A Comparison of Two Fully-Dynamic Delaunay Triangulation Methods

Michael D. Adams

Department of Electrical and Computer Engineering University of Victoria Victoria, BC, V8W 3P6, Canada Web: http://www.ece.uvic.ca/-mdadams E-mail: mdadams@ece.uvic.ca

August 2009

Motivation: Mesh-Based Image Representations

- for image compression, growing interest in image representations based on arbitrary sampling (i.e., sampling at arbitrary subset of points from lattice)
- select small subset of sample points; construct Delaunay triangulation (DT) of subset of sample points and form interpolant over each face of resulting DT

(a) The original image and its
(b) corresponding surface; (c) a mesh approximation of the image surface, (d) its corresponding image-domain triangulation, and
(e) the image reconstructed from the mesh

Michael D. Adams (University of Victoria)

CCCG 2009

- since images usually sampled on (truncated) lattice, means is needed for choosing good subset of sample points to use for representation purposes
- solution to sample-point selection problem typically requires use of fully-dynamic DT method
- fully dynamic: incremental insertion and deletion of points, where distribution of points not known in advance, can change over time, and can be highly nonuniform
- although many DT methods proposed to date, relatively few suitable for use in fully-dynamic situations (e.g., some methods require all points known in advance, such as divide-and-conquer approaches)

General Approach to DT

- points to be triangulated assumed to fall on integer lattice (i.e., have integer coordinates), although proposed methods trivially extend to any lattice
- triangulation domain *D* square with power-of-two dimensions
- based on incremental algorithm described by Guibas and Stolfi:

L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams. *ACM Transactions on Graphics*, 4(2):74–123, Apr. 1985

 to ensure unique DT produced, preferred-directions technique of Dyken and Floater employed:

C. Dyken and M. S. Floater. Preferred directions for resolving the non-uniqueness of Delaunay triangulations. *Computational Geometry—Theory and Applications*, 34:96–101, 2006

proposed methods differ only in point-location strategy

DT Primitives

- three basic primitives: insertVertex, findVertex, deleteVertex
- insertVertex inserts new vertex into triangulation
 - Iocates candidate starting point for oriented walk using point-location strategy
 - performs oriented walk to find face containing new vertex
 - inserts new vertex into point-location structure
 - updates DT by performing edge flips to restore Delaunay property
 - sets active vertex to newly inserted vertex
- findVertex locates vertex already in triangulation
 - Iccated specified vertex using point-location structure, possibily in conjunction with oriented walk
 - ests active vertex to located vertex
- deleteVertex deletes vertex (that has already been located) from triangulation
 - updated DT by removing vertex and performing edge flips to restore Delaunay property
 - eletes vertex from point-location structure
 - sets active vertex to any vertex that shared edge with deleted vertex
- depending on circumstances, may be necessary to use findVertex and deleteVertex in order to delete vertex

Bucket Method

• based on BucketInc method from Su and Drysdale:

P. Su and R. L. S. Drysdale. A comparison of sequential Delaunay triangulation algorithms. *Computational Geometry—Theory and Applications*, 7(5–6):361–385, Apr. 1997

 triangulation domain partitioned using uniform square grid into square regions called buckets

- point location structure consists of 2-D bucket array, with on entry per bucket
- each entry in bucket array is doubly-linked list of vertices falling in bucket
- adding/removing vertex from bucket array done in straightforward manner by inserting/removing node from appropriate list
- each list node has pointer to corresponding vertex object in DT and vice versa

Bucket Method (Continued)

- average number η of vertices per bucket required to satisfy $c \le \eta < 4c$, where c is fixed parameter of method
- if preceding condition violated (due to vertex insertion/deletion), bucket grid spacing halved or doubled (as appropriate) in each dimension, changing η by factor of 4
- when grid spacing decreased (during vertex insertion):
 - allocate new larger bucket array
 - on move each vertex from vertex list in old bucket array to correct list in new bucket array
- when grid spacing increased (during vertex deletion):
 - allocate new smaller bucket array
 - error and a second s
- since bucket may contain large number of points, findVertex employs oriented walk starting from first vertex in bucket's vertex list
- point location:
 - outward spiral search for nonempty bucket starting from bucket containing point
 - when nonempty bucket found, first vertex in vertex list used as search result

Tree Method

- assume triangulation domain *D* of form $\{0, 1, 2^S 1\}^2$, $S \in \mathbb{N}$
- triangulation domain *D* hierarchically partitioned, using quadtree, into square regions called cells
- root cell of quadtree chosen as D
- remainder of cells in quadtree determined by recursively splitting root cell
- cell splitting: cell split at midpoint in each of x and y directions to produce four child cells

point-location data structure is tree associated with quadtree partitioning

Tree Example

- each node in tree associated with cell in quadtree partitioning having same relative position with respect to root
- each node in tree contains pointer to DT vertex contained in node's cell (as well as pointer to node's parent and pointers to node's four children)
- for leaf node, cell always contains exactly one vertex
- for nonleaf node, cell always contains more than one vertex
- one-to-one correspondence between leaf nodes and DT vertices
- tree can have at most S+1 levels

Point-Location Part of insertVertex (Complex Case)

insert vertex v = (6, 6)

② find node q furthest from root whose cell contains v

(3) move ${\rm q}$ downwards in tree until ${\it v}$ not in cell of ${\rm q}$

④ add node n corresponding to *v* as sibling of q

Point-Location Part of deleteVertex (Complex Case)

3 delete n; record only child c of p v_0 v_1 v_2 v_3 c 4 move c upwards in tree v_1 v_2 v_3 c

(5) ensure no nodes on path from c to root reference n

Experimental Results

- compare bucket method for *c* = 2 and *c* = 0.25 and tree method
- identical software framework used to compare methods, only point-location code changed
- simple benchmark application:
 - all points inserted into triangulation via insertVertex
 - all vertices located using findVertex
 - all of the vertices deleted using deleteVertex
- provide results for two datasets:
 - In planets: 140025 points, nonuniformly distributed, domain size 1500 × 1867
 - 2 uniform: 104861 points, uniformly distributed, domain size 2048×2048

planets dataset (rotated)

Results for planets and uniform datasets

Comparison of triangulation methods for planets dataset.				
Quantity	Tree	Bucket(2)	Bucket(0.25)	
avg. insertVertex time (us)	8.1534	8.8709	8.0983	
avg. deleteVertex time (us)	7.9919	9.3084	9.1362	
avg. findVertex time (us)	0.7221	2.3008	1.5119	
DT structure size* (MB)	46.08	43.06	44.06	
point-location structure size (MB)	4.95	1.93	2.93	
avg. orientation tests/insertVertex	5.356	10.33	5.972	

*including point-location structure

Comparison of triangulation methods for uniform dataset.

Quantity	Tree	Bucket(2)	Bucket(0.25)
avg. insertVertex time (us)	8.1359	7.7663	7.9021
avg. deleteVertex time (us)	7.7102	8.8306	8.9916
avg. findVertex time (us)	0.7246	1.6782	1.1145
DT structure size* (MB)	34.84	32.10	33.98
point-location structure size (MB)	4.06	1.32	3.20
avg. orientation tests/insertVertex	5.498	6.621	5.252

*including point-location structure

- considering both uniform and nonuniform cases, for insertVertex, tree method from 3% slower to 9% faster than bucket method
- for nonuniform case, tree method comparable to bucket(0.25) (within 1%) and significantly faster than bucket(2) scheme (by about 9%)
- for deleteVertex, tree method consistently faster (by about 14% to 16%)
- for findVertex, tree method faster (by about 50% to 200%)
- performance of bucket method depends fairly heavily on choice of *c* parameter
- for even more highly nonuniform point distributions (like some in Su and Drysdale paper), tree method performs even better relative to bucket method

Conclusions

- proposed two fully-dynamic DT methods (bucket and tree methods)
- neither method superior to other in all cases
- tree method has some advantages that make its use attractive in some applications
- unlike bucket method, tree method performs well for wide variety of point distributions without need for any special input parameters
- use of tree method advantageous in situations where point distribution highly unpredictable
- as future work, would be worthwhile to compare tree method to other schemes such as Delaunay hierarchy used in CGAL:

O. Devillers. The Delaunay hierarchy. *International Journal of Foundations of Computer Science*, 13(2):163–180, 2002

Supplemental Slides

Point-Location Part of insertVertex (Simple Case)

insert vertex v = (1,3)

1 initial state

(2) find node q furthest from root whose cell contains v

③ add new node n for vertex *v* as child of q

Point-Location Part of deleteVertex (Simple Case)

2 record parent p of delete vertex v node n corresponding y initial state (1)to v V_2 V_3 7 6 5 4 V_1 V_2 V_3 V_4 3 V_1 V_2 2 V_4 V_0 v 1 V_0 V_1 V_0 v V_4 0 0 1 2 3 4 5 6 7 ¥

3 delete n

4 ensure nodes along path from p to root do not reference n

 V_3