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ABSTRACT

A new content-adaptive mesh-generation method for image repre-
sentation, based on the greedy point-removal scheme of Demaret
and Iske, is proposed. The proposed method is shown to be capable
of producing meshes of higher quality than those generated by the
scheme of Demaret and Iske, while requiring substantially less com-
putation and memory. Furthermore, with the proposed method, one
can easily tradeoff between mesh quality and computational/mem-
ory complexity as needed. Since a mesh-generation scheme pro-
posed by Yang et al. is a key component of the proposed method,
some factors affecting the performance of this scheme are also ex-
plored.

Index Terms— Image representations, mesh generation, triangle
meshes, greedy point removal, error diffusion.

1. INTRODUCTION

In recent years, there has been a growing interest in image rep-
resentations that are based on content-adaptive (i.e., nonuniform)
sampling. In particular, triangle meshes (especially those based on
Delaunay triangulations) have received considerable attention as a
means for representing images [1, 2]. Such representations are use-
ful in a number of applications, including image coding. Since im-
ages are usually uniformly sampled on a (truncated) lattice, if we
wish to employ a mesh-based image representation in a particular
application, a means is needed for selecting a good subset of the orig-
inal sample points from which to generate a (nonuniformly-sampled)
mesh approximation. For this reason, mesh generation methods are
of great interest. Two highly effective mesh-generation methods that
have been proposed to date are thegreedy point-removal (GPR)
scheme of Demaret and Iske [2] anderror-diffusion (ED) scheme
of Yang et al. [1]. In this paper, we propose a new mesh-generation
method that is based on the GPR scheme, but exploits ideas from
the ED approach in order to greatly reduce computational/memory
complexity at essentially no cost to mesh quality.

The remainder of this paper is structured as follows. First, Sec-
tion 2 introduces triangle meshes as a tool for image representation.
Then, we turn our attention to mesh generation schemes. Section 3
describes the ED method and investigates factors affecting its per-
formance. Next, Section 4 introduces the GPR method and its short-
comings. Our proposed mesh-generation method is then introduced
in Section 5. In Section 6, some experimental results produced by
our proposed method are presented and its performance is shown to
be very good relative to other methods. Finally, we close in Section 7
with a summary of our work.
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2. MESH-BASED IMAGE REPRESENTATION

Consider an imagef defined on the domainI = [[0, W ) × [0, H)]∩
Z

2, whereZ denotes the set of integers (i.e.,f is an image uni-
formly sampled on a truncated rectangular lattice of widthW and
heightH). To construct an approximation of the imagef using a
triangle mesh, we proceed as follows: 1) Select a subsetS of the
sample pointsI. 2) Construct a Delaunay triangulation ofS. 3) For
each face in the triangulation with vertices(x0, y0), (x1, y1), and
(x2, y2) (which correspond to sample points), and their respective
sample valuesz0, z1, and z2, form the unique planar interpolant
through(x0, y0, z0), (x1, y1, z1), and(x2, y2, z2). 4) Combine all
of the interpolants from step 3 to form an approximation of the im-
agef over its entire domainI. In some applications, such as image
coding, the uniqueness of the triangulation can be quite important,
as this eliminates the need for any information other thanS in order
to determine the topology of the triangulation. For this reason, we
ensure a unique triangulation by employing the preferred-directions
scheme of Dyken and Floater [3]. The challenging part of the above
mesh-generation process is selecting the setS such that it has a cer-
tain prescribed size and also minimizes the squared error of the mesh
approximation. It is this part of the mesh-generation problem that we
address in this paper.

Before proceeding, a brief comment is in order concerning the
image data employed in our work. Although several test images were
used, the two for which we later present results, namelylena and
peppers, are grayscale versions of the 512×512 Lena and Peppers
images from the well-known USC Image Database.

3. ERROR-DIFFUSION (ED) METHOD

Before presenting our proposed method, we first introduce two other
mesh-generation schemes related to our method. The first of these
other schemes is theerror-diffusion (ED) method of Yang et al. [1].
Given an imagef (defined onI) and a desired numberN of sample
points, the ED method uses Floyd-Steinberg error diffusion [4] to
generate a setS of N sample points, distributed such that the local
density of sample points at each point(x, y) ∈ I is proportional
to the largest magnitude second-order directional derivative off at
(x, y). In more detail, the ED method consists of the following steps:
1) Fromf , compute the sample-point density functiond defined on
I given by

d(x, y) = d̃(x, y)/d̃max,

where d̃max = max(x,y)∈I d̃(x, y), and d̃(x, y) is the maximum
magnitude second-order directional derivative off at (x, y). 2) Set
the thresholdτ to use for Floyd-Steinberg error diffusion to be
τ0 = 1

2N

P

(x,y)∈I d(x, y). 3) Convert the functiond (which can
be viewed as a continuous-tone image) to a binary imageb (defined
onI) using Floyd-Steinberg error diffusion, as described in [1], with
thresholdτ and a serpentine scan order. 4) SetS′ to the set of all



points(x, y) for which b(x, y) 6= 0. SetN ′ to the size ofS′. 5) If
N ′ is close enough toN , setS to S′ and stop; otherwise, adjustτ
appropriately and go to step 3. Note that, in step 1,d̃ is calculated as

d̃(x, y) = max{|α(x, y) + β(x, y)| , |α(x, y) − β(x, y)|},

where α(x, y) = 1
2
[ ∂2

∂x2 f(x, y) + ∂2

∂y2 f(x, y)],

β(x, y) =
q

1
4
[ ∂2

∂x2 f(x, y) − ∂2

∂y2 f(x, y)]2 + [ ∂2

∂x∂y
f(x, y)]2,

and the one-dimensional convolution masks of
ˆ

1
2

0 −
1
2

˜

and
[ 1 −2 1 ] are used as discrete-time approximations for the first-
and second-order partial derivative operators, respectively.

Since the ED method must perform convolutions to compute
partial derivatives, this raises the question of how to handle filtering
at the image boundaries. In [1], Yang et al. did not clearly spec-
ify how image boundaries should be treated. Also, the authors did
not quantify the benefits (or lack thereof) of including a smoothing
(i.e., lowpass-filtering) operator in the convolution kernels used for
derivative computation. In what follows, we examine the preceding
issues more carefully. In particular, we consider three popular signal
extension strategies for handling image boundaries: 1) zero exten-
sion (i.e., zero padding), 2) constant extension (i.e., repeating the
first and last samples), and 3) symmetric extension (i.e., mirroring
about the first and last samples). Also, we consider two smoothing
strategies: 1) no smoothing is employed, and 2) smoothing is per-
formed using a Gaussian lowpass filter with a standard deviation of
one.

For several images and sampling densities, we generated a mesh
using the ED method in conjunction with each combination of signal
extension method and smoothing strategy, and measured the result-
ing mesh approximation error in terms of peak-signal-to-noise ratio
(PSNR). A representative subset of the results (for thelena image)
is given in Table 1. From these results, it is clear that, for the cases
of both smoothing and no smoothing, zero extension performs best.
A more careful analysis shows that the better performance of zero
extension is due to the fact that it typically yields much larger mag-
nitude second-order derivatives at the image boundaries, resulting in
significantly more points being placed on the image-domain bound-
ary. Constant and symmetric extension perform relatively poorly
due to their inability to place a sufficient number of points on the
image-domain boundary. This behavior is illustrated in Fig. 1 for
thelena image. Figs. 1(a) and (b) show, respectively, the points
selected when zero and symmetric extension (with smoothing) are
employed. From these figures, we can see that, in the case of zero
extension, many more points are chosen along the image boundary
as compared to symmetric extension. The results in Table 1 also
show that, for each extension method, the use of smoothing leads to
better results than no smoothing. As it turns out, not using smooth-
ing causes points to be somewhat more randomly distributed due
to phantom large-magnitude derivatives caused by noise. This be-
havior can be seen by comparing Figs. 1(a) and (c), which show
results obtained using zero extension with and without smoothing,
respectively. Clearly, the points in Fig. 1(a) (which were obtained
with smoothing) better reflect the underlying structure of the image
(especially fine detail) than those in Fig. 1(c) (which were obtained
without smoothing). Since zero extension with smoothing was found
to perform best, this combination is always used for the ED method
in the remainder of this paper.

4. GREEDY POINT-REMOVAL (GPR) METHOD

The second mesh-generation method of interest herein is thegreedy
point-removal (GPR)scheme of Demaret and Iske [2]. In short, this

Table 1. Comparison of several variants of the ED method for the
lena image

PSNR (dB)
Samp. No Smoothing Smoothing

Density Zero Const. Sym. Zero Const. Sym.
(%) Ext. Ext. Ext. Ext. Ext. Ext.
1 20.12 19.63 19.84 22.24 21.36 21.20
2 23.71 23.21 23.06 26.32 25.81 25.90
4 27.85 26.92 27.04 29.43 28.96 28.93
8 31.62 30.61 30.63 32.35 31.62 31.66

(a) (b) (c)

Fig. 1. Selected sample points obtained for thelena image at a
sampling density of 8% using (a) zero extension with smoothing,
(b) symmetric extension with smoothing, and (c) zero extension
without smoothing.

method first constructs a Delaunay triangulation of all of the sample
points of the image, and then repeatedly removes the point that yields
the smallest increase in the squared error of the mesh approximation.
More specifically, for a given image (of widthW and heightH) and
a desired numberN of sample points, the method consists of the
following steps: 1) Insert allWH of the sample points in the trian-
gulation. 2) For each pointp remaining in the triangulation, compute
the increase in the squared error of the mesh approximation that is
incurred if p is removed. 3) Remove the point that results in the
smallest error increase as determined by the calculations in step 2.
4) If the number of points remaining in the triangulation is greater
than N , go to step 2. Incidentally, since the deletion of a vertex
from a Delaunay triangulation is guaranteed only to affect the faces
incident on the vertex to be deleted, step 2 can be performed quite
efficiently in practice. That is, in each iteration (with the exception
of the first), step 2 only needs to recompute the error increase for a
very small number of points (i.e., the immediate neighbours of the
point deleted in the previous iteration).

Although the GPR method has been shown to yield excellent
quality meshes, it has one major weakness, namely its very high
computational and memory costs. Since the GPR method starts with
a triangulation containing all of the sample points of the image (i.e.,
WH points), the mesh size at the beginning of the algorithm can be
extremely large. With today’s digital cameras, a value forWH on
the order of107 is not unreasonable. The large mesh size leads to
an algorithm that can require very high computation times and very
large amounts of memory.

Lastly, we note that, due to the greedy nature of the GPR
method, it is extremely unlikely to yield a globally optimal solution.
This suboptimality is a direct consequence of the short-sightedness
of the greedy strategy. That is, when a point is removed, the algo-
rithm fails to consider how this point’s removal affects the evolution
of the algorithm inall subsequentiterations. In short, trying to
minimize the increase in error in the current iteration may cause the
error-increment values of later iterations to become much larger.



In light of the above suboptimality, it would seem plausible that
solutions of quality comparable to (or better than) those obtained
with the GPR method could be achieved without the need to consider
all WH sample points of the original image. This hypothesis mo-
tivated us to propose a modified version of the GPR method, which
we present next.

5. PROPOSED METHOD: GPR FROM SUBSET (GPRFS)

To improve upon the shortcomings of the GPR scheme, we propose
a slightly modified version of this scheme, which we henceforth re-
fer to asGPR from subset (GPRFS). Given an image (of width
W and heightH) and a desired numberN of sample points for the
mesh, our GPRFS method is identical to the GPR scheme, except for
step 1 (from the GPR scheme), which is amended to read: “1) Insert
a subsetS0 of the sample points of sizeN0 into the triangulation,
whereN0 ∈ [N, WH].” In other words, our GPRFS method inserts
only a subset of the sample points, instead of all of them. Clearly,
by choosingN0 to be much less thanWH, we can achieve lower
computational and memory complexities than the GPR scheme. Of
course, for our proposed approach to be useful, we need an effective
means for choosingS0. Although many schemes could be formu-
lated for selectingS0, we consider only two herein, with each lead-
ing to a different variant of the GPRFS method. The first scheme,
which is the one whose use is advocated by this paper, employs the
ED method (of Section 3) to selectS0, and yields the GPRFS vari-
ant known asGPRFS-ED. The second scheme, which is only used
later for benchmarking purposes, simply choosesS0 randomly, and
yields the GPRFS variant known asGPRFS-Random.

Note that the proposed GPRFS-ED method includes the GPR
and ED methods as special cases. That is, ifN0 = N , the ED
method is obtained, whereas ifN0 = WH, the GPR method is ob-
tained. Moreover, the proposed method can tradeoff between mesh
quality and computational/memory cost by varyingN0 in the range
[N, WH].

SinceN0 can assume any value in the range[N, WH], clearly
we need a means for choosingN0, or equivalently, the initial sam-
pling densityD0 (whereN0 andD0 are related byN0 = D0WH).
To help in determining an appropriate strategy for choosingD0, the
following experiment was conducted for several images and values
of the desired sampling densityD (whereD = N

WH
). For the given

image and value ofD, we measured the mesh quality (in PSNR)
as a function ofD0 while keepingD fixed. Fig. 2 shows the re-
sults obtained for two such experiments, with each graph having two
lines, one for each of the two GPRFS variants. (For each graph, the
horizontal axis corresponds to values ofD0.)

From the preceding results, we can make a number of observa-
tions. The first is that the GPRFS-ED variant is vastly superior to
the GPRFS-Random variant. That is, higher quality meshes (i.e.,
higher PSNR) can be obtained with the GPRFS-ED variant than
the GPRFS-Random variant for nearly all values ofD0 (and cer-
tainly all values of practical interest). In other words, using the ED
scheme to wisely selectS0 in the GPRFS method is highly effec-
tive, much more so than choosingS0 randomly. This shows the ef-
fectiveness of the subset selection method in our proposed GPRFS-
ED method. Since the GPRFS-ED variant is vastly superior to the
GPRFS-Random variant, we only consider the first of these variants
in the remainder of our work. With this in mind, let us continue to ex-
amine Fig. 2, focusing our attention only on the results obtained with
the GPRFS-ED variant. A careful examination of these results leads
to the following interesting observation: In both graphs, the maxi-
mum PSNR is not obtained whenD0 is 100%, the point at which the
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Fig. 2. Effect of varying the initial sampling densityD0 on mesh
quality for the GPRFS method. (a)lena with a desired sampling
densityD of 4%; and (b)peppers with a desired sampling density
D of 2%.

GPRFS-ED method becomes equivalent to the GPR scheme. More
specifically, asD0 is decreased from 100%, the PSNR climbs very
slowly to a maximum value and then drops relatively rapidly there-
after. Due to this behavior, the GPRFS-ED method can be made
to produce a higher quality mesh than the GPR method, provided
that an appropriate choice ofD0 is made. Based on further exper-
imentation, we found that, forD values of practical interest (e.g.,
D < 1

5
= 20%), the GPRFS-ED method usually achieves a PSNR

very close to the GPR method if we chooseD0 to be about 4 to 5
times the value ofD, with the best choice being closer to5D when
D is very small. In the interest of minimizing computational/mem-
ory complexity, however, we elect to chooseD0 = 4D, incurring
a small mesh-quality penalty relative to the GPR scheme whenD
is very small. Thus, in our GPRFS-ED method, we recommend the
following choice forN0 in terms ofN :

N0 = min{4N, WH}. (1)

In the remainder our paper, all experiments involving the GPRFS-
ED method chooseN0 in accordance with (1).

6. RESULTS

Having introduced our proposed GPRFS-ED method, we now com-
pare its performance to the GPR scheme in terms of mesh quality as
well as computational and memory complexities.

MESH QUALITY . For several combinations of images and de-
sired sampling densities, the GPRFS-ED and GPR methods were
used to generate meshes, and the mesh approximation error in PSNR
was measured. A representative subset of the results is given in
Table 2. For further comparison purposes, we have also included
the results obtained with the ED method (of Section 3). As can be
seen from the results, our GPRFS-ED method outperforms the GPR
scheme, except at very low sampling densities of about 1% or less
where the GPR scheme yields slightly better results. As we will
show later, however, at very low sampling densities, our GPRFS-ED
method requires about 16.8 times less computation time and about
25 times less memory than the GPR scheme. So the small differ-
ence in mesh quality at the sampling density of 1% is arguably a
small price to pay considering the savings in computational/memory
cost. From the above results, we can also see that the GPRFS-ED
method outperforms the ED scheme by a very large margin, demon-
strating that the excellent performance of the GPRFS-ED method is
not simply due to its use of the ED scheme alone. Lastly, we note



Table 2. Comparison of the mesh quality obtained with various
methods for the (a)lena and (b)peppers images

(a)
Samp. PSNR (dB)

Density GPRFS-
(%) ED GPR ED
1.0 28.85 29.11 22.24
1.5 30.68 30.68 24.75
2.0 31.95 31.78 26.32
4.0 34.50 34.40 29.43
8.0 37.11 37.00 32.35

(b)
Samp. PSNR (dB)

Density GPRFS-
(%) ED GPR ED
1.0 29.85 30.05 22.23
1.5 31.57 31.55 24.84
2.0 32.55 32.40 26.33
4.0 34.43 34.20 29.78
8.0 36.11 35.76 32.04

(a) (b)

Fig. 3. Part of the image approximations obtained with the
(a) GPRFS-ED (31.95 dB) and (b) GPR (31.78 dB) methods for the
lena image at a sampling density of 2%.

that, in terms of subjective quality, the GPRFS-ED and GPR meth-
ods are quite comparable, with the former having a slight edge in
some cases. An example illustrating the subjective quality achieved
by the GPRFS-ED and GPR methods is provided in Fig. 3, where
a small part of each mesh approximation is shown under magnifica-
tion. In this example, the two methods clearly yield quite compara-
ble results.

TIME AND MEMORY COMPLEXITIES. Earlier, we claimed that
our proposed GPRFS-ED method has significantly lower computa-
tional and memory complexities than the GPR scheme. We now
present some results to substantiate our claim. First, we consider
the time complexities of the methods. For several test images and
desired sampling densities, we measured the time required to gen-
erate a mesh using each of the GPRFS-ED and GPR methods. A
representative subset of these results (for thelena image) is shown
in Table 3. These results show that our GPRFS-ED method requires
anywhere from about 3 to 17 times less computation time than the
GPR scheme, with the difference being most pronounced at low sam-
pling densities. Clearly, our method offers a very substantial savings
in computation time.

Next, we compare the memory complexities of the GPRFS-ED

Table 3. Comparison of the time complexities of the GPRFS-ED
and GPR methods for thelena image

Samp. Time (s)
Density GPRFS-

(%) ED GPR Ratio∗

1 3.47 58.41 16.8
2 5.39 57.39 10.6
4 9.26 56.30 6.0
8 17.37 54.02 3.1

∗ratio of the time for the GPR method to the time for the
GPRFS-ED method

and GPR methods. In both methods, the memory usage is dominated
by the mesh data structure and (to a lesser extent) a priority queue
that contains one entry for each vertex in the mesh. Due to the sim-
ilarities between the two methods, both employ identical data struc-
tures for representing the mesh and priority queue. Consequently,
the peak memory usage for each method is approximately propor-
tional to the peak number of vertices in mesh. In the GPR method,
the peak mesh size is alwaysMGPR = WH, while in the GPRFS-
ED method, the peak mesh size isMGPRFS = min{4N, WH}. Ex-
pressing the ratioMGPR/MGPRFS in terms of the sampling density
D, we obtainMGPR/MGPRFS = 1/ min{4D, 1}. Thus, for sam-
pling densities from 1% to 10%, our proposed GPRFS-ED method
requires from 25 to 2.5 times (respectively) less memory than the
GPR scheme. Clearly, our method offers a very substantial memory
savings.

7. CONCLUSIONS

In this paper, we have proposed a new content-adaptive mesh-
generation method, known as GPRFS-ED. Our GPRFS-ED method
was shown to yield better quality meshes in terms of squared error
than the highly-effective GPR method, at only a very small fraction
of the computational and memory costs. The subjective quality of
the meshes obtained with our GPRFS-ED method are also com-
parable to (if not slightly better than) those generated by the GPR
method. Furthermore, with our proposed GPRFS-ED method, one
can easily tradeoff between mesh quality and computational/mem-
ory complexity as needed. By improving upon the state of the art in
mesh-generation methods, we help the numerous applications that
can benefit from the use of content-adaptive mesh representations of
images, with image coding being one such application.
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