
AN EVALUATION OF SEVERAL MESH-GENERATION METHODS
USING A SIMPLE MESH-BASED IMAGE CODER

Michael D. Adams

Dept. of Elec. and Comp. Engineering, University of Victoria, Victoria, BC, V8W 3P6, Canada

ABSTRACT

A simple image coder based on triangle meshes is proposed, and sev-
eral mesh-generation methods are presented, some previously pro-
posed and some new. Then, our coder is used to evaluate the per-
formance of the various mesh-generation methods. One of our pro-
posed mesh-generation schemes, inspired by the work of Garland
and Heckbert, is shown to perform best. The performance of linear
and Clough-Tocher interpolation is also compared. Linear interpo-
lation is found to perform better than Clough-Tocher interpolation,
with the latter performing more poorly largely due to overshoot/un-
dershoot near image edges.

Index Terms— image coding, triangle meshes, mesh generation,
interpolation

1. INTRODUCTION

The image representations used by most conventional image coders
employ regular sampling, such as lattice-based sampling. Due to
the nonstationary nature of most images, however, such sampling is
far from optimal. Inevitably, when regular sampling is employed,
the sampling density will be too low in regions where the signal is
rapidly changing, and too high in regions where the signal is varying
slowly or not at all. This motivates the use of (arbitrary) irregular
sampling.

In recent years, there has been a growing interest in triangle
meshes for the representation of images [1, 2, 3]. Such meshes are
ideally suited to accommodating arbitrary sampling patterns. One
of the major challenges of the mesh-based approach is finding ef-
fective methods for constructing a mesh that accurately represents
a given image. Although numerous mesh-generation methods have
been proposed to date (e.g., [3, 2]), much more work needs to be
done to further refine and improve upon these methods.

In this paper, we introduce a simple image coder based on trian-
gle meshes. Then, we present a number of mesh-generation meth-
ods, and use our coder to evaluate their performance. Since some
of the methods differ only in the interpolation scheme employed,
our evaluation also implicitly considers the performance of different
interpolation schemes.

The remainder of this paper is structured as follows. Section 2
provides some background information on mesh-based image cod-
ing. Then, in Section 3, our proposed image coder is presented.
Section 4 introduces several mesh-generation methods. Then, in
Section 5, our proposed image coder is used to evaluate the perfor-
mance of the various mesh-generation methods. Finally, Section 6
concludes the paper with a summary of our key results.

This work was supported by the Natural Sciences and Engineering Re-
search Council of Canada.

Mesh
Generator Encoder

Mesh
Image

Original
Image

Encoded

(a)

ImageImage
Encoded Decoded

RasterizerMesh
Decoder

(b)

Fig. 1. General structure of a mesh-based image coder. (a) Encoder
and (b) decoder.

2. BACKGROUND

A grayscale image is a function f of two variables x and y, where
x and y correspond to position in the image domain D and f(x, y)
corresponds to image intensity. In other words, an image is simply
a surface f defined on a planar domain D. Since triangle meshes
can be used to represent a surface, such meshes can also be used for
image representations.

Now, we briefly explain how mesh-based representations are
used for image coding. The general structure of a mesh-based im-
age coder is illustrated in Fig. 1. The encoder, shown in Fig. 1(a),
first constructs a mesh that well approximates the original image.
Then, the resulting mesh is coded in some efficient manner, pos-
sibly using entropy coding. The decoder, shown in Fig. 1(b), first
decodes the coded version of the mesh, and then converts the result-
ing mesh (which is defined on a continuous domain) into a raster
image. The rasterization scheme typically depends on the mesh-
generation method employed in encoder. For example, if a partic-
ular type of interpolation is assumed to be used to form the surface
through the mesh vertices during mesh generation, the same inter-
polation scheme would most likely be used for rasterization as well.
Although a mesh can either interpolate or strictly approximate sam-
ples from the original image, we consider only the interpolating case
herein.

3. IMAGE CODER

To provide a framework for evaluating the performance of mesh-
generation methods, we have developed a simple mesh-based image
coder. This coder supports both lossy and lossless compression of
(grayscale) images of arbitrary dimensions (i.e., width/height). In
what follows, the technical details of our coder are briefly presented.

Our proposed coder has the same general structure as that intro-
duced earlier in Fig. 1. In principle, any mesh-generation method
could be used in our coder, provided that the resulting mesh can be
completely characterized by only its geometry information (i.e., the
mesh connectivity must be implicit) and the vertex coordinates are

integer. As it turns out, these restrictions, which are imposed by our
choice of mesh-coding scheme, are not very limiting. In our work,
we explicitly consider several mesh-generation methods, which are
introduced later in Section 4. Given a particular mesh-generation
method, the rasterization process (in the decoder) is straightforward
to deduce. A raster image is obtained simply by sampling the mesh
surface on an appropriate lattice. Thus, it only remains to discuss the
mesh-coding method used in our image coder.

The mesh-coding scheme employed by our coder is based on the
scattered data coding (SDC) method [1, Section 3] proposed by De-
maret and Iske. The SDC method codes only geometry information,
assuming the connectivity information to be implicitly determined.
Also, vertex coordinates are assumed to be integer. To begin, the
scheme finds the 3D bounding box of the mesh vertices. Then, a 3D
binary array is constructed, where each element in the array corre-
sponds to a possible vertex position on the 3D integer lattice inside
the bounding box. An element in the array is set to one if a vertex is
present at the corresponding position and zero otherwise. The con-
tents of the 3D array are then represented and coded using an octree.
Octree generation involves the recursive splitting of cells. The root
cell is set to the bounding box of the mesh vertices, and each cell is
recursively split into eight new subcells, with the recursion terminat-
ing when the current cell is empty, full, or is a so called atomic cell
(i.e., a small cell that is not split further). The SDC coding process is
effectively lossless, although lossy coding can be achieved by quan-
tizing the image-intensity portion of the vertex-coordinate data prior
to coding as is done in [1].

Unfortunately, the SDC method, as presented in [1], can only
directly handle images that are square with integer-power-of-two di-
mensions. In our work, we have extended this method to handle
images with arbitrary dimensions. In order to accomplish this, a few
changes to the original method were required, which we summarize
in what follows. First, when splitting cells, we must use rounding in
the determination of subcell boundaries in order to force such bound-
aries to fall on the integer lattice. Second, in the original method,
atomic cells (subject to some reasonable assumptions) always con-
tained four elements in a 2×2×1 geometric configuration, but in the
modified scheme, atomic cells can contain two, three, or four ele-
ments in a variety of geometric configurations. For each atomic cell,
we must indicate which elements are zero/one. Bearing in mind that
an atomic cell is neither empty nor full, this is accomplished as fol-
lows. In the two-element-cell case, the single nonzero element is
indicated with a single bit. In the three-element-cell case, a fixed
Huffman code is used to indicate the single zero/nonzero element
(which has one of three possibilities). The four-element-cell case
is then handled using a scheme similar to that in the original SDC
method.

In our image coder, the rate is controlled by adjusting the mesh
vertex count (rather than through quantization of the mesh data).
Since the mesh coder only employs very trivial variable-length
codes, the encoding and decoding of mesh data are very fast. Given
the simplicity of our image coder, its performance is quite reason-
able, as demonstrated by later experimental results.

4. MESH GENERATION METHODS

In our work, we consider three (nontrivial) mesh-generation meth-
ods as well as some variants thereof. Before discussing the details
of each individual method, however, we first describe the general
approach shared by all of the methods.

All of the mesh-generation methods considered herein have the
same general structure. For a given image, a set of sample points

is selected. The various methods essentially differ in how this set is
chosen. To avoid unnecessary complications (such as the need for
extrapolation), the four corners of the image bounding box are al-
ways included in the set of sample points. The chosen sample points
are then triangulated. Each triangulation vertex and its correspond-
ing intensity value, together comprise a vertex in the mesh, and the
triangulation connectivity determines the connectivity of the mesh.
An interpolant is defined over each triangular domain in the triangu-
lation to yield a mesh surface defined over the entire image domain.

In general, a mesh is characterized by its geometry (i.e., ver-
tices), and connectivity, as well as the interpolant used to form a
surface through the mesh vertices. With all of the methods consid-
ered herein, the connectivity of the mesh is assumed to be implicit in
its geometry. This has the benefit of not requiring any connectivity
information in order to completely characterize the mesh.

For the purposes of triangulation, all of the methods employ
the Delaunay triangulation, due to its good approximation proper-
ties. Unfortunately, the Delaunay triangulation of a given point set
is not necessarily unique. This poses a problem, since we require
the connectivity of the mesh to be completely determined from its
geometry. To resolve this nonuniqueness problem, we employ the
preferred-direction method [4]. This method, in effect, provides a
simple means for uniquely choosing one particular triangulation out
of all possible Delaunay triangulations of a point set.

Now, we turn our attention to the specifics of the individual
mesh-generation methods. The first method considered herein was
proposed by Yang, Wernick, and Brankov (YWB) [2]. In the YWB
method, a feature map is computed that approximates the largest
magnitude second directional derivative at each sample point in the
image. Then, the well-known Floyd-Steinberg error diffusion algo-
rithm is used to distribute sample points so that their local spatial
density is approximately proportional to the corresponding value in
the feature map. The sample points are then triangulated in order
to establish the mesh connectivity. The number of vertices in the
mesh is indirectly controlled through an error-diffusion threshold
parameter. The YWB method results in more sample points being
placed in regions containing significant high-frequency information,
and fewer sample points being placed in smoother regions. Although
several variations on the YWB method are presented in [2], we con-
sider only the interpolating scheme with the exact feature map, ser-
pentine scan order, nonleaky error diffusion, and the contrast param-
eter γ = 1.

The second mesh-generation method considered in our work is
the data-independent greedy insertion method proposed by Garland
and Heckbert (GH) [3]. In the GH method, a triangulation of the
image bounding box is chosen as the basis for an initial approxima-
tion. Then, the (unused) sample point with the largest absolute error
is inserted into the triangulation. This process is repeated until a
vertex-count budget is exhausted or distortion criterion (e.g., peak-
absolute error or mean-squared error) is satisfied.

As it turns out, the point-selection process in the GH method
can be equivalently viewed as consisting of two steps: 1) in the cur-
rent triangulation, select a triangle in which to insert a new point;
and then 2) in this triangle, select an unused point to insert. In the
GH method, in both of these two steps, the decision to be made
is driven by absolute error. That is, triangle selection is performed
by choosing the triangle with the (unused) sample point having the
largest absolute error, and point selection is done by choosing the
sample point in the selected triangle with the largest absolute error.
This alternative way of viewing the GH method leads us to propose
a new mesh-generation method, which we henceforth refer to as the
modified GH (MGH) method. This is the third method to be consid-

ered. The MGH method is identical to the GH method except that
in step 1 in the above point-selection process, we change how the
triangle is selected. Instead of choosing the triangle containing the
sample point with the largest absolute error, we choose the triangle
with the largest squared error.

For benchmarking purposes later, we also define a random
mesh-generation method. This mesh generator is very trivial and
simply chooses sample points randomly and then triangulates them
to form a mesh.

In all of the mesh-generation methods introduced so far, a lin-
ear interpolant is used to form a surface through the mesh vertices.
It is interesting, however, to consider the effects of using other in-
terpolants. To this end, we propose variants of the GH and MGH
methods that employ the Clough-Tocher (CT) interpolant [5], yield-
ing what we refer to as the GH-CT and MGH-CT methods, respec-
tively. The CT interpolation scheme produces surfaces with con-
tinuous first-order partial derivatives (i.e., C1 surfaces). Since CT
interpolation requires the first-order partial derivatives at the mesh
nodes, a scheme for estimating such derivatives is required. For
partial-derivative estimation, we use the scheme described in [6].

5. EXPERIMENTAL RESULTS

Using the proposed image coder, we now evaluate the performance
of the various mesh-generation methods introduced earlier. Al-
though numerous test images were employed in our work, we focus
our attention herein on the results obtained for the well-known
lena and peppers images (from the USC image database). In
what follows, the term “normalized bit rate” will frequently appear.
As a matter of terminology, the normalized bit rate (NBR) is simply
defined as the reciprocal of the compression ratio.

The proposed image coder was used to compress several images
at various bit rates using the YWB, GH, and MGH mesh-generation
methods. A representative subset of the results are presented here.
In particular, the peak-signal-to-noise ratio (PSNR) results for the
lena and peppers images are given in Figs. 2(a) and (b), respec-
tively. For reference purposes, we also include results for the ran-
dom mesh-generation scheme (described earlier). Clearly, any prac-
tically useful mesh-generation method must yield significantly better
results than the random scheme. From the graphs, we can see that
the proposed MGH scheme performs best, especially at low bit rates,
with the GH method taking second place, and the YWB approach as-
suming a distant third place. It is worth noting that, for NBRs below
0.04 (i.e., compression ratios above 25:1), the MGH method often
beats the GH scheme by more than 1 dB. Interestingly, the random
scheme often outperforms the YWB method for NBRs below 0.02
(i.e., compression ratios above 50:1). Obviously, the YWB method
is quite ineffective at very low bit rates. Furthermore, it consistently
performs more poorly than the GH and MGH methods at all bit rates
under consideration.

To illustrate the subjective image quality obtained with the vari-
ous methods, a set of lossy reconstructed images is shown in Fig. 3.
The image-domain triangulation obtained with each method is also
shown. Again, for reference purposes, the results for the random
method are included. From the reconstructed images, we can see
that the subjective image quality is consistent with the PSNR results
from above. That is, our proposed MGH scheme performs best, fol-
lowed by the GH and YWB methods (in that order). As for whether
the YWB method yields a better quality image reconstruction than
the random scheme is debatable, as both image reconstructions look
very poor.

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 36

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

P
S

N
R

 (
dB

)

Normalized Bit Rate

Random
YWB

GH
MGH

(a)

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

P
S

N
R

 (
dB

)

Normalized Bit Rate

Random
YWB

GH
MGH

(b)

Fig. 2. Lossy coding results for the (a) lena and (b) peppers
images using the random, YWB, GH, and MGH methods.

Now, let us consider the image-domain triangulations shown in
Figs. 3(f), (g), and (h). By comparing their respective image-domain
triangulations, we can see why the GH method performs more poorly
than the MGH scheme at lower rates. With the GH method, since
points are added solely by considering absolute error, there is a ten-
dency for too many points to cluster around edges and other high-
frequency features, leaving too few points for elsewhere. This re-
sults in more long thin triangles, which are known to be undesirable
for approximation. Since the MGH method considers the squared
error over each triangle in the triangulation, this method is much
less likely to cluster too many points around high-frequency features.
The preceding behavior is clearly evident in the figures, as the GH
method has a triangulation with more long thin triangles than the one
obtained with the MGH method. By examining the image-domain
triangulation for the YWB method, we can see the reason for its poor
performance. At low rates, the YWB method does not place enough
vertices along edges, leading to severe distortion in the vicinity of
edges which manifests itself as triangle-teeth artifacts.

There is yet another problem with the YWB method. At low
rates, the error-diffusion threshold employed in the method must
be chosen so large that the likelihood of choosing sample points
from the image rows first processed by error diffusion becomes quite
small (or even zero). The number of rows affected increases with the
threshold. In our implementation of the YWB method, error diffu-
sion begins at the bottom of the image and proceeds upwards. This
explains why the triangulation in Fig. 3(f) has very few sample points
selected from the bottommost rows of the image.

Lastly, we consider the effects of changing the interpolant from
linear to CT in the GH and MGH methods. Recall, that the GH-
CT and MGH-CT mesh-generation methods are simply the GH and
MGH methods, respectively, with the interpolant changed to CT. The
proposed image coder was used to compress several images at var-
ious bit rates using the GH, MGH, GH-CT, and MGH-CT meth-
ods, with the results for the lena and peppers images given in
Fig. 4. From these graphs, we can see that the GH and MGH meth-
ods clearly outperform the GH-CT and MGH-CT methods, respec-
tively. In other words, linear interpolation outperforms CT interpo-
lation. In terms of subjective image quality, a similar conclusion
is also drawn. An example of two reconstructed images is shown
for the MGH/MGH-CT case in Fig. 5. The schemes employing the
CT interpolant have annoying artifacts caused by excessive under-
shoot/overshoot in the vicinity of edges.

6. CONCLUSIONS

In this paper, we have proposed a simple mesh-based image coder
and presented several mesh-generation methods (some previously
proposed and some new). Our coder has been used to evaluate the

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. Lossy reconstructed images obtained at about 50:1 com-
pression with the (a) random (21.52 dB), (b) YWB (20.10 dB),
(c) GH (23.67 dB), and (d) MGH (26.91 dB) methods; and the
image-domain triangulation associated with each of the (e) random,
(f) YWB, (g) GH, and (h) MGH methods.

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 36

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

P
S

N
R

 (
dB

)

Normalized Bit Rate

GH
GH-CT

MGH
MGH-CT

(a)

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

P
S

N
R

 (
dB

)

Normalized Bit Rate

GH
GH-CT

MGH
MGH-CT

(b)

Fig. 4. Lossy coding results for the (a) lena and (b) peppers
images using the GH, GH-CT, MGH, and MGH-CT methods.

(a) (b)

Fig. 5. Lossy reconstructed images obtained at about 50:1 compres-
sion with the (a) MGH (26.91 dB) and (b) MGH-CT (23.76 dB)
methods.

performance of the various mesh-generation methods. Of the meth-
ods considered, our proposed MGH mesh-generation scheme was
shown to yield the best coding performance (both objectively and
subjectively). Through our evaluation we have also shown that the
use of a CT interpolant leads to much poorer results than a linear
interpolant, due to severe overshoot/undershoot in the vicinity of im-
age edges. Through the insights provided by our work, one can hope
to develop improved mesh-based image coders in the future.

7. REFERENCES

[1] L. Demaret and A. Iske, “Scattered data coding in digital image
compression,” in Curve and Surface Fitting: Saint-Malo 2002,
Brentwood, TN, USA, 2003, pp. 107–117, Nashboro Press.

[2] Y. Yang, M. N. Wernick, and J. G. Brankov, “A fast approach
for accurate content-adaptive mesh generation,” IEEE Trans. on
Image Processing, vol. 12, no. 8, pp. 866–881, Aug. 2003.

[3] M. Garland and P. S. Heckbert, “Fast polygonal approxima-
tion of terrains and height fields,” Tech. Rep. CMU-CS-95-181,
School of Computer Science, Carnegie Mellon University, Pitts-
burgh, PA, USA, Sept. 1995.

[4] C. Dyken and M. S. Floater, “Preferred directions for resolving
the non-uniqueness of Delaunay triangulations,” Computational
Geometry—Theory and Applications, vol. 34, pp. 96–101, 2006.

[5] R. Clough and J. Tocher, “Finite element stiffness matrices for
analysis of plates in bending,” in Proc. of Conference on Matrix
Methods in Structural Mechanics, Wright-Patterson AFB, OH,
USA, 1965.

[6] H. Akima, “On estimating partial derivatives for bivariate inter-
polation of scattered data,” Rocky Mountain Journal of Mathe-
matics, vol. 14, no. 1, pp. 41–52, 1984.

