
A Comparison of Two Fully-Dynamic Delaunay
Triangulation Methods

Michael D. Adams

Department of Electrical and Computer Engineering
University of Victoria

Victoria, BC, V8W 3P6, Canada
Web: http://www.ece.uvic.ca/˜mdadams

E-mail: mdadams@ece.uvic.ca

August 2009

Michael D. Adams (University of Victoria) CCCG 2009 August 2009 1

http://www.ece.uvic.ca/~mdadams
mdadams@ece.uvic.ca

Outline

1 Background

2 Proposed Methods

3 Experimental Results

4 Conclusions

Michael D. Adams (University of Victoria) CCCG 2009 August 2009 2

Motivation: Mesh-Based Image Representations

for image compression, growing interest in image representations based on
arbitrary sampling (i.e., sampling at arbitrary subset of points from lattice)
select small subset of sample points; construct Delaunay triangulation (DT) of
subset of sample points and form interpolant over each face of resulting DT

(a)
 0

 10
 20

 30
 40

 50
 60

 70

 0

 10

 20

 30

 40

 50

 60

 70

 0
 50

 100
 150
 200
 250
 300

(b)
0

10
20

30
40

50
60

70

0

10

20

30

40

50

60

70

0

100

200

300

(c)

(d) (e)

(a) The original image and its
(b) corresponding surface; (c) a
mesh approximation of the im-
age surface, (d) its corresponding
image-domain triangulation, and
(e) the image reconstructed from
the mesh

Michael D. Adams (University of Victoria) CCCG 2009 August 2009 3

Motivation (Continued)

since images usually sampled on (truncated) lattice, means is needed for
choosing good subset of sample points to use for representation purposes

solution to sample-point selection problem typically requires use of
fully-dynamic DT method

fully dynamic: incremental insertion and deletion of points, where distribution of
points not known in advance, can change over time, and can be highly
nonuniform

although many DT methods proposed to date, relatively few suitable for use in
fully-dynamic situations (e.g., some methods require all points known in
advance, such as divide-and-conquer approaches)

Michael D. Adams (University of Victoria) CCCG 2009 August 2009 4

General Approach to DT

points to be triangulated assumed to fall on integer lattice (i.e., have integer
coordinates), although proposed methods trivially extend to any lattice

triangulation domain D square with power-of-two dimensions

based on incremental algorithm described by Guibas and Stolfi:
L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and
the computation of Voronoi diagrams. ACM Transactions on Graphics,
4(2):74–123, Apr. 1985

to ensure unique DT produced, preferred-directions technique of Dyken and
Floater employed:

C. Dyken and M. S. Floater. Preferred directions for resolving the non-uniqueness
of Delaunay triangulations. Computational Geometry—Theory and Applications,
34:96–101, 2006

proposed methods differ only in point-location strategy

Michael D. Adams (University of Victoria) CCCG 2009 August 2009 5

DT Primitives

three basic primitives: insertVertex, findVertex, deleteVertex
insertVertex inserts new vertex into triangulation

1 locates candidate starting point for oriented walk using point-location strategy
2 performs oriented walk to find face containing new vertex
3 inserts new vertex into point-location structure
4 updates DT by performing edge flips to restore Delaunay property
5 sets active vertex to newly inserted vertex

findVertex locates vertex already in triangulation
1 located specified vertex using point-location structure, possibily in conjunction with

oriented walk
2 sets active vertex to located vertex

deleteVertex deletes vertex (that has already been located) from
triangulation

1 updated DT by removing vertex and performing edge flips to restore Delaunay
property

2 deletes vertex from point-location structure
3 sets active vertex to any vertex that shared edge with deleted vertex

depending on circumstances, may be necessary to use findVertex and
deleteVertex in order to delete vertex

Michael D. Adams (University of Victoria) CCCG 2009 August 2009 6

Bucket Method

based on BucketInc method from Su and Drysdale:
P. Su and R. L. S. Drysdale. A comparison of sequential Delaunay triangulation
algorithms. Computational Geometry—Theory and Applications, 7(5–6):361–385,
Apr. 1997

triangulation domain partitioned using uniform square grid into square regions
called buckets

s s s

s

s

s · · ·

· · ·

· · ·

...
...

.... .
.

point location structure consists of 2-D bucket array, with on entry per bucket

each entry in bucket array is doubly-linked list of vertices falling in bucket

adding/removing vertex from bucket array done in straightforward manner by
inserting/removing node from appropriate list

each list node has pointer to corresponding vertex object in DT and vice versa

Michael D. Adams (University of Victoria) CCCG 2009 August 2009 7

Bucket Method (Continued)

average number η of vertices per bucket required to satisfy c ≤ η < 4c, where
c is fixed parameter of method
if preceding condition violated (due to vertex insertion/deletion), bucket grid
spacing halved or doubled (as appropriate) in each dimension, changing η by
factor of 4
when grid spacing decreased (during vertex insertion):

1 allocate new larger bucket array
2 move each vertex from vertex list in old bucket array to correct list in new bucket

array
when grid spacing increased (during vertex deletion):

1 allocate new smaller bucket array
2 merge groups of old buckets (in groups of four) into new larger buckets by splicing

vertex lists of old buckets into new vertex lists

since bucket may contain large number of points, findVertex employs
oriented walk starting from first vertex in bucket’s vertex list
point location:

outward spiral search for nonempty bucket starting from
bucket containing point
when nonempty bucket found, first vertex in vertex list used
as search result

Michael D. Adams (University of Victoria) CCCG 2009 August 2009 8

Tree Method

assume triangulation domain D of form {0,1,2S−1}2, S ∈ N
triangulation domain D hierarchically partitioned, using quadtree, into square
regions called cells

root cell of quadtree chosen as D

remainder of cells in quadtree determined by recursively splitting root cell

cell splitting: cell split at midpoint in each of x and y directions to produce four
child cells

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

D

point-location data structure is tree associated with quadtree partitioning

Michael D. Adams (University of Victoria) CCCG 2009 August 2009 9

Tree Example

Vertices

v2

v0 v1

v3

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

v4

x

y

v5

v6

Corresponding Tree

v1 v2

v0 v5 v4

v6 v3

each node in tree associated with cell in quadtree partitioning having same
relative position with respect to root
each node in tree contains pointer to DT vertex contained in node’s cell (as well
as pointer to node’s parent and pointers to node’s four children)
for leaf node, cell always contains exactly one vertex
for nonleaf node, cell always contains more than one vertex
one-to-one correspondence between leaf nodes and DT vertices
tree can have at most S +1 levels

Michael D. Adams (University of Victoria) CCCG 2009 August 2009 10

Point-Location Part of insertVertex (Complex Case)

insert vertex
v = (6,6)

v2

v0 v1

v3

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

v4

x

y

v

1© initial state

v1 v2

v0 v4

v3

2© find node q furthest
from root whose cell

contains v

v1 v2

v0 v4

v3 q

3© move q downwards in
tree until v not in cell of q

v1 v2

v0 v4

v3 q

4© add node n
corresponding to v as

sibling of q

v1 v2

v0 v4

v v3 qn

Michael D. Adams (University of Victoria) CCCG 2009 August 2009 11

Point-Location Part of deleteVertex (Complex Case)

delete vertex v

v2

v0 v1

v3

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

v4

x

y

v

1© initial state

v1 v2

v0 v4

v v3

2© record parent p of
node n corresponding

to v

v1 v2

v0 v4

v v3

p

n

3© delete n; record only
child c of p

v1 v2

v0 v4

v3 c

p

4© move c upwards in
tree

v1 v2

v0 v4

v3 c

5© ensure no nodes on
path from c to root

reference n

v1 v2

v0 v4

×

v3 c

Michael D. Adams (University of Victoria) CCCG 2009 August 2009 12

Experimental Results

compare bucket method for c = 2 and c = 0.25 and tree method

identical software framework used to compare methods, only point-location
code changed

simple benchmark application:
1 all points inserted into triangulation via insertVertex
2 all vertices located using findVertex
3 all of the vertices deleted using deleteVertex

provide results for two datasets:
1 planets: 140025 points, nonuniformly distributed, domain size 1500×1867
2 uniform: 104861 points, uniformly distributed, domain size 2048×2048

planets dataset
(rotated)

Michael D. Adams (University of Victoria) CCCG 2009 August 2009 13

Results for planets and uniform datasets

Comparison of triangulation methods for planets dataset.
Quantity Tree Bucket(2) Bucket(0.25)
avg. insertVertex time (us) 8.1534 8.8709 8.0983
avg. deleteVertex time (us) 7.9919 9.3084 9.1362
avg. findVertex time (us) 0.7221 2.3008 1.5119
DT structure size∗ (MB) 46.08 43.06 44.06
point-location structure size (MB) 4.95 1.93 2.93
avg. orientation tests/insertVertex 5.356 10.33 5.972

∗including point-location structure

Comparison of triangulation methods for uniform dataset.
Quantity Tree Bucket(2) Bucket(0.25)
avg. insertVertex time (us) 8.1359 7.7663 7.9021
avg. deleteVertex time (us) 7.7102 8.8306 8.9916
avg. findVertex time (us) 0.7246 1.6782 1.1145
DT structure size∗ (MB) 34.84 32.10 33.98
point-location structure size (MB) 4.06 1.32 3.20
avg. orientation tests/insertVertex 5.498 6.621 5.252

∗including point-location structure

Michael D. Adams (University of Victoria) CCCG 2009 August 2009 14

Summary of Results

considering both uniform and nonuniform cases, for insertVertex, tree
method from 3% slower to 9% faster than bucket method

for nonuniform case, tree method comparable to bucket(0.25) (within 1%) and
significantly faster than bucket(2) scheme (by about 9%)

for deleteVertex, tree method consistently faster (by about 14% to 16%)

for findVertex, tree method faster (by about 50% to 200%)

performance of bucket method depends fairly heavily on choice of c parameter

for even more highly nonuniform point distributions (like some in Su and
Drysdale paper), tree method performs even better relative to bucket method

Michael D. Adams (University of Victoria) CCCG 2009 August 2009 15

Conclusions

proposed two fully-dynamic DT methods (bucket and tree methods)

neither method superior to other in all cases

tree method has some advantages that make its use attractive in some
applications

unlike bucket method, tree method performs well for wide variety of point
distributions without need for any special input parameters

use of tree method advantageous in situations where point distribution highly
unpredictable

as future work, would be worthwhile to compare tree method to other schemes
such as Delaunay hierarchy used in CGAL:

O. Devillers. The Delaunay hierarchy. International Journal of Foundations of
Computer Science, 13(2):163–180, 2002

Michael D. Adams (University of Victoria) CCCG 2009 August 2009 16

Michael D. Adams (University of Victoria) CCCG 2009 August 2009 17

Supplemental Slides

Michael D. Adams (University of Victoria) CCCG 2009 August 2009 18

Point-Location Part of insertVertex (Simple Case)

insert vertex
v = (1,3)

v2

v0 v1

v3

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

v4

x

y

v

1© initial state

v1 v2

v0 v4

v3

2© find node q furthest
from root whose cell

contains v

v1 v2

v0 v4

v3q

3© add new node n for
vertex v as child of q

v1 v2

v0 v5 v4

n

v3q

Michael D. Adams (University of Victoria) CCCG 2009 August 2009 19

Point-Location Part of deleteVertex (Simple Case)

delete vertex v

v2

v0 v1

v3

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

v4

x

y

v

1© initial state

v1 v2

v0 v v4

v3

2© record parent p of
node n corresponding

to v

v1 v2

v0 v v4

n

v3p

3© delete n

v1 v2

v0 v4

v3p

4© ensure nodes along
path from p to root do not

reference n

v1 v2

v0 v4

v3p

×

×

Michael D. Adams (University of Victoria) CCCG 2009 August 2009 20

	Background
	Proposed Methods
	Experimental Results
	Conclusions

