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Abstract

A mesh-generation framework for image representation based on data-dependent triangulation (DDT)

is proposed. The proposed framework is a modified version of the frameworks of Rippa and Garland and

Heckbert that facilitates the development of more effective mesh-generation methods. As the proposed

framework has several free parameters, the effects of different choices of these parameters on mesh

quality are studied, leading to the recommendation of a particular set of choices for these parameters.

A mesh-generation method is then introduced that employs the proposed framework with these best

parameter choices. This method is demonstrated to produce meshes of higher quality (both in terms of

squared error and subjectively) than those generated by several competing approaches, at a relatively

modest computational and memory cost.
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I. INTRODUCTION

Traditionally, most commonly-used image representations are based on uniform (lattice-based) sam-

pling. Because most images are nonstationary, however, uniform sampling is usually far from being

optimal. When uniform sampling is employed, the sampling density will inevitably be too high in regions

where the image is changing slowly and too low in regions where the image is changing rapidly. For

this reason, there has been a growing interest in image representations that utilize nonuniform sampling,

where the sampling density is adaptive to the image content. Furthermore, images also possess geometric

structure, which is inherent in their edges (i.e., discontinuities). In many cases, image representations

based on nonuniform sampling can more easily capture this geometric structure. By using a more compact

image representation afforded by nonuniform sampling, we can often reduce computational complexity

or obtain improved results in the application at hand. For example, image representations based on

nonuniform sampling have proven beneficial for such tasks as feature detection [1], pattern recognition [2],

computer vision [3], restoration [4], tomographic reconstruction [5], filtering [6], interpolation [7], [8],

and image/video coding [9]–[15].

Many classes of image representations based on nonuniform sampling have been proposed to date,

such as inverse distance weighted methods [16], [17], radial basis function methods [16], [17], Voronoi

and natural-neighbour interpolation methods [16], and finite-element methods [16], [17] including triangle

meshes. For a good summary of all of these approaches, the reader is referred to the excellent survey

papers [16] and [17]. Of the above classes of approaches, the one based on triangle meshes has become

quite popular. With a mesh model of an image, the image domain is partitioned by a triangulation into a set

of (triangle) faces, and then over each face of the triangulation an approximating function is constructed.

One popular subclass of mesh representations is those based on Delaunay triangulations [18]. To whatever

extent is possible, Delaunay triangulations avoid long thin (i.e., sliver) triangles which can lead to very

poor approximations if not well chosen. In the Delaunay case, the connectivity of the triangulation (i.e.,

how the points in the triangulation are connected by edges) is determined solely by the geometry (i.e.,

position) of the points being triangulated. Another subclass of mesh representations is those based on

data-dependent triangulations (DDTs). It is this particular subclass that is of interest herein. In the case

of DDTs, the connectivity of the triangulation is chosen in a way that depends on the data set from

which the points to be triangulated originated (and not just the geometry of those points). Consequently,

mesh generation consists of two distinct (but related) subproblems: 1) the selection of the sample points

(i.e., the vertices of triangulation), and 2) the selection of the connectivity of the triangulation. Since,

unlike the Delaunay case, DDTs can have their connectivity chosen arbitrarily, DDTs offer vastly greater
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flexibility, and theoretically have the potential to perform much better than their Delaunay counterparts

if well chosen [19]. In practice, however, due to this increased flexibility, it is much more difficult to

develop highly-effective computationally-efficient mesh-generation schemes that are based on DDTs, as

compared to the Delaunay case.

To date, numerous DDT-based mesh-generation methods have been proposed [7], [8], [20]–[34].

Unfortunately, many of these methods (e.g., [7], [8], [23]–[32]) concern themselves with only the problem

of triangulation-connectivity selection (i.e., the second subproblem mentioned above). That is, they assume

that the sample points are given, or have already been chosen through some unspecified means, and then

only concern themselves with selecting the connectivity of the triangulation. Such an assumption is not

very realistic in many applications. For this reason, methods that select both the sample points and

triangulation connectivity are of great practical interest. Another further difficulty with DDT-based mesh-

generation methods is that they can often have very high computational cost. For example, some DDT-

based schemes [32]–[34] are based on simulated annealing, which is very computationally expensive.

Another DDT-based method proposed in [28] takes several iterations and requires between 0.5 and

5 seconds per iteration for an 80 × 80 image. Furthermore, this method only considers triangulation

connectivity. Therefore, as one can well imagine, in the case of the more difficult problem of choosing

both the sample points and triangulation connectivity, mesh-generation methods can potentially become

very computationally complex.

Of those schemes that are relatively fast and choose both the sample points and triangulation con-

nectivity, a particularly good one was proposed by Garland and Heckbert [20, Algorithm IV] (with the

quality threshold parameter qthresh chosen as 0.5 and an L2 error measure), which we henceforth

refer to as the Garland-Heckbert (GH) method. The GH method is associated with a basic framework for

mesh generation, which is very similar to a framework proposed even earlier by Rippa [22]. In this paper,

we build on the aforementioned past work of Rippa and Garland and Heckbert. We propose a modified

version of these earlier frameworks that facilitates the development of better performing mesh-generation

methods, and then we introduce a highly-effective mesh-generation method based on our framework.

As we shall see, our proposed mesh-generation method produces mesh representations of images with

lower approximation error than those generated by other competing schemes. At the same time, the

computational and memory costs of our proposed method are relatively modest.

The remainder of this paper is organized as follows. Section II introduces some background information

on meshes for image representation. In Section III, our proposed mesh-generation framework is presented,

which has several free parameters that must be chosen in order to produce a fully-specified mesh-
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generation method. Section IV examines which choices for these free parameters are most effective,

leading us to propose a specific mesh-generation method. Then, in Section V, the performance of our

proposed mesh-generation method is compared to that of several competing schemes, with our method

proving to be superior. Finally, Section VI concludes the paper with a summary of our key results.

II. MESH MODELS OF IMAGES

Before proceeding further, a brief digression is in order to introduce some notation and basic termi-

nology used herein. For a set S, |S| denotes the cardinality of S. The symbol ‖·‖ denotes the 2-norm.

Formally, a triangulation of a set V of points is a set T = {fi}|T |−1
i=0 of nondegenerate open triangles

satisfying the following conditions: 1) the set of all vertices of triangles in T is V ; 2) every edge of a

triangle in T contains only two points from V ; 3) ∪|T |−1
i=0 fi is the convex hull of V ; and 4) fi ∩ fj = ∅

for i 6= j. For a triangulation T , the vertices, edges, and faces of T are denoted as V(T ), E(T ), and

F(T ), respectively.

Consider an integer-valued image function φ defined on Λ = {0, 1, . . . ,W − 1} × {0, 1, . . . ,H − 1}

(i.e., a rectangular grid of width W and height H). With a mesh model of an image, the image domain

is partitioned by a triangulation into a set of (triangle) faces and then over each face of the triangulation

an approximating function is constructed. A mesh model is completely characterized by a triangulation

T covering the image domain Λ as well as the values of φ for each point p ∈ V(T ). We refer to each

element of V(T ) as a sample point. Given T , a function φ̂T that interpolates φ at the points in V(T )

is constructed as follows. First, we form a continuous piecewise-linear function φ̃T . For each (triangle)

face f ∈ F(T ), φ̃T is chosen as the unique linear function that interpolates φ at the three vertices of

f . To ensure that φ̂T is integer valued (just like φ), we choose φ̂T as φ̂T (p) = round(φ̃T (p)) for all

p ∈ Λ, where round denotes an operator that rounds to an integer value. The set V(T ) must always

include the extreme convex-hull points of Λ (i.e., the four corners of the image bounding box) so that

the triangulation of V(T ) covers all points in Λ. As a matter of terminology, the size and sampling

density of the mesh model T are defined as |V(T )| (i.e., the number of vertices in T ) and |V(T )| / |Λ|,

respectively.

The mesh-generation problem that we address in this paper can be succinctly stated as follows: Given φ

and a desired number N of sample points, find the mesh model T of φ with |V(T )| = N that minimizes

the measure εT of the difference between φ and the approximation φ̂T . In our work, the mean squared

error (MSE) is used as the error measure, so that

εT = |Λ|−1
∑
p∈Λ

(
φ̂T (p)− φ(p)

)2
. (1)
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Fig. 1. Edge flip example. Part of (a) a triangulation with an edge vivj and (b) the new triangulation obtained after the edge

vivj is transformed to the edge vkvl by an edge flip.

Herein, the MSE is typically expressed in terms of the peak signal-to-noise ratio (PSNR), which is

defined as PSNR = 20 log10

(
2ρ−1√

ε

)
, where ρ is the number of bits/sample in the image φ. Finding

good computationally-efficient methods for solving the above-stated mesh-generation problem is quite

challenging, since problems like this are known to be NP hard [35].

III. PROPOSED MESH-GENERATION FRAMEWORK

The mesh-generation framework proposed herein was inspired by the frameworks of Rippa [22] (known

by the name “COMPRESS” therein) and Garland and Heckbert [20] (known as “Algorithm IV” therein).

Both the Rippa and Garland-Heckbert frameworks employ the well-known local optimization procedure

(LOP) [30] of Lawson. Our proposed framework also utilizes a variant of the LOP. Since knowledge of

the LOP is essential to the understanding of our framework, we will first describe the LOP below.

To begin, we introduce a few basic definitions and facts about triangulations. An edge e in a triangu-

lation is said to be flippable if it has two incident faces (i.e., is not on the triangulation boundary) and

the union of these two faces is a strictly convex quadrilateral q. If e is flippable, a valid triangulation

is obtained if e is deleted from the triangulation and replaced by the other diagonal of the quadrilateral

q. This transformation is known as an edge flip. For example, in Fig. 1, the edge vivj in Fig. 1(a) is

transformed to the edge vkvl in Fig. 1(b) by an edge flip. Any triangulation of a set of points can be

obtained from any other triangulation of the same set of points by a finite sequence of edge flips [36],

[37]. Moreover, since an edge flip does not change the number of edges in a triangulation, this further

implies that every triangulation of a set of points has the same number of edges.

The fact that every triangulation is reachable from every other triangulation via edge flips (as described

above) motivated Lawson to propose the so called LOP [30], an algorithm for finding an optimal

triangulation of a set of points via edge flips. To cast the triangulation problem as an optimization,

we define a rule, called an edge-flip criterion, that determines, for a flippable edge e, if the triangulation
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with the edge e is preferred over the triangulation obtained if e were transformed to e′ by an edge

flip. The edge-flip criterion is specified as a binary-valued decision function, denoted isPreferred, where

isPreferred(e) is one if e is preferred to e′, and zero otherwise. As a matter of terminology, an edge e is

said to be optimal if: 1) it is not flippable; or 2) it is flippable and isPreferred(e) = 1. A triangulation

is said to be (locally) optimal if each one of its edges is optimal. An edge whose optimality is uncertain

is said to be suspect. Note that, by definition, an edge that is not flippable cannot be suspect. In short,

the LOP tests any suspect edges for optimality, and performs edge flips to eliminate any suspect edge

that is not optimal. Letting S denote the current set of suspect edges, the variant of the LOP used herein

consists of the following steps:

1) Initialize S to contain all suspect edges (i.e., edges that are flippable but whose optimality has not

yet been tested).

2) If |S| = 0 (i.e., S is empty), then stop.

3) Remove an edge e from S.

4) If e is not flippable or e has been visited more than 5 times since the LOP started, go to step 2.

5) Let q denote the (strictly convex) quadrilateral formed by the union of the two faces incident on e,

and let e′ denote the edge obtained by flipping e (i.e., the other diagonal of q). If isPreferred(e) = 0

(i.e., e is not optimal according to whatever edge-flip criterion is in effect), apply an edge flip to e

(to produce e′), and add to S any newly suspect edges resulting from the edge flip. Which edges

become newly suspect as a result of the edge flip depend on the specific choice of isPreferred,

and will be addressed in more detail later in Section III-B, after we have introduced the various

edge-flip criteria considered herein. In practice, however, these edges are in a small neighbourhood

about e.

6) Go to step 2.

In passing, we note that the LOP is only guaranteed to produce a locally (as opposed to globally) optimal

triangulation, and the locally optimal triangulation produced depends on the order in which edges are

flipped. The algorithm presented above differs slightly from the LOP as proposed by Lawson. In particular,

a limit is placed on the number of times that an edge can be tested for optimality during the LOP process

via the second condition appearing in step 4. This extra condition is necessary in order to ensure that

the algorithm does not become trapped in a cycle, repeating the same sequence of edge flips indefinitely.

Cycles can arise for two reasons. First, due to the effects of finite-precision arithmetic (i.e., roundoff

error), decisions regarding the optimality of an edge can occasionally be made in an inconsistent manner,

leading to cycles. Second, in our work, we allow for the use of more general edge-flip criteria that, even
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in the absence of roundoff error, can occasionally result in cycles (i.e., the GHH, SQSE, and JNDSE

criteria introduced later in Section III-B). In the case of our software implementation, which is robust to

roundoff error, cycles can only occur for the second reason.

Having introduced the (slightly modified) LOP used in our work, we can now present our proposed

mesh-generation framework. For the remainder of this paper, including this section, the quantities Λ, φ,

φ̃, and φ̂ are as defined previously in Section II. With our framework, for a given triangulation T , each

point in the image domain Λ is assigned to exactly one face in T . If a point is strictly inside a face, the

point is assigned to that face. If a point is on an edge or is a vertex in T , a scheme similar to [38] is

used to uniquely assign the point to a face. The set of all points in Λ belonging to the face f in T is

denoted PT (f).

As input, our framework takes an image φ (defined on Λ) and a target number N of sample points for

the mesh to be generated. Our proposed framework is iterative in nature. It starts with a nearly empty

mesh and adds points to the mesh until the desired sampling density is achieved. Let T denote the

triangulation in the current iteration. Our framework then consists of the following steps (in order):

1) Initial triangulation. Initially choose the triangulation T as a triangulation of the extreme convex-

hull points of the image domain Λ (i.e., the four corner points of the image bounding box).

2) Initial connectivity adjustment. Adjust the connectivity of the triangulation by applying the LOP

(described earlier) choosing the edge-flip criterion isPreferred as isPreferred = isPreferredmain,

where isPreferredmain is a free parameter of our framework. Initially, when the LOP is invoked,

all flippable edges in T are marked as suspect.

3) If the target number of sample points has been reached (i.e., |V(T )| ≥ N ), go to step 8.

4) Point selection. Select a new point p∗ ∈ Λ\V(T ) to add to the triangulation T . This is accomplished

in two steps. First, select a face f∗ in T into which a new point is to be inserted, as given by

f∗ = selFace,

where selFace is a function (implicitly depending on T ) that embodies the face-selection process

and is a free parameter of our framework. Second, having chosen the face f∗, select a candidate

point p∗ belonging to f∗ and not currently in T (i.e., p∗ ∈ PT (f∗) \V(T )) for insertion, as given

by

p∗ = selCand(f∗), (2)

where selCand is a function that embodies the candidate-selection process and is a free parameter

of our framework.
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Fig. 2. Point insertion example. Part of a triangulation showing how the new vertex p∗ is inserted (a) inside a triangle vivjvk

and (b) on an edge vivk.

5) Point insertion. Insert p∗ into the triangulation T . If p∗ is strictly inside a face in T , say face

vivjvk, we connect p∗ by new edges to each vertex of its containing face, as shown in Fig. 2(a). If

p∗ is on an edge in T , say on edge vivk, we split this edge at p∗ and, for each face f incident on

vivk, we connect p∗ with a new edge to the vertex in f that is opposite the edge vivk, as shown

in Fig. 2(b).

6) Main connectivity adjustment. Adjust the connectivity of the triangulation by applying the LOP,

with the edge-flip criterion isPreferred chosen as isPreferred = isPreferredmain and the suspect

edges initially chosen as all edges whose optimality could have been changed by the insertion of

p∗ in the previous step (i.e., step 5). The edges whose optimality can be affected by the insertion of

p∗ depend on the particular choice of isPreferredmain, and will be discussed in more detail later in

Section III-B, after we have introduced the various edge-flip criteria considered herein. In practice,

these edges are in a relatively small neighbourhood about p∗.

7) Go to step 3.

8) Final connectivity adjustment (optional). If the (optional) final connectivity-adjustment step is

enabled, continue; otherwise, stop. Adjust the connectivity of the triangulation by applying the

LOP, with the edge-flip criterion isPreferred chosen as isPreferred = isPreferredfinal, where

isPreferredfinal is a free parameter of our framework. Initially, when the LOP is invoked, all flippable

edges in the triangulation are marked as suspect.

From above, one can see that our framework requires the choice of several free parameters in order to

arrive at a completely-specified method for mesh generation. In particular, we must choose: 1) a point-

selection strategy that consists of a face-selection policy selFace together with a candidate-selection

policy selCand; 2) an edge-flip criterion isPreferredmain to be used in the initial and main connectivity

adjustment, called the main edge-flip criterion; 3) a choice of whether to perform the optional final

connectivity adjustment; 4) if final connectivity adjustment is to be performed, an edge-flip criterion

January 10, 2013 DRAFT



9

isPreferredfinal to be used for this purpose, called the final edge-flip criterion. Note that it is the intention

of our framework that isPreferredmain and isPreferredfinal be chosen differently. As for how the above

parameters might be chosen, we defer this discussion until later.

Since, as mentioned above, our proposed framework is derived from the frameworks of Rippa [22] and

Garland and Heckbert [20], it is beneficial to briefly outline the main differences between our framework

and the ones from which it is derived. The most important difference is that neither the Rippa nor

Garland-Heckbert framework has an equivalent to the final connectivity-adjustment step (i.e., step 8)

in our framework. As we shall see later, final connectivity adjustment plays a crucial role in allowing

highly effective mesh-generation methods to be synthesized. Another difference is that, in the Rippa and

Garland-Heckbert frameworks, the point-selection process (corresponding to step 4 above) is not logically

viewed as being split into two smaller steps, with the first choosing a face and the second choosing a point

within the face. Both approaches always choose p∗ as the point p ∈ Λ \V(T ) for which
∣∣∣φ̂T (p)− φ(p)

∣∣∣
is greatest. That is, the Rippa and Garland-Heckbert frameworks essentially replace (2) in our framework

with the fixed choice

p∗ = arg max
p∈Λ\V(T )

∣∣∣φ̂T (p)− φ(p)
∣∣∣ , (3)

in which case there is no explicit face-selection process (selFace) per se. As we shall see later, the

point-selection scheme given by (3) leaves much to be desired.

In passing, we note that mesh-generation methods derived from our proposed framework (as well as

the Rippa and Garland-Heckbert frameworks) have a number of desirable characteristics. In particular,

because our framework is based strictly on the refinement of an initial coarse mesh (with 4 vertices), the

current mesh size never exceeds the target mesh size (i.e., N vertices) at any point during mesh generation.

This is important in order to minimize memory usage (and often computational complexity as well). In

contrast, frameworks/methods based on mesh simplification typically have a much greater peak mesh size.

Another desirable characteristic of our proposed framework is that it can easily accommodate stopping

criteria for the mesh-generation process that are based on either sampling density or a prescribed error

tolerance (in step 3).

As seen above, our proposed framework requires the choice of several free parameters in order to arrive

at a completely-specified method for mesh generation. For example, we must specify face-selection and

candidate-selection policies as well as various edge-flip criteria. So far, we have not made any suggestions

as to how these items might be chosen. In what follows, we introduce a variety of possible choices for

these items as considered in our work.
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A. Face- and Candidate-Selection Policies

In step 4 of our framework (i.e., point selection), we must choose a face f∗ in which to select a

new point for insertion. This face-selection policy is embodied by the function selFace. In our work,

we considered two face-selection policies. The first policy, called greatest absolute error (GAE), chooses

selFace as

selFaceGAE = arg max
f∈U(T )

max
p∈PT (f)

∣∣∣φ̂T (p)− φ(p)
∣∣∣ ,

where U(T ) is all faces f in F(T ) such that PT (f) 6= ∅. That is, selFace is defined to choose the face

in T that contains the point where the original image and approximation differ most. The second policy,

called greatest squared error (GSE), selects selFace as

selFaceGSE = arg max
f∈U(T )

∑
p∈PT (f)

(
φ̂T (p)− φ(p)

)2
,

where U(T ) is all faces f in F(T ) such that PT (f) 6= ∅. That is, selFace is defined to choose the face

in T with the largest squared error.

In step 4 of our framework (i.e., point selection), once a face f∗ has been chosen, we must select

a candidate point p∗ within that face for insertion. This candidate-selection policy is embodied by the

function selCand. In our work, we considered three candidate-selection policies. The first policy, called

peak absolute error (PAE), selects selCand as

selCandPAE(f) = arg max
p∈PT (f)\V(T )

∣∣∣φ̂T (p)− φ(p)
∣∣∣ .

That is, of all candidate points in the face, this policy selects the point at which the absolute error is

greatest.

The second policy, which is newly proposed herein and called approximate minimum squared error

(AMSE), chooses p∗ in two steps. First, we choose a set Ω of test points to consider as candidates

for insertion. We then choose p∗ from Ω. If |PT (f∗) \ V(T )| > 8, Ω is chosen as the 8 points p in

PT (f∗)\V(T ) for which
∣∣∣φ̂T (p)− φ(p)

∣∣∣ is greatest; otherwise, we choose Ω = PT (f∗)\V(T ). (As an

aside, we note that the value of 8 here was chosen based on experimentation.) Given Ω, we then choose

selCand as

selCandAMSE(f) = arg min
t∈Ω

∑
p∈PT (f)

(
φ̂Υ(t)(p)− φ(p)

)2
,

where Υ(t) denotes the triangulation that would be obtained if the point t were inserted into T . That is,

selCand is defined to select the point in Ω whose insertion would result in the least squared error over

the face f∗.
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Fig. 3. An edge e = vivj that is a diagonal of the quadrilateral vivkvjvl in the triangulation T .

The third policy (also newly proposed), called hybrid, simply employs the PAE policy until the

sampling density of the mesh reaches 25% of the desired sampling density, with the AMSE policy

being used thereafter. This policy is motivated largely by the desire to save computation. By using the

less-computationally costly PAE policy initially, computational cost can be significantly reduced (relative

to the AMSE policy).

Lastly, we note that choosing the face-selection and candidate-selection policies as GAE and PAE,

respectively, is mathematically equivalent to the point-selection scheme used in the Rippa and Garland-

Heckbert frameworks, given earlier by (3).

B. Edge-Flip Criteria

In our framework, steps 2, 6, and 8 each employ the LOP, and the LOP requires the specification of

an edge-flip criterion. So far, we have not commented on how this edge-flip criterion might be chosen. In

what follows, we introduce twelve edge-flip criteria that were considered in our work. Herein, we employ

two different classes of edge-flip criterion. Both are based on the idea of assigning costs to edges, and

then making the decision of whether to flip an edge based on these costs. The main difference between

these two classes is in how they use these edge-cost functions in order to make decisions.

Before we can introduce any of the edge-flip criteria, we must first introduce the edge-cost functions

that these criteria employ. Each edge-cost function assigns a cost to an edge e in the triangulation

T . Let vn = (xn, yn) denote the nth vertex in T . Furthermore, let e = vivj . In what follows, in

the case that e is not a boundary edge (and must therefore have two incident faces), its two incident

faces are denoted as f1 and f2, where f1 is triangle vivkvj and f2 is triangle vivjvl. The preceding

definitions are illustrated in Fig. 3. Furthermore, let P1 and P2 denote the linear (i.e., planar) functions

obtained when the approximating function φ̃T has its domain restricted to f1 and f2, respectively, where

P1(x, y) = a1x+b1y+c1, P2(x, y) = a2x+b2y+c2, and a1, b1, c1, a2, b2, and c2 are real constants. Lastly,

we introduce a few additional definitions needed in what follows. The approximate diameter of the face
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f , denoted diam(f), is defined as the length of the longest side of the (smallest axis-aligned) bounding

box of the face f . The shape quality of a face f , denoted sq(f), is defined as sq(f) = area(f)/ diam(f),

where area(f) denotes the area of the face f .

The first class of edge-flip criterion is associated with edge-cost functions that assign a cost to

every edge in the triangulation T . This class makes use of the following seven edge-cost functions:

1) edgeCostABN, the angle between normals (ABN) from [23]; 2) edgeCostJND, the jump in normal

derivatives (JND) from [23]; 3) edgeCostDLP, the deviations from linear polynomials (DLP) from [23];

4) edgeCostDP, the distances from planes (DP) from [23]; 5) edgeCostYMS, the Yu-Morse-Sederberg

(YMS) cost from [28]; 6) edgeCostELABN, the edge-length-weighted ABN (ELABN) from [26], [27];

and 7) edgeCostELJND, the edge-length-weighted JND (ELJND) which is newly proposed herein. The

definitions of these functions are as follows. For a nonboundary edge e (which must have two incident

faces) in the triangulation T , we define

edgeCostABN(T, e) = arccos
[

(a1, b1,−1) · (a2, b2,−1)
‖(a1, b1,−1)‖ ‖(a2, b2,−1)‖

]
, (4a)

edgeCostJND(T, e) = |(nx, ny) · [(a1, b1)− (a2, b2)]| , (4b)

edgeCostDLP(T, e) = ‖(|P1(xl, yl)− φ(xl, yl)| , |P2(xk, yk)− φ(xk, yk)|)‖ , (4c)

edgeCostDP(T, e) = ‖(dist(P1, (xl, yl, φ(xl, yl))), dist(P2, (xk, yk, φ(xk, yk))))‖ , (4d)

edgeCostELABN(T, e) = ‖vi − vj‖ edgeCostABN(T, e), (4e)

edgeCostYMS(T, e) = ‖(a1, b1)‖ ‖(a2, b2)‖ − (a1, b1) · (a2, b2), and (4f)

edgeCostELJND(T, e) = ‖vi − vj‖ edgeCostJND(T, e), (4g)

where (nx, ny) is a unit vector normal to e and dist(Pα, (x, y, z)) = |Pα(x,y)−z|
‖(aα,bα,−1)‖ (and Pi, ai, and bi

are as defined in the previous paragraph). Note that (ai, bi,−1) is a normal to the plane defined by Pi;

(ai, bi) is the gradient of Pi; and dist(Pi, (x, y, z)) is the shortest distance from the point (x, y, z) to

the plane defined by Pi. For a boundary edge e (which has only one incident face), we simply define

edgeCostABN(T, e) = 0, edgeCostJND(T, e) = 0, edgeCostDLP(T, e) = 0, edgeCostDP(T, e) = 0,

edgeCostYMS(T, e) = 0, edgeCostELABN(T, e) = 0, and edgeCostELJND(T, e) = 0.

The second class of edge-flip criterion is associated with edge-cost functions that assign a cost to

every flippable edge in the triangulation. This class makes use of the following five edge-cost functions:

1) edgeCostD, the (preferred-directions) Delaunay (D) cost [39]; 2) edgeCostSE, the squared error (SE)

from [25]; 3) edgeCostGHH, the GH hybrid (GHH) from [20]; 4) edgeCostSQSE, the shape-quality-

weighted SE (SQSE), which is newly proposed herein; and 5) edgeCostJNDSE, the JND-weighted SE
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(JNDSE), which is newly proposed herein. These preceding functions are defined as follows. The first

function edgeCostD(T, e) is defined to be 0 if e passes the preferred-directions-augmented in-circle

(Delaunay) test in [39], and 1 otherwise. The remaining functions are then given by

edgeCostSE(T, e) = β(T, e),

edgeCostGHH(T, e) =

[sq(f1) sq(f2)]−1 τ ≤ 1
2

β(T, e) otherwise,

edgeCostSQSE(T, e) = [sq(f1) sq(f2)]−1 β(T, e), and

edgeCostJNDSE(T, e) = edgeCostJND(T, e)β(T, e), where

β(T, e) =
∑

p∈PT (f1)∪PT (f2)

(
φ̂T (p)− φ(p)

)2
,

τ = min{σ,σ′}
max{σ,σ′} , σ = sq(f1) sq(f2), σ′ = sq(f ′1) sq(f ′2), and f ′1 and f ′2 are the two faces incident on the

edge e′, with e′ denoting the edge obtained by applying an edge flip to e.

With the above edge-cost functions having been defined, we are now ready to introduce the twelve

edge-flip criteria considered in our work, known by the names ABN, JND, DLP, DP, YMS, ELABN,

ELJND, Delaunay, SE, GHH, SQSE, and JNDSE. Let e denote the edge to be tested for optimality

in the triangulation T , where e = vivj . Let e′ denote the new edge obtained by applying an edge-flip

transformation to e, and let T ′ be the triangulation obtained if e is flipped. As mentioned above, we

employ two different classes of edge-flip criterion in our work. We consider each in turn below.

The first class of edge-clip criterion assigns a cost to each edge in the triangulation, and then assigns

a cost to the triangulation, which corresponds to the sum of the edge costs. The edge e is then preferred

(over e′) if the cost of triangulation T does not exceed the cost of triangulation T ′. That is, the first class

of edge-flip criterion chooses isPreferred to be of the form

isPreferred(e) =

1 triCost(T ) ≤ triCost(T ′)

0 otherwise,
where (5a)

triCost(T ) =
∑

e∈E(T )

edgeCost(T, e). (5b)

The ABN, JND, DLP, DP, YMS, ELABN, and ELJND edge-flip criteria are obtained by choosing

isPreferred as given in (5) with edgeCost selected as edgeCostABN, edgeCostJND, edgeCostDLP, edgeCostDP,

edgeCostYMS, edgeCostELABN, and edgeCostELJND, respectively. Note that, although the summation

in (5b) is taken over all edges in the triangulation, only a small number of terms differ between triCost(T )
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and triCost(T ′) for all of the edge-cost functions introduced above. So, as a practical matter, in order

to compare triCost(T ) and triCost(T ′), it is only necessary to compute the relatively small number of

terms that can actually differ between the two summations.

The second class of edge-flip criterion simply uses the edge-cost function directly in order to decide

whether to flip an edge. If the edge e has a strictly higher cost then its flipped counterpart e′, the decision

is made to flip the edge. That is, the second class of edge-flip criterion chooses isPreferred to be of the

form

isPreferred(e) =

1 edgeCost(T, e) ≤ edgeCost(T ′, e′)

0 otherwise.
(6)

The Delaunay, SE, GHH, SQSE, and JNDSE edge-flip criteria are obtained by choosing isPreferred

as given in (6) with edgeCost selected as edgeCostD, edgeCostSE, edgeCostGHH, edgeCostSQSE, and

edgeCostJNDSE, respectively. Observe that, the edge-flip criteria JNDSE and SQSE, which are newly

proposed herein, employ an underlying edge-cost function that weighs the squared error by some measure

related to triangle shape (namely, shape quality or JND). Also, note that the use of the Delaunay edge-flip

criterion in the LOP produces a Delaunay triangulation.

At this point, we would like to make one brief but important comment regarding the SE edge-flip

criterion. From its definition above, observe that the SE edge-flip criterion will only choose to flip an

edge if the squared approximation error, as defined in (1), is strictly reduced by the edge flip. Since

the objective herein is to minimize this squared error, the reader might have the initial suspicion that

consistently using the SE criterion everywhere in our framework must trivially lead to the best results

(i.e., the lowest squared error). As we shall see later, however, this suspicion is, in fact, wrong.

Determination of suspect edges. Earlier, in the discussion of our mesh-generation framework and the

LOP, the question arose as to which edges can become suspect when a new point is inserted in the

triangulation or an edge is flipped. Although a general (and unavoidably vague) answer to this question

was given at that time, we are now in a position to provide a much more precise answer to this question,

which we do in what follows.

Recall that, in step 6 of our proposed mesh-generation framework (i.e., main connectivity adjustment),

the LOP is performed after having inserted a new point p∗ in the triangulation. When the LOP is invoked,

we need to determine which edges should be initially marked as suspect. This, however, depends on the

specific edge-flip criterion being employed. Let f0 denote the set of all faces incident on the new vertex

p∗ and let f1 denote the set of all faces that share at least one edge with a face in f0. In the cases of the

ABN, JND, DLP, DP, ELABN, ELJND, and YMS edge-flip criteria, the edges that should be marked as
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p∗

(a)

p∗

(b)

Fig. 4. Example of determining the newly suspect

edges after the insertion of the point p∗. (a) First

case. (b) Second case.

e′

(a)

e′

(b)

Fig. 5. Example of determining the newly suspect

edges after an edge flip that produces the edge e′.

(a) First case. (b) Second case.

suspect are the flippable edges of all faces in f0∪f1. For example, after inserting the point p∗ in a face,

as shown in Fig. 4(a), the edges drawn using a thicker line would be marked as suspect. In the cases of

the D, SE, GHH, SQSE, and JNDSE edge-flip criteria, the edges that should be marked as suspect are

all flippable edges of all faces in f0. For example, after inserting the point p∗ in a face, as shown in

Fig. 4(b), the edges drawn with a thicker line would be marked as suspect.

Also, recall that, in step 5 of the LOP, whenever an edge is flipped, we must determine which edges

can become newly suspect as a result of the edge flip. Again, this depends on the particular edge-flip

criterion being used. Let e denote the edge being flipped; let q denote the quadrilateral formed by the

union of the two faces incident on e; and let e′ denote the edge obtained by applying an edge flip to e.

In the cases of the ABN, JND, DLP, DP, ELABN, ELJND, and YMS edge-flip criteria, the edges that

should be marked as suspect are all flippable edges belonging to q or belonging to faces incident on

edges of q. For example, if the edge e′ as shown in Fig. 5(a) was just produced as a result of an edge

flip, we would need to mark all of the edges drawn with a thicker line as suspect (presuming that each

edge is flippable). In the case of the D, SE, GHH, SQSE, and JNDSE edge-flip criteria, the edges that

should be marked as suspect are all flippable edges belonging to q. For example, if the edge e′ as shown

in Fig. 5(b) was just produced as a result of an edge flip, we would need to mark all of the edges drawn

with a thicker line as suspect.

IV. PROPOSED MESH-GENERATION METHOD AND ITS DEVELOPMENT

So far, we have introduced our proposed mesh-generation framework, which has several free parameters,

and suggested a number of possible choices for each of these parameters. As one might suspect, however,

not all of these choices are equally good. In our work, we studied how different choices for the these

parameters affect mesh quality. Because the best choice for one particular parameter can depend on how

the remaining parameters are selected, our study needed to consider many parameter combinations. In
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TABLE I

TEST IMAGES

Image Size, Bits/Sample Description

bull 1024×768, 8 computer-generated bull [42]

ct 512×512, 12 CT scan of head [40]

glasses2 1024×768, 8 raytraced glasses [42]

lena 512×512, 8 woman [41]

mri 256×256, 11 MRI scan of head [40]

peppers 512×512, 8 collection of peppers [41]

what follows, we present a summary of our analysis, by describing the general trends and providing

some specific numerical results that well illustrate these trends. Based on our analysis, we recommend a

particular best choice for the parameters, which leads to the specific mesh-generation method proposed

herein.

Before proceeding further, a brief digression is in order regarding the image data that we used for

analysis and evaluation purposes. In our work, we employed 42 images as test data, many of which were

taken from standard image sets, such as [40] and [41]. Herein, we present results for a representative

subset of these images, namely, those listed in Table I. This subset was deliberately chosen to contain a

variety of image types including photographic, medical, and computer-generated imagery.

A. Choice of Face- and Candidate-Selection Policies (selFace and selCand)

First, we examine how the choice of the face-selection policy selFace affects mesh quality. To do this,

we fix the candidate-selection policy selCand as PAE, the main-edge flip criterion isPreferredmain as

JNDSE, and the final connectivity adjustment as enabled with the final edge-flip criterion isPreferredfinal

as SE. Then, we select from amongst the two face-selection policies under consideration, namely, GAE

and GSE. For all 42 images in our test set and several sampling densities, we generated a mesh using each

of the face-selection policies, and then measured the resulting approximation error in terms of PSNR. A

representative subset of the results (namely, for the six images in Table I) is given in Table II, with the

best result in each case (i.e., each row in the table) shown in boldface.

Since the goal in our work is to minimize the squared error as defined in (1), we would suspect that it

is probably beneficial to choose the face with the greatest squared error into which to insert a new point

(i.e., the GSE policy). Examining Table II, we can confirm this suspicion to be correct. As the results

show, the GSE policy beats the GAE policy in all cases by a margin of 0.03 to 6.80 dB (with a median
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of 1.945 dB). Clearly, the GSE policy is superior.

Although we have only shown results above for one specific choice of the fixed parameters (i.e., the

parameters other than the face-selection policy), we generally found similar results with other choices.

In passing, we also note that the computational complexity of the GSE and GAE policies are quite

comparable. For the above reasons, we deem the GSE policy as best and recommend its use in our

framework.

Next, we examine how the choice of the candidate-selection policy selCand affects mesh quality. To

do this, we fix the face-selection policy selFace as GSE, the main edge-flip criterion isPreferredmain as

JNDSE, and the final connectivity adjustment as enabled with the final edge-flip criterion isPreferredfinal

as SE. The candidate-selection policy is then chosen from amongst the three under consideration, namely,

PAE, AMSE, and hybrid. For all 42 images in our test set and several sampling densities, we generated

a mesh using each of the various candidate-selection policies and measured the resulting approximation

error in terms of PSNR. A representative subset of the results (namely, for the six images in Table I)

is given in Table III, with the best and worst values in each test case indicated by boldface and gray,

respectively.

Examining Table III, we see that the AMSE and hybrid polices outperform the PAE policy in the vast

majority of cases. In particular, the AMSE and hybrid policies beat the PAE policy in 20/24 and 23/24

of the test cases, respectively. We can also see that the hybrid policy outperforms the AMSE policy in

15/24 of the test cases. Furthermore, the hybrid policy typically wins by a much larger margin than it

loses. That is, of the 9 cases where the AMSE policy beats the hybrid policy, only 2 are by more than

a margin of 0.1 dB, whereas of the cases where the hybrid policy beats the AMSE policy, 13 involve a

margin of more than 0.1 dB. From the above observations, it is clear that the hybrid policy is best.

Although we have only shown results above for one particular choice of the fixed parameters (i.e., the

parameters other than the candidate-selection policy), we have generally found similar results with other

choices. In passing, we note that, since the hybrid policy requires significantly less computation than the

AMSE policy, selecting the former over the latter also happens to be beneficial in terms of computational

complexity. For the reasons above, we deem the hybrid policy (which is newly proposed herein) to be

most effective and recommend its use in our framework.

B. Choice of Main Edge-Flip Criterion (isPreferredmain)

Next, we consider how mesh quality is affected by the choice of the main edge-flip criterion isPreferredmain

used in initial and main connectivity adjustment. To do this, we fix the face-selection policy selFace as
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TABLE II

COMPARISON OF THE MESH QUALITY OBTAINED WITH THE

VARIOUS FACE-SELECTION POLICIES

Samp.

Density PSNR (dB)

Image (%) GAE GSE

bull 0.125 28.58 35.38

0.250 35.70 39.40

0.500 39.24 41.42

1.000 41.85 43.11

ct 0.250 31.45 33.66

0.500 36.85 38.69

1.000 41.68 43.09

2.000 46.36 47.70

glasses2 0.250 18.99 22.75

0.500 22.70 26.05

1.000 26.55 29.99

2.000 31.40 34.51

lena 0.500 23.45 26.51

1.000 27.37 29.41

2.000 30.76 32.03

3.000 32.84 33.55

mri 0.500 27.11 31.23

1.000 33.44 34.29

2.000 36.77 37.56

3.000 39.18 39.21

peppers 0.250 21.70 23.55

0.500 24.57 26.83

1.000 28.47 29.58

2.000 31.27 31.70

TABLE III

COMPARISON OF THE MESH QUALITY OBTAINED WITH THE

VARIOUS CANDIDATE-SELECTION POLICIES

Samp.

Density PSNR (dB)

Image (%) PAE AMSE Hybrid

bull 0.125 35.38 36.41 36.48

0.250 39.40 40.25 40.45

0.500 41.42 42.63 42.68

1.000 43.11 44.32 44.29

ct 0.250 33.66 33.87 33.85

0.500 38.69 38.38 38.70

1.000 43.09 42.70 43.16

2.000 47.70 47.50 47.82

glasses2 0.250 22.75 23.68 23.56

0.500 26.05 26.76 26.87

1.000 29.99 30.08 30.27

2.000 34.51 34.07 34.40

lena 0.500 26.51 27.45 27.37

1.000 29.41 30.22 30.16

2.000 32.03 32.66 32.80

3.000 33.55 34.09 34.21

mri 0.500 31.23 31.89 32.07

1.000 34.29 34.78 35.17

2.000 37.56 37.69 37.88

3.000 39.21 39.36 39.59

peppers 0.250 23.55 24.71 24.56

0.500 26.83 27.81 27.73

1.000 29.58 30.56 30.52

2.000 31.70 32.64 32.63

GSE, the candidate-selection policy selCand as hybrid, and the final connectivity adjustment as disabled.

Then we select isPreferredmain from amongst the various criteria under consideration, namely, D, ABN,

JND, DLP, DP, ELABN, ELJND, YMS, SE, GHH, SQSE, and JNDSE. For all 42 images in our test set

and several sampling densities, we generated a mesh using each of the various main edge-flip criteria under

consideration, and then measured the resulting approximation error in terms of PSNR. A representative

subset of the results obtained (namely, for the six images in Table I) is given in Table IV, where the best
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TABLE IV

COMPARISON OF THE MESH QUALITY OBTAINED WITH THE VARIOUS MAIN EDGE-FLIP CRITERIA

Samp.

Density PSNR (dB)

Image (%) D ABN JND DLP DP ELABN ELJND YMS SE GHH SQSE JNDSE

bull 0.125 31.60 27.50 34.17 33.16 23.55 31.70 33.00 29.30 26.86 34.51 35.62 35.75

0.250 35.92 32.66 38.63 38.43 27.17 37.20 37.96 34.97 32.60 39.08 39.76 39.84

0.500 39.59 37.04 41.21 41.42 31.79 40.41 40.78 39.56 37.29 41.90 42.17 42.18

1.000 41.98 40.74 42.80 42.92 35.90 42.44 42.61 42.01 41.22 43.67 43.89 43.88

ct 0.250 30.51 24.66 31.30 30.02 22.96 28.07 31.46 27.74 27.03 32.39 33.29 33.40

0.500 35.40 26.97 36.64 35.53 25.18 33.23 36.66 33.06 30.80 37.56 38.10 38.24

1.000 39.47 30.63 41.48 40.25 28.05 38.17 41.27 38.87 34.90 42.06 42.57 42.74

2.000 43.78 34.90 46.34 45.36 31.14 43.63 46.01 44.08 38.95 46.78 47.39 47.42

glasses2 0.250 21.60 18.34 21.37 20.74 16.65 20.07 21.52 19.68 18.45 22.93 23.17 23.14

0.500 24.42 20.25 24.52 23.68 18.42 22.80 24.43 22.02 20.51 25.87 26.21 26.43

1.000 27.43 22.53 28.09 27.23 20.17 25.83 27.87 25.15 22.89 29.17 29.61 29.81

2.000 30.97 25.30 32.32 31.40 22.23 29.70 31.83 29.34 25.43 33.18 33.78 33.95

lena 0.500 25.08 21.06 25.40 24.89 19.69 23.57 25.16 23.84 23.05 26.39 26.92 26.89

1.000 27.82 23.44 28.35 27.90 21.59 26.22 27.88 26.53 25.63 29.20 29.66 29.70

2.000 30.37 26.00 31.05 30.54 23.89 29.07 30.79 29.45 28.11 31.96 32.29 32.39

3.000 31.86 27.70 32.56 32.14 25.38 30.84 32.31 31.10 29.77 33.45 33.74 33.83

mri 0.500 29.91 25.37 29.69 29.18 25.04 27.56 29.89 28.11 27.65 31.20 31.37 31.62

1.000 32.75 27.84 33.13 32.51 27.14 30.89 33.10 31.06 30.01 34.18 34.52 34.79

2.000 35.80 30.74 36.06 35.39 29.24 34.12 36.10 34.12 32.70 37.18 37.48 37.54

3.000 37.47 32.31 37.84 37.03 30.30 36.16 37.97 36.07 34.70 38.81 39.21 39.24

peppers 0.250 22.36 18.33 22.18 21.53 16.72 19.98 22.53 19.52 20.31 23.85 24.19 24.19

0.500 25.53 21.15 25.73 24.82 18.63 24.14 25.73 23.17 23.06 27.02 27.27 27.30

1.000 28.31 24.07 28.62 28.22 20.83 27.11 28.69 26.68 26.30 29.88 29.99 30.14

2.000 30.85 27.02 31.10 30.76 23.25 29.84 31.13 29.68 28.76 32.08 32.18 32.28

and worst values in each test case are again shown in boldface and gray, respectively.

Let us now examine Table IV. Rather than attempting to individually rank each of the criteria from

best to worst (which may not be possible to do in general), we instead observe that there are some clear

winners and losers here. In particular, the best performers are the JNDSE, SQSE, and GHH criteria. Of

these three, the JNDSE criterion (which is newly proposed herein) is the overall winner, yielding the best

result in 21/24 of the test cases and never losing by a margin of more than 0.03 dB in the remaining

cases. At the other extreme, the worst performers in decreasing order of badness are the DP, and ABN
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(a) (b) (c) (d) (e)

Fig. 6. The triangulations obtained for the lena image at a sampling density of 1% with the main edge-flip criterion chosen

as (a) ABN, (b) DP, (c) SE, (d) DLP, and (e) JNDSE, respectively.

and SE criteria, which produce the three poorest results in every case. The DP criterion is the worst

performer overall, yielding the poorest result in all of the test cases. The ABN criterion is second worst

in 22/24 of the test cases. The SE criterion is second worst or third worst in 22/24 of the test cases.

The poor performance of the SE criterion is extremely important to note. It is because the SE edge-flip

criterion performs so badly that the intuitively “obvious” solution of simply always using the SE edge-flip

criterion in our framework is not a good one.

Although we have only shown results above for one particular choice of the fixed parameters (i.e., the

parameters other than the main edge-flip criterion), we have generally found similar results with other

choices. Since the JNDSE criterion is the clear winner, we recommend its use as the main edge-flip

criterion isPreferredmain in our framework.

A more careful examination of the results shows that the DP, SE, and ABN criteria perform very

poorly due to their propensity to lead to triangulations with a very large number of poorly chosen sliver

triangles. For example, for one of the test cases from Table IV, Fig. 6 shows the triangulations that were

obtained in the cases of the ABN, DP, and SE criteria, which perform poorly, as well as the DLP and

JNDSE criteria, which perform relatively better. Notice how the results for the ABN, DP, and SE criteria

are dominated by many poorly chosen sliver triangles, whereas the DLP and JNDSE results are not.

The good performance of the JNDSE, SQSE, and GHH edge-flip criteria can be explained by the fact

that these three criteria take into account not only squared error but triangle shape as well (via shape

quality in the GHH and SQSE cases and JND in the JNDSE case). This allows these criteria to avoid

triangulations with many poorly chosen sliver triangles.

Although the interplay between edge-flip criteria and sliver triangles is often extremely complex, we

are able to offer some explanation as to why the DP and SE edge-flip criteria (i.e., two of the three

worst performers) tend to produce many sliver triangles. First, let us consider the SE criterion. Since a
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sliver triangle has a very small area and therefore contains few or no points from the image domain Λ,

the squared error calculated over a sliver triangle will always be very small and often zero. So, when

viewed strictly from the standpoint of squared error, sliver triangles seem quite good, as they have very

low squared error. Unfortunately, because of this fact, many undesirable situations can arise when the SE

criterion is employed. For example, consider an edge e whose two incident faces f1 and f2 are each sliver

triangles that contain no points from Λ. The SE criterion will never flip such an edge (i.e., isPreferred(e)

will always be one). Such behavior can, in turn, increase the likelihood that the two sliver triangles f1

and f2 remain in the triangulation. This problem is further exacerbated by the fact that since f1 and f2

do not contain any points from Λ, no new point can be inserted into f1 or f2.

Next, let us contemplate why the DP criterion can lead to many sliver triangles. Consider an edge

e with two incident faces f1 and f2 whose union forms the (strictly convex) quadrilateral q, and let e′

denote the edge obtained by flipping e. Suppose that e and e′ differ greatly in length, say, by a factor

of more than 64, so that q is long and thin and f1 and f2 are sliver triangles. Let eshort and elong denote

the shorter and longer of the edges e and e′, respectively. Due to the manner in which the DP edge-cost

function edgeCostDP is defined in (4d), it is statistically very likely that edgeCostDP(elong) is quite small

and edgeCostDP(elong) < edgeCostDP(eshort). Thus, the DP edge-cost function tends to strongly favor

longer edges that are associated with sliver triangles. Because the DP edge-flip criterion is based on this

edge-cost function, all others things being equal, the DP edge-flip criterion will tend to prefer longer

edges when they are associated with sliver triangles, and this in turn tends to lead to triangulations with

many sliver triangles.

C. Choice of Final Edge-Flip Criterion (isPreferredfinal)

Next, we examine how the choice of the final edge-flip criterion isPreferredfinal affects mesh quality.

To do this, we fix the face-selection policy selFace as GSE, the candidate-selection policy selCand as

hybrid, and the main edge-flip criterion isPreferredmain as Delaunay. Then, we select from amongst the

cases of no final connectivity adjustment as well as final connectivity adjustment with the final edge-flip

criterion isPreferredfinal chosen as each of Delaunay, ABN, JND, DLP, DP, ELABN, ELJND, YMS, SE,

GHH, SQSE, and JNDSE. For all 42 images in our test set and several sampling densities, we generated

a mesh using each of the schemes under consideration, and then measured the resulting approximation

error in terms of PSNR. A representative subset of the results obtained is given in Table V, with the best

result in each test case shown in boldface. The case of no final connectivity adjustment is labelled as

“None” in the table. Note that, we exclude the case of choosing isPreferredfinal as Delaunay since this

is equivalent to no final connectivity adjustment when isPreferredmain is Delaunay.
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TABLE V

COMPARISON OF THE MESH QUALITY OBTAINED WITH THE VARIOUS FINAL EDGE-FLIP CRITERIA

Samp.

Density PSNR (dB)

Image (%) None ABN JND DLP DP ELABN ELJND YMS SE GHH SQSE JNDSE

bull 0.125 31.60 30.62 30.01 31.06 30.22 30.91 31.40 28.81 34.14 32.65 32.77 32.88

0.250 35.92 34.55 35.05 36.08 34.57 35.44 36.00 34.22 38.37 35.81 37.09 37.16

0.500 39.59 38.68 38.98 39.30 38.62 39.20 39.63 37.47 41.53 39.98 40.45 40.48

1.000 41.98 41.08 41.29 41.63 41.09 41.46 41.85 40.14 43.58 42.68 42.78 42.85

ct 0.250 30.51 27.63 28.86 29.09 26.17 28.26 30.17 26.63 32.16 31.23 31.63 31.64

0.500 35.40 32.87 32.86 34.43 31.26 33.69 35.46 33.58 36.97 32.54 36.27 36.37

1.000 39.47 36.66 38.41 38.40 35.47 36.98 39.50 36.96 41.18 39.54 40.45 40.51

2.000 43.78 41.89 41.10 42.25 40.93 42.71 44.05 41.19 45.86 40.85 45.01 45.13

lena 0.500 25.08 23.30 24.00 24.39 23.49 23.86 24.75 23.54 26.50 25.91 25.84 25.92

1.000 27.82 26.00 27.19 27.13 25.74 26.37 27.55 26.32 29.24 28.71 28.63 28.73

2.000 30.37 28.83 29.92 29.80 28.70 29.17 30.21 29.08 31.81 31.26 31.18 31.27

3.000 31.86 30.28 31.39 31.30 30.14 30.66 31.70 30.63 33.31 32.67 32.63 32.72

Examining Table V, we can see that the SE criterion performs best in every test case, followed by the

JNDSE and SQSE criteria (in that approximate order). Moreover, the use of final connectivity adjustment

with the SE criterion beats the case of no final connectivity adjustment (i.e., the “None” column) by

a margin of 1.42 to 2.54 dB. So, clearly the use of final connectivity adjustment with the SE criterion

is extremely beneficial. Although we have only presented results for one set of choices for the fixed

parameters (i.e., the parameters other than the final edge-flip criterion), the preceding trends were found

to be followed for other choices, provided that the main edge-flip criterion was chosen to produce a

reasonably good triangulation as input to final connectivity adjustment. In cases where the main edge-flip

criterion produces very poor triangulations (i.e., the DP, SE, and ABN cases), it actually turns out that

the JNDSE and SQSE criteria perform better than the SE criterion.

The above behavior can be explained as follows. Nominally, we would expect the SE criterion to

perform best, as it directly minimizes the squared error in (1). In cases where the triangulation that

is input to the final connectivity adjustment process is reasonably good, this is the exactly the behavior

observed. If, however, the main edge-flip criterion is chosen as one of the criteria (i.e., DP, SE, and ABN)

that leads to very poor triangulations, the behavior changes with the JNDSE and SQSE criteria becoming

much more effective than the SE criterion. This change in behavior is due to the fact that the SE criterion

does not take triangle shape into account. If the input triangulation (for final connectivity adjustment)
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has many badly shaped triangles, the SE criterion cannot improve much upon the situation since it is

effectively blind to triangle shape, which will ultimately lead to a poor quality mesh. In contrast, the

JNDSE and SQSE criteria both consider triangle shape (in addition to squared error). For this reason,

they are able to partially mitigate the effects of a poorly chosen triangulation and produce a better result

than is possible with the SE criterion.

Since the main edge-flip criterion isPreferredmain was previously recommended to be chosen as JNDSE,

which generally produces good triangulations with very few poorly-chosen sliver triangles, we conclude

that we should use final connectivity adjustment with a final edge-flip criterion that works well for good

triangulations. As we saw above, the clear choice in this case is the SE criterion. Therefore, in our

framework, we recommend always using final connectivity adjustment and selecting the final edge-flip

criterion isPreferredfinal as the SE criterion.

D. Proposed Mesh-Generation Method

Above, we have studied how various choices of the free parameters of our proposed framework affect

mesh quality. This led us to recommend a particular choice for each of these parameters. The mesh-

generation method that we propose in this paper simply corresponds to our framework with the parameters

selected as recommended above, namely, with the face-selection policy selFace as GSE, the candidate-

selection policy selCand as hybrid, the main edge-flip criterion isPreferredmain as JNDSE, and final

connectivity adjustment enabled with the final edge-flip criterion isPreferredfinal as SE.

V. EVALUATION OF PROPOSED MESH-GENERATION METHOD

Having introduced our proposed method, we now evaluate its performance by comparing it to several

other competing schemes in terms of mesh quality and computational/memory complexity. The first of

the methods that we consider for comparison purposes is the one proposed by Garland and Heckbert [20,

Algorithm IV] with the quality threshold parameter qthresh chosen as 0.5 and an L2 error measure,

which we henceforth refer to by the name “GH”. The GH method is essentially a special case of our

framework with no final connectivity adjustment and the face-selection policy, candidate-selection policy,

and main edge-flip criterion chosen as GAE, PAE, and GHH, respectively. The second of the methods

that we consider for comparison purposes is the one proposed by Rippa in [22] with the least-squares

edge cost (in the interpolating case), which we henceforth refer to by the name “R”. (As an aside, we

note that we elected to consider the least-squares edge-cost function from [22], as it is the only edge-cost

function therein that incorporates squared error in some way.) The R method is a special case of our

framework with no final connectivity adjustment and the face-selection policy, candidate-selection policy,
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and main edge-flip criterion chosen as GAE, PAE, and SE, respectively. The third of the methods that

we consider for comparison purposes is the adaptive-thinning (AT) scheme of Demaret and Iske [43].

The AT method is one of the very best state-of-the-art Delaunay-based methods. It produces extremely

high-quality meshes, even better than many DDT-based schemes, but has extremely high computational

and memory requirements.

Mesh quality. For all 42 images in our test set and several sampling densities, we used each of the

methods under consideration to generate a mesh and then measured the resulting approximation error in

terms of PSNR. A representative subset of the results obtained (namely, for the six images in Table I) is

shown in Table VI, with the best result in each case (i.e., each row in the table) highlighted in boldface.

In order to show that the improvements offered by our proposed method are not solely due to its use of

the GSE face-selection scheme, we also consider our own improved versions of the GH and R methods,

called GH2 and R2, respectively, where the face-selection policy of GAE is replaced by GSE.

Examining Table VI, we can see that our proposed method is the clear winner, producing the best result

in all 24 test cases. Inspecting the results more closely, we find that our proposed method outperforms

the GH, R, GH2, R2, and AT schemes by margins of 1.58 to 9.93 dB (with median 4.1050 dB), 7.86

to 17.37 dB (with median 10.765 dB), 1.02 to 3.36 dB (with median 1.5800 dB), 4.16 to 10.65 dB

(with median 6.3650 dB), and 0.20 to 3.36 dB (with median 0.8250 dB), respectively. The fact that

our proposed method beats the GH2 and R2 schemes (i.e., our improved versions of the GH and R

schemes, respectively) by significant margins demonstrates that the excellent results from our method are

not simply due to our different point-selection strategy alone. The fact that our method can outperform

the AT scheme is extremely impressive, given that the AT scheme produces very high quality meshes

and (as we shall see shortly) requires over 10 times more computation and orders of magnitude more

memory. Again, examining Table VI, we observe that the R and R2 methods are the clear losers, yielding

the two worst results in every case.

In the above evaluation, PSNR was found to correlate reasonably well with subjective quality. For the

benefit of the reader, however, we provide an example illustrating the subjective quality achieved by the

various methods. In particular, for one of the test cases involving the bull image (from Table VI), a small

part of each image reconstruction is shown under magnification in Fig. 7, along with the corresponding

triangulation. Examining the figure, we can see that our proposed method produces approximations with

better subjective quality as compared to the other methods. So, our proposed method not only yields

approximations with low squared error, but good subjective quality as well. Observe that the R and

R2 methods perform very poorly, due to the large number of poorly chosen sliver triangles in their
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TABLE VI

COMPARISON OF THE MESH QUALITY OBTAINED WITH THE VARIOUS MESH-GENERATION METHODS

Samp.

Density PSNR (dB)

Image (%) Proposed GH R GH2 R2 AT

bull 0.125 36.48 26.55 19.26 33.12 25.83 33.12

0.250 40.45 31.99 23.08 38.28 30.59 38.23

0.500 42.68 37.64 26.46 40.72 35.81 41.87

1.000 44.29 40.56 32.40 42.48 40.13 43.99

ct 0.250 33.85 28.69 20.75 32.22 26.02 32.15

0.500 38.70 35.23 25.92 37.68 29.61 37.22

1.000 43.16 39.43 30.08 42.01 33.91 41.35

2.000 47.82 44.99 36.16 46.61 39.12 45.33

glasses2 0.250 23.56 18.38 14.07 21.94 17.51 23.36

0.500 26.87 20.95 15.29 25.07 19.19 25.84

1.000 30.27 25.27 17.82 28.87 21.38 28.88

2.000 34.40 29.94 20.99 33.11 24.26 32.73

lena 0.500 27.37 22.39 16.66 25.37 21.93 26.66

1.000 30.16 25.27 19.34 28.51 24.20 29.12

2.000 32.80 29.80 22.41 31.26 27.03 31.82

3.000 34.21 31.84 24.11 32.77 28.77 33.37

mri 0.500 32.07 26.00 22.29 30.57 25.51 31.48

1.000 35.17 32.38 24.48 33.77 28.34 34.39

2.000 37.88 35.35 28.87 36.80 31.71 37.25

3.000 39.59 38.01 31.73 38.42 33.80 39.01

peppers 0.250 24.56 19.84 14.78 22.58 19.20 23.93

0.500 27.73 23.98 17.36 25.95 21.66 27.09

1.000 30.52 27.49 20.32 28.77 24.60 30.05

2.000 32.63 30.36 24.53 31.14 27.73 32.39

triangulations.

Computational complexity. Next, we compare the various mesh-generation methods in terms of their

computational complexity (i.e., execution time). To do this, we provide a representative subset of some

timing results collected on very modest hardware (namely, a seven year old notebook computer with a

3.4 GHz Intel Pentium 4 and 1 GB of RAM). For the lena image and several sampling densities, the

time required for mesh generation for each of the methods under consideration is shown in Table VII.

In the case of the GH and R methods, a second set of numbers is given in parentheses. These numbers
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 7. Part of the image approximation obtained for the bull image at a sampling density of 0.125% with the (a) proposed

(36.48 dB), (c) GH (26.55 dB), (e) R (19.26 dB), (g) GH2 (33.12 dB), (i) R2 (25.83 dB), and (k) AT (33.12 dB), methods and

(b), (d), (f), (h), (j), and (l) their corresponding triangulations.

correspond to the time required if the method in question terminates mesh generation not when the target

sampling density is achieved, but rather when the PSNR mesh quality matches that of the corresponding

result from our proposed method.

Examining Table VII (excluding the results in parentheses), we observe the following. Our proposed

method has very substantially lower complexity than the AT scheme, requiring only about 5 to 10% of
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TABLE VII

COMPARISON OF THE COMPUTATIONAL COMPLEXITY FOR THE VARIOUS METHODS

Samp.

Density Time (s)

(%) Proposed GH R AT

0.5 2.31 2.10 (2.85) 1.52 (4.22) 43.03

1.0 2.77 2.59 (3.33) 1.93 (5.45) 43.03

2.0 3.54 3.26 (4.10) 2.54 (7.25) 42.40

3.0 4.19 3.76 (4.67) 3.06 (8.53) 42.12

the time of the AT scheme. This is particularly impressive when one considers that our method produces

significantly higher quality meshes than the AT scheme. Also, our proposed method requires about 6

to 12% and 36 to 52% more computation than the GH and R schemes, respectively. The increase in

time relative to the GH and R schemes is due primarily to the additional final connectivity adjustment

step and the use of a more computationally-expensive point-selection strategy (which often requires the

computation of selCandAMSE). When interpreting these computational-cost results, it is important to keep

in mind that the GH and R schemes produce meshes of very significantly lower quality than the proposed

method. If in the case of the GH and R methods, we instead let the mesh-generation process terminate

when it achieves the same PSNR mesh quality as the proposed method, the execution times in parenthesis

in Table VII apply. Viewing the situation from this perspective, the GH and R methods are actually much

slower, by factors of 1.11 to 1.24 and 1.82 to 2.05, respectively. With the preceding observation in

mind (as well as others made above), we deem the computational complexity of our scheme to be at

least comparable to (and arguably better than) the GH and R methods. So overall, our proposed method

performs quite well in terms of computational complexity.

The curious reader might wonder why the execution times of the GH and R schemes are not closer.

As it turns out, the main reason for this difference is that the R scheme requires many fewer edge flips

than the GH scheme, typically about 2.4 to 2.9 times less. Recall that the R scheme chooses a relatively

large number of poorly chosen sliver triangles. This tends to significantly reduce the number of flippable

edges, causing the LOP to converge much more quickly with fewer edge flips. So, essentially, the only

reason that the R scheme is faster is because of the poor choice of triangulation that it yields.

Memory complexity. For all of the methods under consideration, memory usage is dominated by the

triangulation data structure and a few auxiliary data structures (such as priority queues) whose size grows

(approximately) proportionally to mesh size. Therefore, memory usage is essentially determined by mesh
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size, and correspondingly, the peak memory usage is determined by the peak mesh size. For an image

of width W , height H , and a given sampling density D, the peak mesh size for each of the proposed,

GH, and R methods is DWH , whereas the peak mesh size for the AT scheme is WH (since the AT

scheme begins with a mesh containing all WH sample points from the original image). So, the peak

memory usage for the proposed, GH, and R methods is essentially the same, while, for values of D of

practical interest, say D ∈ [0.125%, 3%], the AT method requires 33 to 800 times more memory than

the proposed, GH, and R methods. So, in terms of memory usage, our proposed method compares very

favorably, being tied for best (i.e., lowest peak memory usage) with the GH and R schemes and requiring

orders of magnitude less memory than the AT scheme.

VI. CONCLUSIONS

In this paper, we have proposed a DDT-based mesh-generation framework for image representation,

derived by making a number of key modifications to the Rippa and Garland-Heckbert frameworks,

including: 1) the addition of a final connectivity-adjustment step, 2) the development of more effective

edge-flip criteria for the LOP, and 3) the introduction of a better point-selection strategy. Furthermore, we

have also proposed a specific mesh-generation method, obtained by carefully choosing the free parameters

of our framework. Through experimental results, our proposed mesh-generation method was shown to

produce meshes of significantly higher quality (both in terms of squared error and subjectively) than

those generated by the three competing schemes, namely, the GH, R, and AT schemes. In terms of

computational cost, our proposed method was found to be at least comparable to the GH and R schemes

(for the reasons given earlier) and to require over an order of magnitude less computation time than the

AT method. In terms of memory cost, our proposed method was shown to require essentially the same

amount of memory as the GH and R schemes and orders of magnitude less memory than the AT scheme.

In short, our proposed method yields meshes of very high quality at reasonably low computational and

memory costs. Consequently, our method is of great benefit to the many applications that employ mesh

models of images. Furthermore, by further exploring the algorithmic possibilities afforded by our proposed

framework, we are optimistic that even more effective mesh-generation schemes can be synthesized.
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