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ABSTRACT

A new progressive lossy-to-lossless coding method for arbitrarily-connected trian-

gle mesh models of bivariate functions is proposed. The algorithm employs a novel

representation of a mesh dataset called a bivariate-function description (BFD) tree,

and codes the tree in an efficient manner. The proposed coder yields a particularly

compact description of the mesh connectivity by only coding the constrained edges

that are not locally preferred Delaunay (locally PD).

Experimental results show our method to be vastly superior to previously-proposed

coding frameworks for both lossless and progressive coding performance. For lossless

coding performance, the proposed method produces the coded bitstreams that are

27.3% and 68.1% smaller than those generated by the Edgebreaker and Wavemesh

methods, respectively. The progressive coding performance is measured in terms of

the PSNR of function reconstructions generated from the meshes decoded at inter-

mediate stages. The experimental results show that the function approximations ob-

tained with the proposed approach are vastly superior to those yielded with the image

tree (IT) method, the scattered data coding (SDC) method, the average-difference

image tree (ADIT) method, and the Wavemesh method with an average improvement

of 4.70 dB, 10.06 dB, 2.92 dB, and 10.19 dB in PSNR, respectively.

The proposed coding approach can also be combined with a mesh generator to

form a highly effective mesh-based image coding system, which is evaluated by com-

paring to the popular JPEG 2000 codec for images that are nearly piecewise smooth.

The images are compressed with the mesh-based image coder and the JPEG 2000

codec at the fixed compression rates and the quality of the resulting reconstructions
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are measured in terms of PSNR. The images obtained with our method are shown to

have a better quality than those produced by the JPEG 2000 codec, with an average

improvement of 3.46 dB.
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Chapter 1

Introduction

1.1 Mesh Modelling and Mesh Coding of Bivariate

Functions

Bivariate functions are of great interest to a wide range of scientific applications, such

as digital elevation maps in geographic information systems (GIS), images represen-

tation in signal processing, and math functions in surface modelling. Nonuniform

content-adaptive sampling has proven to highly beneficial for many types of bivariate

functions.

One very popular class of representation for bivariate functions that allows for

nonuniform sampling is the 2.5-dimensional (2.5-D) triangle mesh. An example of

a 2.5-D triangle mesh is shown in Figure 1.1. The original bivariate function is

shown in Figure 1.1(a). The mesh is constructed by partitioning the domain of the

function to be represented into a set of nonoverlapping triangles, where the vertices

of the triangles correspond to the sample points. Then, an approximating function

is defined over each triangle to yield a model for the original function over its entire

domain, as shown in Figure 1.1(b).

A great many choices are possible for the connectivity of the triangulation used

to partition the function domain. At one extreme is the Delaunay triangulation [11],

which is (up to degeneracies) uniquely determined from the sample points. At the

other extreme, the triangulation connectivity is chosen arbitrarily in a manner de-

pendent on the underlying dataset, leading to what is commonly known as a data-

dependent triangulation [16, 15, 24, 25, 34, 20, 21, 17]. For most functions, consider-

ably more accurate representations can be achieved by allowing for arbitrary connec-
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tivity [26]. Consequently, meshes with arbitrary connectivity are of great practical

interest. In the discussion above, the “2.5-D” qualifier for triangle mesh refers to the

fact that the surface associated with the mesh is a function defined on the plane (or

a subset thereof). In contrast, one can also speak of a 3-dimensional (3-D) triangle

mesh, which represents a true 2-manifold embedded in 3-D space and is used, for

example, in geometric modelling. A 2.5-D mesh is much more constrained in its be-

havior than its 3-D counterpart, however. To better illustrate the difference between

a 2.5-D and a 3-D mesh, examples of a 2.5-D and a 3-D dataset are shown in Fig-

ure 1.2(a) and Figure 1.2(b) respectively. The mesh in Figure 1.2(a) can be described

as a bivariate function using the equation z = f(x, y), since no vertical line perpen-

dicular to the xy-plane intersects the surface at more than one point. In contrast, the

mesh in Figure 1.2(b) can not be described directly as a bivariate function, as there

exist some vertical lines perpendicular to the xy-plane (e.g., z-axis) that intersect the

surface at multiple points.

As 2.5-D meshes find use in a growing number of applications, techniques for

efficiently coding such datasets for storage and communication are becoming increas-

ingly important. Moreover, many applications strongly favor coding methods that

offer progressive lossy-to-lossless coding functionality. With such functionality, the

decoder need not wait for the entire coded bitstream to be received before decoding.

Instead, decoding can commence after having received only a very small fraction of

the coded bitstream. Then, as more of the coded bitstream is received, progressively

better approximations of the coded dataset are obtained, until finally lossless repro-

duction is achieved after the entire coded bitstream has been decoded. Motivated by

the above, we focus our attention herein on the problem of progressive lossy-to-lossless

coding of 2.5-D meshes.

1.2 Historical Perspective

Since a 2.5-D mesh is a special case of 3-D mesh, techniques for coding 3-D triangle

meshes could, in principle, be used to code 2.5-D triangle meshes. Over the years,

3-D mesh coding methods have been studied extensively in the literature. Two excel-

lent surveys of such methods can be found in [23] and [22]. Of the various methods

proposed to date, two very well-known ones with publically available software imple-

mentations are Edgebreaker and Wavemesh.

Wavemesh [32, 31] is a lossy to lossless progressive coder that is based on wavelets
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(a) (b)

Figure 1.1: An example of a 2.5-D triangle mesh model. (a) the original bivariate
function and (b) a 2.5-D triangle mesh of the function.
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Figure 1.2: Examples of mesh models. (a) a 2.5-D mesh model and (b) a 3-D mesh
model.
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for irregular 3-D meshes. A mesh is first simplified according to a subdivision scheme.

Each face is subdivided into two, three, or four faces, or remains unchanged. After

simplification, the method builds a hierarchical relationship between the original mesh

and the simplified one. Therefore, the information of the original mesh can be ap-

proximated by applying the wavelet decomposition.

Edgebreaker [27, 28] is a single-rate (i.e., non-progressive) coder for compressing

3D triangle meshes. The Edgebreaker method is based on the triangle-traversal ap-

proach. At each step, the coder encodes the topological relation between the current

triangle and the boundary of the remaining part of the mesh. The decoder performs

the same traversal to travel the mesh from one triangle to an adjacent one. An

implementation of the Edgebreaker method can be found in [28].

Unfortunately, using a 3-D mesh coder for a 2.5-D dataset is far from ideal. This

is due to the fact that 2.5-D meshes are much more constrained in nature than their

3-D counterparts, and a 3-D mesh coder is unable to take advantage of this, leading

to inefficient coding.

Compared to the 3-D case, relatively little attention has been given to the prob-

lem of coding 2.5-D meshes, with only very limited work on progressive 2.5-D triangle

mesh coders having been performed to date. Unfortunately, the most effective pro-

gressive coders that have been proposed in the literature cannot handle meshes with

arbitrary connectivity. That is, such coders do not code connectivity information at

all, and instead presume that the connectivity is known through some other means

(e.g., by assuming Delaunay connectivity). Of the few progressive 2.5-D mesh coders

in the literature, the scattered data coding (SDC) method [12], image tree (IT)

method [5], and average-difference image tree (ADIT) method [8] have proven to

be highly effective.

The SDC method applies a technique called adaptive thinning, which is a recursive

point removal scheme that works with decremental Delaunay triangulations. The

adaptive thinning is used to obtain a scattered set of most significant pixels. Then,

the information of those pixels is coded by a hierarchical coding scheme, which works

with recursive subdivisions of octree cells.

The IT method is based on a quadtree data structure. The coder partitions the

image domain recursively along with an iterative sample value averaging process. The

ADIT method employs another tree-based representation of the 2.5-D triangle mesh,

called the average-difference image tree, which shares some similarities with the image

tree proposed in IT method. The main difference is that the ADIT method uses a
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completely different approach to capture the function values of the sample points.

Due to this variation, the progressive coding performance of the ADIT method is

vastly superior to that of the IT method.

None of the above methods, however, can code meshes with arbitrary connectivity.

In fact, the author is not aware of any fully progressive lossy-to-lossless coders for

2.5-D meshes in the current literature that can handle arbitrary connectivity.

1.3 Overview and Contributions of the Thesis

This thesis is concerned with addressing the problem of efficiently coding 2.5-D tri-

angle meshes with arbitrary connectivity for storage and communication. The main

contribution of this thesis is the proposal of a new progressive lossy-to-lossless coding

scheme that codes 2.5-D triangle mesh models of images and other bivariate functions.

A novel representation of a 2.5-D mesh dataset called a bivariate-function description

(BFD) tree is developed. The BFD tree captures all of the information required to

characterize the mesh, and more importantly, this data structure is particularly well

suited for progressive coding. Another contribution is that the connectivity coding

cost for meshes is vastly reduced by the proposed approach since the coder only codes

a small subset of original edges from the mesh that is sufficient to recover the whole

connectivity of the mesh.

Our framework is loosely based on ideas from the ADIT mesh coder described

in [8]. Many substantial contributions have been made, however, beyond this earlier

work. The most significant weakness of this earlier coder is that it does not code

mesh connectivity, as it implicitly assumes the mesh connectivity to be Delaunay.

Herein, we have extended this earlier coding scheme in order to code mesh connec-

tivity. Furthermore, numerous other key improvements have been made, leading to

a much more effective coder overall. For example, the manner in which information

is embedded in the coded bitstream has been changed, leading to much better pro-

gressive coding performance. As experimental results will later demonstrate, these

improvements allow our new coder proposed herein to significantly outperform the

ADIT coder in terms of progressive coding performance.

The remainder of this thesis contains four chapters and one appendix. In what

follows, we provide an overview of each of these remaining chapters/appendixes.

Chapter 2 introduces the background information necessary to understand work

presented herein. The chapter starts by introducing some basic notation and terminol-
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ogy, followed by some geometry concepts such as convex hull and triangulation. Two

types of triangulations (namely, preferred Delaunay triangulation and constrained

preferred Delaunay triangulation) are then discussed. Next, the definition of a 2.5-D

triangle mesh model is formally introduced. This is followed by some background on

arithmetic coding. Finally, the average-difference (AD) transform is presented.

Chapter 3 presents our proposed coding method for 2.5-D meshes. First, we in-

troduce a newly proposed representation of the mesh called a BFD tree. The mesh

dataset is first represented as a BFD tree, and then the BFD tree is coded. After

that, we explain the approach of utilizing a BFD tree to handle progressive coding.

Next, the pseudocode of the encoding algorithm is given, followed by the detailed de-

scriptions of the algorithm. After that, two main procedures of the encoding process,

namely, the child-configuration-edge-constraints (CCEC) coding and the detailed co-

efficient refinement (DCR) coding, will be discussed. Finally, the description of the

decoding process is presented. Since the encoding process and decoding process have

a high degree of symmetry, we focus primarily on describing the aspects of the decoder

that cannot be deduced by symmetry.

Chapter 4 evaluates the performance of the proposed coding method by bench-

marking it against several other 2.5-D and 3-D mesh coders. Our proposed scheme

is shown to achieve a level of coding performance that is vastly superior to 3-D mesh

coders for both progressive and lossless coding. For lossless coding performance, the

proposed approach is compared with two well-known 3-D coders, namely Wavemesh

and Edgebreaker. The experimental results show that the Edgebreaker and Wavemesh

schemes produce the coded bitstreams that are 27.03% and 68.19% larger than those

generated by the proposed method, on average. In terms of progressive coding per-

formance, our method is shown to have superior performance relative to other state-

of-the-art progressive 2.5-D mesh coders, often yielding function reconstructions at

intermediate rates during progressive decoding that are better in terms of PSNR by

6.97 dB on average. Lastly, we also demonstrate that our coding method can be

combined with a mesh generator to form a highly effective coder for lattice-sampled

images. For images that are approximately piecewise smooth, our mesh-based image

coder is shown to offer better coding performance than the well-known JPEG 2000

codec [18], both in terms of PSNR and subjective visual quality.

Chapter 5 concludes the thesis with a summary of our key results and some closing

remarks. Some recommendations for future work are also suggested.

Appendix A describes the software that implements the proposed 2.5-D triangle
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mesh coding framework. The appendix starts with a basic introduction of the soft-

ware, followed by instructions of how to build and install the software. After that, a

detailed description of the command-line interface for the software is given. Finally,

some examples of how to use the software are also provided.
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Chapter 2

Background

In this chapter, the background information necessary for the reader to understand

the work in this thesis is presented. First, some notation and terminology is presented.

Next, we introduce several concepts related to triangulations, and formally define the

2.5-D triangle mesh dataset. At last, arithmetic coding and the average difference

transform are introduced.

2.1 Notation and Terminology

Before proceeding further, a brief digression is needed to introduce some of the no-

tation and terminology used herein. The cardinality of the set S is denoted |S|. The

sets of integers and real numbers are denoted as Z and R, respectively. The following

notation is used to denote ranges of integers and intervals on R:

[a . . b] = {x ∈ Z : a ≤ x ≤ b}, [a . . b) = {x ∈ Z : a ≤ x < b},

[a, b) = {x ∈ R : a ≤ x < b} , and [a, b] = {x ∈ R : a ≤ x ≤ b} .

For x ∈ R, bxc and dxe denote the largest integer no greater than x (i.e., the floor

function) and the smallest integer no less than x (i.e., the ceiling function), respec-

tively. As a matter of notation, a line segment with endpoints a and b is denoted ab

and a triangle with vertices a, b, and c is denoted 4abc.
Given two (non-parallel) line segments p and q, we can define an arbitrary predi-

cate isPrefDir that tests if the orientation (i.e., direction/slope) of p is preferred over

that of q, where isPrefDir(p, q) is 1 if p is preferred over q and 0 otherwise. For the

purposes of our work, we define such a predicate using the preferred-directions scheme
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Figure 2.1: An example that illustrates the principle of the preferred-directions
scheme.

of [14] as

isPrefDir(p, q) =

1 if θ(p, u) < θ(q, u); or if θ(p, u) = θ(q, u) and θ(p, v) < θ(q, v)

0 otherwise,

where u = (1, 0), v = (1, 1), and θ(a, b) denotes the magnitude of the angle between

a and b. In other words, of p and q, we prefer the line segment whose slope is closer

to that of u unless both are equally close, in which case v is used in place of u in this

comparison to break the tie.

To better illustrate the preferred-direction predicate, an example is shown in Fig-

ure 2.1. Two line segments ab and cd and two unit vectors u and v are plotted in this

figure. To decide which line segment of ab and cd is preferred, we compare the value

of θ(ab, u) with the value of θ(cd, u). After calculation, it follows that ab is preferred

over cd (i.e. isPrefDir
(
ab, cd

)
= 1), since (θ(ab, u) = 45◦) < (θ(cd, u) = 60◦).

2.2 Triangulations

In this section, we focus on the definitions of triangulations. The basic concept of a

triangulation will be given first, followed by the definitions of two specific types of

triangulation used herein, namely, preferred Delaunay (PD) triangulation and con-

strained preferred Delaunay (PD) triangulation. In order to introduce the concept of

a triangulation, two basic concepts must first be introduced, namely, convex set and
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S1

a

b

(a)

S2

a

b

(b)

Figure 2.2: Examples of a (a) nonconvex set and (b) convex set.

convex hull.

Definition 2.1 (Convex set). A set P of points in R2 is said to be convex if and only

if for every pair of points a, b ∈ P , the line segment ab is also completely contained

in P .

To better illustrate the concept of a convex set, an example is shown in Figure 2.2.

In this illustration, the set S1 shown in Figure 2.2(a) is not convex, since there exists

a line segment ab with a, b ∈ S1 that is not completely contained in S1. The set S2 in

Figure 2.2(b) is convex, as every line segment ab where a, b ∈ P is always contained

in S2. Given the definition of convex set, we can now present the concept of a convex

hull.

Definition 2.2 (Convex hull). The convex hull of a set P of points in R2, denoted

conv(P ), is the intersection of all convex sets that contain P .

An example to illustrate the notion of a convex hull is shown in Figure 2.3. Fig-

ure 2.3(a) shows a set P of points, and the convex hull of P is shown in Figure 2.3(b).

The boundary of the convex hull of a set P can also be visualized as a polygon formed

by a rubber band that is stretched to enclose all the points of P . With the definition

of convex hull established, the concept of a triangulation can be introduced as follows.

Definition 2.3 (Triangulation) A triangulation T of the set P of points in R2 is

a set T of non-degenerate triangles that satisfies the following conditions:

1. the union of all triangles in T is the convex hull of P ;

2. the set of the vertices in all triangles of T is P ; and
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(a) (b)

Figure 2.3: Convex hull example. (a) A set P of points, and (b) the convex hull of
P .

(a) (b) (c)

Figure 2.4: Examples of triangulations of a set P of points. (a) A set P of points,
(b) A triangulation of P , and (c) another triangulation of P .

3. the interiors of any two triangles faces in T do not intersect.

Typically, a set P of points will have (very) many possible triangulations (i.e., many

possible connectivities). A set P of points is shown in Figure 2.4(a). With the

same point set given, two possible triangulations are generated and illustrated in

Figures 2.4(b) and 2.4(c). We can see that the connectivity of the triangulation in

Figure 2.4(b) is different from that of the triangulation in Figure 2.4(c).

Next, we would like to introduce two specific types of triangulations. In order to

do this, we must first describe the notions of a flippable edge and a circumcircle.

An edge e in a triangulation is said to be flippable if e has exactly two incident

faces (i.e. is not on the triangulation boundary) and the union of these faces is a

strictly convex quadrilateral. The edge e shown in Figure 2.5(a) is flippable while the

edge e in Figure 2.5(b) is not flippable.

Definition 2.4 (Circumcircle of a triangle). The circumcircle of a triangle is defined

as the unique circle passing through all three vertices of the triangle.

To illustrate the definition of a circumcircle, an example is shown in Figure 2.6.

A triangle is first given and the circumcircle of the triangle is drawn in a dashed

line. With the notions of circumcircle and flippable introduced, we now present the
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e

(a)

e

(b)

Figure 2.5: Examples of flippable and nonflippable edges. (a) An edge e that is
flippable, and (b) an edge e that is not flippable.

Figure 2.6: An example of circumcircle.
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a b c

d

e
f

g

Figure 2.7: An example of a triangulation that contains four types of locally PD.

definitions of locally preferred Delaunay (locally PD) and preferred Delaunay(PD)

triangulations.

Definition 2.5 (Locally preferred Delaunay (locally PD)). An edge ac in a triangula-

tion is said to be locally preferred Delaunay (locally PD) if ac is not flippable;

or ac is flippable and it has two incident faces 4abc and 4acd, and either:

1. d is outside the circumcircle of 4abc; or

2. d is on the circumcircle of 4abc and isPrefDir
(
ac, bd

)
6= 0 (i.e., ac is preferred

over bd).

Definition 2.6 (Preferred Delaunay (PD) triangulation). The preferred Delau-

nay (PD) triangulation of a set P of points, denoted PDT(P ), is a triangulation

for which each of its edges is locally PD.

To better illustrate the definition of locally PD, an example is given in Figure 2.7.

The edge af in Figure 2.7 is locally PD since it is on the triangulation boundary thus

not flippable. The edge be is also locally PD as be is not flippable. Moreover, the edge

ge is locally PD since d is outside the circumcircle of 4gef . Finally, we consider the

edge bd. As the point c is on the circumcircle of the face 4bed, the predicate defined

in (2.1) is used to determine the value of isPrefDir
(
bd, ce

)
. The edge bd is locally PD

as isPrefDir
(
bd, ce

)
6= 0 (i.e., bd is preferred over ce).

Often, a triangulation may be desired that contains certain prescribed edges,

known as constrained edges. Based on the definition of a PD triangulation, we

now present the concept of a constrained PD triangulation.
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Figure 2.8: Constrained PD triangulation example. (a) A set P of points (where
P = {a, b, c, d, e, f, g, h, i}) and a set E of one segment (where E = {gi}), and (b)
the constrained PD triangulation of (P,E), with the circumcircles of triangles in T
drawn using dashed lines.

Definition 2.7 (Constrained PD triangulation). The constrained PD triangu-

lation of a set P of points with the set E of constrained edges, denoted CPDT(P,E),

is a triangulation in which each edge is either in E (i.e., constrained) or locally PD.

To better illustrate the definition of constrained PD triangulation, we consider the

example shown in Figure 2.8. Figure 2.8(a) shows a set P of points and a set E of

constrained edges, and Figure 2.8(b) demonstrates the corresponding constrained PD

triangulation CPDT(P,E), with the constrained edge drawn with a thick line.

In some sense, a constrained PD triangulation is as close as possible to being

a PD triangulation, subject to the constraint that the former must contain certain

prescribed (i.e., constrained) edges. For any given P and E, CPDT(P,E) is always

uniquely determined from only P and E [14].

Suppose that we are given a set P of points and an arbitrary triangulation T of P .

Let E denote the set of edges in T that are not locally PD. Then, it trivially follows

that CPDT(P,E) is a triangulation with identical connectivity to T . Furthermore, it

can be shown [13] that E is the minimal set such that CPDT(P,E) has the same con-

nectivity as T . In this sense, the connectivity of any triangulation can be completely

characterized by a set of edge constraints (through a constrained PD triangulation).

As will be seen later, this fact is exploited in our method for triangulation connectivity

coding.
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2.3 2.5-D Triangle Mesh Models

As mentioned earlier, our work addresses the problem of efficiently coding 2.5-D

meshes. At this point, we would like to formalize exactly what constitutes such a

dataset. In the context of our work, a 2.5-D mesh is a dataset that consists of:

1) a set P = {pi} of sample points with integer coordinates (i.e., pi ∈ Z2); 2) a

triangulation T of P , which specifies the connectivity of the sample points; and 3) a

set of integer values Z = {fi}, where fi corresponds to the (integer) function value

at the sample point pi. In the case that the function domain is an iso-oriented (i.e.,

an axis-aligned) rectangle, the extreme convex hull points of P would be the four

corners of the function-domain bounding box. It is worth noting, however, that the

function-domain need not be an iso-oriented rectangle. It can be any convex polygon.

Given the information for a mesh dataset, a bivariate function can be constructed.

In practice, this is normally done by constructing a function over each face of the

triangulation T and then combining these functions to obtain a function that is defined

over the entire convex hull of P (i.e., the region covered by the triangulation T ).

Furthermore, the approximating function for each face is most often produced using

straightforward linear interpolation. As will be seen later, however, our proposed

coding method makes no assumptions about the particular manner in which a function

is constructed from the mesh dataset. So, as far as mesh coding itself is concerned,

the function-construction process is not important. This said, however, some of our

experiments presented later require generating a function from the decoded dataset,

in which case a specific choice for the function-construction procedure must be made.

In such cases, we simply choose linear interpolation, since (as mentioned above) it is

the most common approach.

The mesh modelling process, is illustrated in Figure 2.9. Figure 2.9(a) shows the

original bivariate function, and Figure 2.9(b) shows the function represented as a sur-

face where brightness corresponds to the height of the surface above the plane. With

the bivariate function given, a set of sample points is chosen and used to construct

a triangulation, as illustrated in Figure 2.9(c). Next, an approximating function is

defined over each triangle face using linear interpolation to yield a model that ap-

proximates the original function over its entire domain, as shown in Figure 2.9(d).
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(a)

(b)

(c)

(d)

Figure 2.9: An example of a mesh model of an image. (a) the original bivariate image,
(b) the function modelled as surface, (c) a triangulation of the function, and (d) the
resulting 2.5-D triangle mesh model.
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2.4 Arithmetic Coding

Arithmetic coding is one of the most popular entropy coding schemes used in data

compression. The source message is represented as an interval [0, 1) by the arithmetic

coding. The interval is narrowed to be shorter as the source message becomes longer,

leading to the increase of bits used to represent the interval. Binary arithmetic coding

is a special case of the arithmetic coding. The binary arithmetic coding scheme only

codes two types of symbols: 0 and 1. In what follows, the main focus is introducing

the concept of the binary arithmetic coding.

The encoding procedure is presented as follows. At the beginning of the encoding

process, the interval is initialized to [0, 1). At each step of the encoding process, the

encoder receives a symbol and the current interval is divided by the encoder into two

sub-intervals, each representing a fraction of the current interval proportional to the

probability of the received symbol. Next, the current interval is updated to one of the

sub-intervals that corresponds to the symbol. Let [a1, a2) denote the current interval

before encoding the next symbol and let [b1, b2) denote the interval that corresponds

to the probability distribution of the next symbol. Then the new interval [c1, c2) is

calculated as given by: c1 = a1 + (a2 − a1)× b1
c2 = a2 − (a2 − a1)× (1− b2).

(2.1)

The encoder keeps updating the current interval based on the received symbols and

after all symbols have been encoded, the resulting interval clearly identifies the se-

quence of symbols that generated it.

The decoding process also starts with the interval [0, 1). The decoder determines

the value of each symbol based on the message received from encoder and updates

the interval based on value of that symbol. Let [a1, a2) denote the current interval

and let [b1, b2) denote the interval that corresponds to the probability distribution

of the decoded symbol. The new interval [c1, c2) can also be calculated by (2.1).

The decoder also needs to know where the bit stream ends so it can terminate at

the appropriate point. The arithmetic coder is said to be context based if the

probability distribution of symbols is chosen based on the contextual information,

rather than always being fixed. Moreover, the arithmetic coding is called adaptive

if the probability of each symbol is adjusted based on the symbols that have been
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Table 2.1: Probability distribution of the symbols {0,1}
Symbol Probability Interval
0 0.7 [0.0,0.7)
1 0.3 [0.7,1.0)

Initial 10 0 1 1 0

1.0

0.0

0.7

0.0 0.49

0.7 0.637

0.49

0.637 0.637

0.5929 0.623770.62377

0.633031

Figure 2.10: Graphic representation of the arithmetic encoding process.

coded.

In what follows, examples are shown to demonstrate the (binary) arithmetic en-

coding and decoding processes. The source message {0, 1, 0, 1, 1, 0} contains six sym-

bols selected from the binary alphabet {0, 1}. Table 2.1 shows the probability distri-

bution of the symbols.

We first present how encoder works. Figure 2.10 is presented to help illustrate

the updates of the interval in the encoding process. The encoder first initializes the

interval to [0, 1). The first symbol received by encoder is 0, which corresponds to the

interval [0, 0.7) as shown in Table 2.1. By following (2.1), the current interval [0, 1) is

updated to a sub-interval [0, 0.7). Similarly, the second symbol 1 narrows the interval

from [0.0, 0.7) to [0.49, 0.70) using the same equation. Repeating the same approach,

the following symbols 0, 1, 1, 0 are encoded by the encoder one after another. When

all symbols are encoded, the final interval is updated to [0.62377, 0.633031), which is

sufficient to recover the source message. As it is not necessary for encoder to code

both sides of the interval, only the number 0.63477 (lower bound) is selected and
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10 0 1 1 0

1.0

0.0

0.7

0.0 0.49

0.7 0.637

0.49

0.637 0.637

0.5929 0.623770.62377

0.633031

Input: 0.62377

0 0 0 0 0 0 0

1 1 1 1 1 1 1

Figure 2.11: Graphic representation of the arithmetic decoding process.

encoded.

Now we consider the decoding process. The updates of the interval is illustrated

in Figure 2.11. The decoder also starts with the interval [0, 1). The transmitted

number 0.62377 is in the range [0, 0.7), which is same as the interval of the symbol 0

in the initial range. Consequently, the decoder decodes a 0 for the first symbol and

the interval is updated to [0, 0.7) based on (2.1). As the number 0.62377 is located

at the range [0.49, 0.7), which corresponds to the interval of symbol 1 relative to the

current interval [0, 0.7), the second symbol decoded is 1. The symbol 1 narrows the

current interval from [0, 0.7) to [0.49, 0.7) by following (2.1). Repeating the same

approach, the remaining symbols 0, 1, 1, 0 are decoded one after another, and the

decoding process ends after the sixth symbol is successfully decoded.

A binary arithmetic coder is only capable of coding binary symbols. In some

real world applications, certain binarization schemes must be applied to convert a

non-binary symbol to a sequence of binary symbols for coding.

2.5 Average-difference Transform (ADT)

In anticipation of what comes later, we introduce a simple transformation known

as the average-difference transform (ADT). The ADT, denoted ADT, is the
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mapping from Z2 to Z2 given by

ADT{(x0, x1)} = (favg(x0, x1), fdiff(x0, x1)) , (2.2)

where favg(x0, x1) =
⌊
1
2
(x0 + x1)

⌋
and fdiff(x0, x1) = x1 − x0. In other words, the

ADT maps a pair of integers to their approximate average and difference. Due to the

form of (2.2), if x0 and x1 can each be represented with n bits (i.e., an n-bit integer),

favg(x0, x1) and fdiff(x0, x1) can be represented with n and n + 1 bits, respectively, a

fact that we make use of later. The transform computed by (2.2) is invertible, with

its inverse given by

ADT−1{(y0, y1)} =
(
y0 −

⌊
1
2
y1
⌋
, y0 +

⌈
1
2
y1
⌉)
. (2.3)
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Chapter 3

Proposed Mesh-Coding Method

In developing a coding scheme for 2.5-D meshes with arbitrary connectivity, a strat-

egy for describing the mesh connectivity must be chosen. The most straightforward

way to characterize the mesh connectivity would be to view it directly as a graph.

In our work, however, a different approach is taken. Instead of viewing the mesh

connectivity as a graph, we describe the connectivity as a set of edge constraints for a

constrained PD triangulation. For a given mesh to be coded with the set P of sample

points, we select the minimal set E of edge constraints such that CPDT(P,E) yields

a triangulation with the same connectivity as the given mesh. Then, E is used to

convey the mesh connectivity for coding purposes. As mentioned earlier, this set E

is easily determined. In particular, we choose E as the set of all edges in the mesh

that are not locally PD. For non-Delaunay meshes of practical interest, the fraction

of edges that are not locally PD is typically less than 25% and often significantly less

for some types of datasets. Furthermore, it has been shown that this fraction can-

not exceed 50% for any mesh [13]. Thus, this strategy yields a particularly compact

description of the mesh connectivity. Moreover, the compactness of this description

increases (i.e., |E| decreases) as the mesh connectivity more closely approaches PD

connectivity (where, in the case of PD connectivity, |E| = 0). This allows for a very

low connectivity coding cost for meshes with Delaunay connectivity.

With the above strategy, the encoder determines the set E from the mesh to be

coded and encodes this information in the coded bitstream; the decoder then recovers

the correct connectivity by constructing a constrained PD triangulation with the

decoded edge constraints. Essentially, this transforms the problem of coding a 2.5-D

mesh into one of coding a constrained PD triangulation with a function value (i.e., fi

value) for each vertex.
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3.1 Bivariate-Function Description (BFD) Tree

Our coding method, to be introduced shortly, employs a novel representation of a

2.5-D mesh dataset proposed herein called a bivariate-function description (BFD)

tree. With our coding approach, a given mesh dataset is first represented as a BFD

tree, and then this BFD tree is coded. To begin, we first introduce the BFD-tree

representation of a mesh. Then, we proceed to describe how the information in a

BFD tree can be efficiently coded.

Let us consider a mesh dataset having: 1) the set P = {pi} of sample points;

2) the set F = {fi} of function values, each with a sample precision ρ of bits/sample;

3) the triangulation T of P ; and 4) the set E of edges in T that are not locally PD

(i.e., E is the minimal set needed to ensure CPDT(P,E) has the same connectivity as

T ). Without loss of generality, we assume the sample points {pi} to be contained in a

rectangular region of the form B = [0,W )× [0, H) for some positive integer constants

W and H. (This assumption can always be made to hold by adding an appropriate

constant bias to the coordinates of the sample points.) As a matter of terminology, the

padded bounding box B′ (of a mesh dataset) is defined as the rectangular region B′ =

[0, 2D)× [0, 2D) where D is the smallest positive integer such that the B ⊂ B′ (i.e., B′

is the smallest square region with a power-of-two width/height that contains B). A

cell is a rectangular region of the form C = [x0, x1)× [y0, y1), where x0, x1, y0, y1 ∈ Z
and the width (i.e., x1−x0) and height (i.e., y1−y0) of C are strictly positive integers

and powers of two. A cell is said to be occupied if it contains at least one sample

point (i.e., element of P ). Two occupied cells C and C ′ are said to be constraint

connected if there exists a sample point in C that is connected by an edge constraint

to a sample point in C ′. The representative point of a cell C = [x0, x1) × [y0, y1)

is defined as the point (xm, ym), where xm =
⌊
1
2
(x0 + x1)

⌋
and ym =

⌊
1
2
(y0 + y1)

⌋
.

That is, the representative point of C is its (exact) centroid, except when the width

or height of C is 1, in which case this representative point is on the boundary of C.

A BFD tree is binary tree that captures all of the information needed to com-

pletely characterize a 2.5-D mesh dataset (namely, P , F , T , and E). Such a tree is

associated with a recursive binary partitioning of B′ into cells, similar to the parti-

tioning associated with a k-d tree [10]. Each node in the tree has a corresponding cell.

As a matter of terminology, two leaf nodes in a BFD tree are said to be constraint-

connected neighbours (or, equivalently, constraint connected) if the cell of one

node is constraint connected to the cell of the other node. Each internal node in a
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BFD tree can have either one or two children, and each (internal or leaf) node in the

tree consists of: 1) a cell, which is always occupied; 2) an approximation coefficient,

which is an approximate average of the function values fi taken over all of the sample

points in the node’s cell; 3) in the case of an internal node with exactly two children,

a detail coefficient, which specifies the difference in the approximation coefficients of

the node’s two children; and 4) in the case of a leaf node, the node’s set of constraint-

connected neighbours. (i.e., the set containing each other leaf node in the tree whose

cell is constraint connected to the cell of this node). For convenience, in what follows,

we denote the approximation coefficient of the root node as aroot.

At this point, we need to explain how to determine which nodes are present in a

BFD tree and the cells of those nodes. As mentioned earlier, a BFD tree is associated

with a recursive binary partitioning of B′; so, perhaps not surprisingly, this decision

process is specified recursively. Since a BFD tree must contain at least one node, it

always has a root node. The cell of the root node is chosen as B′. Then, we define

a recursive process for adding more nodes as follows. Given a node u at level ` in

the tree with cell C = [x0, x1) × [y0, y1), we proceed as follows to determine which

children of u are present and what the cell of each child node is. Let u0 and u1 denote

the first and second child nodes of u, each of which may or may not be present in

the tree. The cell C is split into two new cells C0 and C1, in a manner that depends

on `, as follows: 1) if ` is even, C0 = [x0, xm) × [y0, y1) and C1 = [xm, x1) × [y0, y1),

where xm = 1
2
(x0 + x1) (i.e., C is split by a vertical line through its centroid to yield

C0 and C1); 2) if ` is odd, C0 = [x0, x1)× [y0, ym) and C1 = [x0, x1)× [ym, y1), where

ym = 1
2
(y0 + y1) (i.e., C is split by a horizontal line through it centroid to yield C0

and C1). Once C0 and C1 have been determined, the decision of which of the child

nodes u0, u1 of u are present is made by recalling the invariant that a cell’s node must

always be occupied. In particular, for i ∈ {0, 1}, if node Ci is occupied, then the node

u has the child ui with cell Ci. The preceding rule for adding children (i.e., new leaf

nodes) is applied recursively until each leaf node is such that its cell contains only a

single point in Z2 (where this point corresponds to the cell’s representative point).

This occurs when ` equals Lmax = 1+2D. At level Lmax in the tree, each (leaf) node’s

cell has a width and height of 1. By construction, the representative point of each

leaf node’s cell (at level Lmax) is one of the sample points in the mesh. Thus, there is

a one-to-one correspondence between leaf nodes in the tree and sample points (i.e.,

mesh vertices).

Next, we specify how the approximation and detail coefficients are defined for
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nodes in a BFD tree. First, let us consider the case of determining the coefficient

information for a leaf node u. Since only a node with two children has a detail

coefficient, u (which has no children) does not have a detail coefficient. So, we must

only specify how the approximation coefficient of u is determined. Recall that a

leaf node always corresponds to a sample point in the mesh. Let pi denote this

sample point and let fi denote the corresponding function value. We simply define

the approximation coefficient a of u as a = fi. Next, let us consider the case of an

internal node u. There are two possibilities to consider, depending on the number of

children possessed by u (which is either 1 or 2). First, we consider the case that u has

exactly one child. In this case, u has no detail coefficient (for a similar reason as in the

case of a leaf node above) and the approximation coefficient a of u is given by a = ai,

where ai is the approximation coefficient of the child of u. Next, we consider the

case that u has exactly two children. Let u0 and u1 denote the child nodes of u with

their respective approximation coefficients a0 and a1. In this case, the approximation

coefficient a and detail coefficient d of u are given by the ADT as a = favg(a0, a1) and

d = fdiff(a0, a1) (where the ADT was defined earlier in (2.2)).

Due to the manner in which the ADT is defined, if each function value fi can

be represented as an n-bit integer then: 1) each approximation coefficient (including

aroot) can be represented as an n-bit integer; and 2) each detail coefficient can be

represented as an (n+1)-bit signed integer. We exploit this fact later in our proposed

coding scheme. It is also important to note that a significant amount of redundancy

exists in the approximation and detail coefficients of a BFD tree. For example, aroot

and the set of all detail coefficients is sufficient to completely characterize all of

the approximation coefficients in the tree. Therefore, in order to fully capture the

coefficient information for a BFD tree, it is sufficient to code only aroot along with the

detail coefficients.

An example of a BFD tree for a simple mesh dataset is shown in Figure 3.1.

Figure 3.1(a) shows a mesh dataset with 5 sample points and a padded bounding box

of B′ = [0, 4)× [0, 4). Each sample point pi is shown labelled with its corresponding

function value fi. The edges in the triangulation are shown, with each locally PD

edge drawn as a thin line and each edge that is not locally PD drawn as a thick

line. As can be seen from the figure, only 1 of the 8 triangulation edges is not

locally PD. Figure 3.1(b) shows the BFD tree corresponding to the mesh dataset in

Figure 3.1(a). Each node in the tree is labelled with its cell, approximation coefficient,

and, if one exists, detail coefficient (in that order). Pairs of constraint-connected nodes
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Figure 3.1: BFD tree example. (a) A 2.5-D mesh dataset (i.e., sample points, function
values, and sample-point connectivity) and (b) its corresponding BFD tree.

(which must be leaf nodes) are shown connected by a dotted line. The single pair of

constraint-connected nodes appearing in Figure 3.1(b) corresponds to the single edge

in the mesh dataset that is not locally PD.

3.2 Progressive Coding

As it turns out, a BFD tree is particularly well suited for progressive coding. In order

to understand the basic principle behind the progressive coding of such a tree, it is

important to recall from earlier that, the leaf nodes of a BFD tree have a one-to-one

correspondence with mesh vertices (i.e., sample points). In particular, each leaf node

corresponds to a vertex positioned at the representative point of the node’s cell. To

progressively code a BFD tree, we code the information in the tree starting from the

root node and proceeding downwards in the tree. Initially, the root approximation

coefficient of the tree is included (in a header) at the start of the coded bitstream. We

then code a single node at the root, which corresponds to a degenerate triangulation

with a single vertex and no edge constraints. Then, we proceed to successively code

how to add new leaf nodes to the tree. As each new leaf node is added, information is

coded indicating how to appropriately update the constraint-connected relationships

between leaf nodes. Along with the addition of new leaf nodes, the detail coefficients

are also coded from the most-significant to least-significant bit position.

At any given point, a partially decoded tree can be used to obtain an approx-
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imation of the original mesh dataset as follows. The vertices of the decoded mesh

are given by the representative points of the leaf nodes’ cells in the partially-decoded

tree. The edge constraints to be used for determining the mesh connectivity are given

by the constraint-connected relationships of the leaf nodes. In particular, the vertices

associated with two leaf nodes are connected by an edge constraint if and only if their

corresponding nodes are constraint connected. The function values corresponding to

the mesh vertices are determined, through the application of the inverse ADT, using

the approximation coefficient of the root node and the values of the detail coefficients

decoded so far.

3.3 Encoding Algorithm

Having introduced the BFD tree representation of a mesh, we now present our pro-

posed method for efficiently coding the information in such a tree. Our coder employs

context-based adaptive binary arithmetic coding [33]. Since the encoding and decod-

ing processes in our method have a high degree of symmetry, the decoding process

can be mostly inferred from the encoding process. For this reason, in the interest

of brevity, we focus primarily on describing the encoder herein, only commenting on

aspects of the decoder that cannot be deduced by symmetry.

Conceptually, the encoder employs two BFD trees called the reference and current

trees. The reference tree is an entire BFD tree for the mesh being coded. This

tree is constructed at the beginning of the encoding process and is never modified

subsequently. It is used only to query values at various stages in the encoding process.

The current tree represents the part of the reference tree that has been coded so far.

As far as the coding process is concerned, the tree of primary interest is the current

tree, as it it holds the current coding state. The encoding algorithm employs two

queues, each of which holds nodes from the current tree. The first queue, called the

splitting (S) queue, is a priority queue. It is used only to hold leaf nodes at even

levels in the current tree. The second queue, called the refinement (R) queue, is a

first-in first-out (FIFO) queue. It is used only to hold non-leaf nodes from the current

tree.

Given a mesh to be coded, the encoder proceeds as follows. First, it constructs

the reference tree (i.e., the BFD tree for the mesh being coded). Then, the encoder

writes a small fixed-size header to the coded bitstream containing several key BFD-

tree parameters (e.g., W , H, ρ, and aroot) and initializes the arithmetic coding engine.
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Next, the current tree is initialized to contain only a single (i.e., root) node and this

node is inserted on the S queue. The encoding process then alternates between pro-

cessing nodes on each of the S and R queues, with the switching between queues

being controlled based on the number of binary symbols coded with the arithmetic

coder. Each node removed from the S queue is processed by the child-configuration

and edge-constraint (CCEC) coding procedure, which refines mesh vertices (i.e.,

sample points) and their positions and updates information on edge constraints. The

CCEC coding procedure also causes nodes to be placed on the R queue. Each node re-

moved from the R queue is processed by the detail-coefficient refinement (DCR)

coding procedure, which refines the values of detail coefficients (i.e., function value

information). The encoding process continues until both queues are empty, at which

point all information in the mesh dataset has been coded.

The above encoding algorithm is described in more detail in pseudocode form in

Algorithm 1. In the pseudocode, the reference and current trees are referred to as

refTree and curTree, respectively. In passing, we note that, although the mesh

datasets considered herein are such that the coordinates of the sample points pi and

the function values fi are integers, real values can easily be accommodated by quan-

tizing the original data (to obtain integer quantizer indices), adding the quantization

parameters (e.g., quantizer step sizes) to the header of the coded bitstream, and then

coding the quantized integer data. In order to complete the description of the encod-

ing algorithm, we still need to specify the CCEC and DCR coding procedures and

explain how the S queue priority function sQueuePri is defined. In what follows, we

provide these additional details.

S queue priority function (i.e., sQueuePri). In Algorithm 1 above, the sQueuePri

function is used (in steps 7 and 24) to calculate the priority with which a node should

be inserted on the S queue. The priority of a node u is defined as sQueuePri(u) =

a(c + 1), where a is the area of the cell of u and c is the number of constraint-

connected neighbours of u. The priority function controls the order in which different

regions of the mesh are refined during (progressive) coding. Herein, we have chosen

sQueuePri to achieve good overall rate-distortion performance. In passing, we note

that other choices are possible. For example, although not explored in our work,

the priority function could be chosen to prioritize reducing the error in a particular

region (or regions) in the mesh in order to provide a basic region-of-interest coding

functionality. In such a case, the priority of a node could be made to depend on the

position of the node’s cell in relation to the region of interest.
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Algorithm 1 Encoding algorithm

1: procedure encodeMesh
2: define several constants as follows: sThresh = 100, dThresh = 10, and η = 3
3: set refTree to the BFD tree of the mesh to be coded (refTree is never

modified after being initialized in this step)
4: encode the header information (i.e., W , H, ρ, and aroot).
5: initialize the arithmetic-coding engine
6: create current BFD tree curTree with the root node rootNode (where

curTree represents the part of the BFD tree coded so far)

7: clear the S and R queues, and insert rootNode on the S queue with priority
sQueuePri(rootNode)

8: sBudget := sThresh

9: dBudget := dThresh

10: while S and R queues are not both empty do
11: while sBudget > 0 and S queue is not empty do
12: set curNode to the node at the front of the S queue and remove this

node from the queue
13: b := 0
14: invoke the CCEC coding procedure for curNode; let sNodeList be a

list containing the newly-created nodes at an even level in curTree

(i.e., the new leaf nodes); let rNodeList be a list containing curNode

and the newly created nodes at an odd level in curTree; increment b

by the number of binary symbols coded (by the arithmetic coder) in
this step

15: for each node in rNodeList do
16: if node has a detail coefficient then
17: invoke the DCR coding procedure η times for node; increment

b by the number of binary symbols coded (by the arithmetic
coder) in this step

18: if node has more DC bits to code then
19: insert node on the R queue
20: endif
21: endif
22: endfor
23: for each node in sNodeList do
24: insert node on the S queue with priority sQueuePri(node)
25: endfor
26: sBudget := sBudget - b
27: endwhile
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28: while rBudget > 0 and R queue is not empty do
29: set node to the node at front of R queue and remove this node from

the queue

30: invoke the DCR coding procedure once for node; set b to the number
of binary symbols coded (by the arithmetic coder) in this step

31: if still more bits of DC data to code for node then
32: insert node on the R queue
33: endif
34: rBudget := rBudget - b
35: endwhile
36: sBudget := min{sThresh, sBudget + sThresh}
37: rBudget := min{rThresh, rBudget + rThresh}
38: endwhile
39: endprocedure
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Binarization schemes. In the CCEC and DCR coding procedures (to be discussed

shortly), the need sometimes arises to code nonbinary symbols. Since a binary arith-

metic coder is employed for coding purposes, any nonbinary symbols must be con-

verted to a sequence of binary symbols through some binarization process in order to

be coded. In what follows, we introduce the various types of nonbinary symbols used

by our coder and describe the binarization scheme used for each type (i.e., ternary,

senary, unsigned integer and signed integer).

In what follows, let chalf and cthird each denote an arithmetic-coder context with a

fixed probability distribution in which the probability of a one is 1
2

and 1
3
, respectively.

The first type of nonbinary symbol used is a ternary symbol with a fixed uniform

probability distribution. The ternary symbol n ∈ [0 . . 2] is coded as a bit with value

bn/2c using context cthird followed, if bn/2c = 0, by a bit with value mod(n, 2) coded

using context chalf . The second type of nonbinary symbol employed is a senary (i.e.,

6-ary) symbol with a fixed uniform probability distribution. The senary symbol

n ∈ [0 . . 5] is coded as a bit with value bn/3c using context chalf followed by a ternary

symbol (with a fixed uniform probability distribution) with value mod(n, 3).

The third type of nonbinary symbol employed is an n-bit unsigned integer. For

this type of symbol, we employ the UI binarization scheme described in [5]. This

binarization scheme has two parameters n and f and is denoted UI(n, f), where n

is the number of bits in the integer to be coded and f is a parameter that controls

which symbol values are associated with independent probabilities. The method uses

2f + n − f contexts to code bits of integer value x ∈ [0 . . 2n). The contexts are

used in such a way that symbols with values in the range [0 . . 2f ) can have distinct

probabilities, while symbols with the remaining values (if any) are partitioned into

ranges of the form [2i . . 2i+1) for i ∈ [f . . n), where values within each range must

have the same probabilities.

The last type of nonbinary symbol employed is an n-bit signed integer (i.e., an

integer with n− 1 magnitude bits plus a sign bit). For handling this type of symbol,

we define the SI(n, f) binarization scheme, as a trivial extension of the UI method

introduced above. To code an n-bit signed integer x with SI(n, f) binarization, we

code |x| with UI(n−1, f) binarization except that immediately after the first nonzero

bit in |x| is coded, a bit indicating the sign of x is coded using a fixed uniform

probability distribution.
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Figure 3.2: Potentially new nodes added by CCEC coding procedure. (a) The sub-
tree rooted at u showing the six positions (relative to u) at which new nodes may
potentially be inserted and (b) the cells corresponding to these nodes.

3.3.1 CCEC Coding Procedure

In step 14 of Algorithm 1, the child-configuration and edge-constraint (CCEC) coding

procedure is utilized. This procedure is always invoked for a leaf node u at an even

level in the current BFD tree (i.e., curTree). The CCEC coding procedure codes in-

formation that specifies how new nodes should be inserted in the tree (as descendants

of u) and how edge-constraint information should be updated.

For a given node u (which is a leaf at an even level in the tree), the CCEC coding

procedure adds any children and grandchildren of u (i.e., any nodes with a depth of

1 or 2 relative to u). In other words, this procedure potentially adds nodes at each of

the six positions in the tree relative to u shown in Figure 3.2(a), where the nodes u,

u0, u1, u0,0, u0,1, u1,0, and u1,1 are associated with the respective cells C, C0, C1, C0,0,

C0,1, C1,0, and C1,1 shown in Figure 3.2(b). A new node is only potentially added

at each of the six positions shown in the figure since, as we recall from earlier, a

BFD tree only contains nodes with occupied cells. Consequently, only the nodes with

occupied cells are added. As a matter of terminology, the particular arrangement

of new nodes to be added to the tree is referred to as the child configuration. To

specify the child configuration, it is sufficient to specify which of {C0,0, C0,1, C1,0, C1,1}
are occupied. Since the cell of a node is contained in the cell of its parent, knowing

which of C0,0, C0,1, C1,0, C1,1 are occupied also implies which of {C0, C1} are occupied.

Once the child configuration has been determined, the CCEC coding procedure

proceeds to add new nodes to the tree. This is accomplished by first adding the (one

or two) children of u, and then, for each child added, adding its children. When

adding the children for a node v, one of two possibilities can occur: 1) v has exactly

one child; or 2) v has exactly two children. As a matter of terminology, the process

of adding exactly two children to a node is called a vertex split, while the process
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of adding exactly one child to a node is called a vertex drag. Figure 3.3 illustrates

the notion of vertex splits and drags. Suppose that we are given a node v to which

its (one or two) children are to be added. The scenario in Figure 3.3(a), where two

children are added to v, corresponds to a vertex split, while each of the scenarios

in Figures 3.3(b) and (c), where only one child is added to v, correspond to vertex

drags. The process of adding all of the appropriate new nodes for u can be viewed as a

sequence of vertex split and vertex drag operations. In passing, we note that, during

a single invocation of the CCEC coding procedure, at most three vertex splits can

occur, which corresponds to the case when each of {C0,0, C0,1, C1,0, C1,1} is occupied.

Now, we must consider what information needs to be coded in order to indicate

changes to the edge-constraint set that results from vertex split and vertex drag op-

erations. For this, we need to understand how these operations transform the current

mesh, which is associated with the leaf nodes in the current tree (i.e., curTree). Re-

call that each leaf node in the BFD tree corresponds to a vertex in the mesh that is

positioned at the representative point (i.e., approximate centroid) of the node’s cell.

Since a vertex split replaces the leaf node v with two new leaf nodes, this operation

can be viewed as splitting the vertex associated with node v into two new vertices

(i.e., the vertices associated with the two child nodes of v). Similarly, since a vertex

drag replaces the leaf node v with a single new leaf node, this operation can be viewed

as moving the vertex associated with the node v to the vertex associated with the

single child node of v. Because vertex splits and vertex drags change some vertices

in the mesh, we must consider what information (if any) must be coded to convey

potential changes in edge constraints for the mesh. For convenience in what follows,

for a node u, cell(u) and vertex(u) denote the cell of u and vertex of u, respectively.

First, we consider the case of a vertex drag. Let v be the node to which the

single child vi has been added. Since v has only the single child vi, cell(v) \ cell(vi)

is an unoccupied cell (i.e., does not contain any sample points) and therefore cannot

contain any endpoint for an edge constraint. Consequently, each edge constraint with

an endpoint in cell(v) must be such that its endpoint is specifically in cell(vi). In

other words, vertex(vi) must have the same incident edge constraints as vertex(v).

Thus, no information needs to be coded to specify how to update edge constraints in

the case of a vertex drag. In effect, a vertex drag simply moves the vertex vertex(v)

to the new position vertex(vi), pulling any incident edge constraints along with it.

Next, we consider the case of a vertex split. Let v be the node to which the

children v0 and v1 have been added, and let N be the set of constraint-connected
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Figure 3.3: Vertex split and drag operations. (a) Vertex split operation and (b) and
(c) vertex drag operations.

neighbours of v (prior to the adding of v0 and v1). In the case of a vertex split, since

cell(v0) and cell(v1) are both occupied, they each contain sample points that could

potentially serve as endpoints for edge constraints. Consequently, each node u ∈ N
could potentially be constraint connected to (only) v0 or (only) v1 or both. Since

we cannot know which is the case without additional information, this information

must be coded. Furthermore, we have one extra complication that does not arise

in the vertex drag case. Since a vertex split adds two new vertices vertex(v0) and

vertex(v1) (instead of one), the possibility exists that these two new vertices may be

connected by an edge constraint. Since it cannot be deduced whether or not this is

the case without additional information, this information must also be coded. Thus,

in the case of a vertex split, the following information must be coded in order to allow

the edge constraint information to be updated correctly: 1) for each u ∈ N , if u is

constraint connected to v0 or v1 or both; and 2) if v0 is constraint connected to v1. In

the encoder, the information to be coded is determined by examining the reference

tree (i.e., refTree).

With all of the above in mind, the CCEC coding procedure codes child configura-

tion information followed by edge-constraint update information for each vertex split

encountered while adding new nodes. In order to complete our description of this

procedure, we simply need to explain the manner in which the child configuration

and edge-constraint update information is coded, which we do next.

Child configuration coding. To convey the child configuration for the node u, we

code a count n of how many of {C0,0, C0,1, C1,0, C1,1} are occupied followed by an

indication of specifically which n cells are occupied. This information is determined

by the encoder by examining the reference tree (i.e., refTree). For a given node

u, the child configuration is coded as follows. Let n denote the number of occupied

child cells {C0,0, C0,1, C1,0, C1,1} associated with u. The value n− 1 ∈ [0 . . 3] is coded

using UI(2, 2) binarization, conditioned on `/2 and min{6,m}, where ` is the level

in the tree at which u resides and m is number of constraint-connected neighbours
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of u. (Note that `/2 ∈ Z since ` is always even, as noted above.) Which n of the

child cells {C0,0, C0,1, C1,0, C1,1} are occupied is coded as follows. If n ∈ {1, 3}, four

configurations are possible, and the particular configuration is coded using two bits,

each with a fixed uniform distribution. If n = 2, six configurations are possible,

and the particular configuration is coded as a senary symbol with a fixed uniform

distribution. If n = 4, only one configuration is possible (with all four child cells

being occupied) and consequently no information need be coded.

Edge-constraint coding. Now, we consider the scheme used to code the information

required to update the edge constraints after a vertex split. Let v denote the node to

which the two children v0 and v1 have been added. Let N denote the set of constraint-

connected neighbours of v. Let θ(u) denote a count of how many of {v0, v1} are

constraint connected to u. Let γ(u) denote the respective values 0, 1, or 2, if in the

direction of the cell split, u lies strictly between v0 and v1, lies strictly outside v0 and

v1, or neither. For each u ∈ N , we perform the following. A binary symbol is coded

indicating if θ(u) = 2, conditioned on γ(u) ∈ {0, 1, 2}. If θ(u) = 1, u is known to

be constraint connected to exactly one of v0 or v1, and we must code which one. To

do this, we proceed as follows: 1) If vertex(u) is not equidistant to vertex(v0) and

vertex(v1), we predict u to be constraint connected to v0 if ‖vertex(v0)− vertex(u)‖ <
‖vertex(v1)− vertex(u)‖ and v1 otherwise, and then code a single binary symbol

indicating if this prediction is correct, conditioned on the level of v in the tree. 2) If

vertex(u) is equidistant to vertex(v0) and vertex(v1), one bit with a fixed uniform

distribution is coded indicating if u is constraint connected to v0. If θ(u) = 2, u is

already known to be constraint connected to each of v0 and v1 and no information

need be coded to indicate this. Lastly, a single binary symbol is coded, indicating if

v0 and v1 are constraint connected, conditioned on the level of v in the tree.

3.3.2 DCR Coding Procedure

In steps 17 and 30 of Algorithm 1, the detail-coefficient refinement (DCR) coding

procedure is invoked. As mentioned earlier, this procedure is responsible for coding

detail-coefficient data (i.e., sign and magnitude bits for detail coefficients). In what

follows, we describe this procedure in detail.

The DCR coding procedure is invoked for a particular node in the current tree

(i.e., curTree) (which can be at any level in the tree), where the node must have a

detail coefficient. Let u denote this node and let d denote its detail coefficient. The
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DCR coding procedure proceeds as follows. If this is the first time that the coding

procedure is being invoked for u (i.e., no detail-coefficient bits have been previously

coded for u), initialize the SI(ρ+ 1,min{ρ+ 1, 4}) binarization process for coding d,

where ρ is as defined earlier. If no bits in |d| remain to be coded, the procedure is

complete; otherwise, processing continues. Next, the most significant bit of |d| that

has not yet been coded (using an earlier invocation of the DCR coding procedure) is

coded. This may also, as a side effect, code an additional bit for the sign of d, since SI

binarization automatically codes the sign bit of an integer immediately after coding

its first nonzero magnitude bit. If the detail coefficient d has n magnitude bits, the

DCR coding procedure must be invoked n times for u in order to fully code d.

3.4 Decoding

Although the encoding and decoding algorithms of our method are mostly symmetric,

some small asymmetries exist. Consequently, a few aspects of the decoding algorithm

cannot be inferred from a description of the encoding process. In what follows, we

comment on these particular aspects of the decoder.

At intermediate stages of progressive decoding, it is possible to obtain a decoded

mesh that is not topologically valid. That is, it is possible to obtain a set of decoded

edge constraints with nontrivial intersections (i.e., intersections excluding those that

simply share a common endpoint). In such cases, a postprocessing step must be

applied to the mesh in order to restore its validity. This postprocessing is performed

as follows. To avoid nontrivially intersecting edge constraints, the constrained PD

triangulation in the decoder is constructed by inserting each decoded edge constraint

in the triangulation, one at a time, in order of increasing edge length. If an edge

constraint to be inserted would nontrivially intersect an edge constraint already in

the triangulation, the insertion of the constraint is skipped. Since this process avoids

introducing nontrivial intersections, this process will always result in a valid mesh.

At intermediate stages of progressive decoding, some of the bits of some detail

coefficients may be unknown. (The root approximation coefficient is always known

since it is included in the header at the start of the coded bitstream.) Due to the

manner in which the bits of the detail coefficients are coded, when one or more bits

of a detail coefficient are unknown, one of two situations must be the case: 1) at

least one nonzero magnitude bit (as well as the sign bit) is known; or 2) no nonzero

magnitude bits are known. In the second case, the detail coefficient should be decoded
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as zero. In the first case, the detail coefficient is known to lie in the range [d0 . . d1]

(where d0 and d1 are determined by the bits that are known), and the decoded value

should be chosen as the approximate midpoint of this range. After any unknown bits

in detail coefficients have been chosen as explained above, the inverse ADT is applied

in a straightforward manner to obtain the reconstructed function values.

In many applications, the function domain associated with the mesh is an iso-

oriented (i.e., axis-aligned) rectangle. This is often the case for images. In such

circumstances, the progressive coding performance can be improved by ensuring that

the extreme convex hull points of the function domain (i.e., the four corners of the

function-domain bounding box) are always present in the reconstructed mesh. During

the earlier stages of progressive coding, these points will often be missing. This can

potentially lead to high distortion in the function reconstruction near the border

of the function domain. A simple postprocessing step can be applied to mitigate

this problem, however. For each of the four corner points, if a point is found to

be missing during (intermediate stages of progressive) decoding, the missing point

is added with its function value chosen as the function value of the closest sample

point in the progressively decoded dataset. This postprocessing step typically leads to

lower distortion in the function reconstruction near the function-domain boundary.

In applications where the function domain is known to always be an iso-oriented

rectangle, this postprocessing step can simply be applied automatically.
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Chapter 4

Evaluation of the Proposed

Method

In this chapter, we evaluate the proposed method by comparing it with several mesh

coders for both lossless and progressive coding. The competitors include 3-D coders

(namely, Wavemesh [31] and Edgebreaker [28]) and 2.5-D coders (namely, ADIT [8],

IT [5], and SDC [12]). Moreover, the proposed mesh coding method can also be

combined with a mesh generator to form a highly effective mesh-based image coder,

which is benchmarked against the popular JPEG 2000 codec for compressing images

that are nearly piecewise smooth.

4.1 Test Data

Before stepping into the experimental results, a brief discussion is needed to introduce

the test data used herein. A large set of meshes are used in our experiments, which

include 40 PD (preferred Delaunay) meshes and 58 non-PD (non-preferred Delaunay)

meshes. Those triangle meshes are generated from a variety of bivariate functions,

which include images taken mostly from the standard test sets [30, 19] and elevation

maps [29]. The meshes are generated with a variety of schemes such as those described

in [6] and [7]. For the purposes of presentation, individual results are only shown for

the 15 test meshes (10 non-PD and 5 PD) in Table 4.1. This table shows the name of

each mesh as well as the number of vertices, edges, and faces in the mesh, the fraction

of non-locally-PD edges, the function-domain bounding-box sizes, the number of bits

per function value, and the function type (i.e, image versus elevation map). We can
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Table 4.1: Test meshes
Fraction of Unpadded Bits
Non-LPD† Bounding Per

Name V† E† F† Edges (%) Box Sample Type

kodim15@0.02 7864 23583 15720 20.5 768×512 8 image
lena@0.03 7864 15578 23441 21.0 512×512 8 image
ct@0.01 2621 7840 5220 19.9 512×512 12 image
cr@0.005 17858 53419 35562 19.8 1744×2048 10 image
muttart@0.0025 3637 10858 7222 21.7 1912×761 8 image
question2@0.02 38400 115193 76794 19.8 1200×1600 8 image
checkerboard@0.01 2621 7753 5133 19.1 512×512 8 image
n27@0.0025 3606 10711 7106 13.9 1201×1201 13 EM†

n35@0.0025 3606 10715 7110 13.8 1201×1201 12 EM
n49@0.01 14424 43132 28709 13.0 1201×1201 12 EM
animal@0.005 7397 22146 14750 0 1238×1195 8 image
bull@0.02 15728 47073 31346 0 1024×768 8 image
peppers@0.04 10485 31297 20813 0 512×512 8 image
wheel@0.04 3451 10346 6896 0 512×512 8 image
n45@0.01 14424 43036 28613 0 1201×1201 10 EM

†non-LPD stands for non-locally-PD
†EM stands for elevation map

†V, E, and F stand for number of vertices, number of edges, and number of faces,
respectively

see from the Table 4.1 that those 15 meshes are chosen to be quite diverse in terms

of the characteristics listed in the table. The first 10 meshes are not PD while the

last five meshes are PD.

4.2 Lossless Coding Performance

To begin, we compare our coder with others in terms of lossless bit rate. Each of the 98

meshes (i.e. 58 non-PD and 40 PD) is losslessly compressed using the proposed mesh

coder and 3-D methods and the final bit rate is measured. Since the ADIT, SDC, and

IT methods can only code PD meshes, only 40 PD meshes are used for comparison

with those 2.5-D methods. The summaries of the statistical results obtained for non-

PD, PD, and all meshes are shown in Tables 4.2(a), 4.2(b), and 4.2(c), respectively.

A representative subset of the lossless coding results for 10 non-PD meshes and 5 PD

meshes are also listed in Table 4.3(a) and Table 4.3(b), respectively.

First, we analyze how the proposed method compares to the 3-D coders (namely,

Wavemesh and Edgebreaker) in terms of lossless bit rate. Examining the overall re-
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Table 4.2: Summary of lossless coding results for the various methods under con-
sideration for the cases of (a) 50 non-PD meshes, (b) 48 PD meshes, and (c) 98 all
meshes.

(a)
Mean Bit rate (bits/vertex)

Mesh Proposed Edgebreaker Wavemesh

non-PD 19.19 22.36 29.72

(b)
Mean Bit rate (bits/vertex)

Mesh Proposed SDC IT ADIT Edgebreaker Wavemesh

PD 15.29 15.31 15.32 15.23 21.43 27.02

(c)
Mean Bit rate (bits/vertex)

Mesh Proposed Edgebreaker Wavemesh

All meshes 18.08 21.94 28.79

sults shown in Tables 4.2(a) and 4.2(c), we can see that the proposed method is vastly

superior to the Edgebreaker and Wavemesh methods. More specifically, the Edge-

breaker and Wavemesh schemes produce coded bitstreams that are 3.84 bits/vertex

and 10.71 bits/vertex larger than those generated by the proposed method, on aver-

age. It is not surprising that the Edgebreaker method is superior to the Wavemesh

method since the former is a single rate coder while latter is a progressive coder.

Moreover, although not listed in the table, the experimental results also show that

the proposed method outperforms the Edgebreaker and Wavemesh schemes in every

test case, by margins of 2.04 to 12.05 bits/vertex and 7.09 to 25.46 bits/vertex, re-

spectively. The individual results for 10 non-PD meshes and 5 PD meshes shown in

Tables 4.3(a) and 4.3(b) are consistent with the overall statistical results. Based on

the above statistical results, we conclude that the proposed method outperforms 3-D

coders Wavemesh and Edgebreaker in terms of lossless coding performance.

Having considered 3-D coders, we now compare the proposed coder with the SDC,

IT, and ADIT methods. Since these competitors can only handle PD meshes, only

PD meshes are used for evaluation purposes in this case. Examining the overall

results obtained for PD meshes shown in Table 4.2(b), we can see that the 3-D coders

Edgebreaker and Wavemesh are significantly worse than all of the 2.5-D coders. The

proposed coder is comparable to the SDC method, IT method, and ADIT method,
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Table 4.3: Subset of lossless coding results for the various methods under considera-
tion for the cases of (a) non-PD meshes and (b) PD meshes

(a)
Bit rate (bits/vertex)

Mesh Proposed Edgebreaker Wavemesh

n49@0.01 21.30 25.90 34.39
kodim15@0.02 18.32 21.67 27.71
lena@0.03 17.92 20.80 25.65
ct@0.01 22.90 25.52 36.36
cr@0.005 21.16 24.29 29.02
n27@0.0025 24.41 28.70 43.00
n35@0.0025 23.18 26.64 35.52
question2@0.02 15.42 18.35 23.00
muttart@0.0025 22.78 31.24 43.74
checkerboard@0.01 17.10 20.18 23.79

(b)
Bit rate (bits/vertex)

Mesh Proposed SDC IT ADIT Edgebreaker Wavemesh

animal@0.005 14.28 14.25 14.39 14.34 20.00 24.15
bull@0.02 12.79 12.83 12.89 12.84 18.90 19.86
peppers@0.04 13.15 13.18 13.19 13.11 18.94 20.85
wheel@0.04 12.10 11.92 12.16 12.06 19.25 25.67
n45@0.01 15.47 15.75 15.54 15.54 21.30 27.34
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differing by a margin of less than 0.1 bits/vertex on average. In spite of the fact

that the proposed coder is at significant disadvantage due to handling a more general

type of dataset (i.e, meshes with arbitrary connectivity) than the competitors, our

method still outperforms the IT method, with the average lossless bit rate being 0.03

bits/vertex less. The individual results for 5 PD meshes are shown in Table 4.3(b).

Examining the Table 4.3(b), we can see that the lossless coding performances of all

the 2.5-D coders are very close, which is consistent with the overall results that we

obtained.

4.3 Progressive Coding Performance

As mentioned earlier, each mesh in the test set was generated from a bivariate function

sampled on a rectangular grid. For evaluation of progressive coding performance,

each of the 98 meshes is first encoded losslessly using the proposed method and the

Wavemesh method. The Edgebreaker method is not used for this comparison as it is

a single rate coder and does not support progressive coding. Since the ADIT, IT, and

SDC methods can only code PD meshes, only 40 PD meshes are used for comparison

with these 2.5-D coders. After a mesh is losslessly encoded, the compressed bitstream

is decoded at many intermediate rates. The decoded mesh at each stage is rasterized

to produce a sampled function with same dimensions as the original function, and the

PSNR value relative to the original function is computed. The reason we compare the

rasterized functions instead of comparing the meshes directly is that the difference

between meshes is difficult to measure and the function reconstruction error is also

of great practical interest. The PSNR value is measured against the original function

instead of the losslessly reconstructed function to avoid arbitrarily large PSNR value

when the bit stream is nearly fully decoded, which makes graphs difficult to interpret.

A representative subset of the experimental results is given in Table 4.4. The

results for non-PD meshes are shown in Table 4.4(a) while the results for PD meshes

are shown in Table 4.4(b). The results in Table 4.4(a) only contain those obtained

with the proposed method and the Wavemesh method since other methods can not

code meshes with arbitrary connectivity. Examining the individual results in these

two tables, we can see that the proposed method always produces the reconstructed

function of best quality at every intermediate rate. More specifically, the proposed

method outperforms the 3-D Wavemesh method by margins of 7.08 to 13.28 dB. For

PD meshes, in spite of the fact that the SDC, IT, and ADIT methods all have the
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advantage of handling a more constrained type of dataset (PD mesh), the proposed

method still outperforms the SDC, IT, and ADIT methods by margins of 5.55 to 11.90

dB, 0.81 to 8.58 dB, and 0 to 4.29 dB, respectively. In order to show the difference in

terms of the visual quality, examples of reconstructed functions for the non-PD and

PD cases are shown in Figures 4.1 and 4.2, respectively. Figure 4.1(a) shows the

function obtained with the proposed method, while Figure 4.1(b) demonstrates the

function generated by the Wavemesh method. The lossy bit rate is chosen as 14874

bytes. It is clear that the visual quality of the function in Figure 4.1(a) is vastly

superior to that of the function in Figure 4.1(b). Figure 4.2 shows results for a PD

mesh. The functions obtained with the proposed method, SDC method, IT method,

ADIT method, and Wavemesh method are shown in Figures 4.2(a), (b), (c), (d), and

(e), respectively. We can see that the function obtained with the proposed method is

of best quality. The ADIT method is the second best, followed by the IT, Wavemesh,

and SDC methods.

Although not provided in this thesis, the progressive coding results for all the

98 meshes were obtained. The overall results show that the proposed method is

vastly superior to all the other competitors in every test case, which is consistent

with the individual results discussed above. More specifically, the proposed method

outperforms the Wavemesh method, SDC method, IT method, and ADIT method by

average margins of 11.18 dB, 10.56 dB, 4.88 dB, and 3.15 dB, respectively.

4.4 Comparison with Traditional Image Coder

4.4.1 Mesh-based Image Coding System

The proposed mesh-coding method can be combined with a mesh generation method

to achieve a highly effective mesh-based image coding system. To better illustrate

this coding system, a diagram is shown in Figure 4.3. As illustrated in Figure 4.3,

the image coding system consists of two parts, an image encoder and image decoder.

The image encoder is formed by combining the proposed mesh-encoding method with

a mesh generator, while the image decoder includes the proposed mesh-decoding

method and a mesh rasterizater. At the beginning, the original image is given as the

input. The image is first processed by the mesh generator to produce a 2.5-D triangle

mesh model. Next, this mesh model is encoded by the proposed encoding method

and a compressed image is produced. To decode the compressed image, the proposed
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Table 4.4: Comparison of progressive coding results for the various methods under
consideration. (a) Non-Delaunay (b) Delaunay.

(a)
PSNR (dB)

Mesh Rate(bytes) Proposed Wavemesh
kodim15@0.02 2200 20.53 8.92

4300 21.85 14.38
9400 25.10 19.31

15100 31.72 23.36
21000 32.03 26.39

lena@0.03 2800 22.00 14.92
5200 23.70 18.41
9400 26.66 20.95

14800 33.66 24.95
20400 34.21 28.10

ct@0.01 600 23.48 17.52
2100 27.10 22.38
4000 27.82 25.03
5300 41.10 27.82
7500 43.16 32.33

(b)
PSNR (dB)

Mesh Rate (bytes) Proposed SDC IT ADIT Wavemesh
animal@0.05 1000 25.70 15.75 23.31 23.44 12.46

4000 30.01 19.71 28.42 27.92 19.14
7000 35.02 22.70 31.10 30.61 24.65

10000 41.43 29.53 33.13 36.74 27.00
13000 43.56 38.01 40.49 43.56 33.80

bull@0.02 1100 25.23 13.34 23.52 23.67 15.55
5600 29.66 18.83 27.57 28.23 24.23

10100 31.50 22.38 30.19 30.64 27.03
15600 36.50 25.94 32.52 34.02 30.69
20600 42.08 30.99 36.28 40.25 34.88

peppers@0.04 1000 21.02 11.62 19.69 19.68 10.58
4900 24.46 13.02 22.58 23.02 17.51
8500 26.77 17.77 24.98 25.29 19.18

12400 32.93 22.66 26.37 30.23 21.75
16300 34.35 28.11 29.70 34.25 26.02
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(a) (b)

Figure 4.1: Progressive coding example for non-PD case. Reconstructed images ob-
tained after decoding 14874 bytes of mesh for lena image using the (a) proposed
(33.70 dB) and (b) Wavemesh (24.95 dB) methods.
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(a) (b) (c)

(d) (e)

Figure 4.2: Progressive coding example for PD case. Reconstructed images obtained
after decoding 9100 bytes of the mesh for the animal image using the (a) proposed
(38.47 dB), (b) SDC (26.39 dB), (c) IT (32.05 dB), (d) ADIT (34.10 dB), and
(e) Wavemesh (27.00 dB) methods.
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Figure 4.3: The image coding system consisting of the proposed coding method and
a mesh generator.

decoding method is first used to recover the 2.5-D triangle mesh model, which is

then rasterized to produce an image reconstruction. For the purposes of evaluation,

two mesh generators are chosen and used in the experiments, namely the methods

described in [7] and [17].

4.4.2 Comparison with JPEG 2000 Codec

The image coding system is evaluated by comparing to the well-known JPEG 2000

codec for images that are nearly piecewise smooth. First, the given image is encoded

by the JPEG 2000 codec and the mesh-based image encoder as illustrated in Fig-

ure 4.3, respectively. We fix the compression rate (the ratio of the size of the original

image to the size of the coded image) so the size of the coded image obtained with

proposed method is same as that of the coded image produced by the JPEG-codec.

After that, the coded images are decoded by the mesh-based image decoder and the

JPEG 2000 codec, which results in two reconstructed images. The quality of the

decoded images is measured in terms of PSNR.

The subset of images used for comparison are shown in Figure 4.4. The infor-

mation of those three images is given in Table 4.5. For each image, we compress it

with the mesh-based image coding system and the JPEG 2000 codec at a wide range

of compression rates, and the rate-distortion performance is measured and shown

in Table 4.6. Although only three images are presented in this section, 15 images

from [30, 19] were tested in total. The mesh-based image coding system outperforms

the JPEG 2000 codec consistently for images that are nearly piecewise smooth so

only a representative subset of results is given.

Examining the results in Table 4.6, we can see that for all those three test cases,



47

(a)

(b)

(c)

Figure 4.4: The test images used for comparing the proposed method with JPEG 2000
codec. (a) animal, (b) bull, and (c) wheel.

Table 4.5: Test images
Image Size Bits/Sample Description
bull 1024×768 8 cartoon animal
animal 1238×1195 8 cartoon animal
wheel 512×512 8 computer generated image

the mesh-based image coding system yields image reconstructions of better quality

than those obtained with JPEG 2000 codec for most compression rates. The only

exception is that the JPEG 2000 codec beats the the proposed method by 1.04 dB

when compressing the image bull at compression ratio 40:1. Moreover, for images

bull and animal, the mesh-based image coding system outperforms the JPEG 2000

codec by a margin of 1.93 dB on average. For image wheel, the JPEG 2000 codec is

vastly beaten by the proposed method by margins of 11.33 to 17.98 dB. Moreover,

some examples of reconstructed images are also given to demonstrate the differences

in terms of their visual quality. The examples are shown in Figures 4.5, 4.6, and 4.7.

Some of those images are magnified to show differences more clearly. It is clear that

the images generated by the proposed coder in Figures 4.5(a), 4.6(a), and 4.7(a) are

reasonably good and very close to the original images, while those obtained with

JPEG 2000 codec (Figures 4.5(b), 4.6(b), and 4.7(b)) are blurry. This is due to

the fact that JPEG 2000 codec is a wavelet-based coder, which usually results in

ringing artifacts that blur the edges. Our image coder is a mesh-based coder, so it

can preserve edges by avoiding the ringing artifacts.
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Table 4.6: Comparison of lossy coding results
Comp. PSNR (dB)

Image Ratio Mesh JPEG 2000

bull 40:1 44.63 45.67
100:1 42.51 41.20
200:1 39.41 38.00
250:1 39.08 37.22

animal 114:1 43.22 42.83
241:1 41.84 40.28
435:1 40.47 37.63
526:1 39.84 35.68

wheel 71:1 ∞ 39.42
121:1 52.20 34.22
200:1 46.98 30.13
250:1 39.63 28.30

(a) (b)

Figure 4.5: Part of the reconstructed images obtained for the animal image: com-
pression with the (a) proposed (39.84 dB) and (b) JPEG 2000 (35.68 dB) methods
at compression ratio 526:1.
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(a) (b)

Figure 4.6: Part of the reconstructed images obtained for the bull image: compres-
sion with the (a) proposed (39.08 dB) and (b) JPEG 2000 (37.22 dB) methods at
compression ratio 250:1.

(a) (b)

Figure 4.7: Part of the reconstructed images obtained for the wheel image: compres-
sion with the (a) proposed (39.63 dB) and (b) JPEG 2000 (28.30 dB) methods at
compression ratio 250:1.
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Chapter 5

Conclusions and Future Research

5.1 Conclusions

In this thesis, we proposed a new progressive lossy-to-lossless coding method for

2.5-D triangle meshes with arbitrary connectivity. A novel representation for 2.5-D

mesh datasets called the BFD tree was proposed. A BFD tree captures all of the

information needed to completely characterize a 2.5-D mesh model. The proposed

coding method first represents the given mesh dataset as a BFD tree, and then codes

the BFD tree in a top-down manner. For connectivity coding, instead of viewing

the mesh connectivity as a graph, our approach describes the connectivity as a set of

edge constraints for a constrained PD triangulation. The coding method only encodes

the edge constraints rather than the whole connectivity, which yields a particularly

compact representation.

For the evaluation of our proposed mesh-coding method, we compared it with

several other 2.5-D and 3-D mesh coders. Experimental results showed that the coding

performance of the proposed approach is vastly superior to that of 3-D mesh coders

for lossless coding. For example, the proposed method outperforms the Wavemesh

method and Edgebreaker method needing 27.3% and 68.1% less bits on average for

coding mesh datasets losslessly. For progressive coding, the proposed method is shown

to beat both 3-D mesh coders and 2.5-D mesh coders by a margin of up to 13.28 dB.

A highly effective mesh-based image coder for lattice-sampled images was achieved

by combining the proposed method with a mesh generator. The combined coder was

compared with the well-known JPEG 2000 codec for images that are approximately

piecewise smooth. The images were compressed with the proposed mesh-based image
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coder and the JPEG 2000 codec respectively at the same compression rates. Then

the compressed files were decoded and the resulting reconstructions were measured

by their PSNR. The experimental results showed that our mesh-based image coder

outperforms the JPEG 2000 codec by an average margin of 3.46 dB for images that

are nearly piecewise smooth.

5.2 Future Research

Although the proposed mesh coder offers excellent performance for both progressive

and lossless coding, some additional work could still be done in this area. In what

follows, some potential avenues for future work are given.

As presented in Section 3.3.1, in the case of a vertex split, a node v is split into

two new nodes v0 and v1. For each constraint-connected neighbor u of the node v,

certain information must be coded in order to indicate to which of v0 and v1 the

node u is constraint-connected after a vertex split if the node u is not constraint-

connected to both of v0 and v1. The coder predicts u to be constraint connected to

the child node whose representative vertex is closer to the representative vertex of u.

The efficiency of the coder is increased due to this prediction. Sometimes, however,

vertex(u) is equidistant to vertex(v1) and vertex(v2). For this boundary case, the

coder currently codes a single bit with a fixed uniform distribution to indicate if

u is constraint connected to v0. Coding symbols in this manner is often inefficient

compared to adaptive coding since the distribution of symbols is likely to be more

skewed in the latter. If an efficient prediction scheme is employed for handling the

case where vertex(u) is equidistant to vertex(v1) and vertex(v2), the coding efficiency

could be further increased.

Another area that is worth further researching is the choice of the priority function

parameter sQueuePri. This function parameter controls the order in which different

regions of the mesh are refined. As mentioned in Section 3.3, in our work, the pa-

rameter sQueuePri is chosen to achieve good overall progressive coding performance.

Other choices of priority functions, however, could also be made for different purposes.

For example, the priority function could be chosen to prioritize coding a particular

region in the mesh to provide a basic region-of-interest coding functionality. In such

a case, the priority of a node could be determined based on the position of that node

in relation to the region of interest.
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Appendix A

Software User Manual

A.1 Introduction

As part of this work, a software implementation of the mesh-coding method proposed

herein was developed. The software was written in C++ and consists of around 10000

lines of code, which includes some fairly complex data structures and algorithms. The

libraries utilized in this software include the Computational Geometry Algorithm

Library (CGAL) [3], the Boost Library [1], the Signal Processing Library (SPL) [9],

and the SPL Extensions Library (SPLEL).

Basically, our software consists of two executable programs:

1. mesh_encode, which reads a mesh from standard input in OFF format [4],

encodes the mesh, and writes the coded bitstream to standard output.

2. mesh_decode, which reads the compressed bitstream from standard input, de-

codes the mesh, and writes the reconstructed mesh to standard output in OFF

format.

The remainder of this appendix provides detailed information about how to build,

install, and use the software.

A.2 Build and Install the Software

Since our program utilizes some features of C++17, the compiler should support C++17.

GCC 8.1 or higher version is recommended to be used as the compiler. Also, all the
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libraries mentioned above need to be installed before building the software. The

versions of those libraries that are known to work are:

• Boost 1.59.0

• CGAL 3.8.2

• SPL 2.0.4

• SPLEL 2.0.5

The CMake [2] tool with version 3.2.2 or later should be installed prior to building

our software. In what follows, $SOURCE_DIR denotes the top-level directory of the

software distribution (i.e., the directory containing the CMakeLists.txt), $BUILD_DIR

denote denotes a directory to be used for building the software, and $INSTALL_DIR

denotes the directory under which the software should be installed. To build and

install our software, perform the following steps in order:

1. Change the current working directory to $SOURCE_DIR

2. Create native build files by running the command:

cmake -H. -B$BUILD_DIR -DCMAKE_INSTALL_PREFIX=$INSTALL_DIR

3. To install the executables, libraries, include files, and other auxiliary data, use

the command:

cmake --build $BUILD_DIR --clean-first --target install

Once the software is installed, the native build files can be removed by using the

command:

rm -rf $BUILD_DIR.

A.3 Detailed Program Descriptions

As mentioned before, the software consists of two executable programs: mesh_encode

and mesh_decode. In what follows, we provide detailed information of how to use

them.
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A.3.1 mesh_encode

SYNOPSIS

mesh_encode [OPTIONS]

DESCRIPTION

This program reads a mesh from standard input in OFF format, encodes the mesh and

writes the compressed bitstream to standard output.

OPTIONS

The following options are supported:

-i $initialDC Sets the number of times that the detail coef-

ficient coding procedure is invoked initially to

$initialDC. The default value is 3.

-d $r_threshold Sets the threshold value for the R_queue to

$r_threshold. The default value is 10.

-g $s_threshold Sets the threshold value for the S_queue to

$s_threshold. The default value is 100.

-z $z_quantization Sets the quantization step size for the z coordinate

(function value) to $z_quantization. The default

value is 1.

-x $x_quantization Sets the quantization step size for the x coordinate

to $x_quantization. The default value is 1.

-y $y_quantization Sets the quantization step size for the y coordinate

to $y_quantization. The default value is 1.

-r $max_rate Sets the maximum number of bytes that will be

encoded to $max_rate. The default value is ∞.

The program exits with status 0 if the software finishes without any errors, and
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1 otherwise.

A.3.2 mesh_decode

SYNOPSIS

mesh_decode [OPTIONS]

DESCRIPTION

This program reads a coded mesh from standard input, decodes the bitstream, and

writes the decoded mesh to standard output in OFF format. The decoding process

can be terminated at any intermediate stage to allow progressive decoding.

OPTIONS

The following options are supported:

-s $edge_sort_policy Sets the order in which the edge constraints will

be sorted as $edge_sort_policy. There are

three choices for $edge_sort_policy: ascending,

descending, and random. The default value is

ascending

-r $max_rate Sets the maximum number of bytes that will be

decoded to $max_rate. The default value is ∞.

The program exits with status 0 if the software finishes without any errors, and

1 otherwise.

A.4 Examples of Software Usage

Some examples are provided in order to illustrate how to use the software with dif-

ferent options.

Example A

Suppose that we want to encode the mesh in a file named input_mesh.off and write

the coded data to a file named output.coded with the following requirements:
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• the value of threshold for R_queue is set to be 8;

• the value of threshold for S_queue is set to be 90;

• the number of times that DC coding procedure is invoked initially is set to be

4; and

• default options are used for other parameters.

The above can be accomplished with the following command:

mesh_encode -g 90 -d 8 -i 4 <input_mesh.off >output.coded

Example B

Suppose that we want to encode the mesh in a file named input_mesh.off and write

the coded data to a file named output.coded with the following requirements:

• the value of the quantization steps for z coordinate is set to be 2;

• the value of threshold for S_queue is set to be 110;

• the number of times that DC coding procedure is invoked initially is set to be

2;

• the number of bytes that will be encoded is set to be 8000; and

• default options are used for other parameters.

The above can be accomplished with the following command:

mesh_encode -g 110 -f 2 -i 2 -r 8000 <input_mesh.off >output.coded

Example C

Suppose that we have a compressed file called mesh.coded, which was produced by

the mesh_encode program. We would like to decode the full bitstream and write the

decoded mesh to the file reconstructed_mesh.off. The above can be accomplished
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with the following command:

mesh_decode <mesh.coded >reconstructed_mesh.off

Example D

Suppose that we have a compressed file called mesh.coded, which was produced

by the mesh_encode program. The size of mesh.coded is 10000 bytes. We would

like to decode the first 5000 bytes from the input bitstream and use descending

order for inserting all the edge constraints, and write the decoded mesh to file

reconstructed_mesh.off. The above can be accomplished with the following com-

mand:

mesh_decode -r 5000 -s descending <mesh.coded >reconstructed_mesh.off
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