
Aristotle: A Flexible Open-Source Software Toolkit

for Semi-Automated Marking of Programming

Assignments

Michael D. Adams

Dept. of Electrical and Computer Engineering, University of Victoria

Victoria, BC, V8W 2Y2, Canada

mdadams@ece.uvic.ca

Abstract—A new flexible open-source software toolkit to as-
sist in the marking of programming assignments is presented.
This toolkit automates the process of validating, building, and
testing assignment submissions in addition to generating reports
summarizing the results of building and testing student code.
By using this toolkit (especially in conjunction with a tool like
GitHub Classroom), the amount of effort required for assignment
marking can be greatly reduced. The toolkit is programming-
language neutral (i.e., does not mandate the use of a particular
language) and provides a high degree of flexibility by allowing
various operations to be customized via user-provided programs,
which may be written in a scripting language of the user’s choice.

Index Terms—Programming assessment, software assessment
tools, semi-automated grading, GitHub Classroom.

I. INTRODUCTION

Many courses in engineering, computer science, and related

disciplines require the marking of programming assignments.

The marking of such assignments, however, can be extremely

time consuming. Typically, an assignment submission must

first be checked to ensure that it has been packaged correctly

by the student. Then, all of the code must be built and tested.

Moreover, to facilitate more thorough testing, one or more

modified versions of the student code may sometimes need to

be generated. For example, an instructor may wish to substitute

their own test code in place of student test code. Often, a

manual inspection of the source code is also required in order

to consider criteria such as coding style, code structure, and

documentation. A report that provides feedback to the student

about the marking needs to be generated. Finally, the above

process must be repeated for each student in the class, which

may potentially be quite large. Since the marking process is

potentially very time consuming, tools that can automate or

otherwise assist with some parts of this assessment process

are highly beneficial.

Over the years, many tools have been developed to as-

sist with the marking of programming assignments [1]–[3],

providing varying degrees of automation from semi- to fully-

automated. Full automation of the marking process is often not

feasible, since some evaluation criteria may be difficult for a

computer algorithm to automatically assess in a meaningful

way. For example, certain aspects of programming style are

difficult to assess in an automated manner. Consequently, semi-

automated schemes are often the most appropriate choice in

many contexts. Of the many tools that have been developed,

many impose significant restrictions on the user. For example,

some tools are intended for use with only one particular

programming language (often, Java) or one particular software

build tool or one particular compiler tool chain, while other

tools require the user to employ a specific scripting language

for customization or defining test cases. Such restrictions often

limit the utility of a tool.

In this paper, I present Aristotle, a new flexible open-source

software toolkit to assist in the marking of programming

assignments. This software provides a very general frame-

work for semi-automated assignment marking. It is primarily

intended for use in situations where the assessment of assign-

ment submissions requires both testing the submitted code

as well as performing a manual code inspection. Aristotle

provides a means to automate most parts of the assessment

process other than code inspection and final grade assignment.

In particular, it automates: the importing of assignment sub-

missions and performing basic validity checks on submissions,

the building and testing of the code in the submissions, and

the generation of a report summarizing the results of building

and testing the code. Test case failures and other information

included in the generated report can offer additional guidance

for a manual code inspection. Aristotle can accommodate a

wide variety of programming languages, compiler tool chains,

and build tools, and allows for great flexibility in the types of

assignments that can be handled. A large degree of flexibility

is achieved by allowing the behavior associated with various

operations to be specified by user-provided programs, which

may use a scripting language of the user’s choice (allowing

the user to employ the language with which he/she is most

comfortable). The current version of Aristotle is implemented

primarily using Bash [4] scripts, consists of approximately

8900 lines of code, and should be reasonably portable across

most modern Unix-based platforms. The Aristotle software can

be obtained from its official Git repository [5] on GitHub.

II. BACKGROUND

Before discussing the Aristotle software further, it is helpful

to first introduce a very useful tool that can be employed

in conjunction with Aristotle, namely, GitHub Classroom.

GitHub Classroom [6] is a popular free web-based tool for

educators offered by GitHub (http://github.com). This tool

allows instructors to easily create and manage a collection

of Git repositories [7] for each programming assignment in

a course. Students place their assignment submissions in Git

repositories, which can then be retrieved by the instructor

(or his/her delegate) after the submission deadline passes.

GitHub Classroom provides a very convenient means for

managing assignment submission. For this reason, as we will

see later, Aristotle supports the use of GitHub Classroom as a

mechanism for assignment submission.

The development of the Aristotle software grew out of a

need for a better way to handle the marking of programming

assignments for senior-undergraduate and graduate courses

taught by the author, which employ the C++ and C pro-

gramming languages in conjunction with build tools such

as CMake [8] and Make [9]. In these courses, assignment

submissions are assessed based on both testing and a manual

code inspection. A software toolkit was desired that could

be used to automate all but the manual code inspection and

subsequent final mark assignment. Furthermore, a solution

to this problem was sought that would avoid many of the

shortcomings of other previously-developed tools and pro-

duce a toolkit that would be maximally useful to others.

To achieve the desired objective, it was felt that the toolkit

to be developed should: 1) accommodate a wide range of

assignment types; 2) allow any programming language to be

used for assignments; 3) allow an arbitrary tool to be used

to build the code in assignment submissions (for languages

requiring compilation), and provide direct support for the use

of the build tools CMake [8] and Make [9]; 4) allow for a

wide range of testing methodologies; 5) decouple assignment

submission from other operations, and support a variety of

mechanisms for assignment submission, including GitHub

Classroom [6], Git repositories [7], Zip and Gzipped-Tar

archives, and directories within the local filesystem; 6) provide

a mechanism for creating modified versions of student code,

which could be used, for example, to replace student test

code with instructor test code; 7) allow the instructor to

expose commonly-used build tools (e.g., CMake and Make) to

students (if desired) by requiring them to provide build files

(such as CMakeLists files or makefiles) as part of the assign-

ment submission; 8) integrate well with GitHub Classroom;

and 9) allow automation of the following actions: importing

assignment submissions, performing basic validity checking of

submissions, building and testing code, and generating a report

summarizing the building/testing results (which can be used

to provide additional context for a manual code inspection).

Item 7 was considered important since, without direct exposure

to build tools, students can successfully complete a course

without actually knowing how to compile and link code [1].

III. OVERVIEW OF ARISTOTLE

With Aristotle, an assignment submission is simply a

directory tree containing one or more files. The particular

structure of the directory tree is arbitrary. For example, it may

be flat (i.e., all files in the top-level directory) or have many

levels of subdirectories. Normally, the top-level directory of

the assignment submission is required to contain a file called

IDENTIFICATION.txt. This file holds information about

the student who authored the assignment submission (e.g.,

name, student ID, email address, and course section) and the

assignment itself (e.g., assignment ID), and must follow a

particular format in order to facilitate automatic extraction and

validation of this data. (An example of an identification file can

be found later in Listing 1.) Alternatively, a user may choose

to encode the student/assignment identification information in

a completely arbitrary manner as long as a program (which

may be a script) is provided for extracting this information.

With Aristotle, each assignment is named by a unique

ID and is defined as a collection of attribute-value pairs

(i.e., a pair consisting of an attribute and its corresponding

value). An attribute is simply some characteristic or property

of an assignment. Some examples of attributes include: a

short assignment description, a list of required files, a list

of blacklisted (i.e., disallowed) files, and a list of packages

defined for the assignment. All of the attribute-value pairs for a

single assignment are placed in what is called an assignment-

definition file. For each assignment, the user creates a cor-

responding assignment-definition file. Assignment definition

files are then placed in a user-configurable directory called

the assignment-definition directory so that these files can be

located by Aristotle. Many assignment attributes have default

values. Consequently, an assignment-definition file need only

specify the value for a particular attribute if either it has no

default value or the desired value differs from the default.

In order to process an assignment submission with Aristotle,

the submission must be imported into what is called an

assignment workspace. An assignment workspace is simply

a directory tree with a particular layout known to Aristotle.

With Aristotle, the processing of an assignment submission

normally consists of the following steps in order:

1) Import. Create a new assignment workspace using an

assignment submission from some input source, such as

a Git repository or an archive file (e.g., a Zip or Gzipped-

Tar archive).

2) Validate. Perform some basic validity checks on the data

imported from the assignment submission.

3) Generate packages. Generate one or more variants of

the files from the assignment submission, where each

variant is known as a package. In the simplest case, only

one package would be generated that is identical to the

original student submission.

4) Configure. Perform any pre-build configuration required

for the packages generated in the previous step (i.e.,

step 3). What this configuration step does (if anything)

depends on the particular build tool being used.

5) Build. Build (e.g., compile and link) the code for the

packages configured in the previous step (i.e., step 4).

6) Test. Test the programs or libraries built in the previous

step (i.e., step 5).

7) Generate report. Generate a report summarizing the

results of building and testing the packages produced in

step 3.

The report generated in the last step above would then be

used in conjunction with a manual code inspection in order to

determine a final mark for the assignment submission.

With Aristotle, the instructor is free to choose the mecha-

nism to be used for the collection of assignment submissions.

This said, however, the use of GitHub Classroom is strongly

recommended (especially for larger classes), as this allows

much of the work associated with managing assignment sub-

missions to be automated. If GitHub Classroom is employed,

the source of the assignment-submission data for the import

operation (in step 1 above) would be the Git repositories

associated with GitHub Classroom, and all of the submissions

for an entire class can be imported with a single command.

IV. ARISTOTLE IN MORE DETAIL

Now that the reader has been given a brief overview of

Aristotle, we are ready to examine this software in more detail.

To begin, we consider how assignments are defined. Then,

we proceed to examine the various operations involved in the

processing of an assignment submission.

A. Assignment Definitions

As mentioned previously, an assignment definition is a

collection of attribute-value pairs, where each pair is used

to specify a particular characteristic of an assignment. Each

assignment definition is placed in a separate assignment-

definition file in the assignment-definition directory. The

assignment-definition file for the assignment with ID id must

be named id.asgn (i.e., the assignment ID with the “.asgn”

suffix added). Within the file, attribute-value pairs are specified

one per line, with the attribute followed by its value (which

may consist of multiple words). The hash character (i.e., “#”)

begins a comment that continues until the end of line. A

backslash character (i.e., “\”) at the end of a line causes the

end of that line to be ignored, resulting in line continuation.

Aristotle predefines a number of variables whose values can

be used in assignment-definition files. The value of a variable

var is accessed by the expression ${var}. A fully-commented

example of an assignment-definition file can be found later in

Listing 2.

Each assignment has one or more packages, where each

package corresponds to a transformed version of the original

assignment submission. In turn, each package has a number of

build targets and test targets. A build target names an artifact

that can be generated by the software build process, such as an

executable program or a library, and a test target names a test

that can be performed on the software produced by the build

process. Packages, build targets, and test targets have a number

of attributes. For example, each of these items can be marked

as either required or optional. The optional designation marks

an item as being for instructor use only. The student usage

of Aristotle only requests the processing of required (i.e.,

non-optional) items, while the instructor usage would request

the processing of all (i.e., both required and optional) items.

For example, test targets that are to be made available to the

instructor only (not the student) would be marked as optional.

A number of the attributes in an assignment definition are used

to specify user-provided executable programs (which may be

scripts) to be run to perform various tasks in the processing

of an assignment, such as performing the test associated with

a test target or applying a user-defined package-generation

transformation (to be discussed later). Since no constraints are

imposed on the scripting languages that can be employed for

such programs, the user is free to employ whatever scripting

language is most convenient. Generally, these programs are

required to adhere to the convention that they should set

their exit status to zero upon success and a non-zero value

upon failure. Some key parameters to user-provided programs

(such as the directories containing various files of interest)

are made accessible through environment variables. Due to

space constraints, it is not possible to describe herein all of the

assignment properties and variables for assignment-definition

files. Additional details can be found in the documentation

available with the Aristotle software [5].

B. Importing Assignment Submissions

In order to process an assignment submission, the data

for the submission must first be imported into an assign-

ment workspace. This import operation is performed with the

ari_import command, which creates a new assignment

workspace and loads the data for an assignment submission

into that workspace. The data for the assignment submission

can be obtained from one of a variety of types of sources,

including a Git repository, Zip archive, Gzipped-Tar archive,

or a directory in the local filesystem. For convenience, mul-

tiple assignment submissions can be imported with a single

invocation of the ari_import command (e.g., to import all

of the assignment submissions from a class at once).

C. Validating Assignment Submissions

After an assignment submission has been imported into

an assignment workspace, the imported data is typically

checked to ensure that it meets certain very basic require-

ments. This process, known as validation, is performed by

the ari_validate command. During validation, Aristotle

automatically checks to ensure that, amongst other things: all

required files/directories for the assignment are present; no

disallowed (e.g., blacklisted) files/directories are present; and

student identification information has been provided in the

correct format. The user can also specify a program/script to

perform additional validation checks beyond those performed

automatically by Aristotle. Validation can be used to ensure

that all assignment submissions conform to some prescribed

organizational, formatting, or other requirements. This con-

sistency in assignment submissions avoids many potential

problems during marking. Students as well as the instructor

may perform a validation operation. In this way, students can

confirm that their assignment work passes some basic validity

checks prior to submission. Moreover, an instructor might even

require that an assignment submission must successfully pass

this validation test in order to be eligible for marking.

D. Generating Packages

For increased flexibility, instead of directly building and

testing the assignment submission exactly in the form submit-

ted by the student, Aristotle uses the submission to generate

one or more transformed versions of the submission, called

packages. Packages are generated using the ari_generate

command. The default transformation for package generation

is the identity, which simply produces a package that is

identical to the original assignment submission. The user,

however, may define their own custom transformations to be

employed for package generation. Such transformations can be

arbitrarily complex and are defined by having the user specify

a program (e.g., script) that performs the transformation.

In the simplest case, a user would simply create a single

package for an assignment that uses the (default) identity

transformation. In more complicated situations, however, user-

defined transformations can be quite beneficial. For example,

user-defined transformations might be used for such purposes

as: 1) creating a variant of the assignment submission where

student test code has been replaced by instructor test code;

and 2) changing the organization of files in the assignment

submission to facilitate easier processing with Aristotle.

E. Configuring and Building Packages

After having generated the packages associated with the

assignment, the next step is to build the code in these packages.

This is accomplished with the ari_build command. To

allow increased flexibility, the building of the code is per-

formed in two steps (in order): 1) configuring and 2) building.

The configure operation performs any setup that is needed

prior to the building of the software, while the build operation

actually builds the software. What, in particular, each of these

operations does (if anything at all) depends on the particular

build tool selected by the user. In this regard, one of three

options can be selected: 1) CMake, 2) Make, or 3) a user-

specified tool. If the build tool is CMake, the configuration

operation will invoke CMake to generate the build files for

the native build tool employed on the platform being used,

and the build operation will then invoke this native build

tool with the build files produced during configuration. If the

build tool is Make, the configuration operation does nothing

(since no pre-build step is necessary), and the build operation

invokes Make. If a user-defined build tool is selected, then

the user must specify a program that can be invoked to

perform each of the configure and build operations. If no build

tool is selected, Aristotle will automatically choose between

CMake and Make, depending on whether CMakeLists files or

makefiles are provided in the package to be built. By default,

all build targets for all packages for the assignment are built.

F. Testing Packages

After having built the code for the packages associated with

the assignment, the code is ready to be tested. The testing of

the software is accomplished with the ari_test command.

Each package defines a number of test targets. Each test target

corresponds to a test to be performed and is associated with

a particular test program, which must be specified by the

user. Test programs can perform any arbitrary tests, from very

simple to very complex. In the interest of flexibility, Aristotle

does not impose any particular testing methodology. A single

test target could be used, for example, to test a single program

(or library) or a collection of several programs and libraries.

A test program might test a program by comparing actual

program output against expected output, while a library might

be tested using instructor test code or a test framework such

as Google Test [10]. For each test target, a timeout can be

specified. If the test does not complete before the timeout

expires, the test is terminated and deemed to have failed.

Such a timeout mechanism is helpful since incorrect code may

become trapped in an infinite loop during testing. By default,

all test targets for all packages for the assignment are tested.

Depending on the preferences of the instructor, each test can

either made visible to students or hidden from students.

G. Report Generation

After the packages for an assignment have been built and

tested, a report can be generated (in PDF format) that sum-

marizes the building/testing results. This is accomplished with

the ari_report command. The report contains information

such as: 1) the student who submitted the assignment; 2) a

list of the files submitted; 3) a summary of the build and test

results (e.g., whether or not each build target was successfully

generated and whether or not each test target was successfully

tested); 4) a log of the output generated by any failed build

or test operations; and 5) listings of zero or more files from

the original assignment submission. Item 4 can be used to

diagnose the cause of any errors encountered during the

building or testing of code, while item 5 is often convenient

for the purpose of performing a manual code inspection. Since

log files can occasionally become very large, log files that are

unreasonably long are truncated before inclusion in the report

in order to prevent reports of excessive size.

H. Optional Packages, Build Targets, and Test Targets

Typically, an instructor would not want students to have

access to all of the tests used to assess the correctness of the

code in an assignment submission. Preventing students from

having access to test programs can be easily accomplished

through the use of file permissions. That is, any test programs

or test code to which students should not have access, can

be placed in directories or files whose permissions are such

that they are inaccessible by students. Any packages, build

targets, and test targets associated with files to which the

student does not have access can be tagged as optional (i.e.,

instructor only) so they can be skipped if encountered when a

student invokes an Aristotle command (in order to avoid file

permission errors).

I. Other Operations

Aristotle provides quite a number of other commands

in addition to those mentioned so far. For example, the

ari_precheck and ari_process commands are each

provided as a convenience, replacing common sequences of

operations with a single command. The ari_precheck

command takes one or more assignment submissions as input.

It imports and validates the assignment submissions, generates

any non-optional packages, builds and tests any non-optional

targets, and generates a report. This command is intended for

the student to use as a last sanity check before submitting their

assignment work. The ari_process command is similar to

ari_precheck, except that it takes assignment workspaces

as input (instead of assignment submissions) and considers all

packages, build targets, and test targets, including ones marked

as optional (i.e., instructor only). This command is intended for

use by the instructor. Aristotle also provides several commands

for interfacing with GitHub Classroom, such as commands for:

login and logout (e.g., creating and deleting access tokens),

creating and deleting repositories, listing the repositories for

a given assignment, tagging repositories, copying repositories,

and extracting a particular snapshot from a repository.

J. Other Remarks

With Aristotle, the execution of commands is performed

with the privileges of the invoking user. Consequently, for

reasons of security, when the instructor invokes commands

that may run student programs, this should be done under an

account with limited privileges. This is needed to safeguard

against deliberate or accidental destructive actions taken by

student programs.

V. EXAMPLE

For illustrative purposes, we will now consider a simple

example of an assignment for which Aristotle is to be used to

assist in marking. In this assignment, the student is required

to write a C++ program that reads whitespace-delimited

words from standard input and writes to standard output

whether each word is a palindrome (i.e., the program tests

for palindromes). CMake is to be used as the build tool,

and the student must provide a CMakeLists file for CMake

that defines an executable target named is_palindrome.

The assignment is to be named by the assignment ID

palindrome. The assignment submission has the following

three required files, all of which are located in the top-level

directory of the submission: 1) IDENTIFICATION.txt,

a file which contains student and assignment information;

2) CMakeLists.txt, the build configuration file for

CMake; and 3) is_palindrome.cpp, the single C++

source code file for the is_palindrome program. An

example of an IDENTIFICATION.txt file that might

be used by a student in assignment submission is given

in Listing 1. Example listings of the other two required

files for the assignment submission are not shown, since

they are not critical to the discussion herein, but can be

obtained from the Aristotle software distribution [5]. An

Listing 1. Identification file (IDENTIFICATION.txt).

1 name "Jane Doe"

2 student_id "V12345678"

3 email "jdoe@uvic.ca"

4 section "T01"

5 assignment "palindrome"

assignment-definition file called palindrome.asgn has

been created in the assignment-definition directory with the

contents shown in Listing 2. From this listing, we can see that

the assignment defines a single package called original.

This package has one build target called is_palindrome

and one test target called is_palindrome. The test target

is_palindrome is used to test the correct behavior of

the is_palindrome program. The actual test is specified

as being performed by a program (which is a Bash script)

called palindrome-is_palindrome-test. This

program is located in the directory ../private/bin,

where this path name is interpreted relative to

${ARI_ASSIGNMENTS_DIR}, which is the assignment-

definition directory. When invoked by Aristotle,

this program is passed the command-line argument

${ARI_DERIVED_DIR}, which is the name of the directory

containing the built code (i.e., the is_palindrome

program to be tested). The test program simply runs the

is_palindrome program with several inputs and tests if

the program generates the correct output in each case. For

additional information about the assignment-definition file,

the reader is referred to the detailed comments in the listing.

Suppose now that GitHub Classroom is being used for

assignment submission. In particular, suppose that all of

the assignment submissions are in Git repositories managed

by GitHub Classroom under the GitHub organization $org

and are associated with the assignment name palindrome.

Then, all of these submissions can be imported into Aristotle

assignment workspaces under the directory workspaces

and fully processed to yield reports (in PDF format) with

the short command sequence given in Listing 3. For each

submission, an assignment workspace will be created under

the directory workspaces, and each workspace will contain

the generated report in a file named report.pdf. In the

command sequence, the ari_gc_lsrepo command is used

to obtain the URLs for all of the Git repositories managed

by GitHub Classroom under the organization $org for the

assignment palindrome.

VI. CONCLUSIONS

In this paper, I have presented a new flexible open-source

software toolkit for the semi-automated assessment of pro-

gramming assignments. This toolkit can be used with any

programming language, build tools, and compiler tool chains.

By allowing the user to customize various key operations in the

processing of assignment submissions, considerable flexibility

is achieved. The Aristotle software can be downloaded from

GitHub [5]. By using software like Aristotle, the amount

Listing 2. Assignment definition file (palindrome.asgn).

1 # Specify a name or short description for the assignment.

2 name "Palindrome Test"

3 # Specify the files that must be included in the assignment submission.

4 required_files IDENTIFICATION.txt CMakeLists.txt is_palindrome.cpp

5 # Specify the files from the original submission that are to be included in

6 # the generated report.

7 report_files CMakeLists.txt is_palindrome.cpp

8 # Specify the packages defined for this assignment (i.e., one called

9 # "original").

10 packages original

11

12 # Specify a name or short description for the "original" package.

13 package-original/name "The original code exactly as submitted by the student."

14 # Specify the build targets for the "original" package (i.e., one called

15 # "is_palindrome").

16 package-original/builds is_palindrome

17 # Specify the test targets for the "original" package (i.e., one called

18 # "is_palindrome").

19 package-original/tests is_palindrome

20

21 # Specify a name or short description for the "is_palindrome" build target.

22 package-original/build-is_palindrome/name "Build the is_palindrome program."

23

24 # Specify a name or short description for the "is_palindrome" test target.

25 package-original/test-is_palindrome/name "Test the is_palindrome program."

26 # Request that the test should only be performed if the associated build

27 # target "is_palindrome" is successfully built.

28 package-original/test-is_palindrome/depends_on build-is_palindrome

29 # Set the maximum time (in seconds) allowed for the test to 10.

30 package-original/test-is_palindrome/timeout 10

31 # Specify the command (including arguments) to be invoked to perform the test.

32 # Note: ${ARI_ASSIGNMENTS_DIR} is the directory containing this assignment

33 # definition file and ${ARI_DERIVED_DIR} is the directory containing the

34 # program to be tested.

35 package-original/test-is_palindrome/test \

36 ${ARI_ASSIGNMENTS_DIR}/../private/bin/palindrome-is_palindrome-test \

37 ${ARI_DERIVED_DIR}

Listing 3. Command sequence

1 ari_import -p workspaces/ $(ari_gc_lsrepo -o $org -f ssh -a palindrome)

2 ari_process workspaces/*

of work required to mark programming assignments can be

greatly reduced.

REFERENCES

[1] K. M. Ala-Mutka, “A survey of automated assessment approaches for
programming assignments,” Computer Science Education, vol. 15, no. 2,
pp. 83–102, Jun. 2005.

[2] C. Douce, D. Livingstone, and J. Orwell, “Automatic test-based as-
sessment of programming: A review,” ACM Journal of Educational

Resources in Computing, vol. 5, no. 3, pp. 1–13, Sep. 2005.

[3] R. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppala, “Review of
recent systems for automatic assessment of programming assignments,”

in Proc. of 10th Koli Calling International Conference on Computing

Education Research, Oct. 2010, pp. 86–93.
[4] “Bash,” 2017, https://www.gnu.org/software/bash.
[5] “Aristotle GitHub page,” 2017, https://github.com/mdadams/aristotle.
[6] “GitHub Classroom,” 2017, https://classroom.github.com.
[7] S. Chacon and B. Straub, Pro Git, 2nd ed. Apress, Nov. 2014, https:

//git-scm.com/book/en/v2.
[8] K. Martin and B. Hoffman, Mastering CMake — A Cross-Platform Build

System — CMake 3.1. Kitware, Jan. 2015.
[9] S. I. Feldman, “Make — a program for maintaining computer programs,”

Software: Practice and Experience, vol. 9, no. 4, pp. 255–265, Apr.
1979.

[10] “Google Test,” 2017, https://github.com/google/googletest.

