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ABSTRACT 2. MESH-BASED IMAGE REPRESENTATION

A new content-adaptive mesh-generation method for image repreésonsider an imag¢ defined on the domaih= [[0, W) x [0, H)]N

sentation, based on the greedy point-removal scheme of Demar&t, whereZ denotes the set of integers (i.¢.,is an image uni-

and Iske, is proposed. The proposed method is shown to be capalftemly sampled on a truncated rectangular lattice of widthand

of producing meshes of higher quality than those generated by tHeeight /). To construct an approximation of the imagieusing a

scheme of Demaret and Iske, while requiring substantially less contriangle mesh, we proceed as follows: 1) Select a subsat the

putation and memory. Furthermore, with the proposed method, ongample pointd. 2) Construct a Delaunay triangulation $f 3) For

can easily tradeoff between mesh quality and computational/meneach face in the triangulation with verticésy, yo), (z1,y1), and

ory complexity as needed. Since a mesh-generation scheme pr@e2, y2) (which correspond to sample points), and their respective

posed by Yang et al. is a key component of the proposed methodample valuesy, z1, andz2, form the unique planar interpolant

some factors affecting the performance of this scheme are also etirough(xo, yo, 2z0), (z1,y1, 21), and(xz, y2, z2). 4) Combine all

plored. of the interpolants from step 3 to form an approximation of the im-

agef over its entire domaid. In some applications, such as image

%oding, the uniqueness of the triangulation can be quite important,

as this eliminates the need for any information other tfiam order

to determine the topology of the triangulation. For this reason, we

1. INTRODUCTION ensure a unique triangulation by employing the preferred-directions
scheme of Dyken and Floater [3]. The challenging part of the above

In recent years, there has been a growing interest in image reﬁjesh-generatlon process is selecting theSsaich that it has a cer-

Index Terms— Image representations, mesh generation, triangl
meshes, greedy point removal, error diffusion.

resentations that are based on content-adaptive (i.e., nonunifor in pre_scrik_)ed si;e ar_1d also minimizes the squa_red error of the mesh
sampling. In particular, triangle meshes (especially those based proximation. Itis this part of the mesh-generation problem that we

Delaunay triangulations) have received considerable attention a:sagdreSS in this paper.

means for representing images [1, 2]. Such representations are u?r% aB:Ejoa:'?azrr?\C?gdelggﬁ iuﬁrﬁéﬁ(ongﬂqh%r:} 'ﬁ ;r]e\?er?;rté:;r!cernmg the
ful in a number of applications, including image coding. Since im- 9 ploy ’ 9 Images were

ages are usually uniformly sampled on a (truncated) lattice, if wé'secj‘ the wo for which we ""?ter present results, narhelga and
wish to employ a mesh-based image representation in a particul FPpers, are grayscale versions of the 54212 Lena and Peppers
application, a means is needed for selecting a good subset of the ori'é]jages from the well-known USC Image Database.
inal sample points from which to generate a (nonuniformly-sampled)
mesh approximation. For this reason, mesh generation methods are 3. ERROR-DIFFUSION (ED) METHOD
of great interest. Two highly effective mesh-generation methods that ) o
have been proposed to date are ¢ieedy point-removal (GPR) Before presen_tlng our proposed method, we flrstlntroduc_e two other
scheme of Demaret and Iske [2] aador-diffusion (ED) scheme mesh-generathn scheme§ re!ated to our method. The first of these
of Yang et al. [1]. In this paper, we propose a new mesh-generatiofther schemes is treror-diffusion (ED) method of Yang et al. [1].
method that is based on the GPR scheme, but exploits ideas froffiven an imagef (defined on/) and a desired numbe¥ of sample
the ED approach in order to greatly reduce computational/memorfoints, the ED method uses Floyd-Steinberg error diffusion [4] to
complexity at essentially no cost to mesh quality. generate a sef of N sample points, distributed such that the local
The remainder of this paper is structured as follows. First, Secdensity of sample points at each point y) € I is proportional
tion 2 introduces triangle meshes as a tool for image representatiof? the largest magnitude second-order directional derivative aif
Then, we turn our attention to mesh generation schemes. Section'3 y). In more detail, the ED method consists of the following steps:
describes the ED method and investigates factors affecting its pet) From.f, compute the sample-point density functiédefined on
formance. Next, Section 4 introduces the GPR method and its shor{-91ven by - -
comings. Our proposed mesh-generation method is then introduced - d(z,y) = d(a, y)/dmj‘Xv
in Section 5. In Section 6, some experimental results produced byheredmax = max(; yyer d(z,y), andd(z,y) is the maximum
our proposed method are presented and its performance is shownfggnitude second-order directional derivativefait (z, y). 2) Set
be very good relative to other methods. Finally, we close in Section the thresholdr to use for Floyd-Steinberg error diffusion to be
with a summary of our work. To = ﬁ Z(z,y)EI d(z,y). 3) Convert the functiorl (which can
be viewed as a continuous-tone image) to a binary intagefined
This work was supported by the Natural Sciences and EngineRe- 0N ) using Floyd-Steinberg error diffusion, as described in [1], with
search Council of Canada. thresholdr and a serpentine scan order. 4) Séto the set of all




points(z, y) for which b(z,y) # 0. SetN’ to the size ofS’. 5) If

N’ is close enough taV, setS to S’ and stop; otherwise, adjust Table 1. Comparison of several variants of the ED method for the

appropriately and go to step 3. Note that, in stepi is,calculated as | ena image PSNR (dB)
d(z,y) = max{|a(z,y) + f(az, vl Ia(w,zy) = Bz, y)1}, Samp. No Smoothing Smoothing
where a(z,y) = (5= f(2,y) + 52/ (z,9)], Deonsny Zero | Const.[ Sym. || Zero | Const.| Sym.
. . . (%) Ext. Ext. Ext. Ext. Ext. Ext.
Blz,y) = \/i[c,??f(x, y) — a F(@,9)]2 + (525, f (@, y)]%, 1 20.12| 19.63 | 19.84 || 22.24| 21.36 | 21.20
and the one-dimensional convolution masks [of o -3 | and i gggé ggg% 3382 ggig gggé gggg
[1-21] are used as discrete-time approximations for the first; 8 31'62 30.61 30.63 32'35 31.62 31.66
and second-order partial derivative operators, respectively. : : : : : :

Since the ED method must perform convolutions to compute
partial derivatives, this raises the question of how to handle filterin
at the image boundaries. In [1], Yang et al. did not clearly spec’
ify how image boundaries should be treated. Also, the authors di
not quantify the benefits (or lack thereof) of including a smoothing
(i.e., lowpass-filtering) operator in the convolution kernels used foi
derivative computation. In what follows, we examine the preceding
issues more carefully. In particular, we consider three popular sign:
extension strategies for handling image boundaries: 1) zero exteir= *
sion (i.e., zero padding), 2) constant extension (i.e., repeating the
first and last samples), and 3) symmetric extension (i.e., mirroring:ig_ 1. Selected sample points obtained for thena image at a

about t_he _f'rSt and last sgmp!es). Also, we consider two S.mo.()th'ngampling density of 8% using (a) zero extension with smoothing,
strategies: 1) no smoothing is employed, and 2) smoothing is per-) symmetric extension with smoothing, and (c) zero extension

Lor:'r;ed using a Gaussian lowpass filter with a standard deviation ithout smoothing.

For several images and sampling densities, we generated a mesh
using the ED method in conjunction with each combination of signaimethod first constructs a Delaunay triangulation of all of the sample
extension method and smoothing strategy, and measured the resybints of the image, and then repeatedly removes the point that yields
ing mesh approximation error in terms of peak-signal-to-noise ratighe smallest increase in the squared error of the mesh approximation.
(PSNR). A representative subset of the results (fot thiea image)  More specifically, for a given image (of widif and height) and
is given in Table 1. From these results, it is clear that, for the caseg desired numbelN of sample points, the method consists of the
of both smoothing and no smoothing, zero extension performs besllowing steps: 1) Insert all’ H of the sample points in the trian-
A more careful analysis shows that the better performance of zergulation. 2) For each poiptremaining in the triangulation, compute
extension is due to the fact that it typically yields much larger magthe increase in the squared error of the mesh approximation that is
nitude second-order derivatives at the image boundaries, resulting incurred if p is removed. 3) Remove the point that results in the
significantly more points being placed on the image-domain boundsmallest error increase as determined by the calculations in step 2.
ary. Constant and symmetric extension perform relatively poorly) If the number of points remaining in the triangulation is greater
due to their inability to place a sufficient number of points on thethan N, go to step 2. Incidentally, since the deletion of a vertex
image-domain boundary. This behavior is illustrated in Fig. 1 forfrom a Delaunay triangulation is guaranteed only to affect the faces
thel ena image. Figs. 1(a) and (b) show, respectively, the pointsncident on the vertex to be deleted, step 2 can be performed quite
selected when zero and symmetric extension (with smoothing) arefficiently in practice. That is, in each iteration (with the exception
employed. From these figures, we can see that, in the case of zegpthe first), step 2 only needs to recompute the error increase for a
extension, many more points are chosen along the image boundaygry small number of points (i.e., the immediate neighbours of the
as compared to symmetric extension. The results in Table 1 alsgoint deleted in the previous iteration).
show that, for each extension method, the use of smoothing leads to Although the GPR method has been shown to yield excellent
better results than no smoothing. As it turns out, not using smootl‘quamy meshes, it has one major weakness, namely its very high
ing causes points to be somewhat more randomly distributed dugsmputational and memory costs. Since the GPR method starts with
to phantom large-magnitude derivatives caused by noise. This bgrtriangulation containing all of the sample points of the image (i.e.,
havior can be seen by comparing Figs. 1(a) and (c), which showy i points), the mesh size at the beginning of the algorithm can be
results obtained using zero extension with and without smoothingixtremew large. With today’s digital cameras, a valueoH on
respectively. Clearly, the points in Fig. 1(a) (which were obtainethe order ofl07 is not unreasonable. The large mesh size leads to

with smoothing) better reflect the underlying structure of the imagean algorithm that can require very high computation times and very
(especially fine detail) than those in Fig. 1(c) (which were obtainedarge amounts of memory.

without smoothing). Since zero extension with smoothing was found | astly, we note that, due to the greedy nature of the GPR
to perform best, this combination is always used for the ED methoghethod, it is extremely unlikely to yield a globally optimal solution.

in the remainder of this paper. This suboptimality is a direct consequence of the short-sightedness
of the greedy strategy. That is, when a point is removed, the algo-
4. GREEDY POINT-REMOVAL (GPR) METHOD rithm fails to consider how this point’s removal affects the evolution

of the algorithm inall subsequentterations. In short, trying to
The second mesh-generation method of interest herein gréleely ~ minimize the increase in error in the current iteration may cause the
point-removal (GPR) scheme of Demaret and Iske [2]. In short, this error-increment values of later iterations to become much larger.



In light of the above suboptimality, it would seem plausible that
solutions of quality comparable to (or better than) those obtained
with the GPR method could be achieved without the need to consider
all W H sample points of the original image. This hypothesis mo-

tivated us to propose a modified version of the GPR method, whichg g
we present next. % g
o agl ; a :
27 1 {
5. PROPOSED METHOD: GPR FROM SUBSET (GPRFS) 26 | | 2a |l
25 || GPRFS-ED —— 23 |i GPRFS-ED —— |
To improve upon the shortcomings of the GPR scheme, we propose 24 , GPRES-Random - 22 L. CPRESRandom -
a slightly modified version of this scheme, which we henceforth re- 0 lﬂmzt?m?a;ﬁnig Ef:n;fy fcfo)go 100 0 mmiz‘?afsoan‘fmﬁg E?:n;?y 22)90 100

fer to asGPR from subset (GPRFS) Given an image (of width @) (b)

W and heightd) and a desired numbéy of sample points for the

meSh, our GPRFS method is identical to the GPR SCheme, except fp[g 2. Effect of Varying the initial Samp”ng densit@o on mesh
step 1 (from the GPR scheme), which is amended to read: “1) Insegfyality for the GPRFS method. (hena with a desired sampling
a subsetS, of the sample points of siz&/ into the triangulation,  densityD of 4%; and (bpepper s with a desired sampling density
whereNy € [N, W H].” In other words, our GPRFS method inserts p of 204.

only a subset of the sample points, instead of all of them. Clearly,

by choosingNVy to be much less thali” H, we can achieve lower
computational and memory complexities than the GPR scheme.
course, for our proposed approach to be useful, we need ativdfec

PRFS-ED method becomes equivalent to the GPR scheme. More
specifically, asD, is decreased from 100%, the PSNR climbs very
means for choosingo. Although many schemes could be formu- slowly to a maxir_num vall_Je and then drops relatively rapidly there-
lated for selectingso, we consider only two herein, with each lead- &ftér- Due to this behavior, the GPRFS-ED method can be made

ing to a different variant of the GPRFS method. The first schemel© Produce a higher quality mesh than the GPR method, provided

which is the one whose use is advocated by this paper, employs tﬁléat an _appropriate choice o is made. Baseq on _further exper-
ED method (of Section 3) to selet, and yields the GPRFS vari- |ment?t|on, we found that, foPb values of practical |nterest (e.q.,
ant known aGPRFS-ED. The second scheme, which is only used P < 5 = 20%), the GPRFS-ED method usually achieves a PSNR
later for benchmarking purposes, simply chooSgsandomly, and V€'Y close to the GPR method if we chods to be about 4 to 5
yields the GPRFS variant known &°RFS-Random times the value oD, with the best choice being closeri® when

Note that the proposed GPRFS-ED method includes the GPR is very small. In the interest of minimizing computational/mem-
and ED methods as special cases. That isyjf = N, the ED ory complexity, however, we elect to chooB® = 4D, incurring

method is obtained, whereashf, = W H, the GPR method is ob- & small mesh-quality penalty relative to the GPR scheme when

tained. Moreover, the proposed method can tradeoff between me Very small._ Thus, in our GPRFS_FD method, we recommend the
quality and computational/memory cost by varyiNg in the range ollowing choice for/N in terms ofV:
[N, WH]. No = min{4N, WH}. 1)
Since Ny can assume any value in the rarig& W H], clearly |y the remainder our paper, all experiments involving the GPRFS-
we need a means for choosing, or equivalently, the initial sam-  £p method choos@, in accordance with (1).
pling densityD, (whereN, and Dy are related byNo = DoW H).
To help in determining an appropriate strategy for choodagthe
following experiment was conducted for several images and values 6. RESULTS
of the desired sampling densify (whereD = ). For the given
image and value of>, we measured the mesh quality (in PSNR) Having introduced our proposed GPRFS-ED method, we now com-
as a function ofD, while keepingD fixed. Fig. 2 shows the re- pare its performance to the GPR scheme in terms of mesh quality as
sults obtained for two such experiments, with each graph having twavell as computational and memory complexities.
lines, one for each of the two GPRFS variants. (For each graph, the MESH QUALITY. For several combinations of images and de-
horizontal axis corresponds to valuesiaf.) sired sampling densities, the GPRFS-ED and GPR methods were
From the preceding results, we can make a number of observased to generate meshes, and the mesh approximation error in PSNR
tions. The first is that the GPRFS-ED variant is vastly superior tavas measured. A representative subset of the results is given in
the GPRFS-Random variant. That is, higher quality meshes (i.eTable 2. For further comparison purposes, we have also included
higher PSNR) can be obtained with the GPRFS-ED variant thatthe results obtained with the ED method (of Section 3). As can be
the GPRFS-Random variant for nearly all valuesiaf (and cer- seen from the results, our GPRFS-ED method outperforms the GPR
tainly all values of practical interest). In other words, using the EDscheme, except at very low sampling densities of about 1% or less
scheme to wisely seled, in the GPRFS method is highly effec- where the GPR scheme yields slightly better results. As we will
tive, much more so than choositg randomly. This shows the ef- show later, however, at very low sampling densities, our GPRFS-ED
fectiveness of the subset selection method in our proposed GPRF8ethod requires about 16.8 times less computation time and about
ED method. Since the GPRFS-ED variant is vastly superior to th@5 times less memory than the GPR scheme. So the small differ-
GPRFS-Random variant, we only consider the first of these variantsnce in mesh quality at the sampling density of 1% is arguably a
in the remainder of our work. With this in mind, let us continue to ex-small price to pay considering the savings in computational/memory
amine Fig. 2, focusing our attention only on the results obtained witltost. From the above results, we can also see that the GPRFS-ED
the GPRFS-ED variant. A careful examination of these results leadsiethod outperforms the ED scheme by a very large margin, demon-
to the following interesting observation: In both graphs, the maxi-strating that the excellent performance of the GPRFS-ED method is
mum PSNR is not obtained whéepy is 100%, the point at which the not simply due to its use of the ED scheme alone. Lastly, we note



Table 2. Comparison of the mesh quality obtained with variousTable 3. Comparison of the time complexities of the GPRFS-ED
methods for the (d) ena and (b)pepper s images and GPR methods for tHeena image

(a) Samp. Time (S)
Samp. PSNR (dB Density || GPRFS-
Density || GPRFS- (%) ED GPR || Ratig*
(%) ED GPR | ED 1 3.47 58.41| 16.8
1.0 28.85 | 29.11| 22.24 2 5.39 57.39 || 10.6
15 30.68 | 30.68| 24.75 4 9.26 56.30 6.0
2.0 3195 | 31.78 | 26.32 8 17.37 | 54.02 3.1
4.0 3450 | 34.40| 29.43 *ratio of the time for the GPR method to the time for the
8.0 37.11 | 37.00 | 32.35 GPRFS-ED method
Sam (ngNR @B and GPR methods. In both methods, the memory usage i; dpminated
Densirt). GPRFS- by the me_sh data structure and (to a Ie_sser extent) a priority queue
%) y ED GPr | ED that contains one entry for each vertex in the mesh. Due to the sim-
ilarities between the two methods, both employ identical data struc-
1.0 29.85 | 30.05 22.23 tures for representing the mesh and priority queue. Consequently,
15 31.57 | 31.55 24.84 the peak memory usage for each method is approximately propor-
2.0 32.55 | 3240 26.33 tional to the peak number of vertices in mesh. In the GPR method,
4.0 34.43 | 34.20 29.78 the peak mesh size is alwaydcpr = W H, while in the GPRFS-
8.0 36.11 | 35.76 | 32.04 ED method, the peak mesh sizelifsprrs = min{4N, WH}. Ex-

pressing the ratid/ger /Mcprrrs in terms of the sampling density

D, we obtainMcpr/Mcprrs = 1/ min{4D,1}. Thus, for sam-
pling densities from 1% to 10%, our proposed GPRFS-ED method
requires from 25 to 2.5 times (respectively) less memory than the
GPR scheme. Clearly, our method offers a very substantial memory
savings.

7. CONCLUSIONS

In this paper, we have proposed a new content-adaptive mesh-
generation method, known as GPRFS-ED. Our GPRFS-ED method
was shown to yield better quality meshes in terms of squared error
than the highly-effective GPR method, at only a very small fraction
of the computational and memory costs. The subjective quality of
Part of the image approximations obtained with theth® meshes obtained with our GPRFS-ED method are also com-

Fig. 3. . .
(a) GPRFS-ED (31.95 dB) and (b) GPR (31.78 dB) methods for th@arable to (if not slightly better than) those generated by the GPR

method. Furthermore, with our proposed GPRFS-ED method, one
can easily tradeoff between mesh quality and computational/mem-
ory complexity as needed. By improving upon the state of the art in
that, in terms of subjective quality, the GPRFS-ED and GPR methmesh-generation methods, we help the numerous applications that
ods are quite comparable, with the former having a slight edge iran benefit from the use of content-adaptive mesh representations of
some cases. An example illustrating the subjective quality achieveithages, with image coding being one such application.

by the GPRFS-ED and GPR methods is provided in Fig. 3, where
a small part of each mesh approximation is shown under magnifica-
tion. In this example, the two methods clearly yield quite compara-

ble results. [1] Y. Yang, M. N. Wernick, and J. G. Brankov, “A fast approach
TIME AND MEMORY COMPLEXITIES. Earlier, we claimed that for accurate Content_adaptive mesh generatitEE’E Trans. on

our proposed GPRFS-ED method has significantly lower computa-  |mage Processing/ol. 12, no. 8, pp. 866—881, Aug. 2003.

tional and memory complexities than the GPR scheme. We no L D d A Iske “Ad in digital i

present some results to substantiate our claim. First, we consid ] - Demaret and A. Iske, vances in digital image compres-

the time complexities of the methods. For several test images and sion by adaptive thinning,” iAnnals of the Marie-Curie Fellow-

| ena image at a sampling density of 2%.
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