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Abstract— The generalized reversible ITI transform (GRITIT) frame-
work, a single unified framework for reversible ITI wavelet/block trans-
forms, is proposed. The relationship between the GRITIT framework
and several previously proposed frameworks is also examined.

I. INTRODUCTION

To date, several frameworks have been proposed for constructing
reversible integer-to-integer (ITI) wavelet transforms, including the
S+P-transform [1], lifting [2], and overlapping-rounding-transform
(ORT) [3] frameworks. Although these frameworks share a number of
common ideas, each framework also has its own distinctive features.
Thus, no single one of these frameworks can be used to describe all
of the others. This state of affairs, however, is rather unfortunate, as
a single unified framework for reversible ITI transforms would be
highly beneficial. Having such a tool at our disposal, we could more
easily analyze different frameworks and their interrelationships.

In this paper, we propose the generalized reversible ITI transform
(GRITIT) framework, a single unified framework for reversible ITI
wavelet/block transforms. This framework combines the ideas behind
several previously developed frameworks, extending some of these
ideas in the process. In our work, we explicitly consider the more
general case of D-dimensional M-band wavelet transforms (where
D ≥ 1 and M ≥ 2). As we shall see later, the GRITIT framework is
a powerful tool, and can be used to construct reversible ITI wavelet
and block transforms.

II. GRITIT FRAMEWORK

With the GRITIT framework, a transform is constructed as a
sequence of primitive reversible ITI operations. Six distinct types of
primitive operations are employed: the split, join, displace, exchange,
shift, and scale operations. Furthermore, each type of primitive
operation has the property that it is inverted by another primitive
operation. Thus, if we have a transform T given by

T = TN−1 · · ·T1T0, (1)

where the {Ti} are primitive operations, then the corresponding
inverse transform is given by

T−1 = T−1
0 T−1

1 · · ·T−1
N−1. (2)

where the {T−1
i } are also primitive operations. In what follows, we

will now describe the six types of primitive operations in more detail.
1) Split Operation: The split operation is associated with the

1-input M-output network shown in Figure 1(a). This operation
decomposes the input signal x[nnn] into M polyphase components
{yi[nnn]}M−1

i=0 , where the polyphase decomposition is performed with
respect to the the sampling matrix MMM and corresponding coset vectors
{mmmi}

M−1
i=0 , and M = |detMMM|. As a matter of notation, we denote an

operation of this type as P (MMM, [mmm0 mmm1 ··· mmmM−1 ]).
The split operation is linear and shift variant. Since the down-

sampling and shift operations are ITI, the split operation is also ITI
in nature. The inverse of a split operation is a join operation (to
be defined next). (More specifically, in terms of notation yet to be
defined, P−1 (MMM, [mmm0 mmm1 ··· mmmM−1 ]) = J (MMM, [mmm0 mmm1 ··· mmmM−1 ])).

2) Join Operation: The join operation is associated with the
M-input 1-output network shown in Figure 1(b). This operation
simply synthesizes a signal y[nnn] from its M polyphase components
{xi[nnn]}M−1

i=0 . As a matter of notation, we denote an operation of this
type as J (MMM, [mmm0 mmm1 ··· mmmM−1 ]).

The join operation is linear. Since the upsampling, shift, and
addition operations are ITI, the join operation is also ITI in nature.
The inverse of a join operation is a split operation. More specifically,
J−1 (MMM, [mmm0 mmm1 ··· mmmM−1 ]) = P (MMM, [mmm0 mmm1 ··· mmmM−1 ]).

3) Displace Operation: The displace operation can be viewed
as a generalization of the lifting operation employed in the lifting
framework. The displace operation is associated with the M-input
M-output network depicted in Figure 1(c). As a matter of notation,
the network inputs and outputs are denoted as {xi[nnn]} and {yi[nnn]},
respectively. In order to simplify the diagram, only the Kth output
is shown. All of the other outputs are directly connected to their
corresponding inputs (i.e., yi[nnn] = xi[nnn] except for i = K). The Kth
output (i.e., yK [nnn]) is generated by adding an adjustment value to
the Kth input (i.e., xK [nnn]). This adjustment value is calculated by
summing filtered versions of one or more inputs (i.e., {xi[nnn]}M−1

i=0 ) and
possibly the Kth output (i.e., yK [nnn]), and then rounding the result with
the operator Q. If s is odd, the sign of the adjustment value is also
inverted. Finally, the Kth output is formed by adding the adjustment
value to the Kth input. Mathematically, we have

yi[nnn] =

{

xi[nnn]+ (−1)sQ
(

b[nnn]∗ yi[nnn]+∑M−1
l=0 al [nnn]∗ xl [nnn]

)

for i = K

xi[nnn] otherwise.
As a matter of notation, we denote an operation of this type as

L (K,Q,s, [A0(zzz) A1(zzz) ··· AM−1(zzz) ] ,B(zzz)) . (3)
In order to avoid delay-free loops (which are physically unreal-

izable), B(zzz) must have a constant term of zero. If no rounding
operator is employed, Q is denoted as /0 (e.g., as in L(1, /0,1, [0 1 ] ,0)).
The inverse of a displace operation is another displace opera-
tion. More specifically, L−1 (K,Q,s, [A0(zzz) A1(zzz) ··· AM−1(zzz) ] ,B(zzz)) =
L (K,Q,1− s, [A′

0(zzz) A′
1(zzz) ··· A′

M−1(zzz) ] ,B′(zzz)) where

B′(zzz) = AK(zzz) and A′
i(zzz) =

{

Ai(zzz) for i 6= K

B(zzz) for i = K.

The displace operation is shift invariant, provided that Q is shift
invariant. If Q is nonlinear (which is most frequently the case in
practice), the displace operation is also nonlinear. One can easily
confirm that, for any (reasonable) choice of Q, the displace operation
is reversible. Since the rounding operator Q always yields an integer
result, the displace operation is ITI in nature. If we neglect the effects
of the rounding operator Q, the displace operation is linear, and
therefore, its behavior can be characterized by a transfer matrix. This
M ×M matrix only has nonzero entries on the main diagonal and
in the Kth row. Each of the entries along the main diagonal is one,
except (possibly) for the entry in the Kth row. The entries along the
Kth row are such that the (K, l)th entry has the form 1+(−1)sAl(zzz)

1−B(zzz) if

l = K and (−1)sAl(zzz)
1−B(zzz) otherwise.

4) Exchange Operation: The exchange operation is associated
with the M-input M-output network illustrated in Figure 1(d). As a
matter of notation, the network inputs and outputs are, respectively,
denoted as {xi[nnn]} and {yi[nnn]}. In order to simplify the diagram, only
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the Kth and Lth outputs and inputs are shown. All of the other outputs
are directly connected to their corresponding inputs (i.e., yi[nnn] = xi[nnn]
except for i ∈ {K,L}). The exchange operation simply swaps the
signals in the Kth and Lth channels. Mathematically, we have

yi[nnn] =











xL[nnn] for i = K

xK [nnn] for i = L

xi[nnn] otherwise.
As a matter of notation, this type of operation is denoted as E(K,L).

The exchange operation is linear and shift invariant. Moreover,
one can see that this operation is trivially ITI in nature. An exchange
operation is also self inverting. That is, E−1(K,L) = E(K,L). Since
the exchange operation (i.e., E(K,L)) is linear, it can be characterized
by a transfer matrix. This M×M matrix has all of its entries on the
main diagonal equal to one, except the Kth and Lth entries which are
zero. All of the off-diagonal entries are zero, except for the (K,L)th
and (L,K)th entries which are one.

5) Shift Operation: The shift operation is associated with the M-
input M-output network depicted in Figure 1(e). As a matter of
notation, the network inputs and outputs are denoted as {xi[nnn]} and
{yi[nnn]}, respectively. In order to simplify the diagram, only the Kth
input and Kth output are shown. Each of the remaining outputs is
directly connected to its corresponding input (i.e., yi[nnn] = xi[nnn] except
for i = K). The shift operation forms the Kth output by translating
the Kth input by the integer vector mmm. Mathematically, we have

yi[nnn] =

{

xi[nnn−mmm] for i = K

xi[nnn] otherwise.
As a matter of notation, we denote this type of operation as T (K,mmm).

The shift operation is linear and shift invariant. The inverse
of a shift operation is another shift operation. More specifically,
T −1(K,mmm) = T (K,−mmm). Since the shift operation (i.e., T (K,mmm))
is linear, it can be characterized by a transfer matrix. This M ×M
matrix is diagonal and has all of its diagonal entries equal to one,
except for the Kth entry which is zzz−mmm.

6) Scale Operation: The scale operation is associated with the
M-input M-output network illustrated in Figure 1(f). The network
inputs and outputs are, respectively, denoted as {xi[nnn]} and {yi[nnn]}.
To simplify the diagram, only the Kth output is shown. Each of the
remaining outputs is directly connected to its corresponding input
(i.e., yi[nnn] = xi[nnn] except for i = K). Evidently, the scale operation
forms the Kth output (i.e., yK [nnn]) by simply applying a multiplicative
(scalar) gain s to the Kth input (i.e., xK [nnn]). Mathematically, we have

yi[nnn] =

{

sxi[nnn] for i = K

xi[nnn] otherwise.
As a matter of notation, we denote this type of operation as S(K,s).

The scale operation is linear and shift invariant. The inverse
of a scale operation is another scale operation. More specifically,
S−1(K,s) = S(K,s−1). Clearly, a scale operation is only invertible
if its associated gain s is nonzero. This type of operation is ITI in
nature if the gain s is an integer. For this reason, any scale operations
used in the computation of a forward transform must employ integer
gain factors. Since the scale operation (i.e., S(K,s)) is linear, it can
be characterized by a transfer matrix. This M×M matrix is diagonal,
and has all of its diagonal entries equal to one, except for the Kth
entry which is s.

III. REVERSIBLE ITI WAVELET TRANSFORMS

Having introduced the primitive reversible ITI operations employed
by the GRITIT framework, we are now in a position to explain how
such operations can be utilized in order to construct reversible ITI
wavelet transforms. The basic building block for wavelet transforms
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+
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...
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(−1)s
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s

(f)

Fig. 1. The six types of operations used in the GRITIT framework. The
(a) split, (b) join, (c) displace, (d) exchange, (e) shift, and (f) scale operations.

is the uniformly maximally-decimated (UMD) filter bank. Conse-
quently, in order to create a reversible ITI wavelet transform, we
simply need to construct a reversible ITI UMD filter bank.

With the GRITIT framework, we can readily construct D-
dimensional M-channel UMD filter banks based on polyphase tech-
niques. Such filter banks are realized as follows. The analysis side of
the filter bank, which corresponds to the forward wavelet transform,
serves to decompose the input signal x[nnn] into M subband signals
{yi[nnn]}M−1

i=0 . This transform is comprised of a split operation (i.e., P )
followed by one or more polyphase filtering operations (i.e., {Ti}

η−1
i=0 ).

The polyphase filtering operations {Ti}
η−1
i=0 are chosen as displace,

exchange, shift, and scale operations (as desired). The synthesis side
of the filter bank, which corresponds to the inverse wavelet transform,
generates the output signal x[nnn] from its corresponding subband
signals (i.e., {yi[nnn]}M−1

i=0 ). This is accomplished via the stepwise
inversion of each operation from the analysis side. Since all of the
operations employed (i.e., P , P−1, {Ti}) are reversible, one can easily
see that the overall transform is also reversible. Furthermore, since
each operation on the analysis side maps integers to integers, the
transform is also ITI.

IV. REVERSIBLE ITI BLOCK TRANSFORMS

As suggested previously, the GRITIT framework is applicable
not only to wavelet/subband transforms but also block transforms
as well. Block transforms are associated with M-input M-output
networks. In the case of block transforms, each of the inputs and
outputs is comprised of a single sample and not a sequence (as in
the wavelet/subband transform case). For this reason, some minor
modifications are required to adapt the GRITIT framework to the
block transform case. First, we discard the split, join, and shift
operations, as such operations are only meaningful for sequences.
This leaves us with the displace, exchange, and scale operations.
Next, we redefine these remaining operations to operate on individual
sample values, as opposed to sequences. This redefinition is trivial
for the exchange and scale operations. In the case of the displace
operation, we restrict all of its associated filters to have constant
transfer functions. This, in effect, replaces the filters by simple
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amplifiers.
With the aforementioned modifications in place, we can employ

the GRITIT framework to construct reversible ITI block transforms.
The forward transform is simply chosen as a sequence of displace,
scale, and exchange operations (as desired). This maps the inputs {xi}
to the outputs {yi}. The inverse transform is then obtained through
the stepwise inversion of each operation in the forward transform.

For example, by using the GRITIT framework, we can construct
reversible ITI versions of linear block transforms such as the DCT
and DFT. In fact, similar ideas have been recently proposed by a
number of researchers [4]–[6].

V. GRITIT REALIZATION OF WAVELET/BLOCK TRANSFORMS

Earlier, we introduced the GRITIT framework and explained how
the primitive reversible ITI operations associated with this frame-
work can be used to obtain general structures for reversible ITI
wavelet/block transforms. We have yet to discuss, however, how one
might choose the specific operations and corresponding parameters
for a particular transform. That is, so far, we have not considered
the transform design problem. We will now turn our attention to this
matter.

The most common design technique is of an indirect nature. That
is, we do not directly generate a reversible ITI transform. Instead,
we first construct a linear wavelet/block transform with desirable
properties. Then, we find a reversible ITI approximation of this
transform. As we shall explain, this design approach is essentially
equivalent to a matrix factorization problem. The particulars of
the factorization problem differ, however, in the wavelet and block
transform cases.

Wavelet Transforms: In the wavelet transform case, we first choose
a specific polyphase decomposition for the corresponding filter bank.
This determines the split operation to be used as well as the analysis
polyphase matrix of the filter bank. Next, we must determine the
polyphase filtering operations associated with the transform. To
accomplish this, we simply need to decompose the analysis polyphase
matrix into factors of the forms associated with the relevant GRITIT
operations (i.e., the displace, exchange, shift, and scale operations).
That is, we must decompose the analysis polyphase matrix EEE(zzz) as

EEE(zzz) = EEEN−1(zzz) · · ·EEE1(zzz)EEE0(zzz) (4)
where the {EEE i(zzz)} are transfer matrices of the forms associated
with the displace, exchange, shift, and scale operations. (The forms
of such transfer matrices are specified in Section II.) Once we
have determined the factorization in (4), the polyphase filtering
operations in the forward transform are obtained by simply selecting
the operations corresponding to each of the matrix factors (i.e., the
{EEE i}). The inverse transform is trivially formed by the stepwise
inversion of each of the operations in the forward transform.

Often, we are interested in wavelet transforms that are associated
with FIR UMD filter banks. In this case, the corresponding analysis
polyphase matrix EEE(zzz) has Laurent polynomial entries. Typically, in
such a scenario, we want to obtain polyphase filtering operations that
are associated with FIR filters. That is, in (4), we want to obtain a
factorization with Laurent polynomial matrix factors. In the 1D case,
in order to accomplish this, the factorization in (4) can be performed
using a matrix Euclidean algorithm (e.g., as described in [7]).
Provided that the transform is appropriately normalized, a solution
to the factorization problem will always exist [7]. In the general
D-dimensional case (where D ≥ 1), this factorization problem is
somewhat more complex, and a solution may not necessarily exist [8].
In some cases, however, a solution must exist as a consequence of
a mathematical result known as Suslin’s stability theorem [9]. To

solve the factorization problem in the general D-dimensional case
(assuming a solution exists), one can employ algorithms such as those
proposed by Park and Woodburn [10] and Tolhuizen et al. [11].

Block Transforms: In the block transform case, we simply need to
decompose the forward transform matrix into factors having the forms
associated with the relevant GRITIT operations (i.e., the displace,
exchange, and scale operations). Let us denote the forward transform
matrix as TTT . (We assume that TTT is a real matrix.) Then, we must
decompose TTT as follows:

TTT = TTT N−1 · · ·TTT 1TTT 0 (5)
where the {TTT i} are matrices of the forms associated with the
displace, exchange, and scale operations. Once we have determined
the factorization in (5), the operations in the forward transform are
obtained by simply selecting the operations corresponding to each of
the matrix factors (i.e., the {TTT i}). The inverse transform is trivially
formed by the stepwise inversion of each of the operations in the
forward transform.

The above factorization process can be performed by simple
Gaussian elimination. In order to avoid an unnecessarily large number
of factors, one might wish to employ a slightly more sophisticated
technique like that proposed by Hao and Shi [5].

VI. VARIATIONS ON THE GRITIT FRAMEWORK

The GRITIT framework, as described previously, constitutes a
very powerful tool for the study and construction of reversible ITI
wavelet/block transforms. In the interest of simplicity, we chose to
describe this framework in the most basic form suitable to our needs
herein. We would be remiss, however, if we failed to note that many
variations on this framework are possible.

In this paper, we are interested in reversible ITI transforms that ap-
proximate linear transforms (e.g., wavelet/block transforms). For this
reason, the displace operation is based on linear filtering operations.
One could, however, just as easily employ other types of operations
such as median filtering or morphological operators. To this end, one
might exploit some of the ideas in [12]–[14].

Although adaptive transforms are not explicitly considered in this
work, one can certainly construct such transforms using the GRITIT
framework. That is, displace operations can certainly employ adaptive
filters. For example, one might exploit adaptive filtering by using
some of the related ideas in [15].

Another slight variation on the GRITIT framework can be obtained
by changing the displace operations to employ modular arithmetic.
By using modular arithmetic, one can construct transforms that avoid
dynamic range growth. Such an idea has been proposed, for example,
by Chao et al. [16] in the context of the lifting framework. In the
opinion of this author, however, such an approach is of limited prac-
tical value in lossy signal coding applications. If modular arithmetic
is employed, the transform behavior can become extremely nonlinear.
That is, small perturbations in the transform coefficients can result
in very large changes in the reconstructed signal. Obviously, such
behavior is undesirable in the case of lossy coding, since the effect
of transform coefficient quantization (on distortion) can become quite
unpredictable.

When the GRITIT framework is used to construct reversible ITI
wavelet transforms, the resulting computational structure is essen-
tially a polyphase realization of a UMD filter bank. Such a structure
is desirable from the standpoint of computational complexity, since
analysis and synthesis filtering are performed in the downsampled
domain (i.e., at the lower sampling density). We could, however,
perform the analysis and synthesis filtering in the upsampled domain.
An approach like this has been proposed by Komatsu and Sezaki [17],
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[18]. From a computational standpoint, however, such an approach
is less attractive (due to filtering operations being performed at the
higher sampling density).

Although our focus herein is on ITI transforms, it is worth men-
tioning that one can also construct (reversible) real-to-real transforms
using the GRITIT framework. This is accomplished by modifying
the displace operation such that the rounding operator quantizes with
some granularity finer than integers. For example, one might employ
an operator that rounds results to the nearest integer multiple of 2−10.

In passing, we note that the GRITIT framework can also be
employed to build reversible ITI transmultiplexors (i.e., the “dual”
of analysis-synthesis filter banks).

VII. RELATIONSHIP BETWEEN FRAMEWORKS

As suggested earlier, the proposal of the GRITIT framework was
partially motivated out of the desire to have a single unified view
of frameworks for reversible ITI wavelet/block transforms. In what
follows, we briefly examine the relationship between the GRITIT
framework and each of a number of other frameworks, including the
S+P transform, lifting, and ORT frameworks.

S+P Transform Framework: Let us consider the relationship
between the GRITIT and S+P transform frameworks. In the case
of the S+P transform framework [1], a forward transform can be
expressed in operator notation as

L (1,bfloor,1, [A(z) −B(z) ] ,0)L
(

0,b·c ,0,

[

0 1
2

]

,0
)

L (1, /0,0, [−1 0 ] ,0)E(0,1)P (2, [0 1 ]) . (6)
The inverse transform is simply obtained through the stepwise
inversion of the operations in the forward transform. From (6), we
can see that the forward and inverse transforms are each comprised
of a split/join, exchange, and three displace operations.

Lifting Framework: Next, we consider the relationship between
the GRITIT and lifting frameworks. In the case of the lifting frame-
work [2], we can express a forward transform in operator notation
as

Sρ−1 · · ·S1S0Lλ−1 · · ·L1L0P (7)

where P is a split operation, the {Si} are scale operations, and
the {Li} are displace operations. The scale operations {Si} are
constrained to have nonzero integer scaling factors, in order for the
resulting transform to be both reversible and ITI. The displace oper-
ations {Li} are constrained such that the AK(zzz) and B(zzz) parameters
in (3) are zero. From (7), we can see that the forward and inverse
transforms are each comprised of one split/join operation, λ displace
operations, and ρ scale operations.

ORT Framework: Now, we consider the relationship between the
GRITIT and ORT frameworks. In the case of the ORT framework [3],
a forward transform can be expressed in operator notation as

Tλ−1 · · ·T1T0P (8)
where P is a split operation, the {Ti} are either shift or exchange
operations or operations of the following forms:

S(1,−s)L(0,b·c ,0, [0 1−H(z) ] ,0)L(1, /0,0, [−1 0 ] ,0), (9a)

S(1,±1)L(1, /0,0, [±1 0 ] ,0)L(0,b·c ,0, [0 H(z) ] ,0), and (9b)

S(1,s)L(0,b·c ,0, [0 H(z) ] ,0). (9c)
The inverse transform can be trivially deduced through the stepwise
inversion of each operation in the forward transform. Evidently, the
forward and inverse transforms are each comprised of one split/join
operation and several displace, shift, scale, and exchange operations.
By comparing (8) and (7) and using the identities discussed in [19],
one can show that the ORT framework is essentially a special case of
the lifting framework with only trivial extensions. This observation
was made possible, in part, through the insight provided by the
GRITIT framework.

VIII. CONCLUSIONS

In this paper, we proposed the generalized reversible ITI transform
(GRITIT) framework, a single unified framework for reversible ITI
wavelet/block transforms. This new framework was then used to
parameterize several previously developed frameworks. Having a
unified framework at our disposal is quite beneficial as this allows
interrelationships between previously proposed frameworks to be
more easily studied and new insights to be obtained.
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