
1

An Efficient Progressive Coding Method for
Arbitrarily-Sampled Image Data

Michael D. Adams,Member, IEEE

Abstract—A simple highly-effective method for progressive
lossy-to-lossless coding of arbitrarily-sampled image data is
proposed. This scheme is based on a recursive quadtree par-
titioning of the image domain along with an iterative sample-
value averaging process. The proposed method is shown to offer
much better progressive coding performance than a previously-
proposed state-of-the-art coding method.

Index Terms—image coding, meshes, progressive lossy/lossless.

I. I NTRODUCTION

RECENTLY, there has been a growing interest in image-
coding methods that better exploit the geometric structure

inherent in images. A recurring theme in many of these
methods (e.g., [1]–[3]) is the use of arbitrary sampling (i.e.,
sampling at an arbitrary subset of points from a lattice). In
this context, the need to efficiently code arbitrarily-sampled
image data arises. One particularly effective solution to this
problem has been proposed in [4]. Since progressive cod-
ing functionality is desirable in many applications, a cod-
ing method’s progressive performance is also frequently of
interest. In this paper, we present a new data structure for
representing arbitrarily-sampled image data, and proposea
simple yet effective progressive lossy-to-lossless scheme for
coding the information in this data structure. Although a
number of methods other than [4] have been proposed to date
for the coding of arbitrarily-sampled image data (e.g., [3]),
these other methods do not provide fully progressive lossy-to-
lossless functionality.

The remainder of this paper is structured as follows. Sec-
tion II introduces some basic notation used herein. Then, in
Section III, a new data structure for representing arbitrarily-
sampled image data is presented, and in Section IV an efficient
method for coding the information contained in this data
structure is proposed. Section V evaluates the performance
of our coding method, showing it to compare quite favorably
with a previously-proposed state-of-the-art scheme. Finally,
Section VI concludes the paper with a summary of our results.

II. NOTATION AND TERMINOLOGY

Before proceeding further, a brief digression is in order
concerning the notation used herein. The sets of integers and
real numbers are denoted asZ andR, respectively. Forx ∈ R,
⌊x⌋ denotes the largest integer not greater thanx and ⌈x⌉
denotes the smallest integer not less thanx. For m,n ∈ Z,

Manuscript received May 9, 2008; revised June 30, 2008. Thiswork was
supported by the Natural Sciences and Engineering ResearchCouncil of
Canada. The associate editor coordinating the review of this manuscript and
approving it for publication was Prof. Konstantinos Plataniotis.

The author is with the Dept. of Elec. and Comp. Eng., University of
Victoria, Victoria, BC, V8W 3P6, Canada (e-mail: mdadams@ece.uvic.ca).

Digital Object Identifier XXXXXXXXXX

we define the functionmod(m,n) = m − n ⌊m/n⌋ (i.e., n
divides into m with remaindermod(m,n)). For a, b ∈ Z,
the notation[a, b] and [a, b) denote the subsets ofZ given by
{x ∈ Z : a ≤ x ≤ b} and{x ∈ Z : a ≤ x < b}, respectively.
The unit-step sequence is denoted asu.

III. I MAGE TREE

An image is an integer-valued functionf defined for points
(x, y) ∈ Z

2 in the image domainD, with x, y, andz = f [x, y]
corresponding to horizontal position, vertical position,and
intensity, respectively. Without loss of generality, we assume
D to be rectangular and the sample values off to be unsigned.
In what follows, letW andH denote the width and height of
D so thatD = [0,W)× [0,H), and letP denote the number
of bits per sample. Suppose now that we havef sampled at
an arbitrary set of points inD. We would like a means to
represent such a dataset that is both efficient and well suited for
coding purposes. In what follows, we propose a data structure,
called an image tree, that fulfills this desire.

An image tree is associated with anL-level quadtree par-
titioning of D into rectangular regions called cells, where
L = ⌈log2 max(W,H)⌉ + 1. The root cell of the quadtree is
chosen asD, and the remaining cells are formed by recursively
splitting the root cell to a maximum ofL levels. In particular,
a given cellC = [x0, x1)× [y0, y1) is split in (approximately)
half in each of the horizontal and vertical directions to yield
the four child cellsC0, C1, C2, andC3 given respectively by

[x0, xm) × [y0, ym), [xm, x1) × [y0, ym), (1)
[x0, xm) × [ym, y1), and [xm, x1) × [ym, y1),

wherexm =
⌊

1
2 (x0 + x1 + 1)

⌋

and ym =
⌊

1
2 (y0 + y1 + 1)

⌋

.
As a matter of terminology, the area of a cell is defined as
the number of lattice points (fromZ2) it contains. A cell is
said to be empty if it contains no sample points (from the
arbitrarily-sampled dataset), and is said to be degenerateif it
has zero area. Note that, by definition, a degenerate cell is
always empty. Two nondegenerate cells are called neighbours
if they are located at the same level in the quadtree and
are 8-connected (i.e., immediately adjacent in the horizontal,
vertical, or diagonal directions) inD.

As the name suggests, an image tree is a tree-based data
structure. Each node in the tree is associated with: 1) a
nonempty cell from the quadtree partitioning ofD; and
2) a representative sample value (i.e.,z value) for all of
the sample points contained in this cell. Since each node is
always associated with a nonempty cell, in the (uninteresting)
degenerate case where the number of sample points is zero,
the tree is empty (i.e., contains no nodes). Suppose now that
we have at least one sample point. In this case, the root node
is associated with a cell consisting ofD. Then, the remainder
of the tree hierarchy is constructed by recursively splitting the
root node. More specifically, this node splitting process works

2

0

1 2

5

3

y

x

1 2 30

0

1

2

3

(a)

[0, 4)×[0, 4)

[3, 4)×[0, 1) [0, 1)×[3, 4) [2, 3)×[2, 3) [3, 4)×[3, 4)

[2, 4)×[2, 4)[0, 2)×[0, 2) [2, 4)×[0, 2) [0, 2)×[2, 4)

2

0 3 1 3

0 3 1 5 2
[0, 1)×[0, 1)

(b)
Fig. 1. Image tree example. (a) Image dataset; and (b) its corresponding
image tree.

as follows. LetQ denote a node to be considered for splitting
and letC denote its corresponding cell. IfC has unit area,
we are done (since a node having a cell of unit area is not
split). Otherwise, we splitC according to (1) to generate the
child cells{Ci}

3
i=0. For each nonempty cellC ′ in {Ci}

3
i=0, a

new child node is added toQ with the corresponding cellC ′.
Thus, the maximum number of children thatQ can possess
is equal to the number of nondegenerate cells in{Ci}

3
i=0.

Lastly, each of the newly added child nodes is (recursively)
split. Excluding leaf nodes, each node in the tree can have a
maximum of either two or four children, with the first case
arising only if W or H is not an integer power of two, or
W 6= H.

The leaf nodes of the tree have a one-to-one correspondence
with sample points. So, for each of these nodes, the representa-
tive sample value is simply chosen as the sample value for the
corresponding sample point. For each of the remaining (i.e.,
nonleaf) nodes, the representative sample value is computed
using a simple iterative averaging process. In particular,the
representative sample valuez for a nonleaf node withN
children having representative sample values{zi}

N−1
i=0 is given

by

z =
⌊

1
N

(

∑N−1
i=0 zi + β(N)

)⌋

, (2)

whereβ(n) = ⌊n/2⌋u[n − 3]. In the preceding equation, the
additive biasβ(N) simply serves to reduce rounding error.
Also, it is important to note thatz has the same dynamic range
as the{zi}

N−1
i=0 . Consequently, the representative sample value

for each node in the tree can be represented using aP -bit
(unsigned) integer.

To further assist in visualizing the structure of an image
tree, we now provide a simple example. Fig. 1(a) depicts a
simple image dataset with five sample points (shaded grid
points) taken from the image domain[0, 4) × [0, 4). The
corresponding image tree is shown in Fig. 1(b), where the cell
and representative sample value for each node are indicated.

Observe that the image dataset (i.e., sample points and
corresponding sample values) can be losslessly reconstructed
from the information in the leaf nodes of the image tree.
Furthermore, we can also generate approximations of the
dataset from pruned versions of the tree. To do this, we
generate one sample point and corresponding sample value
for each leaf node in the pruned tree. In the case that a leaf
node has a cell with area greater than one, the corresponding
sample point is taken to be the (approximate) centroid of the
cell. Thus, by coding the information in an image tree using
a top-down traversal of the nodes in the tree, we can obtain a
progressive encoding of the image dataset.

IV. CODING OF IMAGE TREE

Having introduced the image-tree data structure, we now
propose a method for efficiently coding the information in
such a tree. Our scheme employs a context-adaptive binary
arithmetic coder [5]. In what follows, we describe only the
encoding process since, from it, the decoding process can be
easily deduced.

As suggested previously, we can construct a progressive
encoding of an image tree by coding the information in the
nodes using a top-down traversal of the tree. Clearly, many
legal traversal orders are possible. The only constraint isthat
the information for a given node cannot be coded before the
information for its parent node. To allow for flexibility in the
traversal order, a heap-based priority queue, called the work
queue, is employed during the coding process. The work queue
holds all of the nodes that have been coded (i.e., have had their
cell and representative sample value coded) but have not yet
had their child information coded.

To commence the encoding process, a small fixed-length
header is output containing the values ofW , H, andP . Also,
the work queue is cleared. If the tree is not empty, we encode
the representative sample value for the root node as aP -bit
(unsigned) integer usingP bits without arithmetic coding, and
insert the root node in the work queue. Since all subsequent
data is arithmetically coded, the arithmetic coding engineis
initialized at this point. Then, we loop, processing nodes in the
work queue, until the work queue is empty. In each iteration,
we first remove the next (i.e., highest priority) node from the
work queue. Then, if the node is a nonleaf, we code the node’s
child configuration (i.e., the number of child nodes and the
cells with which the child nodes are associated). Next, we
code the representative sample value for each of the child
nodes. The preceding two coding processes are described in
detail later in this section. Lastly, for each of the child nodes,
we compute its priority (for queue insertion) and insert it in
the work queue.

By appropriately choosing the function used to compute
node priority, we can effectively force the tree to be traversed
in any (legal) order, thus controlling the order in which
tree information is coded. Although many different traversal
orders are possible, in this work we only employ breadth-first
traversal (i.e., one tree level at a time from top to bottom)
with raster-scan ordering by cell centroid within each tree
level. Although this traversal order is not guaranteed to be
optimal in any sense, it was experimentally found to perform
well for a wide variety of datasets (compared to other simple
breadth-first and depth-first orders). The consideration ofother
traversal orders is left as a topic for future investigation.

Arithmetic Coding.Frequently, when using a binary arith-
metic coder, the need arises to code a bit with a fixed uniform
probability distribution. In fact, most popular arithmetic coders
provide what is called a “bypass mode” for accomplishing just
this. Henceforth, whenever we speak of coding a bit in bypass
mode, we are simply referring to the arithmetic coding of a
bit with a fixed uniform distribution.

Since the arithmetic coder employed by our method is
binary, we must specify a binarization scheme for each type of
nonbinary symbol to be coded. There are three such types of
symbols to be considered. The first type of nonbinary symbol
is a ternary value with a fixed uniform distribution. Here, we
require one additional contextcthird in which the value of one

3

has a fixed probability of13 . The ternary valuen ∈ [0, 2] is
then binarized as a bit with value⌊n/2⌋ coded using context
cthird followed, if ⌊n/2⌋ = 0, by a bit with valuemod(n, 2)
coded in bypass mode. The second type of nonbinary symbol
used is a hexary value with a fixed uniform distribution. The
hexary valuen ∈ [0, 5] is binarized as a bit with value⌊n/3⌋
coded in bypass mode, followed by a ternary symbol with
valuemod(n, 3).

The third type of nonbinary symbol is ann-bit unsigned
integer with an adaptive nonuniform distribution. For sucha
symbol, we define a family of binarizations parameterized by
an integerf , wheref ∈ [1, n]. For convenience, we denote
such a binarization asUI(n, f). The binarization of the value
v with bits {bi}

n−1
i=0 , wherev =

∑n−1
i=0 bi2

i is performed as
follows. For each bit positionk from n − 1 down to 0, we
perform the following two steps: 1) Code thekth bit bk using
contextc, wherec ∈ [0, 2f + n − f − 1) and

c =

{

2f−1 − 1 +
∑

i∈[k+1,f)(2bi − 1)2i−1 k ∈ [0, f − 1]

2f − f + k − 1 k ∈ [f, n − 1].

2) If bk = 1 and k ≥ f , we code each of the remaining
bits {bi}i∈[0,k) in bypass mode, and terminate the loop early.
Effectively, the preceding process allows for each symbol
value in the range[0, 2f) to be assigned a distinct probability,
with the remaining values (if any) partitioned into the ranges
[2i, 2i+1) for i ∈ [f, n), where the values within each range
are equiprobable. This scheme can accommodate the coding
of integers with a variety of probability distributions, and is
most flexible whenf = n in which case a distinct probability
can be used for each symbol.

Coding of Child Configuration.With the preceding binariza-
tion schemes introduced, we are now in a position to present
the remaining details of our coding method. To begin, we
describe how the child configuration is coded for a given node
Q. Let M denote the maximum possible number of children
thatQ can possess (which is determined by the node splitting
process as described earlier), and letN denote the number of
children thatQ actually has. To convey the child configuration
for Q, we choose to codeN followed by an indication of
which N of the M possible child nodes are present.

First, we consider the coding of the quantityN . Let C de-
note the cell ofQ. Let A denote the set of all (nondegenerate)
neighbour cells ofC in the quadtree partitioning ofD, and let
E denote the number of cells inA that are, from information
previously coded, known to be empty. Let{Ki}i∈[0,K) denote
the set of all previously coded nodes that are associated with
(nonempty) cells inA, with Ni andMi denoting the number
of children and maximum possible number of children of the
nodeKi. For use in context selection, we compute the integer
quantityp as

p =

{

clip
(⌊

M
K+E

∑

i∈[0,K)
Ni

Mi

+ 1
2

⌋

, 1,M
)

K + E > 0

0 K + E = 0,

whereclip(x, a, b) = min(max(x, a), b). Then, we codeN −
1, whereN − 1 ∈ [0,M) is anη-bit integer andη = log2 M .
This coding is done usingUI(η, η) binarization, conditioned
on M , p, and the level in the tree whereQ resides. Since
sample points often cluster together, neighbouring nodes (i.e.,
nodes with neighbouring cells) tend to have a similar number
of children. Thus, in the preceding process, we use information
about the nodes neighbouringQ (or the lack of such nodes) in

order to estimateN . In particular, the quantityp corresponds to
an estimate ofN ∈ [1,M] with the special out-of-range value
of 0 assigned in the (typically) infrequent case that insufficient
information is available for making a good estimate.

Next, we must encode whichN of M possible children are
present. In general, there are

(

M
N

)

possible child configura-
tions. Recall thatM ∈ {2, 4}. If M = 2, we have two cases
to consider, namelyN ∈ {1, 2}. If N = 1, one of two possible
configurations is coded using a single bit in bypass mode. If
N = 2, only one configuration is possible, and no information
need be coded. IfM = 4, we have four cases to consider,
namely N ∈ [1, 4]. If N ∈ {1, 3}, one of

(

4
1

)

=
(

4
3

)

= 4
possible configurations is coded using two bits, each in bypass
mode. If N = 2, one of

(

4
2

)

= 6 possible configurations is
coded using a single hexary symbol. IfN = 4, only one
configuration is possible, and no information need be coded.

Coding of Representative Sample Values.Now, let us con-
sider the coding of the representative sample values for the
children of a given nodeQ. Let M andN respectively denote
the maximum possible and actual number of children forQ.
Let z denote the representative sample value ofQ and zi

denote the representative sample value for theith child of
Q. If N = 1, we have (from (2)) thatz0 = z, and no
information need be coded. Suppose now thatN ≥ 2. For
k from 0 to N − 1, we code eachzk as follows. Rather
than coding the value ofzk directly, we code its difference
from some reference value. Based on the information coded
so far, we computes0 and s1, the minimum and maximum
possible values, respectively, for the sum

∑N−1
i=k zi as s0 =

Nz −
∑

i∈[0,k) zi − β(N) and s1 = s0 + N − 1. There are
two cases to consider: 1)k = N − 1 and 2)k < N − 1. If
k = N − 1, we havezk ∈ [s0, s1] and we code the residual
r = zk − s0, wherer ∈ [0, N). For the case thatN is 2, 3, or
4, r is respectively coded as one bit in bypass mode, a single
ternary symbol, or two bits in bypass mode. Ifk < N − 1,
we predictzk as

p =

{
⌊

1
2(N−k) (s0 + s1 + β(2[N − k]))

⌋

k ∈ [1, N − 1)

z k = 0.

We code the residualr = zk − p as follows, wherer ∈
[−(2P − 1), 2P − 1]. The P -bit integer |r| is coded using
UI(P,min(P, 4)) binarization, conditioned on the node’s level
in the tree. Next, if|r| 6= 0, the sign ofr is coded as single
bit in bypass mode. The residualr tends to be close to zero,
since the remaining unknown{zi}

N−1
i=k are frequently close to

their average value (for whichp is an estimate).

V. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of our proposed coding
method, we compare its coding performance to that of the
scattered data coding (SDC) scheme [4] (which is used, for
example, in [2]) with a breadth-first traversal order and themi-
nor enhancements described in [1]. As originally proposed,the
SDC method does not employ arithmetic coding. Therefore,
to allow a fairer comparison, we applied arithmetic coding
to the symbol stream produced by the SDC method. This
typically reduces the lossless bit rate achieved with the SDC
method by 2 to 5%. For test data, we employed several lattice-
sampled images, including the well-known lena image. To
generate arbitrarily-sampled datasets from (lattice-sampled)
images and vice versa, we used the MGH mesh-generation

4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

B
it

R
at

e
(b

its
/p

ix
el

)

Sampling Density

Proposed
SDC

(a)

 5

 10

 15

 20

 25

 30

 35

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
S

N
R

 (
dB

)

Bit Rate (bits/pixel)

Proposed
SDC

(b)
Fig. 2. Coding results for the lena image obtained using the proposed
and SDC methods. (a) Lossless coding performance. (b) Progressive coding
performance (with a dataset sampling density of 0.025).

method and corresponding triangulation-based interpolation
scheme from [1].

First, we consider lossless coding performance. For several
(lattice-sampled) test images, arbitrarily-sampled datasets with
different numbers of sample points were generated. Then, each
dataset was losslessly coded using the proposed and SDC
methods, and the final bit rates measured. A representative
subset of the results, namely for the lena image, is shown in
Fig. 2(a). From these results, we can see that our proposed
method performs comparably to the SDC method at low
sampling densities, and better at higher sampling densities.
Although our interest herein is with progressive performance,
these results are important in that they show that any improve-
ment in progressive performance that our method may offer
does not come at any significant cost in terms of the final
lossless bit rate.

Now, we consider progressive coding performance (i.e.,
decoding in a lossy manner to various intermediate rates).
For several images, arbitrarily-sampled datasets corresponding
to various sampling densities were generated. Using each of
the proposed and SDC methods, each dataset was coded once
losslessly, and then decoded at many intermediate rates. In
each case, the decoded dataset was interpolated to produce
a lattice-sampled image and the peak-signal-to-noise ratio
(PSNR) relative to the original (lattice-sampled) image was
computed. A representative subset of the results, namely for
the lena image, is shown in Fig. 2(b). In the graph, the
maximum PSNR attained corresponds to lossless reconstruc-
tion of the arbitrarily-sampled dataset. Clearly, the proposed
method outperforms the SDC method at lower rates by a very
large margin (often by several dB). Only when the arbitrarily-
sampled dataset is very nearly losslessly decoded does the
SDC method sometimes have slightly better performance. To
show that the PSNR results correlate well with subjective
quality, two of the obtained intermediate image reconstructions
are shown in Fig. 3. Clearly, the reconstruction produced by
our proposed method is of much better quality than the one
generated by the SDC scheme.

In terms of both computational and memory complexity,
the proposed method is also superior to the SDC scheme.
The execution times for the encoding and decoding algorithms
were both typically found to be 2 to 4 times greater for the
SDC method than the proposed method. Furthermore, the SDC
method was also observed to typically require over 10 times
more memory than the proposed method. These complexity
characteristics can be explained as follows. The proposed
method is based on a quadtree partitioning of a 2-D space
of size WH, while the SDC method is based on an octree
partitioning of a 3-D space of size2P WH. Therefore, the

(a) (b)
Fig. 3. Intermediate image reconstructions for the lena image (with a
dataset sampling density of 0.025) obtained at 50:1 compression using the
(a) proposed (23.97 dB) and (b) SDC (18.41 dB) methods.

SDC method must partition a much larger space, resulting in
a tree with a much greater number of nodes (typically, 6 to 7
times more). Furthermore, in the SDC case, the nodes are also
larger, since each node must have pointers for eight children
instead of four. Since memory usage is dominated by the tree
data structure in both methods, the proposed scheme requires
less memory. Since both methods must process every tree node
during encoding or decoding, the much greater node count for
the SDC method leads to a longer execution time relative to
the proposed method.

The relatively poor progressive performance of the SDC
method is due to the fact that it represents each sample point
(x, y) and its corresponding sample valuez as a point(x, y, z)
in 3-D space. Unfortunately, as a result of this, at intermediate
stages of decoding, it is possible to obtain multiple points(in
3-D) with the samex and samey coordinates but distinctz
coordinates, which corresponds to a single sample point having
multiple distinct sample values. Such ambiguities ultimately
lead to degraded coding performance, and also cause the
unusual oscillatory behavior in the rate-distortion curvefor
the SDC method in Fig. 2(b) at lower rates. Although various
strategies can be used in an attempt to reduce the degradation
caused by these ambiguities, the improvement offered by such
strategies is fundamentally limited.

VI. CONCLUSIONS

In this paper, we have proposed a new method for pro-
gressive lossy-to-lossless coding of arbitrarily-sampled image
data. Our method is conceptually simple, flexible (allowingfor
different progression orders), and was shown to yield much
better progressive performance than a previously-proposed
state-of-the-art coding technique at lower computationaland
memory costs. By using our proposed method, one can hope
to develop improved mesh-based image coders in the future.

REFERENCES

[1] M. D. Adams, “An evaluation of several mesh-generation methods using
a simple mesh-based image coder,” inProc. of IEEE ICIP, San Diego,
CA, USA, Oct. 2008, to appear.

[2] L. Demaret and A. Iske, “Adaptive image approximation by linear splines
over locally optimal Delaunay triangulations,”IEEE Sig. Proc. Letters,
vol. 13, no. 5, pp. 281–284, May 2006.

[3] L. Demaret, N. Dyn, and A. Iske, “Image compression by linearsplines
over adaptive triangulations,”Sig. Proc., vol. 86, pp. 1604–1616, 2006.

[4] L. Demaret and A. Iske, “Scattered data coding in digital image com-
pression,” inCurve and Surface Fitting: Saint-Malo 2002. Brentwood,
TN, USA: Nashboro Press, 2003, pp. 107–117.

[5] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data
compression,”Comm. of the ACM, vol. 30, no. 6, pp. 520–540, 1987.

