
PROGRESSIVE LOSSY-TO-LOSSLESS CODING OF ARBITRARILY-SAMPLED IMAGE
DATA USING THE MODIFIED SCATTERED DATA CODING METHOD

Michael D. Adams

Dept. of Elec. and Comp. Eng., University of Victoria, Victoria, BC, V8W 3P6, Canada

ABSTRACT
In earlier work, Demaret and Iske proposed the scattered data cod-
ing (SDC) method for (single-rate) coding of arbitrarily-sampled im-
age data. In this paper, several modifications to the SDC method
are proposed in order to remove some limitations of the original
scheme, improve coding efficiency, and add a progressive lossy-to-
lossless coding capability. Through experimental results, the pro-
posed method is shown to yield a significant improvement in coding
efficiency (relative to the original SDC method) as well as provide
an efficient progressive lossy-to-lossless coding capability.

Index Terms— image coding, meshes, progressive coding

1. INTRODUCTION

In recent years, there has been a growing interest in image coding
methods that better exploit the nonstationarity and geometric proper-
ties of images. Many of these methods (e.g., [1, 2, 3, 4]) are based on
the idea of employing arbitrary sampling (i.e., sampling at an arbi-
trary subset of points from a lattice). In this context, the need to code
arbitrarily-sampled image data arises. One highly effective scheme
for the coding of such data is the scattered data coding (SDC) method
proposed by Demaret and Iske [2]. Unfortunately, the SDC coder, as
originally proposed in [2], has some significant limitations. In partic-
ular, the width and height of the image to be coded are assumed to be
equal and integer powers of two. Also, images with high-precision
sample data cannot be handled (more specifically, images where the
number of bits per sample is greater than the number of bits needed
to represent the image width/height). This is problematic for vari-
ous types of medical/scientific imagery. Lastly, the SDC coder, as
originally proposed, did not address the issue of progressive coding
functionality. In many applications, progressive coding functionality
is beneficial or even required. In this paper, we propose a modified
version of the SDC coder that eliminates the above limitations, of-
fers improved coding efficiency, and most importantly provides an
efficient progressive lossy-to-lossless coding capability.

The remainder of this paper is structured as follows. First, Sec-
tion 2 introduces some of the basic notation used herein. Section 3
provides some background information related to the SDC coder.
Then, Section 4 proposes a modified version of the SDC coder, and
explains how it can be used for progressive coding. Section 5 ex-
plores the impact that various parameters of our modified coder have
on coding efficiency. This section also compares the coding per-
formance of the proposed method to the SDC method, showing the
proposed scheme to yield better performance. Finally, Section 6 con-
cludes this paper with a summary of our work.

2. NOTATION AND TERMINOLOGY

Before proceeding further, a brief digression is in order concerning
the notation used herein. The sets of integers and real numbers are

This work was supported by the Natural Sciences and Engineering Re-
search Council of Canada.

denoted as Z and R, respectively. For x ∈ R, �x� denotes the largest
integer not greater than x, and �x� denotes the smallest integer not
less than x. For a,b ∈ Z, the notation [a,b] and [a,b) denote the
subsets of Z given by {x ∈ Z : a ≤ x ≤ b} and {x ∈ Z : a ≤ x < b}.

3. BACKGROUND

A grayscale image is a function f defined for points (x,y) in the
image domain D ∈ Z

2, where x, y, and z = f [x,y] correspond to hor-
izontal position, vertical position, and intensity, respectively. Sup-
pose that a dataset has been generated by sampling f at an arbitrary
subset of points in D . We would like a convenient data structure
for representing such a dataset as well as an algorithm for efficiently
coding the information in this structure. In what follows, let W and H
denote the image width and height, respectively, and assume that the
sample values are unsigned integers in [0,D). The SDC method [2]
views the above dataset as a collection of points in the 3-dimensional
(3-D) region I = [0,W)× [0,H)× [0,D). In particular, each sample
position (xi,yi) and corresponding sample value zi is represented by
a sample point (xi,yi,zi) in I . In short, the SDC method uses a tree-
based data structure to represent this collection of sample points, and
provides an algorithm for efficiently coding the information in this
structure. In what follows, we propose a modified version of the
SDC method, called the modified SDC (MSDC) method, that over-
comes some limitations of the SDC scheme and further improves
performance. Due to the similarities between the SDC and MSDC
methods, we will simply introduce our MSDC method in full, and
briefly comment on how it differs from the SDC scheme. For a com-
plete description of the SDC method, the reader is referred to [2].

4. MODIFIED SDC METHOD

Image Tree. In a similar (but not identical) fashion as the SDC
approach, the MSDC method uses a tree-based data structure,
called an image tree, to represent the set of sample points in
I . An image tree is associated with an L-level octree partition-
ing of I into (3-D) hyperrectangular regions called cells, where
L = �log2 max{W,H,D}�+ 1. The root cell of the octree is chosen
as I , and the remaining cells are generated by recursively splitting
the root cell. In particular, a given cell C = [x0,x1)× [y0,y1)× [z0,z1)
is split at its approximate midpoints in the x, y and z directions to
yield eight new child cells {Ci}i∈[0,8) as shown in Fig 1 (e.g.,
C0 = [x0,xm)× [y0,ym)× [z0,zm)). For convenience, the size of a
cell is expressed using the notation x× y× z, where x, y, and z are
the extents of the cell in the x, y, and z directions, respectively. As a
matter of terminology, the volume of a cell is defined as the number
of lattice points (from Z

3) it contains. A cell is said to be degenerate
if it has zero volume, empty if it contains no sample points, and full
if the number of contained sample points equals the cell volume.
Also, a cell is said to be atomic if it is neither empty nor full, and its
volume is four or less.

z
y

x

C0 C1

C5C4

C6 C7

C3

z1

z0

zm

x0 xm x1

y0

ym

y1

C2 (hidden) pm = (xm,ym,zm) xm = � x0+x1+1
2 �

ym = � y0+y1+1
2 � zm = � z0+z1+1

2 �
C0246 = C0 ∪C2 ∪C4 ∪C6

C1357 = C1 ∪C3 ∪C5 ∪C7

C04 = C0 ∪C4 C26 = C2 ∪C6

C15 = C1 ∪C5 C37 = C3 ∪C7

Fig. 1. Cell splitting.

As the name suggests, an image tree is a tree-based data struc-
ture. Each node in the tree is associated with: 1) a cell C in the octree
partitioning of I ; 2) a count indicating the number of sample points
contained in C; and 3) if C is atomic, an indication of which lattice
points in C are occupied by sample points. The root node of the tree
is associated with the root cell of the octree partitioning of I , and the
remainder of the tree is constructed by recursively splitting the root
node. This node splitting process works as follows. Let Q denote a
node to be considered for splitting, and C its corresponding cell. If
C is empty, full, or atomic, we do nothing (since such cells are not
split). Otherwise, we split C as shown earlier in Fig. 1 to produce the
child cells {Ci}i∈[0,8). For each nondegenerate cell C′ in {Ci}i∈[0,8),
a new child node is added to Q with a corresponding cell C′. Thus,
the maximum number of children that Q can possess is eight. Lastly,
each of newly added child nodes is (recursively) split.

Now, we briefly outline the differences between the image-tree
data structure used in our MSDC method (described above) and that
used in the SDC method. The key difference is the way in which the
cell splitting point pm is chosen in Fig. 1. The SDC coder can simply
choose pm as (x0+x1

2 , y0+y1
2 , z0+z1

2), since this quantity is always an
integer lattice point as a consequence of the restrictions that the coder
imposes on W , H, and D. Since our MSDC coder imposes no such
restrictions, it must employ the more general formula for pm given
in Fig. 1 (which involves a rounding operation). In the SDC method,
all nonleaf nodes must have eight children (since degenerate cells
cannot occur during node splitting), while in our MSDC method,
degenerate cells can arise, and consequently nonleaf nodes can have
less than eight children. In the SDC method, an atomic cell always
has size 2× 2× 1. In our scheme, we have extended the definition
of an atomic cell to also include several other cell sizes (which are
identified later).

Due to the manner in which an image tree is constructed, every
sample point from the original arbitrarily-sampled image dataset is
associated with a leaf node in the tree. Consequently, the dataset
can be losslessly reconstructed from the leaf nodes. Now, we make
a crucial observation, namely, that approximations of the original
dataset can be obtained from pruned versions of the tree. In par-
ticular, given a pruned tree, we can generate the sample points for
such an approximation as follows. For each leaf node Q with corre-
sponding cell C, if C is nonempty, do the following: 1) if all sample
points in C are known (i.e., C is full or atomic), generate one sample
point for each known sample point in C; 2) otherwise, generate a
single sample point corresponding to the (approximate) centroid of
C (i.e., (� x0+x1

2 �,� y0+y1
2 �,� z0+z1

2 �) in Fig. 1). Since pruned versions
of an image tree are associated with approximations of the origi-
nal dataset, we can obtain a progressive encoding of the dataset by
coding the information in the tree using a top-down traversal of its
nodes.

Coding of Image Tree. Having introduced the image tree, we
now explain how the information in such a tree is coded. Unlike
the SDC method (which employs Huffman coding), our scheme em-

ploys multisymbol arithmetic coding [5]. In what follows, whenever
we refer to coding an integer i ∈ [0,m) as an m-ary symbol, we sim-
ply mean that i is arithmetically coded using a fixed uniform prob-
ability distribution. For convenience, we define the case of m = 1
(i.e., coding a symbol from the alphabet with the single symbol 0) to
be a no-op (i.e., an operation that does nothing). Below, we describe
only the encoding process, since from it, the decoding process can
be easily deduced.

As explained earlier, we can generate a progressive encoding of
an image tree by coding information using a top-down traversal of
the tree. The only constraint on traversal order is that a node cannot
be visited before its parent. To facilitate the use of different traver-
sal orders, we employ a (heap-based) priority queue called the work
queue. The work queue simply serves to hold nodes awaiting pro-
cessing by the encoder. The function used to compute node priority
determines the traversal order. Any legal traversal order can be ob-
tained with an appropriate choice of node-priority function.

To begin encoding, a small fixed-length header is written con-
taining W , H, and D. Then, the work queue is cleared, and the
arithmetic coding engine is initialized, as all subsequent symbols
are arithmetically coded. For the root node, the number n of sample
points in I (where n∈ [0,WH +1)) is coded as a (WH +1)-ary sym-
bol. The root node is inserted into the work queue. Then, we loop,
processing nodes from the work queue until it is empty. In each iter-
ation, we remove the next (i.e., highest priority) node from the work
queue. If the node is empty or full, do nothing. Otherwise, encode
the node’s child information using a process to be described shortly.
For each child node (of Q), compute its priority and insert it into the
work queue.

Now, we describe how the child information for a node Q with
cell C is coded. There are two cases to consider: 1) C is not atomic,
and 2) C is atomic.

Case 1: If C is not atomic, we proceed as follows. Let c(K)
denote the number of sample points in a cell K. We need to split the
cell C as shown in Fig. 1. For the time being, let us assume that no
degenerate cells are produced during the splitting process. First, we
split C in the x direction to yield two new subcells C0246 and C1357.
Then, we code c(C0246) as a [c(C)+ 1]-ary symbol. Next, each of
the two cells from the preceding step are split in the y direction to
yield four subcells C04, C26, C15, and C37. Then, we code c(C04) as a
[c(C0246)+1]-ary symbol and c(C15) as a [c(C1357)+1]-ary symbol.
Next, each of the four cells from the preceding step are split in the z
direction to yield the eight subcells {Ci}i∈[0,8). Then, we code c(C0)
as a [c(C04) + 1]-ary symbol, c(C1) as a [c(C15) + 1]-ary symbol,
c(C2) as a [c(C26)+ 1]-ary symbol, and c(C3) as a [c(C37)+ 1]-ary
symbol. During the above split operations where a cell is split in
two, we need only code the number η0 of sample points that lie in
one of the two new subcells, since the number η1 of sample points
in the other subcell can be deduced from η0 and the number η of
points in the cell being split (i.e., η1 = η−η0). During each of the
above split operations, it is possible that one of the two new subcells
produced may be degenerate. In this case, all of the sample points
must lie in the nondegenerate subcell, and no information need be
coded for the split operation.

Case 2: If C is atomic, the coding process proceeds as described
below. In what follows, let v and c respectively denote the volume
of C and number of sample points contained in C. The only possible
cell sizes and corresponding count values are as follows: 1) 1×4×1,
2× 2× 1, and 4× 1× 1, with c ∈ [1,3]; 2) 1× 2× 2, 1× 3× 1,
2× 1× 2, and 3× 1× 1, with c ∈ [1,2]; 3) 1× 1× 2, 1× 1× 3,
1× 1× 4, 1× 2× 1, and 2× 1× 1, with c = 1. For some cell sizes,
not all values of c ∈ [1,v) are possible. For example, a cell with size

1×1×3 cannot have c = 2, since this would require a single sample
position to have multiple distinct sample values. For nearly all of
the cell sizes listed above, there are n =

(v
c

)
possible configurations

of sample points within the cell. The only exceptions are the sizes
2× 1× 2 and 1× 2× 2. In these cases, we nominally have

(4
2

)
= 6

possibilities. Two of these cases, however, cannot occur, since we
cannot have two sample points with the same x and same y coordi-
nates but distinct z coordinates. In these cases, only four possible
sample-point configurations are possible. Let n be the total number
of sample-point configurations for C. We code a value i ∈ [0,n) as
an n-ary symbol to indicate which of the n possible sample-point
configurations has actually occurred.

Now, a few further comments are in order regarding the rela-
tionship between the MSDC and SDC methods. In the case that
W , H, and D are all integer powers of two and W = H, the MSDC
coder essentially degenerates into the SDC coder with the addition
of arithmetic coding and progressive coding functionality. This de-
generate situation, however, does not arise so frequently in practice,
as (statistically speaking) most images are not square with integer-
power-of-two dimensions. With regard to atomic (i.e., unsplittable)
cells, the motivation behind their use is to prevent the splitting of
many small cells. In the SDC method, atomic cells were introduced
to improve coding efficiency. In our method, since arithmetic coding
is employed, the use of atomic cells has little impact on coding effi-
ciency. There is, however, an important reason for using atomic cells
in our method, namely, by avoiding the splitting of small cells, the
number of nodes in an image tree is significantly reduced (typically,
by about 7 to 16%), resulting in considerable memory savings.

Sample-Value Ambiguity Problem. Although a progressive en-
coding of the information in an image tree can be generated (as dis-
cussed earlier), there is a fundamental problem associated with pro-
gressive coding that has yet to be addressed. This problem arises
from the fact that the coder treats the sample position/value data as
if it were truly 3-D data (i.e., as sample points in 3-D). In reality,
however, this data is not completely arbitrary 3-D data. That is,
for an arbitrary 3-D point set, it would be perfectly reasonable to
have two points (x0,y0,z0) and (x1,y1,z1) with x0 = x1, y0 = y1,
and z0
= z1. In the context of the coding problem at hand, how-
ever, this particular situation would correspond to a single sample
position (x0,y0) having the two distinct sample values z0 and z1,
which is clearly impossible. Unfortunately, due to the way in which
the coder represents sample position/value data and generates ap-
proximations from pruned trees, it is possible, at intermediate stages
of decoding, to obtain multiple distinct sample values for the same
sample position. When such a situation arises, the decoder must re-
solve this ambiguity by selecting a single sample value to use for
decoding purposes. For any given sample position, the probability
of this ambiguity problem occurring is typically quite high initially
(i.e., at very low rates) and then decreases with rate, often in a very
oscillatory (i.e., non-monotonic) manner. Consequently, this ambi-
guity problem most significantly impacts the progressive coding per-
formance at lower rates, often leading to rate-distortion curves with
large oscillations at lower rates. To address the above problem and
mitigate its effects, we consider four ambiguity-resolution methods.
Suppose that the above ambiguity problem arises for the sample po-
sition (xi,yi) with the set Z of multiple distinct sample values. Let
zi denote the sample value to be used for decoding purposes. Our
first method, called the discard method, simply discards the ambigu-
ous sample point/value data altogether. Our second method, called
the nearest neighbour method, finds the sample position closest to
(xi,yi) that has only a single sample value z associated with it, and
then chooses zi as the value from Z that differs least in magnitude

from z. The remaining two methods, known as the mean and me-
dian methods, choose zi as the mean and median of Z, respectively.

Progression Order. In our work, we consider six different pro-
gression orders. Recall that the progression order is determined
solely by the node-priority function, which is used for inserting
nodes into the work queue. Suppose that we want to compute the
priority λ of the node Q with corresponding cell C. Let x, y, and
z respectively denote the (integer-valued) x, y, and z coordinates of
the (approximate) centroid of C. Let �, v, and c respectively de-
note the level in the tree where Q resides (with the top being zero),
the volume of C, and the number of sample points in C. The six
progression orders and their corresponding node-priority functions
are as follows: 1) breadth first: λ = −x−Wy−WHz−WHD�;
2) depth first: λ = �; 3) count: λ = c; 4) density: λ = c/v;
5) sparsity: λ = v/c; and 6) deviation from half density (DFHD):
λ = |c/v−1/2|. Note that the breadth-first order corresponds to
numbering the nodes according to a strict breadth-first ordering (i.e.,
one tree level at a time from top to bottom) with raster-scan ordering
by cell centroid within each tree level. Also, observe that each of
the above node-priority functions can be calculated using only pre-
viously coded information. Therefore, there is no need to explicitly
code the progression order as side information.

5. EXPERIMENTAL RESULTS

Having introduced our MSDC coder, we now examine how the
choices of sample-value ambiguity-resolution method and progres-
sion order affect our coder, and evaluate our coder’s performance
relative to the SDC coder. For test data, we employed more than
a dozen lattice-sampled images, including the lena and peppers
images from the well-known USC image database. To generate
arbitrarily-sampled datasets from (lattice-sampled) images and vice
versa, we used the MGH mesh-generation method and correspond-
ing triangulation-based interpolation scheme from [1]. As a matter
of terminology, in what follows, we refer to the reciprocal of com-
pression ratio as the compression factor.

Sample-Value Ambiguity Resolution. Previously, we proposed
four schemes for handling the sample-value ambiguity problem in
our MSDC coder. We now present some results comparing the effec-
tiveness of these schemes. Since the choice of ambiguity-resolution
method only affects decoding, we need not consider lossless coding
performance here. For several arbitrarily-sampled datasets gener-
ated from our test images, each dataset was coded once losslessly
and then decoded in a progressive manner using each of the four
ambiguity-resolution methods (i.e., discard, mean, median, and near-
est neighbour). In each case, the peak-signal-to-noise ratio (PSNR)
relative to the original (lattice-sampled) image was measured. A rep-
resentative subset of the results, namely for the lena image, is shown
in Fig. 2. In the graph, the maximum PSNR attained corresponds to
lossless reconstruction of the arbitrarily-sampled dataset. Although
these particular results were generated using the breadth-first pro-
gression order, similar results were also obtained for other progres-
sion orders. Recall that, due to the sample-value ambiguity problem,
the rate-distortion curves for our MSDC coder can depart signifi-
cantly from monotonic behavior. This behavior is clearly evident in
the graph (i.e., Fig. 2). Comparing the results obtained with the var-
ious methods, we can clearly see that the median method yields the
best results, often beating the other methods by more than 1 dB. Of
the remaining methods, the nearest-neighbour scheme is next best,
followed by the discard and mean methods.

Progression Order. Earlier, we proposed six different progres-
sion orders that can be used with our MSDC coder. Now, we com-

 5

 10

 15

 20

 25

 30

 35

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

P
S

N
R

 (
dB

)

Compression Factor

Discard
Mean

Nearest Neighbour
Median

Fig. 2. Progressive coding results obtained
using various sample-value ambiguity-
resolution methods for the lena image with
a dataset sampling density of 1/40.

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

P
S

N
R

 (
dB

)

Compression Factor

Breadth First
Depth First

Count
Density
Sparsity

DFHD

Fig. 3. Progressive coding results obtained
using various progression orders for the
lena image with a dataset sampling density
of 1/40.

Table 1. Lossless coding results obtained
using the MSDC and SDC methods for the
(a) lena and (b) peppers images

(a)
Sampling File Size (Bytes) Relative
Density MSDC SDC Diff. (%)
1/40 11263 11734 4.0
1/30 14488 15114 4.1
1/20 20568 21498 4.3

(b)
Sampling File Size (Bytes) Relative
Density MSDC SDC Diff. (%)
1/40 11614 12087 3.9
1/30 14909 15532 4.0
1/20 21150 22053 4.1

pare these orders in terms of their coding efficiency. For several
arbitrarily-sampled datasets generated from our test images, each
dataset was losslessly coded and then decoded in a progressive man-
ner using each of the six progression orders (i.e., breadth-first, depth-
first, count, density, sparsity, and DFHD). In each case, the PSNR
relative to the original (lattice-sampled) image was measured. A
representative subset of the results, namely for the lena image, is
shown in Fig. 3. In the graph, the maximum PSNR attained corre-
sponds to lossless reconstruction of the arbitrarily-sampled dataset.
Since changing the progression order does not affect the lossless rate,
all of the progression orders achieve the same maximum PSNR at
the same (i.e., lossless) rate. Here, we have chosen to present results
that employ the median scheme for sample-value ambiguity resolu-
tion, as this method was previously found to work best. From the
graph, it is clear that the DFHD and sparsity methods (which have
very closely overlapping lines on the graph) outperform the other
schemes by a significant margin (i.e., 0.5 to 1 dB or more). Al-
though not discernible from the graph, a much closer comparison
shows that the DFHD and sparsity schemes have a nonnegligible
difference in performance only at very high (i.e., nearly lossless)
rates, in which case the DFHD scheme performs slightly better. For
this reason, the DFHD scheme is deemed to perform best, with the
sparsity scheme taking second place. The breadth-first scheme is
next most effective, followed by the count method. Since the DFHD
and sparsity methods use a slightly more “irregular” traversal pattern
than breadth-first scheme, they are less significantly impacted by the
sample-value ambiguity problem, which contributes to better perfor-
mance (and a more monotonic rate-distortion curve). The remaining
methods all perform relatively poorly. As one might suspect, the
depth-first scheme does not fare very well. The problem with pro-
gression orders that are mostly depth first is that they often result in
very small areas of the image being refined, while other much larger
areas with very high distortion remain unchanged. For this reason,
the best performing schemes tend to be closer to a breadth-first order
than a depth-first one.

MSDC Coder Versus SDC Coder. Finally, we compare the per-
formance our MSDC coder to the SDC coder. Since the SDC coder
does not provide progressive coding functionality, our comparison
is limited to lossless coding performance. Furthermore, as the SDC
coder can only handle images that are square with integer power
of two width/height, our test images have been chosen to satisfy
this constraint. For several (lattice-sampled) test images, arbitrary-
sampled datasets with different sampling densities were generated.
Then, each dataset was losslessly coded using the MSDC and SDC
coders and the resulting (lossless) rates measured. A representative
subset of the results is shown in Table 1. As these results demon-

strate, our MSDC coder yields a lossless rate that is typically about
4% less than that obtained with the SDC coder. So, clearly, our
MSDC coder outperforms the SDC coder in terms of lossless cod-
ing efficiency. Furthermore, our MSDC coder also offers additional
functionality that is not provided by the SDC coder. First, our MSDC
coder can handle images of arbitrary size (i.e., images need not be
square or have integer power-of-two dimensions). Second, and per-
haps more importantly, our MSDC coder provides progressive lossy-
to-lossless coding functionality. The effectiveness of our progressive
coding scheme is demonstrated by the results of Fig. 3.

6. CONCLUSIONS

In this paper, we have proposed the MSDC coder, a modified version
of the SDC coder. Relative to the SDC coder, our MSDC coder has
several key advantages, namely, it: 1) has support for images of ar-
bitrary width, height, and sample precision, 2) offers better lossless
coding performance, and 3) provides an efficient progressive lossy-
to-lossless coding capability that can accommodate a wide range of
progression orders. For applications where progressive transmission
by fidelity is desired, we showed the DFHD progression order to be
most effective. Moreover, we found that a simple median scheme
was most effective at overcoming the sample-value ambiguity prob-
lem that arises during progressive decoding. By having developed an
improved version of the highly effective SDC coder, we have made
it possible to construct mesh-based image coders with higher coding
efficiency.

7. REFERENCES

[1] M. D. Adams, “An evaluation of several mesh-generation meth-
ods using a simple mesh-based image coder,” in Proc. of IEEE
ICIP, Oct. 2008, pp. 1041–1044.

[2] L. Demaret and A. Iske, “Scattered data coding in digital image
compression,” in Curve and Surface Fitting: Saint-Malo 2002,
Brentwood, TN, USA, 2003, pp. 107–117, Nashboro Press.

[3] L. Demaret and A. Iske, “Adaptive image approximation by lin-
ear splines over locally optimal Delaunay triangulations,” IEEE
Sig. Proc. Letters, vol. 13, no. 5, pp. 281–284, May 2006.

[4] L. Demaret, N. Dyn, and A. Iske, “Image compression by linear
splines over adaptive triangulations,” Sig. Proc., vol. 86, pp.
1604–1616, 2006.

[5] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding
for data compression,” Comm. of the ACM, vol. 30, no. 6, pp.
520–540, 1987.

