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B jmages are nonstationary

B uniform sampling almost never optimal (e.g., sampling density too high in
regions of low variation and too low in regions of high variation)

B in many applications, nonuniform (i.e., content-adaptive) sampling highly
beneficial

B triangle meshes popular approach to handling nonuniform sampling
B RGB color images pervasive in many applications

B relatively less work has been done on generating mesh models of color
images

B want to improve upon methods for generating mesh model of RGB color
images

Jun Luo and Michael D. Adams |IEEE PacRim 2019



Triangle-Mesh Models of Images and Mesh Generation

B mesh model of M-component raster image ¢ of width W and height H
consists of:
O set P = {p;} of sample points
0 Delaunay triangulation T of P
O setZ= {z,-}@(;1 of function values, where z; = ¢(p;)

B sampling density D defined as D = %

B given image ¢ and desired number N of sample points, find mesh model
with |P| = N that best approximates ¢ in terms of mean-squared error
(MSE)

B example (single-component case):

o
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Original Image Triangulation

Reconstructed Image

Approximating Function
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Trivial Extension of Grayscale Methods to RGB Color

B three highly-effective methods for grayscale images:
error diffusion (ED) method: select sample points in one shot using
Floyd-Steinberg error diffusion (FSED)
greedy point removal (GPR) method: select all sample points in the
sampling grid as initial sample points, and then perform mesh-simplification
GPR from subset with ED (GPRFSED): select a subset of sample points as
initial sample points, and then perform mesh-simplification
B method for grayscale image can be extended to RGB color images as
follows:
convert RGB color image into grayscale by standard (RGB-to-luminance)
conversion
use grayscale image as input to grayscale method
replace scalar function values with vector (color) values in generated
grayscale model to yield color model
B trivially extended versions of above three methods:
CED: trivial extension of ED method to RGB color
CGPR: trivial extension of GPR method to RGB color
CGPRFSED: trivial extension of GPRFSED method to RGB color

B trivial extension method likely to be highly suboptimal
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Floyd-Steinberg Error-Diffusion (FSED)

B input: density function d of image of width W and height H, threshold ~,
and initial diffused-in error @
B output: binary-valued function b indicating position of selected points

B classic FSED sets & to zero, which can cause undesirable startup effect
(when 7 is large) where very few samples chosen in bottom region of b

Density Function d Selected Points b
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Proposed Strategy for Initial-Condition Selection in FSED

B proposed strategy to obtain initial diffused-in errors é:
E construct mirrored version d,, of density function d
take dp as input density function, run FSED (with zero diffused-in error)
record and output errors diffused to last (i.e., top) row

Density Function d Mirrored Density Selected Points p
Function dp,

Jun Luo and Michael D. Adams |IEEE PacRim 2019



Proposed Mesh-Generation Method: CMG

B input: M-component (e.g., M = 3 for RGB) image of width W and height
H, desired number N of sample points, initial mesh-size control
parameter y

B output: mesh model having set P of sample points, where |P| = N

B proposed method, called CMG(Yy), works as follows:
select initial mesh having Ny = min{yN, WH} sample points using FSED
with our new initial-condition selection scheme and density function d,
where
U density function d obtained by taking pixel-wise maximum of MMSODD
across all image components

construct Delaunay triangulation T of P
while mesh size > N:

U delete sample point that results in least increase in approximation error

B recommend choosing Y as either 1 or 4 (i.e., CMG(1) and CMG(4),
respectively) to tradeoff between computational cost and mesh quality
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Impact of the Choice of Yy on Mesh Quality

B consider impact of initial mesh size on mesh quality for given target
sampling density D = -

B highest mesh quality typically obtained when initial mesh has sampling
density Dy = yD with ¥ € [4,5.5]

B this observation led us to recommend using CMG with y= 4 (i.e., CMG(4))

PSNR(dB)
w
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Mesh Quality Versus Dy for peppers Image with D = 2%
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Evaluation of Proposed Method

B test data:
0 45 RGB images
O taken mostly from standard data sets, including: JPEG-2000, USC-SIPI,
CIPR-Canon, and Kodak
B compare to CED, CGPRFSED, and CGPR (i.e., color-extended versions
of grayscale mesh generators ED, GPRFSED, and GPR, respectively)
B most meaningful comparisons to be made:
0 CMG(1) versus CED

0 CMG(4) versus CGPRFSED
0 CMG(4) versus CGPR

Jun Luo and Michael D. Adams |IEEE PacRim 2019



Comparison of Mesh Quality — Summary Results

Samp.
Density Average Rank*
(%) || CED [ CMG(1) || CGPRFSED [ CMG(4) [ CGPR
0.5 4.88 4.12 2.83 1.36 1.81
(0.32) | (0.32) (0.37) (0.48) | (0.70)
1.0 4.90 4.10 2.50 1.12 2.38
(0.29) | (0.29) (0.50) (0.39) | (0.65)
2.0 4.90 4.10 2.24 1.05 2.71
(0.29) | (0.29) (0.48) (0.21) | (0.50)
3.0 4.81 417 2.19 1.05 2.79
(0.39) | (0.43) (0.45) (0.21) | (0.51)
4.0 4.81 4.19 2.14 1.07 2.79
(0.39) | (0.39) (0.41) (0.26) | (0.51)
Overall 4.86 413 2.38 1.13 2.50
(0.34) | (0.35) (0.51) (0.35) | (0.69)

*Average across 45 test images. Standard deviations are given parentheses.

B CMG(1) beats CED in 84.4% of all test cases by up to 7.08 dB

B CMG(4) beats CGPRFSED and CGPR respectively, in 97.8% and 89% of
all test cases by up to 7.05 dB and 5.15 dB
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Comparison of Mesh Quality — Individual Results

Samp.

Density PSNR (dB)
Image (%) CED \ CMG(1) H CGPRFSED \ CMG(4) \ CGPR
lena 0.5 17.48 | 19.18 25.63 26.04 26.09
1.0 21.31 22.12 28.02 28.38 28.09
2.0 25.54 | 25.77 30.33 30.48 30.13
3.0 27.42 27.73 31.44 31.68 31.29
4.0 28.82 | 28.83 32.13 32.49 32.04
pens 0.5 13.96 15.78 22.49 24.05 23.60
1.0 17.24 19.27 25.95 26.77 26.40
2.0 21.98 | 23.48 29.08 29.43 29.12
3.0 25.05 | 25.91 30.59 31.16 30.77
4.0 27.05 | 27.92 31.97 32.45 32.01
bluegirl 0.5 19.73 21.17 27.10 29.37 29.68
1.0 2249 | 25.30 31.99 32.67 32.54
2.0 25.29 29.40 34.97 35.38 34.98
3.0 29.49 | 31.90 36.39 36.85 36.33
4.0 32.67 33.40 37.29 37.86 37.23

B CMG(1) beats CED in 15/15 of test cases by up to 4.11 dB
B CMG(4) beats CGPRFSED in 15/15 of test cases by up to 2.88 dB
B CMG(4) beats CGPR in 13/15 of test cases by up to 0.63 dB
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Comparison of Mesh Quality — Subjective Quality

CGPRFSED CMG(4) CGPR
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Conclusions

B proposed CMG method for generating mesh models of RGB color images

B proposed method can also handle images with arbitrary number of
components

B proposed method outperforms competing schemes with similar and higher
complexity

B CMG(1) outperforms CED in mesh quality, with similar computational and
memory costs

B CMG(4) outperforms CGPRFSED in mesh quality, with similar in
computational and memory costs

B CMG(4) yields meshes with quality better than CGPR in mesh quality,
while requiring substantially less computational and memory costs

B proposed approach allows tradeoff to be made between mesh quality and
computational cost, which is useful in a wide range of applications
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Comparison of Mesh Quality — Triangulation
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Comparison of Computational Costs

Samp.
Density Time (s)
Image (%) CED \ CMG(1) H CGPRFSED ‘ CMG(4) ‘ CGPR
lena 0.5 0.16 0.35 0.68 1.72 29.97
1.0 0.18 0.46 1.03 2.09 29.62
2.0 0.23 0.58 2.31 2.79 29.33
3.0 0.30 0.73 3.15 3.49 29.19
4.0 0.38 0.80 4.32 5.04 29.00

B CMG(4) requires 6 to 17 times less time than CGPR
B CMG(1) requires similar time to CED
B CMG(4) requires similar time to CGPRFSED
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Comparison of Memory Costs

Comparison of the maximum mesh size for the various methods

Method Maximum Relative Maximum Mesh Size
Mesh Size | General | D=0.5% | D =4%
CED DWH 1 1 1
CMG(1) DWH 1 1 1
CGPRFSED 4DWH 4 4 4
CMG(4) 4DWH 4 4 4
CGPR WH 1/D 200 25

B CMG(4) requires 275 ~6.210 @ = 50 times less memory than CGPR

B CMG(1) requires same memory as CED
B CMG(4) requires same memory as CGPRFSED
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Evaluation of Proposed FSED Initial-Condition Selection

Strategy
Samp. Win Ratio (%)
Density (%) || CMG(1) || CMG(4)
0.5 77.8 82.2
1.0 80.0 68.0
2.0 68.9 53.3
3.0 64.4 48.9
4.0 66.7 44.4
Overall 71.6 59.6
Samp. PSNR(dB)
Image . CMG(1) CMG(4)
Density (%) - -
proposed | classic || proposed | classic
0.5 19.18 18.00 26.04 25.83
1.0 22.12 21.66 28.38 28.23
lena 2.0 25.77 25.56 30.48 30.50
3.0 27.73 27.39 31.68 31.71
4.0 28.83 28.57 32.49 32.49

B when Y= 1, proposed strategy beats classic strategy in 71.6% of all test
cases, by up to 3.87 dB.

B when Y= 4, proposed strategy beats classic strategy at sampling
densities of 1.0% and lower in 75.6% of test cases by up to 2.29 dB, and
behavies similar to classic strategy at higher sampling densities.

Jun Luo and Michael D. Adams IEEE PacRim 2019



Triangulation

Triangulation

A triangulation of a set P of points in R? is a set T of (non-degenerate) triangles satisfying the
following conditions:

H the set of all vertices of triangles in T is P;
the union of all triangles in T is the convex hull of P; and

the interiors of any two triangles in T are disjoint.

B Preferred-directions Delaunay Triangulation (PDDT) is employed in our work

(@) P (b) PDDT of P
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