd and horizons fall on (unit-square) pixel boundaries, horizon To illustrate the benefits of a data-dependent base mesh, we pro-
points will always have at least one of theior y coordinates being in- vide an example of a base mesh generated by our (above) method.
teger. This preceding discrete-to-continuous-domain mapping gocés particular, we consider thei r cl e3 image from an earlier ex-
yields a set of polyline approximations of horizons. In what followsample. For this image, the base mesh produced using our method is
let V and E denote, respectively, the set of horizon points and linshown in Figure 4 (superimposed on the original image). Although
segments associated with the polyline approximations of horizons. the mesh contains relatively few vertices, it still manages to provide a
good approximation of the horizon (i.e., circle boundary). For campa
The last step in our base-mesh generation method is to prodimen purposes, recall the earlier results from Figure 3, which show the
a triangulation of the parameter plane from which the base-meshrégined meshes for the same image obtained from a data-independent
trivially obtained. In particular, we want to construct a triangulationase mesh. Evidently, in spite of having significantly fewer vertices,
containingV” as triangle vertices an# as triangle edges. Since somethe base mesh in Figure 4 generated using our method has a much
edge constraints are imposed on the triangulation process, we carireiter polyline approximation of the horizon than the refined mesh in
use a Delaunay triangulation (DT) (since a DT may not exist). In digure 3(f) generated from a data-independent base mesh. This ex-
attempt to obtain a triangulation with good angle properties, we uaeple clearly demonstrates that, by carefully choosing the base mesh
a constrained DT. Furthermore, for any given set of points and comsing our method described above, superior polyline approximations
strained segments, we would like to produce a constrained DT thabishorizons can be obtained with fewer vertices (compared to when a
unique. If the triangulation is unique, we do not need to code the cogtata-independent base mesh is employed).
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B. Normal/Vertical Offset Format
Our second modification to the JBL coder involves the representi
tion of normal/vertical offsets. Since integers can be more efficientl
coded than real numbers, we propose to identify each piercing poi
with an integer instead of a real number. Recall that an offset is a re
value measuring the distance between a base point and its correspo
ing piercing point. Due to the piecewise-constant interpolation proce: 7
used to generate the image surface, we observe that at least one of ,///%;},,,/ Z
g 7

/ 7 /
x, y, or z coordinates of each piercing point must be integer. There '4////,/4//////»v v
fore, along the normal/vertical search line through the base point, &} ’)AA )A“

possible piercing points can be identified, by finding all intersection]_~N\|/—1 "\ N VAN

of the search line with planes of the form= ¢, y = ¢, andz = ¢, b

wherec € Z. In this way, all possible piercing points can then be enu- @ (®)

merated W'Fh an !nte.ger 'nqex' Th|s index Can be,used FO spemfy Wh'ﬁiGure 5: Two cases for the proposed interpolation scheme. Interpolation (a) away from
of the possible piercing points is the actual piercing point. By using 8@ norizons, and (b) near a horizon.

integer index instead of a real number for each offset, coding effigien

can likely be improved.

<\
AVQ/;% .

o)
KLLE
i

Table 2: Summary of features for the various coders

Image Offset Scan
C. Scan Conversion Coder In_terpolantModeI Base Mesh |Forma Cc_nnvers_,ion
Our third modification to the JBL coder is in the interpolation scheme JBL-S plelt:iw:sehnﬁ;- ind datﬁd nt R plelce;mrse
used for scan conversion. In short, we propose the use of a higtier- IBL plana ho 1zor) edpet € R plana
interpolant in order to improve the smoothness of the reconstructed piecewisehorizon ata piecewise
images at the boundaries of triangular domains in the parameter-plane. constant| independent _plana_r
triangulation, while still maintaining sharp image edges. Our method gnhancedpleceW|seh0r|zonde_1ta dependerR or Z pIecewise |
based on the bicubic interpolation technique described in [20, pp. 446- constant findependent planar/bicubig

449], which yieldsC*-continuous surfaces (i.e., surfaces with contin-

uous first-order partial derivatives).
Table 3: Summary of data for the enhanced coder

Since we wish to preserve sharp edges in the image, we cannot si Data Name Type Ranglf of Va‘LEfH
ply apply the above technique from [20] without modification, as thig ] offset RorZ|+max{2" —1, 75
would have the undesirable effect of badly blurring edges. To avoid direction value Z {0,1,2
unnecessarily blurring edges, we modify the behavior of the preceding horizon bit boolean {0,1}
technique in the vicinity of horizons. In effect, this leads to two dis number of horizon verticés 7 —
tinct cases, depending on whether or not the triangular domain being number of Steiner points| Z —
processed borders on a horizon edge. These two cases are illustrgted [, horizon 1Z OtoWw — 1
in Figures 5(a) and 5(b). In each case, part of the parameter-plane | 554 Steiner I
angulation is shown, and the triangular domain over which we wisr}n T - 21

. ; . : eshy horizon Y4 OtoH —1
to form an interpolant is denoted by a vertically-hatched triangle. The Sieiner 122
solid-white and solid-gray areas denote two different regions seplarate 2odd -
by a horizon. ___Z L 0to2” —1
active line segmeht Z —

In the first case, shown in Figure 5(a), the triangular domain being fonly employed when using data-dependent base mesh
processed does not border on a horizon edge. Here, we directly app
the method of [20], which generates an interpolant that passes through
the three points associated with the three vertices of the triangle in the
mesh, and also has first-order partial derivatives that are contnuou
along the boundary of (as well as inside) the triangular domain. All

1-ring neighbors (i.e., diagonally-hatched triangles) of the triangulgy order to facilitate the further analysis of our three proposed JBL-
domain being processed are used to determine the necessary pafigbr modifications, we added support for these changes to our orig-
derivative information. That is, all vertex/height-value pairs in and ofp 4 implementation of the JBL coder, resulting in what we refer to
the boundary of the diagonally-hatched regions are used for interpoj&; our enhanced coder. For convenience, we summarize the main fea
tion. tures of the various coders (i.e., the JBL, JBL-S, and enhancexts)od
o ) in Table 2. The enhanced coder supports all combinations of data-

In the second case, shown in Figure 5(b), the triangular domaifiependent/data-dependent base mesh, real/integer offsets, and pla
being processed borders on a horizon edge. Here, when determpjgr/bicubic scan conversion. In what follows, we introduce some de-
ing the interpolant for a particular triangular domain, we use onlils regarding the enhanced coder. Since the enhanced coder is similar
vertex/height-value pairs from the same side of the horizon as the {i-many ways to the original version, we focus our attention only on
angular domain being processed. The region comprised of neighbaye details that differ.
ing triangles (i.e., the diagonally-hatched region) straddles the horizon.

We use only vertex/height-value pairs in and on the boundary of theTapje 3 shows the data that needs to be coded for the enhanced

diagonally-hatched white-shaded regions for interpolation, since thgger. The real or integer offset data is assumed to be entropy coded

triangular domain being processed is also from the same side of {ifere the corresponding bit rate can be estimated using (2). In the

horizon (i.e., the white-shaded as opposed to gray-shaded region). case that integer offsets are employed, the specified quantizer step size
o ] o ) parameterg should satisfyg > 1. If ¢ = 1, quantization is effec-

By combining the interpolants for each of the individual triangulafively bypassed, and no information is discarded by quantization. The
domains, a complete interpolated image surface is obtained. By sajit-rate corresponding to the direction-value and horizon-bit data can
pling this surface on a rectangular grid aligned to the pixel centers fia estimated using (3), as in the JBL coder. The total number of bits
the parameter plane, a rasterized image is generated. required for the coded image can be calculated using (4) Rétbead

being modified to include the extra information needed for the data-

VIl. Enhanced Coder
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dependent base-mesh (e.g., the numbers of horizon verticesagindrS 5, — 4 o
points in the base mesh, vertex locations, height values, and acti
constraint segments for the constrained DT).

. + .

— -+-JBL-S

_— [~mLs 30 o
] v 28 —xA
—XA z
z ——JPEG2000
o

- . Lol
Consider now the coding of the base mesh. Here, we focus only & |7 —+— JPEG2000 2
24

28|

the case of a data-dependent base mesh, since the data-indeper =y u [
case is simply handled as described earlier in Section IV. We use 2 . .o wes oo e 2t o
bits for each of the numbers of horizon vertices and Steiner points  2of ..~ 20|

the data-dependent base mesh. In the subsequent discussidin, let -5, wd Lo
H, and P denote the width, height, and the number of bits per samp.._ Normalized Bit Rate x10° Normalized Bit Rate

of the original image, respectively. Since they and z coordinates () (b)

of vertices of the base mesh tend to have fairly uniform distributions,

we choose to not use any entropy coding for this data. For the hdfrigure 6: Coding performance for the (@awand (b)pepper s images using the JBL-S,

zon vertices in the base mesh, each of thendy coordinates is an JBL, XA, and JPEG-2000 methods.

element of%Z. Furthermore, we know that if the coordinate is an

integer, the correspondingcoordinate must be an eIement%ﬂodd,

and vice versa. Consequently, we need only code the (single-bit) frac-Since we are primarily interested in low bit rates in our work, when

tional part of either ther or y coordinate. In our case, we choose tave subsequently use qualifiers like “low” or “high” for the bit rate,

code only the fractional part of the coordinate. Thus, each of the these qualifiers should be understood in relative terms (i.e., relative

andy coordinates is represented usifigg, W] + 1 and[log, H] to the range of bit rates under consideration in our study). In what

bits, respectively. In the case of Steiner points in the base mesh, fokows, we evaluate the performance of each of our three proposed

observe that such points always havandy coordinates each being modifications to the JBL coder in turn.

an element ogZodd. Thus, we need not code the (single-bit) fractional

part of these values (which is always one). So, for Steiner points, we

use[log, W and[log, H bits to represent eachandy coordinate,

respectively. The four corner points of the image bounding box are &- Choice of Base Mesh

ways chosen as vertices in the base mesh. Theindy coordinates To begin, we consider our proposed modification to the JBL coder

can be derived from the size of the image, and therefore do not nesfdemploying a data-dependent base mesh. In what follows, we re-

to be coded. Each coordinate in the base mesh is represented usifigr to the JBL coder with this change by the name “XA". To assess

P bits. The (active) constrained line segments for the base mesh #re value of our proposed change, numerous test images were com-

coded as a list of pairs of vertex indices, where vertices are indexgabssed at various bit rates with both the JBL and XA methods and the

according to their order of appearance in the code stream. results were examined. In what follows, we provide a representative
subset of these results for tipaw andpepper s images. For refer-

The code stream format employed by the enhanced coder is vence purposes, we also include results obtained from the JBL-S and
similar to that of the original coder. Some basic information is include(ih some cases) JPEG-2000 [3] coders. To maintain a fair comparison
in the header (e.gly/, H, etc.). Then, ther, y, andz coordinates of for the mesh-based methods, the number of subdivision levels for eac
the base mesh are coded as explained above. Finally, the data asseethod was chosen so that the final-mesh vertex counts would be as
ated with different levels of subdivision are coded, starting from datdose to one another as possible (without giving an unfair advantage
associated with the smallest subdivision-level index and proceedingd@oour XA method). Since these counts can only be controlled very
the data associated with the largest subdivision-level index. coarsely, it is only possible to have them match to within a factor of

about three. More specifically, for thawimage, the JBL and JBL-S

Note that, since we do not entropy code the base mesh inforng@ders use six levels of subdivision, resulting in 4225 vertices, while
tion, there are probably more efficient schemes for handling this dathe XA coder uses two levels of subdivision, resulting in 3308 vertices.
At high bit rates, the base mesh information constitutes only a sm&fr thepepper s image, the JBL and JBL-S coders use seven levels
fraction of the entire code stream. Consequently, the price paid for raftsubdivision, resulting in 16641 vertices, and the XA coder uses two
entropy coding the base mesh information is relatively small. At lolgvels of subdivision, resulting in 6543 vertices. In what follows, we
bit rates, however, the base mesh information can consume a more skpmine the results obtained in detail.
nificant fraction of the entire code stream. So, the cost of not entropy
coding the base mesh information is more significant in this case. InThe rate-distortion plots obtained for tipaw andpepper s im-
spite of our choice not to entropy code the base mesh data, howeegles using the various methods are shown in Figure 6. From these
we still obtain reasonably good performance at low rates. We leaveasults, we can see that, at high bit rates, the XA coder outperforms
as a subject of future work to explore the use of more sophisticatdte JBL and JBL-S coders, and the XA coder even outperforms the
coding schemes for the base mesh information (perhaps, by perfod®EG-2000 coder in the case of fhewimage. At low bit rates, how-
ing differential coding of the vertex coordinates). ever, the XA coder can sometimes perform more poorly than the other
three methods due to the rate overhead associated with the base mesh
(which is not entropy coded in our scheme). As mentioned earlier,
clever schemes for coding the base mesh, however, could reduce this
overhead, and significantly improve the coding efficiency of the XA
method at low bit rates. From the coding results, we can also see that,
at low bit rates, the JBL coder performs worse than the JBL-S coder,
Earlier, we suggested that our proposed modifications to the Ji{hile athigh bit rates, the JBL coder performs better than or compara-
coder improve its performance. In the sections that follow, we sug!-e to the JBL-S coder. The superior performance of the JBL coder at
port our claim through experimental evidence. Although numerous B it rates can be attributed to the higher efficiency of the horizon
bit grayscale test images were employed in our Wovke focus our model, while the inferior perform_ance z_alt low blt_rate_s can be attributed
attention on the results for two representative images herein, namé&fthe overhead of encoding horizon bits and direction values.
the paw andpepper s images. Thepepper s image is taken from ) o ]
the well known USC image database [21] (and has dimensions ofNow, we consider the subjective performance of the various meth-

512 x 512), while thepawimage is our own synthetic test image withods. For the case of theaw andpepper s images, examples of the
dimensions 0024 x 1024. obtained reconstructed images are shown in Figures 7 and 8, respec-

tively. In the first case, the final mesh employed by each method is
1For details on the other test images employed in our work, sée [1 shown superimposed on the original image with the horizon vertices

VIII. Experimental Results
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Figure 8: Coding example for thpepper s image. Portions of the (a) original image and
the lossy reconstructions obtained at about 29:1 compression usiig)thBL-S, (c) JBL,
and (d) XA methods.

in the reconstructed image for the XA coder can be attributed to inac-
curacies in the estimation of the location and curvature of horizons.

(e

B. Real Versus Integer Offsets

Figure 7: Coding example for th@aw image. Lossy reconstructions obtained at abouNow, we consider our second proposed change to the JBL codeh whic
400:1 compression using the (a) JBL-S, (c) JBL, and (e) XA methods. Thespamding  iS to use integers rather than real numbers to represent normal/vertical
final meshes employed by the (b) JBL-S, (d) JBL, and (f) XA methods. offsets. To evaluate the effectiveness of our proposed changgrate
test images were coded with the XA coder at various bit rates using
both real and integer representations of offsets. Some representativ
results obtained in the case of thawimage (using two levels of sub-
ivision) are shown in Figure 9. From this graph, we can see that, at
W to medium bit rates, integer offsets yield better results than real

. ; . . ; ﬁsets, with the difference being more pronounced at medium rates,
noticeable distortion. Clearly, the XA method approximates horlzo%h”e in the high bit-rate case, gompargble results are obtained with

much.better than the JBL gnd JBI."S methods. Examining the rec‘?‘l[?feger and real offsets. It is worth noting that similar results as above
structions of thepepper s image in Figure 8, we can see that the

results obtained with the XA method are comparable to those obtairfs‘eI ?err]?rl]iénotre ;rsns 8:)3 l;??gg}/gf'f?eig)e quality (i.e., integer offsets are
with the JBL and JBL-S coders, in spite of the fact that the JBL an 9 ’
JBL-S methods have meshes with about 2.5 times more vertices than
the XA case. On this basis, it is reasonable to conclude that the XA

scheme is superior to the JBL and JBL-S schemes.

denoted by circles. Examining the results for thew image in Fig-
ure 7, we can see that very significant edge distortions occur in t
case of the JBL and JBL-S methods, while the XA scheme has lit

C. Planar Versus Bicubic Interpolation

Let us again consider the subjective results forghagvimage, in- Lastly, we consider our third proposed change to the coder, which is
cluding the final meshes produced by the various methods, as shd@mise bicubic instead of planar interpolation for scan conversion. To
in Figure 7. By examining the final meshes, we can see why the X@ssess the valug of this change, both planar and blcub!c interpolation
method is able to outperform the JBL and JBL-S methods. The me&Rre employed in the XA coder to compress numerous images at var-
for the JBL-S method has some larger-area triangles that straddle hisiis bit rates. Some representative results obtained in the case of the
zons. This leads to very visually disturbing artifacts such as those n@&Pper s image (using two levels of subdivision) are shown in Fig-
the rightmost pad of the paw in Figure 7(a). By explicitly modelling/re 10. From the_se results, we can see that _blcut_)lc interpolation out-
horizons, the JBL and XA methods are able to locate horizon veterforms planar interpolation, especially at high bit rates. In terms of
tices faster, and reduce distortions in large regions. Furthermore, #jective image quality, bicubic interpolation also leads to superior
XA method, with a data-dependent base mesh, locates horizon vésults, as it tends to better preserve smoother regions in images, with-
tices faster and approximates horizons better than the JBL and JBIC!§ destroying sharp intensity changes at horizons.
schemes. As an aside, we note that the small triangular teeth occurring
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Figure 10: Coding performance for the
pepper s image using planar and bicubic
interpolation.

Figure 9: Coding performance for thpaw
image using real and integer offsets.
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In this paper, we proposed three modifications to the JBL coder and
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serve edges better. Also, we showed that using a normal/verticat-offse
representation based on integers (instead of real numbers) yielgls sup
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