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ABSTRACT

It has been observed that filter banks from a certain popular separa-
ble 2D wavelet class always appear to have a higher coding gain with
respect to a separable image model than with respect to an isotropic
one. This behavior is examined in detail and an explanation for it
is offered. As it turns out, for such filter banks, it is highly improb-
able (if not impossible) for the isotropic coding gain to exceed the
separable coding gain.

Index Terms— image coding, wavelet transforms, filter banks,
coding gain, separable/isotropic image models

1. INTRODUCTION

Wavelet filter banks are frequently used for image coding (e.g., [1]).
In this context, one important characteristic of a filter bank is its
coding gain [2], which is often used as a criterion in optimal filter-
bank design. In earlier work, Xu and Adams [3] observed that, for a
certain popular class of filter banks, the separable coding gain always
seems to exceed the isotropic coding gain. In particular, this class is
comprised of separable 2D wavelet filter banks constructed from 1D
two-channel perfect-reconstruction (PR) real-coefficient filter banks,
with at least one dual vanishing moment. In this paper, we study
the coding gain of such filter banks in more detail and provide an
explanation as to why the separable coding gain seems to always
exceed the isotropic coding gain.

The remainder of the paper is structured as follows. Section 2
introduces some notational conventions used herein and Section 3
provides some background information on coding gain. Section 4
studies the coding gain in detail and presents a number of interesting
results. Finally, Section 5 concludes the paper with a summary of
our work.

2. NOTATION AND TERMINOLOGY

Before proceeding further, we introduce some of the notation em-
ployed herein. We denote the sets of integers, positive integers, and
real numbers as Z, Z

+, and R, respectively. The element of the 2D
sequence f with index n = (n0,n1)∈Z

2 is denoted as either f [n0,n1]
or f [n], whichever is more convenient. A similar notational conven-
tion is also employed for 2D functions. The Fourier transform of a
sequence/function f is denoted as f̂ . The symbols ∗, �, and ‖·‖ de-
note convolution, correlation, and norm, respectively. The l p norm
of n = (n0,n1) is defined as ‖(n0,n1)‖l p = (|n0|p + |n1|p)1/p, where
p ∈ {1,2} herein. Lastly, the sans-serif letters “h” and “v” are used
to denote the horizontal and vertical components of separable func-
tions/sequences/operators. For example, the horizontal and vertical
components of the the separable 2D sequence f would be denoted
as fh and fv, respectively (i.e., f [n0,n1] = fh[n0] fv[n1]).
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3. CODING GAIN

An L-level wavelet filter bank can always be equivalently repre-
sented as a nonuniform m-channel filter bank, where m = 3L + 1.
This equivalent m-channel filter bank consists of the analysis filters
{hk}m−1

k=0 , synthesis filters {gk}m−1
k=0 , and downsamplers/upsamplers

with sampling matrices {Mk}m−1
k=0 . Due to the separable nature of the

filters, the subbands have four possible orientations: horizontally-
and-vertically lowpass (LL), horizontally highpass and vertically
lowpass (LH), horizontally lowpass and vertically highpass (HL),
and horizontally-and-vertically highpass (HH). The coding gain G
of the above filter bank is given by [2]

G =
m−1

∏
k=0

(
αk

AkBk

)αk

, (1)

where Ak = ∑l∈Z2 ∑p∈Z2 hk[l]hk[p]r[p− l], Bk = αk ∑l∈Z2 g2
k [l], αk =

|detMk|−1, and r is the normalized autocorrelation sequence of the
source image model. The two most common choices for r are given
by the separable and isotropic models, which are, respectively,

rsep[n] = ρ‖n‖l1 and riso[n] = ρ‖n‖l2 , (2)

where ρ is a correlation coefficient1 satisfying 0 ≤ ρ ≤ 1. Since
numerous quantities used herein depend on the image model (e.g.,
G, {Ak}m−1

k=0 ), we use the qualifiers “sep” and “iso” to denote these
quantities in the separable and isotropic cases, respectively. For ex-
ample, Ak,sep denotes the quantity Ak given by (1) with r = rsep and
Giso denotes the coding gain G given by (1) with r = riso.

As an aside, we note that, for the class of filter banks being con-
sidered herein, if the constraint of having at least one dual vanishing
moment is dropped, it is possible for Giso = Gsep. For example,
this result is trivially obtained by the PR system with the 1D pro-
totype analysis filters H0(z) = 1 and H1(z) = z. So, obviously, for
filter banks outside the class being considered herein, the condition
Gsep > Giso may be violated.

4. ANALYSIS

We begin by making a few observations regarding the quantities
{Ak}m−1

k=0 and {Bk}m−1
k=0 which appear in (1). Since each of the

{Ak}m−1
k=0 is the ratio between two variances (which are nonnegative

real numbers), Ak ≥ 0. For similar reasons, each of the {Bk}m−1
k=0

satisfies Bk ≥ 0. Furthermore, Ak = 0 implies that hk is the zero
sequence, and Bk = 0 implies that gk is the zero sequence. Since, in
practice, we never choose any of the {hk}m−1

k=0 or {gk}m−1
k=0 to be a

zero sequence, we can safely assume that Ak > 0 and Bk > 0.
Next, we make a comment concerning the correlation coefficient

ρ appearing in (2). In the remainder of this paper, we exclude the

1To be more precise, in the separable case, it is also permissible to have
ρ∈ [−1,0). Since ρ cannot be negative in the isotropic case, we only consider
nonnegative ρ herein.



possibility that ρ ∈ {0,1}, since these cases are of no practical value
and only serve to complicate the subsequent analysis. Since image
data is typically best modelled by ρ satisfying 0.90 ≤ ρ ≤ 0.95, we
emphasize this range of values in most of our analysis.

From (1), we observe that the only dependence that the coding
gain G has on the image model embodied by r is in the value of the
{Ak}m−1

k=0 . Since αk > 0, G increases as one or more of the {Ak}m−1
k=0

decrease. With this in mind, we would like to more carefully con-
sider how the {Ak}m−1

k=0 are affected by the choice of image model.
Before proceeding further, we need to define several new quan-

tities that will be used throughout the remainder of this paper. The
kth factor in the product G from (1) is denoted as Gk (i.e., Gk =
( αk

AkBk
)αk ). Hence, G = ∏m−1

k=0 Gk. Let Gk,sep and Gk,iso denote the
quantity Gk in the separable and isotropic cases, respectively. Define

ΔAk = Ak,iso −Ak,sep, Δr = riso − rsep, and
G̃k = Gk,iso/Gk,sep.

4.1. Time-Domain Analysis

To begin, we examine how the choice of image model affects r by
considering the relationship between rsep and riso. To begin, we
recall the following relationship between the l1 and l2 norms:

‖(n0,n1)‖l1 ≥ ‖(n0,n1)‖l2 for all (n0,n1) ∈ R
2 (3)

with equality holding if and only if n0n1 = 0 (i.e., at least one of
{n0,n1} is zero). Now, let n = (n0,n1) and consider r[n] for the sep-
arable and isotropic cases (i.e., r = rsep and r = riso, respectively). If
n0n1 = 0, then we trivially have from (3) that rsep[n] = riso[n]. Sup-
pose now that n0n1 �= 0. Then from (3), ‖n‖l1 > ‖n‖l2 , and since
0 < ρ < 1, this implies that ρ‖n‖l1 < ρ‖n‖l2 . Thus, rsep and riso are
related as follows:

for all (n0,n1) ∈ Z
2,

{
rsep[n0,n1] = riso[n0,n1] if n0n1 = 0
rsep[n0,n1] < riso[n0,n1] otherwise,

(4)

which implies rsep[n] ≤ riso[n] for all n ∈ Z
2. One can easily ver-

ify that the sequence r has the following 8-fold symmetry in both
the separable and isotropic cases (i.e., r = rsep and r = riso, respec-
tively):

r[n0,n1] = r[−n0,n1] = r[n0,−n1] = r[−n0,−n1] and
r[n0,n1] = r[n1,n0]. (5)

For later reference, the sequence Δr (i.e., riso − rsep) is plotted for
ρ = 0.95 in Fig. 2. For every ρ ∈ [0.90,0.95], the basic shape of the
function Δr does not change, although as ρ increases, the decay rate
of Δr decreases.

Consider the expression for {Ak}m−1
k=0 given by (1). Through a

change of variable, we can rewrite this expression in a more conve-
nient form as

Ak = ∑
p∈Z2

r[p]ck[p], (6)

where ck = hk �hk (i.e., ck is the autocorrelation of hk).
Since all of the filters {hk}m−1

k=0 are separable, their autocorrela-

tion sequences {ck}m−1
k=0 are also separable. Due to the separability

of hk, the sequence ck has quadrantal symmetry:

ck[n0,n1] = ck[−n0,n1] = ck[n0,−n1] = ck[−n0,−n1].

Using the quadrantal symmetry of r and ck, we can rewrite (6) as

Ak = r[0]ck[0]+2 ∑
d0∈Z+

r[d0,0]ck[d0,0]+2 ∑
d1∈Z+

r[0,d1]ck[0,d1]

+4 ∑
d∈(Z+)2

r[d]ck[d].

Due to the equality case of (4), only the last summation in the pre-
ceding expression for Ak differs in the separable and isotropic cases.
Thus, we have that

ΔAk = 4 ∑
d∈(Z+)2

Δr[d]ck[d]. (7)

Let us now examine the preceding expression for ΔAk (in (7))
in more detail. First, we make some observations about Δr[d] for
d ∈ (Z+)2. From the inequality case in (4), we have that Δr[d] > 0.
Also, as can be seen from the plot of Δr in Fig. 2, Δr decreases with
distance from the origin and Δr[d0,d1] is larger when d0 = d1 (i.e.,
along a line with an orientation of π

4 ). Next, we make an observation
regarding ck. Assuming that the filter hk has a reasonable frequency
response, the sequence ck should decrease with distance from the
origin (i.e., ck,h[n] and ck,v[n] should have a decay of approximately

O(|n|−1)). Based on the preceding observations, one would expect
many of the largest-magnitude terms in the summation in (7) to be
obtained when d = (d0,d1) is close to the origin and d0 = d1. Thus,
the sign of ck[d] for such values of d should have a relatively strong
influence on the sign of ΔAk. Furthermore, if the horizontal and
vertical filters used to compose hk are the same (i.e., hk,h = hk,v)
one can easily confirm that ck[n0,n0] ≥ 0 for all n0 ∈ Z. Thus, in
this case, there would be a better likelihood for ΔAk to be positive.
At this point, we note that the filters hk associated with LL and HH
subband orientations have hk,h = hk,v. Therefore, for the reason just
mentioned, ΔAk is more likely to be positive for subbands with these
orientations, leading to a tendency to favor Gsep over Giso. As we
will see later, this tendency turns out to be particularly strong in the
case of the HH subbands.

We can make one further observation regarding ΔAk in (7).
Since Δr[d] > 0, if hk[n] ≥ 0 for all n ∈ Z

2 (or hk[n] ≤ 0), then
ck ≥ 0, implying that ΔAk > 0. Thus, Gsep is favored over Giso. This
trivial case, however, can only occur for the LL subband orientation
(since this scenario implies that the filter hk has a nonzero DC gain).
Furthermore, this situation only seems likely to occur in practice for
short filters. For this reason, this observation is not as interesting as
the one in the previous paragraph.

Although we could present additional details here based on a
time-domain analysis, we instead shift our focus to the frequency
domain. As it turns out, some very valuable insights can be gained
from a frequency-domain analysis.

4.2. Frequency-Domain Analysis

In anticipation of what is to come, we compute r̂ for the separable
and isotropic cases. The Fourier transform of rsep can be shown to
be

r̂sep(ω0,ω1) = (1−ρ2)2

(1−2ρcosω0+ρ2)(1−2ρcosω1+ρ2) . (8)

Now, we consider the Fourier transform of riso. Using the 8-fold
symmetry of riso (i.e., (5)), we can show that

r̂iso(ω0,ω1) = 1+ γ(ω0,ρ)+ γ(ω1,ρ)+ γ(ω0 +ω1,ρ
√

2)

+ γ(ω1 −ω0,ρ
√

2)+2
∞

∑
i=2

i−1

∑
k=1

ρ
√

i2+k2(
cos(iω0 + kω1)

+ cos(kω0 + iω1)+ cos(kω0 − iω1)+ cos(iω0 − kω1)
)
, (9)

where γ(ω,α) = 2αcosω−2α2

1−2αcosω+α2 . In both the separable and isotropic
cases, one can confirm from (8) and (9) that r̂ has the following 8-
fold symmetry:

r̂(ω0,ω1) = r̂(−ω0,ω1) = r̂(ω0,−ω1) = r̂(−ω0,−ω1) and
r̂(ω0,ω1) = r̂(ω1,ω0).

As an aside, we comment on an alternative scheme for com-
puting r̂iso. By observing that the Fourier transform of the function



f (t) = ρ‖t‖l2 is f̂ (ω) = −2π(ln2 ρ + ‖ω‖2
l2)−3/2 lnρ [4, Eqn. (3)]

and riso is a sampled version of f , we can conclude r̂iso(ω) =
−2π(lnρ)∑k∈Z2 [ln2 ρ + ‖ω−2πk‖2

l2 ]−3/2. For computational pur-
poses, this formula for r̂iso is probably less useful than (9), due to an
apparent slower convergence rate.

For future reference, r̂sep and r̂iso are plotted in Figs. 3 and 4
for ρ = 0.95. For each of r̂sep and r̂iso, the general shape of the
plot remains the same for all ρ ∈ [0.90,0.95], but the decay rate in-
creases with increasing ρ. Also, Δ̂r is plotted for ρ = 0.95 in Fig. 5.
The gray-shaded region in the contour plot corresponds to where the
plotted function is negative. As ρ increases, the decay rate of Δ̂r in-
creases, and there is a larger region where Δ̂r is positive. In all of
the above plots, the horizontal and vertical axes are scaled by 1

π so 1
corresponds to the Nyquist frequency.

Now, we seek to characterize Ak and ΔAk in the frequency do-
main. To accomplish this, we use (6) and the fact that Fourier trans-
form preserves inner products to write

Ak = 1
4π2

Z
[−π,π)2

r̂(ω)ĉk(ω)dω = 1
4π2

Z
[−π,π)2

r̂(ω)
∣∣ĥk(ω)

∣∣2 dω.

In the above simplification, we have that ĉk(ω) =
∣∣ĥk(ω)

∣∣2 since hk is

real. Due to the quadrantal symmetry of r̂ and
∣∣ĥk

∣∣2, we can rewrite
the preceding equation as

Ak = 1
π2

Z
[0,π)2

r̂(ω)
∣∣ĥk(ω)

∣∣2 dω. (10)

Thus, we have that

ΔAk = 1
π2

Z
[0,π)2

Δ̂r(ω)
∣∣ĥk(ω)

∣∣2 dω. (11)

Now, we will use (10) and (11) in order to gain some additional
insight into the coding gain. In what follows, L and m are as defined
in Section 3 (with m = 3L + 1), and k denotes the channel index
where k ∈ {0,1,2, . . . ,3L}. The level in the analysis filter-bank tree
associated with channel k is denoted as level(k). For the lth level
in the filter-bank tree, LLl , LHl , HLl , and HHl denote the subbands
with LL, LH, HL, and HH orientations, respectively. For convenience,
we number the channels such that larger values of k correspond to a
deeper descent into the analysis filter-bank tree. Note that this num-
bering convention is backwards from what is typically used. That is,
the lowest frequency (LL) band is always associated with the largest
channel index 3L (instead of the smallest one 0). With our conven-
tion, decompositions with L and L′ levels have an identical num-
bering scheme for their common filters/subbands. This allows for a
much more concise presentation of some of our later results. The
correspondence between channels and frequency bands is illustrated
in Fig. 1, with the analysis filter associated with each subband being
shown in parentheses. In order to avoid an overly complicated dia-
gram, only the first quadrant of the frequency plane is shown, with
the remainder following from (quadrantal) symmetry.

For two filter banks, we have computed the various coding-gain-
related quantities for L∈ {1,2,3} with ρ = 0.95, the results of which
can be found in Table 1. The first filter bank is an orthonormal sys-
tem with ideal filters. This corresponds to a system with 1D proto-
type filters each having a gain of

√
2 and 0 in their passbands and

stopbands, respectively. (Thus, we have that hk has passband and
stopband gains of 2level(k)+1 and 0, respectively.) The other filter
bank is the well-known Haar system, and was chosen for compari-
son purposes as an example of a system with nonideal filters. The
nonideal filter bank is normalized such that its 1D prototype filters
have DC/Nyquist gains of

√
2, as this facilitates more direct compar-

isons with the ideal filter bank under consideration. Note that there

0
0

π

π

(h1) (h0)

(h2)HLL−1 HHL−1

LHL−1LLL−1
(h3L) (h3L−1)

(h3L−3)(h3L−2)

HL0 HH0

LH0

π
2

π
2

...

. . .

ω0

ω1

. .
.

Fig. 1. Subband tiling of the first quadrant of the frequency plane.

is no loss of generality in considering only this particular normal-
ization, as the coding gain for PR filter banks is invariant to scaling
and translation of the analysis/synthesis filter impulse responses. We
will refer to the results in the above tables in some of the discussion
that follows.

Now, we more carefully examine the expression for the coding
gain in (1). As k increases (which corresponds to level(k) increas-
ing), αk decays exponentially to zero (i.e., αk = 4− level(k)−1). This
implies that Gk → 1 as k increases. Thus (since G = ∏m−1

k=0 Gk), the
most significant contributions to the coding gain G come from Gk as-
sociated with small k, especially those k associated with the 0th level
(i.e., k∈{0,1,2} or k∈{0,1,2,3} for L≥ 2 and L = 1, respectively).
As k increases, G̃k → 1. Thus (since Giso/Gsep = ∏m−1

k=0 G̃k), any dif-
ference in the separable and isotropic coding gains is most strongly
influenced by G̃k for small k. Furthermore, simple algebraic manip-
ulation shows that

G̃k =
(

Ak,sep

Ak,sep+ΔAk

)αk
=

(
1/(1+ ΔAk

Ak,sep
)
)αk

. (12)

Consequently, Gk,sep and Gk,iso differ most when |ΔAk| is large rela-

tive to Ak,sep (i.e., |ΔAk |
Ak,sep

is large). All of the above observations can
be seen to be consistent with the data in Table 1.

In what follows, it is instructive to consider the ideal filter bank
introduced above. In this case, from (10) and (11), Ak and ΔAk are
simply (up to scale) the integral of r̂ and Δ̂r over the first-quadrant
portion of the passband of the ideal filter hk. To envision what
the result of such integrations will be, it is helpful to imagine the
frequency-plane tiling of Fig. 1 superimposed on the first quadrants
of the plots of r̂sep, r̂iso, and Δ̂r in Figs. 3, 4, and 5.

Consider k = 0 (i.e., the HH0 band) in the case of the ideal filter
bank. For ω in the (HH0) passband, r̂sep(ω) and r̂iso(ω) are both

very small, so Ak is small, but
∣∣∣Δ̂r(ω)

∣∣∣ is large compared to r̂ so

ΔAk/Ak,sep is large. Consequently, from (12), G̃k is small, meaning
that Gsep is very strongly favored over Giso. A similar argument also
applies to the other HH bands, but the influence on the coding gain
G is less significant in these cases since G̃k → 1 as k increases. Now
consider what happens in the case of nonideal filters. Even in this
case, it is very difficult for the above qualitative behavior to change.
To obtain significantly different behavior, ĥk would have to be very
large along the axes where Δ̂r is most negative (and therefore most
favorable to higher Giso). Due to the presence of at least one dual
vanishing moment, however, ĥk(ω) must be zero along both axes.
So, even in case of nonideal filters, Gsep is still likely to be strongly



favored by the HH bands.
In the case of the LH and HL bands, due to the presence of at least

one dual vanishing moment, ĥk(ω0,ω1) must be zero along exactly
one of ω0 = 0 or ω1 = 0. We observe that Δ̂r (shown in Fig. 5) is
largest in magnitude along the axes (with large positive values near
the origin and large negative values elsewhere on the axes). Thus,
in the calculation of ΔAk, the large positive values near the origin
in Δ̂r are effectively cancelled, and we are left with large negative
values along one axis. This leads to G̃k > 1 and the LH and HL bands
favoring Giso over Gsep. Lastly, we note that the LH and HL subbands
do not have as much impact on the coding gain G as the HH bands.
This is due to that fact Ak,sep is larger for the LH and HL subbands,
making it more difficult for |ΔAk| to be large relative to Ak,sep.

An examination of the data for the nonideal filter bank in Ta-
ble 1(b) shows that all of observations made above are consistent
with this data. For example, the coding gain is most strongly influ-
enced by the HH bands, with HH0 figuring most prominently. The LL
and HH bands favor Gsep (i.e., G̃k < 1), while the LH and HL bands
favor Giso (i.e., G̃k > 1). The fact that LL and HH subbands favor
Gsep over Giso is also consistent with the results of our time-domain
analysis earlier in Section 4.1.

4.3. Additional Commentary

In addition to the filter banks for which results are presented herein,
we have also considered quite a number of other filter banks, some
of which were considered for adoption in the JPEG-2000 standard
(including the 9/7 system [1]), while others were produced at vari-
ous stages of the optimal design method of [3]. Similar trends (to
those described above) were also found in the case of these other
filter banks. Moreover, we were not able to find any filter bank (be-
longing to the class of filter banks under consideration in this paper)
for which Giso > Gsep. Based on our analysis herein, there is good
reason to believe that such filter banks probably do not exist.

5. CONCLUSIONS

In this paper, we have studied the coding gain of separable 2D
wavelet filter banks derived from 1D two-channel real-coefficient
PR filter banks with at least one dual vanishing moment. We have
explained why, for such filter banks, it is extremely difficult (if not
impossible) for the isotropic coding gain to exceed the separable
coding gain. The new insight provided by our analysis may prove
helpful in the design of improved filter banks for image coding. For
example, if one is trying to simultaneously maximize the minimum
of Gsep and Giso as in [3], our analysis shows that this is practically
equivalent to optimizing Giso alone.
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Table 1. Coding gain quantities for the (a) ideal and (b) Haar filter
banks with ρ = 0.95.

(a)
k Band Ak,sep Ak,iso ΔAk

ΔAk
Ak,sep

1
αk

Gk,sep Gk,iso G̃k

0 HH0 0.001 0.025 0.024 22.85 4 5.53 2.50 0.45
1 HL0 0.064 0.039 -0.024 -0.378 4 1.98 2.23 1.12
2 LH0 0.064 0.039 -0.024 -0.378 4 1.98 2.23 1.12
3 LL0 3.870 3.894 0.024 0.006 4 0.71 0.71 0.99
3 HH1 0.004 0.050 0.046 10.95 16 1.40 1.20 0.85
4 HL1 0.250 0.132 -0.117 -0.470 16 1.09 1.13 1.04
5 LH1 0.250 0.132 -0.117 -0.470 16 1.09 1.13 1.04
6 LL1 14.76 15.07 0.307 0.020 16 0.84 0.84 0.99
6 HH2 0.052 0.306 0.254 4.866 64 1.04 1.01 0.97
7 HL2 1.680 0.958 -0.721 -0.429 64 0.99 1.00 1.00
8 LH2 1.680 0.958 -0.721 -0.429 64 0.99 1.00 1.00
9 LL2 53.98 56.54 2.557 0.047 64 0.93 0.93 0.99

(b)
k Band Ak,sep Ak,iso ΔAk

ΔAk
Ak,sep

1
αk

Gk,sep Gk,iso G̃k

0 HH0 0.002 0.030 0.027 11.01 4 4.47 2.40 0.53
1 HL0 0.097 0.069 -0.027 -0.282 4 1.78 1.94 1.08
2 LH0 0.097 0.069 -0.027 -0.282 4 1.78 1.94 1.08
3 LL0 3.802 3.830 0.027 0.007 4 0.71 0.71 0.99
3 HH1 0.020 0.100 0.079 3.862 16 1.27 1.15 0.90
4 HL1 0.540 0.383 -0.156 -0.289 16 1.03 1.06 1.02
5 LH1 0.540 0.383 -0.156 -0.289 16 1.03 1.06 1.02
6 LL1 14.10 14.45 0.343 0.024 16 0.84 0.84 0.99
6 HH2 0.237 0.622 0.384 1.618 64 1.02 1.00 0.98
7 HL2 3.424 2.579 -0.844 -0.246 64 0.98 0.98 1.00
8 LH2 3.424 2.579 -0.844 -0.246 64 0.98 0.98 1.00
9 LL2 49.34 52.02 2.679 0.054 64 0.94 0.94 0.99
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Fig. 2. Contour plot of Δr for
ρ = 0.95.
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Fig. 3. Contour plot of r̂sep for
ρ = 0.95.
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Fig. 4. Contour plot of r̂iso for
ρ = 0.95.
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Fig. 5. Contour plot of Δ̂r for
ρ = 0.95.


