An Incremental/Decremental Delaunay Mesh-Generation Framework for Image Representation

Michael D. Adams Department of Electrical and Computer Engineering, University of Victoria, Canada mdadams@ece.uvic.ca

Motivation

- growing interest in image representations that are based on nonuniform sampling and also attempt to exploit geometric structure in images (e.g., image edges)
- triangle meshes well suited to nonuniform sampling as well as capturing geometric structure in images
- mesh representations of images useful in many diverse areas such as: enhancement, tomographic reconstruction, pattern recognition, computer vision, image/video coding

Mesh-Generation Framework

- proposed framework is iterative
- starts from initial mesh P₀; points added and deleted until target mesh size achieved and no further modifications desired
- in each iteration, point is either added or deleted using one of following operations:
 1. optimal-add operation: in face with highest
 - squared error, point with highest candidate error is added to mesh
- 2. optimal-delete operation: deletes point in mesh that will cause least increase in

IDDT Subjective Performance Evaluation: bull Image, Sampling Density 0.25%

Original (1024 \times 768)

Conceptual Model of Image

image modelled as function defined on continuous domain

Image Modelled as Surface

Mesh Model

- ► mesh model of image ϕ defined on $\Lambda = \{0, 1, ..., W-1\} \times \{0, 1, ..., H-1\}$ (i.e., rectangular grid of width W and height H) completely characterized by:
- 1. set $P = \{p_i\}_{i=1}^{|P|}$ of sample points 2. set $Z = \{z_i\}_{i=1}^{|P|}$ of corresponding sample val-

squared error

Bad-Point Replacement (BPR)

- propose postprocessing step to be applied after mesh generation called bad-point replacement (BPR)
- point in mesh said to be bad if its deletion from mesh would not cause approximation error to increase
- BPR scheme removes bad points from mesh, substituting new points in their place
- in more detail, consists of following steps:
 while point p that would be deleted by next optimal-delete operation is bad, perform optimal-delete operation, and mark p as permanently removed from mesh; if no points deleted in this step, stop
- perform n optimal-add operations, where n is number of points deleted in step 1
- 3. go to step 1

ED	MGH	IDDT
(20.59 dB)	(35.29 dB)	(37.53 dB)

clearly, IDDT method yields image reconstructions with better subjective quality than those obtained with ED and MGH schemes

BPR Performance Evaluation

	Samp.	PSNR (dB)			
	Density		ED		MGH
Image	(%)	ED	with BPR	MGH	with BPR
bull	0.25	20.59	36.44	35.29	36.55
	0.50	25.89	40.15	38.76	40.13
	1.00	33.34	42.21	41.07	42.09
	2.00	37.56	44.06	43.07	43.97
peppers	0.50	16.03	25.59	24.68	25.66
	1.00	21.35	28.78	27.53	28.38
	2.00	26.09	31.09	29.85	30.76
	3.00	28.17	32.19	31.13	31.89

ues (i.e., $z_i = \phi(p_i)$)

- P always chosen to include extreme convex hull points of Λ so triangulation of P covers entire image domain Λ
- mesh determined from model parameters as follows:

1. construct triangulation of P

2. for each face in triangulation with vertices (x_i, y_i), (x_j, y_j), and (x_k, y_k), and their respective sample values z_i, z_j, and z_k, form unique planar interpolant passing through points (x_i, y_i, z_i), (x_j, y_j, z_j), and (x_k, y_k, z_k)
3. combine interpolants from faces to obtain continuous piecewise-planar interpolant that approximates φ over entire image domain Λ
sampling density of mesh model defined as |P| / |Λ|

Mesh Approximation of Image (Sampling Density 2.5%)

reconstructed image obtained from mesh

IDDT Mesh-Generation Method

- IDDT mesh-generation method based on framework from above
- by using both optimal-add and optimal-delete operations, number of mesh points increased until target number N of points is reached
- finally, BPR scheme employed to remove any bad points
- in more detail, consists of following steps:
 1. let n = N |P| (where P is set of points currently in mesh); if n ≤ 0, go to step 5
 2. perform n optimal-add operations
 3. perform [n/2] optimal-delete operations
 4. go to step 1
- 5. apply BPR method to mesh

IDDT PSNR Performance Evaluation

to evaluate PSNR performance of IDDT scheme, compare to error diffusion (ED) method of Yang et al. [3] and modified using BPR as postprocessing step with each of ED and MGH methods improves mesh quality by 4.02 to 15.85 dB and 0.76 to 1.37 dB, respectively

Conclusions

- proposed IDDT method for mesh generation yields superior meshes relative to other schemes, as demonstrated by experimental results
- BPR scheme, used in IDDT method, can also be used to optimize meshes produced by other mesh-generation methods

model by scan conversion

Triangulation of Image Domain

Resulting Triangle Mesh Approximation

Reconstructed Image

Garland-Heckbert (MGH) method [1] inspired by [2]

	Samp.			
	Density	PSNR (dB)		B)
Image	(%)	ED	MGH	IDDT
bull	0.25	20.59	35.29	37.56
	0.50	25.89	38.76	40.48
	1.00	33.34	41.07	42.46
	2.00	37.56	43.07	44.38
peppers	0.50	16.03	24.68	26.50
	1.00	21.35	27.53	29.15
	2.00	26.09	29.85	31.31
	3.00	28.17	31.13	32.45

IDDT method outperforms ED and MGH schemes by about 4.28 to 16.97 dB and 1.31 to 2.27 dB, respectively

References

[1] M. D. Adams.

An evaluation of several mesh-generation methods using a simple mesh-based image coder. In *Proc. of IEEE ICIP*, pages 1041–1044, San Diego, CA, USA, Oct. 2008.

[2] M. Garland and P. S. Heckbert.

Fast polygonal approximation of terrains and height fields.

Technical Report CMU-CS-95-181, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA, Sept. 1995.

[3] Y. Yang, M. N. Wernick, and J. G. Brankov.

A fast approach for accurate content-adaptive mesh generation.

IEEE Trans. on Image Processing, 12(8):866–881, Aug. 2003.