Triangle-Mesh Models, Their Generation, and Their Application in Image Scaling (PhD Oral Exam)

> Ali Mostafavian (V00709918)

Supervisor: Dr. Michael Adams

January 11, 2019

Outline

Mesh generation with minimal squared error for image representation

- Triangle-mesh models of images
- ERD mesh model
- Proposed SEMMG method and its development
- Evaluation results

Outline

Mesh generation with minimal squared error for image representation

- Triangle-mesh models of images
- ERD mesh model
- Proposed SEMMG method and its development
- Evaluation results
- Image scaling with minimal edge blurring using mesh models
 - Problem statement
 - Proposed MIS method and its development
 - Evaluation results

Outline

• Mesh generation with minimal squared error for image representation

- Triangle-mesh models of images
- ERD mesh model
- Proposed SEMMG method and its development
- Evaluation results
- Image scaling with minimal edge blurring using mesh models
 - Problem statement
 - Proposed MIS method and its development
 - Evaluation results
- Conclusions
- Future research

triangulation

- Explicit representation of discontinuities (ERD)
- Piecewise-linear interpolating function
- Based on constrained Delaunay triangulation (CDT)
- Using wedges and wedge values

- Explicit representation of discontinuities (ERD)
- Piecewise-linear interpolating function
- Based on constrained Delaunay triangulation (CDT)
- Using wedges and wedge values

- Explicit representation of discontinuities (ERD)
- Piecewise-linear interpolating function
- Based on constrained Delaunay triangulation (CDT)
- Using wedges and wedge values

- Explicit representation of discontinuities (ERD)
- Piecewise-linear interpolating function
- Based on constrained Delaunay triangulation (CDT)
- Using wedges and wedge values

- Process to select model parameters is called mesh generation
- Inputs to mesh generation:
 - Image ϕ known on discrete domain Λ of size $W\times H$
 - $\bullet~N$ desired number of sample points
- Outputs are ERD mesh model parameters:
 - Set of sample points, $P = \{v_i\}$ (where |P| = N)
 - **2** Set of edge constraints, E
 - **③** Set of integer wedge values, Z
- Sampling density of mesh, $d = \frac{N}{W \times H} \times 100$

For selecting model parameters (P, E, Z) with N samples

- Edge detection
- Polyline generation + simplification
- Constrained Delaunay triangulation

For selecting model parameters (P, E, Z) with N samples

- Edge detection
- Polyline generation + simplification
- Constrained Delaunay triangulation

For selecting model parameters (P, E, Z) with N samples

- Edge detection
- Polyline generation + simplification
- Constrained Delaunay triangulation

For selecting model parameters (P, E, Z) with N samples

Initial triangulation:

- Edge detection
- Polyline generation + simplification
- Constrained Delaunay triangulation

Wedge value calculation

For selecting model parameters (P, E, Z) with N samples

- Edge detection
- Polyline generation + simplification
- Constrained Delaunay triangulation

- 2 Wedge value calculation
- Mesh refinement:
 - Select new point to add to mesh
 - Insert new point into triangulation
 - Calculate new wedge values

For selecting model parameters (P, E, Z) with N samples

- Edge detection
- Polyline generation + simplification
- Constrained Delaunay triangulation

- 2 Wedge value calculation
- Mesh refinement:
 - Select new point to add to mesh
 - Insert new point into triangulation
 - Calculate new wedge values
-) Repeat step 3 until |P| = N

Development of SEMMG Method

- Analyzed previous methods (ERDED and ERDGPI)
- Identified shortcomings
- Developed/applied specific modifications in 3 areas:

Development of SEMMG Method

- Analyzed previous methods (ERDED and ERDGPI)
- Identified shortcomings
- Developed/applied specific modifications in 3 areas:
 - Edge detection \rightarrow Otsu thresholding technique is used \Rightarrow more effective parameters P and E
 - 2 Wedge-value selection \rightarrow optimization-based approach is proposed \Rightarrow more effective parameter Z
 - ③ <u>Mesh refinement</u> → centroid-based approach is proposed ⇒ more effective parameter P

Development of SEMMG Method

- Analyzed previous methods (ERDED and ERDGPI)
- Identified shortcomings
- Developed/applied specific modifications in 3 areas:
 - Edge detection \rightarrow Otsu thresholding technique is used \Rightarrow more effective parameters P and E
 - 2 Wedge-value selection \rightarrow optimization-based approach is proposed \Rightarrow more effective parameter Z
 - <u>Mesh refinement</u> → centroid-based approach is proposed ⇒ more effective parameter P
- Combined all modifications ⇒ proposed SEMMG method

Evaluation of SEMMG Method

O Compared to ED, MGH, ERDED, ERDGPI methods:

- Test data of 35 images
- 10 sampling densities from 0.0078125% to 3%
- Total of **350 test cases**

	ED	MGH	ERDED	ERDGPI
SEMMG outperforms (% of cases)	100%	89%	99%	85%
Average PSNR increase	8.86 dB	2.25 dB	5.43 dB	2.22 dB

Evaluation of SEMMG Method

O Compared to ED, MGH, ERDED, ERDGPI methods:

- Test data of 35 images
- 10 sampling densities from 0.0078125% to 3%
- Total of **350 test cases**

	ED	MGH	ERDED	ERDGPI
SEMMG outperforms (% of cases)	100%	89%	99%	85%
Average PSNR increase	8.86 dB	2.25 dB	5.43 dB	2.22 dB

- **2** Compared to GVS, HWT, BSP, ATM methods:
 - Average PSNR increase from 1.10 dB to 3.85 dB
 - 65-80% fewer vertices compared to GVS method
 - 10-60% fewer triangles compared to BSP method

Visual Examples

original

MGH 28.10 dB d=0.03125%

SEMMG 38.78 dB d=0.03125%

original

ERDGPI 37.57 dB d=0.25%

SEMMG 40.70 dB d=0.25%

Application of Mesh Models in Image Scaling Problem Statement

• Common distortions: edge blurring/ringing \rightarrow poor subjective quality

Application of Mesh Models in Image Scaling Problem Statement

• Common distortions: edge blurring/ringing \rightarrow poor subjective quality

• Goal: Mesh-based method for producing scaled images with better subjective quality and minimal edge blurring

• Outcome: MIS method is proposed for scaling grayscale images that are approximately piecewise smooth

Development of Proposed MIS Method

• General steps of MIS method to scale an image:

Development of Proposed MIS Method

• General steps of MIS method to scale an image:

- SEMMG method not designed for image scaling
- SEMMG was used in step 1 to detect distortions/shortcomings in image scaling
- Specific modifications applied to reduce/eliminate distortions

Development of Proposed MIS Method Cont'd

- Applied modifications to 4 main areas:
 - Wedge-value selection: backfilling-based technique \Rightarrow more effective parameter Z
 - ② <u>Mesh refinement:</u> modified centroid-based approach \Rightarrow more effective parameter *P*
 - In the second secon
 - Polyline simplification: adaptive polyline simplification (APS) technique $\Rightarrow \text{ more effective parameter } E$
- Combined all modifications ⇒ proposed MIS method

Evaluation of MIS Method

• Experimental Comparisons:

- Methods with available implementation
- MIS method is compared to bilinear, bicubic, DCCI, NEDI, and SRCNN methods
- Subjective Evaluation
- Objective Evaluations: PSNR, SSIM, PEE metrics
- Conceptual Comparisons:
 - Mesh-based methods with unavailable implementation
 - Differences/similarities using theoretical analysis

- Between bilinear, bicubic, DCCI, NEDI, SRCNN, and MIS methods
- 20 LR images and $k = 4 \rightarrow$ 20 HR images with 19 human subjects \Rightarrow 380 rankings
- 300 pairwise comparisons per subject
- Methods ranked from 1st (best) to 6th (worst)

- Between bilinear, bicubic, DCCI, NEDI, SRCNN, and MIS methods
- 20 LR images and $k = 4 \rightarrow$ 20 HR images with 19 human subjects \Rightarrow 380 rankings
- 300 pairwise comparisons per subject
- Methods ranked from 1st (best) to 6th (worst)
- Statistical properties of the 380 ranks:

	Bilinear	Bicubic	DCCI	NEDI	SRCNN	MIS
Mean Rank	5.28	4.78	3.27	3.23	2.44	2.00
Median Rank	6	5	3	3	2	1
Standard Deviation	0.97	1.02	1.06	1.19	1.26	1.75

• MIS method achieved best mean rank of 2 and median rank of 1

Evaluation of MIS Method Cont'd

Subjective Evaluation Cont'd

• MIS method ranked 1st in approximately 67% of cases

Ali Mostafavian

Evaluation of MIS Method Cont'd

Visual Examples

Evaluation of MIS Method Cont'd Visual Examples Cont'd

2 problems were addressed:

Mesh generation with minimal squared errors

- The SEMMG method was proposed
- Improved meshes in terms of both PSNR and subjective quality
- Compared to ED, MGH, ERDED, and ERDGPI methods using 350 test cases:
 - Outperformed ED in 100% with average PSNR margin of 8.86 dB
 - Outperformed MGH in 89% with average PSNR margin of 2.25 dB
 - $\bullet\,$ Outperformed ERDED in 99% with average PSNR margin of 5.43 dB
 - Outperformed ERDGPI in 85% with average PSNR margin of 2.22 dB

2 problems were addressed:

Mesh generation with minimal squared errors

- The SEMMG method was proposed
- Improved meshes in terms of both PSNR and subjective quality
- Compared to ED, MGH, ERDED, and ERDGPI methods using 350 test cases:
 - $\bullet\,$ Outperformed ED in 100% with average PSNR margin of 8.86 dB
 - Outperformed MGH in 89% with average PSNR margin of 2.25 dB
 - Outperformed ERDED in 99% with average PSNR margin of 5.43 dB
 - Outperformed ERDGPI in 85% with average PSNR margin of 2.22 dB
- $\bullet\,$ Outperformed GVS, HWT, BSP, and ATM methods with average PSNR of 3.85, 0.75, 2, and 1.10 dB
- 65-80% fewer vertices compared to GVS method
- 10-60% fewer triangles compared to BSP method

Conclusions Cont'd

- Scaling grayscale images with minimal edge blurring using mesh models
 - MIS method was proposed for approximately piecewise-smooth images
 - Improved subjective quality:
 - Sharper and more accurate edges with minimal blurring/ringing
 - Compared to bilinear, bicubic, DCCI, NEDI, and SRCNN
 - Ranked best overall in 67% out of 380 subjective rankings
 - Gained best mean and median ranks of 2 and 1 out of 6

Conclusions Cont'd

- Scaling grayscale images with minimal edge blurring using mesh models
 - MIS method was proposed for approximately piecewise-smooth images
 - Improved subjective quality:
 - Sharper and more accurate edges with minimal blurring/ringing
 - Compared to bilinear, bicubic, DCCI, NEDI, and SRCNN
 - Ranked best overall in 67% out of 380 subjective rankings
 - Gained best mean and median ranks of 2 and 1 out of 6
 - Flexible functionalities:
 - Image models that are portable, reusable, and editable
 - Combination of any affine transformations: translation, rotation, shearing
 - Almost independent from scale factor

- Edge detection:
 - more advanced edge detector
 - edges with sub-pixel accuracy
 - better detection of junction points
 - better performance with too small images

- Edge detection:
 - more advanced edge detector
 - edges with sub-pixel accuracy
 - better detection of junction points
 - better performance with too small images
- Wedge-value selection:
 - direct optimization instead of corner z-value optimization and averaging
 - to reduce the negative impact of averaging

- Edge detection:
 - more advanced edge detector
 - edges with sub-pixel accuracy
 - better detection of junction points
 - better performance with too small images
- Wedge-value selection:
 - direct optimization instead of corner z-value optimization and averaging
 - to reduce the negative impact of averaging
- Mesh subdivision:
 - embedding mesh subdivision into the mesh generation
 - select candidate face/point for insertion based on subdivision
 - compute new wedge values at subdivided vertices based on the actual image function

- Edge detection:
 - more advanced edge detector
 - edges with sub-pixel accuracy
 - better detection of junction points
 - better performance with too small images
- Wedge-value selection:
 - direct optimization instead of corner z-value optimization and averaging
 - to reduce the negative impact of averaging
- Mesh subdivision:
 - embedding mesh subdivision into the mesh generation
 - select candidate face/point for insertion based on subdivision
 - compute new wedge values at subdivided vertices based on the actual image function
- Color images
 - image model with the same triangulation: scalar z value \rightarrow 3-tuples $(r,g,b), \ \, \hbox{OR}$
 - image model with different triangulations: separate triangulation per color channel

THANK YOU

æ